
A SMART Scheduler for Multimedia
Applications

JASON NIEH
Columbia University
and
MONICA S. LAM
Stanford University

Real-time applications such as multimedia audio and video are increasingly populating the work-
station desktop. To support the execution of these applications in conjunction with traditional
non-real-time applications, we have created SMART, a Scheduler for Multimedia And Real-Time
applications. SMART supports applications with time constraints, and provides dynamic feed-
back to applications to allow them to adapt to the current load. In addition, the support for
real-time applications is integrated with the support for conventional computations. This al-
lows the user to prioritize across real-time and conventional computations, and dictate how the
processor is to be shared among applications of the same priority. As the system load changes,
SMART adjusts the allocation of resources dynamically and seamlessly. It can dynamically shed
real-time computations and regulate the execution rates of real-time tasks when the system
is overloaded, while providing better value in underloaded conditions than previously proposed
schemes.

We have implemented SMART in the Solaris UNIX operating system and measured its perfor-
mance against other schedulers commonly used in research and practice in executing real-time,
interactive, and batch applications. Our experimental results demonstrate SMART’s superior per-
formance over fair queueing and UNIX SVR4 schedulers in supporting multimedia applications.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—
Scheduling

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Scheduling, real-time, multimedia, proportional sharing

Parts of this work appeared as a conference publication in the Sixteenth ACM Symposium on
Operating Systems Principles [Nieh and Lam 1997b]. This work was supported in part by an NSF
CAREER award and Sun Microsystems.
Authors’ addresses: J. Nieh, Columbia University, 518 Computer Science Building, Mail Code
0401, 1214 Amsterdam Avenue, New York, NY 10027; email: nieh@cs.columbia.edu; M. S. Lam,
Stanford University, Room 307, Gates Computer Science Building 3A, Stanford, CA 94305; email:
lam@cs.stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0734-2071/03/0500-0117 $5.00

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003, Pages 117–163.

118 • J. Nieh and M. S. Lam

1. INTRODUCTION

The workload on computers is rapidly changing. In the past, computers were
used in automating tasks around the work place, such as word and accounts
processing in offices, and design automation in engineering environments.
The human-computer interface has been primarily textual, with some limited
amount of graphical input and display. With the phenomenal improvement in
hardware technology in recent years, even highly affordable personal comput-
ers are capable of supporting much richer interfaces. Images, video, audio, and
interactive graphics have become common place. A growing number of multi-
media applications are available, ranging from video games and movie players,
to sophisticated distributed simulation and virtual reality environments. In an-
ticipation of a wider adoption of multimedia in applications in the future, there
has been much research and development activity in computer architecture for
multimedia applications. Not only is there a proliferation of processors that are
built for accelerating the execution of multimedia applications, even general-
purpose microprocessors have incorporated special instructions to speed their
execution [IEEE 1996].

While hardware has advanced to meet the special demands of multimedia
applications, software environments have not. In particular, multimedia ap-
plications have real-time constraints which are not handled well by today’s
general-purpose operating systems. The problems experienced by users of mul-
timedia on these machines include video jitter, poor “lip-synchronization” be-
tween audio and video, and slow interactive response while running video ap-
plications. Commercial operating systems such as UNIX SVR4 [AT&T 1990]
attempt to address these problems by providing a real-time scheduler in addi-
tion to a standard time-sharing scheduler. However, such hybrid schemes lead
to experimentally demonstrated unacceptable behavior, allowing runaway real-
time activities to cause basic system services to lock up, and the user to lose
control over the machine [Nieh et al. 1993].

This paper argues for the need to design a new processor scheduling al-
gorithm that can handle the mix of applications we see today. We present a
scheduling algorithm that we have implemented in the Solaris UNIX operat-
ing system [Eykholt et al. 1992], and demonstrate its improved performance
over existing schedulers in research and practice on real applications. In par-
ticular, we have quantitatively compared it against the popular weighted fair
queueing and UNIX SVR4 schedulers in supporting multimedia applications
in a realistic workstation environment.

1.1 Demands of Multimedia Applications on Processor Scheduling

To understand the requirements imposed by multimedia applications on pro-
cessor scheduling, we first describe the salient features of these applications
and their special demands that distinguish them from the conventional (non-
real-time) applications that current operating systems are designed for:

—Soft real-time constraints. Real-time applications have application-specific
timing requirements that need to be met [Northcutt 1987]. For example in
the case of video, time constraints arise due to the need to display video in

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 119

a smooth and synchronized way, often synchronized with audio. Time con-
straints may be periodic or aperiodic in nature. Unlike conventional appli-
cations, tardy results are often of little value; it is often preferable to skip
a computation than to execute it late. Unlike hard real-time environments,
missing a deadline only diminishes the quality of the results and does not
lead to catastrophic failures.

—High resource demands and frequent overload. Multimedia applications can
present very high demands for resources. Today, video applications are often
limited to simple VCR-like functions as opposed to delivering richer video
processing functionality, and video playback windows are often tiny at full
display rate because of computing resources insufficient to keep up with high-
fidelity resolution. Since applications such as real-time video are highly re-
source intensive and can consume the resources of an entire machine, re-
sources are commonly overloaded, with resource demand often exceeding its
availability.

—Dynamically adaptive applications. When resources are overloaded and
not all time constraints can be met, multimedia applications are often
able to adapt and degrade gracefully by offering a different quality of ser-
vice [Northcutt and Kuerner 1991]. For example, a video application may
choose to skip some frames or display at a lower image quality when not all
frames can be processed in time. Because not all multimedia applications
are written with adaptive capabilities, adaptive and non-adaptive multime-
dia applications must be able to co-exist.

—Co-existence with conventional computations. Real-time applications must
share the desktop with already existing conventional applications, such as
word processors, compilers, and so on. Real-time tasks should not always be
allowed to run in preference to all other tasks because they may starve out
important conventional activities, such as those required to keep the system
running. Moreover, users would like to be able to combine real-time and con-
ventional computations in new applications, such as multimedia documents,
which mix text and graphics as well as audio and video. In no way should the
capabilities of a multiprogrammed workstation be reduced to a single func-
tion commodity television set in order to meet the demands of multimedia
applications.

—Dynamic environment. Unlike static embedded real-time environments,
workstation users run an often changing mix of applications, resulting in
dynamically varying loads.

—User preferences. Different users may have different preferences, for exam-
ple, in regard to trading off the speed of a compilation versus the display
quality of a video, depending on whether the video is part of an important
teleconferencing session or just a television show being watched while wait-
ing for an important computational application to complete.

1.2 Overview of this Paper

This paper proposes SMART (Scheduler for Multimedia And Real-Time applica-
tions), a processor scheduler that fully supports the application characteristics

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

120 • J. Nieh and M. S. Lam

described above. SMART consists of a simple application interface and a
scheduling algorithm that tries to deliver the best overall value to the user.
SMART supports applications with time constraints, and provides dynamic
feedback to applications to allow them to adapt to the current load. In addi-
tion, the support for real-time applications is integrated with the support for
conventional computations. This allows the user to prioritize across real-time
and conventional computations, and dictate how the processor is to be shared
among applications of the same priority. As the system load changes, SMART
adjusts the allocation of resources dynamically and seamlessly. It is able to
dynamically shed real-time computations and regulate the execution rates of
real-time tasks when the system is overloaded, while providing better value in
underloaded conditions than previously proposed schemes.

SMART achieves this behavior by reducing this complex resource manage-
ment problem into two decisions, one based on importance to determine the
overall resource allocation for each task, and the other based on urgency to
determine when each task is given its allocation. SMART provides a common
importance attribute for both real-time and conventional tasks based on pri-
orities and weighted fair queueing (WFQ) [Demers et al. 1989]. SMART then
uses an urgency mechanism based on earliest-deadline scheduling [Liu and
Layland 1973] to optimize the order in which tasks are serviced to allow real-
time tasks to make the most efficient use of their resource allocations to meet
their time constraints. In addition, a bias on conventional batch tasks that ac-
counts for their ability to tolerate more varied service latencies is used to give
interactive and real-time tasks better performance during periods of transient
overload.

This paper also presents experimental data on the SMART algorithm, based
on our implementation of the scheduler in the Solaris UNIX operating system.
We present two sets of data, both of which are based on a workstation work-
load consisting of real multimedia applications running with representative
batch and interactive applications. For the multimedia application, we use a
synchronized media player developed by Sun Microsystems Laboratories that
was originally tuned to run well with the UNIX SVR4 scheduler. It takes only
the addition of a couple of system calls to allow the application to take advan-
tage of SMART’s features. We will describe how this is done to give readers
a better understanding of the SMART application interface. The first experi-
ment compares SMART with two other existing scheduling algorithms: UNIX
SVR4 scheduling, which serves as the most common basis of workstation oper-
ating systems used in current practice [Ffoulkes and Wikler 1997], and WFQ,
which has been the subject of much attention in current research [Bennett and
Zhang 1996; Demers et al. 1989; Parekh and Gallager 1993; Stoica et al. 1996;
Waldspurger 1995]. The experiment shows that SMART is superior to the other
algorithms in the case of a workstation overloaded with real-time activities. In
the experiment, SMART delivers over 250% more real-time multimedia data
on time than UNIX SVR4 timesharing and over 60% more real-time multime-
dia data on time than WFQ, while also providing better interactive response.
The second experiment demonstrates the ability of SMART to (1) provide the
user with predictable control over resource allocation, (2) adapt to dynamic

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 121

changes in the workload and (3) deliver expected behavior when the system is
not overloaded.

The paper is organized as follows. Section 2 introduces the SMART appli-
cation interface and usage model. Section 3 describes the SMART scheduling
algorithm. We start with the overall rationale of the design and the major con-
cepts, then present the algorithm itself, followed by an example to illustrate
the algorithm. Despite the simplicity of the algorithm, the behavior it provides
is rather rich. Section 4 analyzes the different aspects of it and shows how it
delivers behavior consistent with its principles of operations. Section 5 pro-
vides a comparison with related work. Section 6 describes our implementation
of SMART in the Solaris operating system. Section 7 presents experimental
results based on using our SMART prototype implementation with real ap-
plications in a commercial operating system environment. Finally, we present
some concluding remarks and directions for future work.

2. THE SMART INTERFACE AND USAGE MODEL

The SMART interface provides two kinds of support for multimedia applica-
tions. One is to support the developers of multimedia applications that are faced
with writing applications that have dynamic and adaptive real-time require-
ments. The other is to support the end users of multimedia applications, each of
whom may have different preferences for how a given mix of applications should
run. For the application developer, SMART provides time constraints and noti-
fications for supporting applications with real-time computations. For the user
of applications, SMART provides priorities and shares for predictable control
over the allocation of resources. An overview of the interface is presented here.
A more detailed description can be found in Nieh and Lam [1997a].

2.1 Application Developer Support

Multimedia application developers are faced with the problem of writing ap-
plications with real-time requirements. They know the time constraints that
should be met in these applications and know how to allow them to adapt
and degrade gracefully when not all time constraints can be met. The prob-
lem is that current operating system practice, as typified by UNIX, does not
provide an adequate amount of functionality for supporting these applications.
For example, in dealing with time in UNIX time-sharing, an application can
obtain simple timing information such as elapsed wall clock time and accu-
mulated execution time during its computations. An application can also tell
the scheduler to delay the start of a computation by “sleeping” for a duration
of time. But it is not possible for an application to ask the scheduler to com-
plete a computation within certain time constraints, nor can it obtain feedback
from the scheduler on whether or not it is possible for a computation to com-
plete within the desired time constraints. The application ends up finding out
only after the fact that its efforts were wasted on results that could not be
delivered on time. The lack of system support exacerbates the difficulty of writ-
ing applications with real-time requirements and results in poor application
performance.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

122 • J. Nieh and M. S. Lam

To address these limitations, SMART provides to the application developer
two kinds of programming constructs for supporting applications with real-
time computations: a time constraint to allow an application to express to the
scheduler the timing requirements of a given block of application code, and a
notification to allow the scheduler to inform the application via a simple upcall
when its timing requirements cannot be met.

A time constraint consists of a deadline and an estimate of the processing
time required to meet the deadline. An application can inform the scheduler that
a given block of code has a certain deadline by which it should be completed, can
request information on the availability of processing time for meeting a dead-
line, and can request a notification from the scheduler if it is not possible for
the specified deadline to be met. Furthermore, applications can have blocks of
code that have time constraints and blocks of code that do not, thereby allowing
application developers to freely mix real-time and conventional computations.
By providing explicit time constraints, SMART allows applications to commu-
nicate their timing requirements to the system. The scheduler can then use
this information to optimize how it sequences the resource requests of different
applications to meet as many time constraints as possible. It can delay those
computations with less stringent timing requirements to allow those with more
stringent requirements to execute. It can use this knowledge of the timing re-
quirements of all applications to estimate the load on the system and determine
which time constraints can and cannot be met.

A notification is used to allow an application to request that the scheduler
inform it whenever its deadline cannot be met. A notification consists of a notify-
time and a notify-handler. The notify-time is the time after which the scheduler
should inform the respective application if it is unlikely to complete its compu-
tation before its deadline. The notify-handler is a function that the application
registers with the scheduler. It is invoked via an upcall mechanism from the
scheduler when the scheduler notifies the application that its deadline cannot
be met. The notify-time is used by the application to control when the notifica-
tion upcall is delivered. For instance, if the notify-time is set equal to zero, then
the application will be notified immediately if early estimates by the scheduler
indicate that its deadline will not be met. On the other hand, if the notify-time
is set equal to the deadline, then the application will not be notified until after
the deadline has passed if its deadline was not met. The combination of the
notification upcall with the notify-handler frees applications from the burden
of second guessing the system to determine if their time constraints can be
met, and allows applications to choose their own policies for deciding what to
do when a deadline is missed. For example, upon notification, the application
may choose to discard the current computation, perform only a portion of it, or
perhaps change the time constraints. This feedback from the system enables
adaptive real-time applications to degrade gracefully. By default, if the notify-
time is not specified, the application is not notified if its deadline cannot be met.
In addition, if no notify-handler is registered, the notify-time is ignored.

The model of interaction provided by SMART is one of propagating infor-
mation between applications and the scheduler to facilitate their cooperation
in managing resources. Neither can do the job effectively on its own. Only the

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 123

scheduler can take responsibility for arbitrating resources among competing
applications, but it needs applications to inform it of their requirements to do
that job effectively. Different applications have different adaptation policies,
but they need support from the scheduler to estimate the load and determine
when and what time constraints cannot be met.

Note that time constraints and notifications are intended to be used by ap-
plication writers to support their development of real-time applications; the
end user of such applications need not know anything about these constructs
or anything about the timing requirements of the applications. As an exam-
ple, we describe an audio/video application that was programmed using time
constraints in Section 7.4.

2.2 End User Support

Different users may have different preferences for how processing time should
be allocated among a set of applications. Not all applications are always of equal
importance to a user. For example, a user may want to ensure that an important
video teleconference be played at the highest image and sound quality possible,
at the sacrifice if need be of the quality of a television program that the user
was just watching to pass the time. However, current practice, as typified by
UNIX, provides little in the way of predictable controls to bias the allocation
of resources in accordance with user preferences. For instance, in UNIX time-
sharing, all that a user is given is a nice knob [AT&T 1990] whose setting is
poorly correlated to the scheduler’s externally observable behavior [Nieh et al.
1993].

As users may have different preferences for how processing time should be
allocated among a set of applications, SMART provides two parameters to pre-
dictably control processor allocation: priority and share. These parameters can
be used to bias the allocation of resources to provide the best performance for
those applications which are more important to the user.

The user can specify that applications have different priorities, meaning that
the application with the higher priority is favored whenever there is contention
for resources. The system will not degrade the performance of a higher priority
application to execute a lower priority application. For instance, suppose we
have two real-time applications, one with higher priority than the other, and
the lower priority application has a computation with a more stringent time
constraint. If the lower priority application needs to execute first in order to
meet its time constraint, the system will allow it to do so as long as its execu-
tion does not cause the higher priority application to miss its time constraint.
Among applications at the same priority, the user can specify the share of each
application, resulting in each application receiving an allocation of resources in
proportion to its respective share whenever there is contention for resources.
Shares only affect the allocation of resources among applications with equal
priorities.

Our expectation is that most users will run the applications in the default
priority level with equal shares. This is the system default and requires no user
parameters. The user may occasionally wish to adjust the proportion of shares

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

124 • J. Nieh and M. S. Lam

between the applications. A graphical interface can be provided to make the
adjustment as simple and intuitive as adjusting the volume of a television or
the balance of a stereo output. The user may want to use the priority to handle
specific circumstances. Suppose we wish to ensure that an audio telephony
application can always execute; this can be achieved by running the application
with high priority.

2.3 Interface Design Summary

Fundamental to the design of SMART is the separation of importance infor-
mation as expressed by user preferences from the urgency information as ex-
pressed by the time constraints of the applications. Prematurely collapsing
urgency and importance information into a single priority value, as is the case
with standard UNIX SVR4 real-time scheduling, results in a significant loss
of information and denies the scheduler the necessary knowledge to perform
its job effectively. By providing both dimensions of information, the scheduler
can do a better job of sequencing the resource requests in meeting the time
constraints, while ensuring that even if not all time constraints can be met, the
more important applications will at least meet their time constraints.

While SMART accounts for both application and user information in manag-
ing resources, it in no way imposes demands on either application developers
or end users for information they cannot or choose not to provide. The design
provides reasonable default behavior as well as incrementally better results
for incrementally more information. By default, an end user can just run an
application as he would today and obtain fair behavior. If he desires that more
resources should be allocated to a given application, SMART provides simple
controls that can be used to express that to the scheduler. Similarly, an applica-
tion developer need not use any of SMART’s real-time programming constructs
unless he desires such functionality. Alternatively, he might choose to use only
time constraints, in which case he need not know about notifications or avail-
abilities. When the functionality is not needed, the information need not be
provided. When the real-time programming support is desired, as is often the
case with multimedia applications, SMART has the ability to provide it.

3. THE SMART SCHEDULER

In the following, we first describe the principles of operations used in the design
of the scheduler. We then give an overview of the rationale behind the design,
followed by an overview of the algorithm and then the details.

3.1 Principles of Operations

It is the scheduler’s objective to deliver the behavior expected by the user in a
manner that maximizes the overall value of the system to its users. We have
reduced this objective to the following six principles of operations:

—Priority. The system should not degrade the performance of a high priority
application in the presence of a low priority application.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 125

—Proportional sharing among real-time and conventional applications in the
same priority class. Proportional sharing applies only if the scheduler can-
not satisfy all the requests in the system. The system will fully satisfy the
requests of all applications requesting less than their proportional share.
The resources left over after satisfying these requests are distributed pro-
portionally among tasks that can use the excess. While it is relatively easy
to control the execution rate of conventional applications, the execution rate
of a real-time application is controlled by selectively shedding computations
in as even a rate as possible.

—Graceful transitions between fluctuations in load. The system load varies
dynamically, new applications come and go, and the resource demand of each
application may also fluctuate. The system must be able to adapt to the
changes gracefully, particularly by being able to effectively utilize available
resources when the system is heavily loaded.

—Satisfying real-time constraints and fast interactive response time in under-
load. If real-time and interactive tasks request less than their proportional
share, their time constraints should be honored when possible, and the in-
teractive response time should be short.

—Trading off instantaneous fairness for better real-time and interactive re-
sponse time. While it is necessary that the allocation is fair on average,
insisting on being fair instantaneously at all times can cause many more
deadlines to be missed and deliver poor response time to short running tasks.
We will tolerate some instantaneous unfairness so long as the extent of the
unfairness is bounded. For example, a long-running batch application can
tolerate some extra short-term delay without any noticeable loss in overall
performance to allow a real-time application to meet its immediate dead-
line. This is the same motivation behind the design of multi-level feedback
schedulers [Leffler et al. 1989] to improve the response time of interactive
tasks.

—Notification of resource availability. SMART allows applications to specify if
and when they wish to be notified if it is unlikely that their computations
will be able to complete before their given deadlines.

3.2 Rationale and Overview

Real-time and conventional applications have very diverse characteristics.
Real-time applications have some well-defined computation that must be com-
pleted before an associated deadline. The goal of real-time applications is sim-
ply to complete their computations before their respective deadlines. If it is
not possible to meet all deadlines, it is generally better to complete as many
computations as possible by their respective deadlines. For some real-time ap-
plications, it may be better not to run the application at all if it cannot meet all of
its deadlines. In contrast, conventional applications have no explicit deadlines
and their computations are often harder to predict. Instead, the goal is typi-
cally to deliver good response time for interactive applications and fast program
completion time for batch applications. These characteristics are summarized
in Table I. It is this diversity that makes devising an integrated scheduling

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

126 • J. Nieh and M. S. Lam

Table I. Categories of Applications

Real-Time Conventional Applications
Applications Interactive Batch

Deadlines Yes No No
Quantum of Service time: no value if the Arbitrary choice Arbitrary choice
Execution entire computation not

executed
Resource Service time before deadline; Relinquishes machine Can consume all
Requirement slack is usually present while waiting for processor cycles

human response until it completes
Quality of Number of deadlines met Response time Program completion
Service Metric time

algorithm difficult. A real-time scheduler uses real-time constraints to deter-
mine the execution order, but conventional tasks do not have real-time con-
straints. Adding periodic deadlines to conventional tasks is a tempting design
choice, but it introduces artificial constraints that reduce the effectiveness of
the system. On the other hand, a conventional task scheduler has no notion
of real-time constraints; the notion of time-slicing the applications to optimize
system throughput does not serve real-time applications well.

The crux of the solution is not to confuse urgency with importance. An urgent
task is one that has an immediate real-time constraint. An important task is
one with a high priority, or one that has been the least serviced proportionally
among applications with the same priority. An urgent task may not be the one
to execute if it requests more resources than its fair share. Conversely, an im-
portant task need not be run immediately. For example, a real-time task that
has a higher priority but a later deadline may be able to tolerate the execution
of a lower priority task with an earlier deadline. Our algorithm separates the
processor scheduling decisions into two steps; the first identifies all the candi-
dates that are considered important enough to execute, and the second chooses
the task to execute based on urgency considerations.

A key characteristic of this two-step scheduling algorithm is that it avoids
the tyranny of the urgent. That is, there are often many urgent activities that
need to get done, but not enough time to do all of them completely within
their time constraints. However, trying to focus on getting the urgent activities
done while neglecting the less time constrained but more important activi-
ties that need to get done is typically a path to long term disaster. Instead,
what our algorithm effectively does is it gets things that are more urgent
done sooner, but defers less important activities as needed to ensure that the
more important activities can meet their requirements. In particular, what
candidates are considered important enough to execute depends on the load
on the system. If the system is lightly loaded such that all activities can run
and meet their requirements, then all activities will be considered important
enough to execute. The algorithm will then order all activities based on ur-
gency to do the best job of meeting the deadlines of all real-time activities. If
the system is heavily loaded such that not all activities can run and meet their
requirements, then the algorithm will only consider as candidates the most

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 127

important activities that can meet their requirements with the available pro-
cessing time.

While urgency is specific to real-time applications, importance is common to
all the applications. We measure the importance of an application by a value-
tuple, which is a tuple with two components: priority and the biased virtual
finishing time (BVFT). Priority is a static quantity either supplied by the user
or assigned the default value; BVFT is a dynamic quantity the system uses
to measure the degree to which each task has been allotted its proportional
share of resources. The formal definition of the BVFT is given in Section 3.3.
We say that task A has a higher value-tuple than task B if A has a higher static
priority or if both A and B have the same priority and A has an earlier BVFT.
The value-tuple effectively provides a way to express what would otherwise be
a non-obvious utility function for capturing both the notions of prioritized and
proportional sharing.

The SMART scheduling algorithm used to determine the next task to run is
as follows:

(1) If the task with the highest value-tuple is a conventional task (a task with-
out a deadline), schedule that task.

(2) Otherwise, create a candidate set consisting of all real-time tasks with
higher value-tuple than that of the highest value-tuple conventional task.
(If no conventional tasks are present, all the real-time tasks are placed in
the candidate set.)

(3) Apply the best-effort real-time scheduling algorithm [Locke 1986] on the
candidate set, using the value-tuple as the priority in the original algo-
rithm. By using the given deadlines and service-time estimates, find the
task with the earliest deadline whose execution does not cause any tasks
with higher value-tuples to miss their deadlines. This is achieved by con-
sidering each candidate in turn, starting with the one having the highest
value-tuple. The algorithm attempts to schedule the candidate into a work-
ing schedule that is initially empty. The candidate is inserted in deadline
order in this schedule provided its execution does not cause any of the tasks
in the schedule to miss its deadline. The scheduler simply picks the task
with the earliest deadline in the working schedule.

(4) If a task cannot complete its computation before its deadline, send a no-
tification to inform the respective application that its deadline cannot be
met.

The following sections provide a more detailed description of the BVFT, and
the best-effort real-time scheduling technique.

3.3 Biased Virtual Finishing Time

The notion of a virtual finishing time (VFT), which measures the degree to which
the task has been allotted its proportional share of resources, has been previ-
ously used in describing fair queueing algorithms [Bennett and Zhang 1996;
Demers et al. 1989; Parekh and Gallager 1993; Stoica et al. 1996; Waldspurger
1995]. These proportional sharing algorithms associate a VFT with each activity

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

128 • J. Nieh and M. S. Lam

as a way to measure the degree to which an activity has received its propor-
tional allocation of resources. We augment this basic notion in the following
ways. First, our use of virtual finishing times incorporates tasks with different
priorities. Second, we add to the virtual finishing time a bias, which is a bounded
offset used to measure the ability of conventional tasks to tolerate longer and
more varied service delays. The biased virtual finishing time allows us to pro-
vide better interactive and real-time response without compromising fairness.
Finally and most importantly, fair queueing algorithms such as weighted fair
queueing (WFQ) execute the activity with the earliest virtual finishing time
to provide proportional sharing. SMART only uses the biased virtual finishing
time in the selection of the candidates for scheduling—real-time constraints
are also considered in the choice of the application to run. This modification en-
ables SMART to handle applications with aperiodic constraints and overloaded
conditions.

Our algorithm organizes all the tasks into queues, one for each priority. The
tasks in each queue are ordered in increasing BVFT values. Each task has a
virtual time, which advances at a rate proportional to the amount of processing
time it consumes divided by its share. Suppose the current task being executed
has share S and was initiated at time τ . Let v(τ) denote the task’s virtual time
at time τ . Then the virtual time v(t) of the task at current time t is

v(t) = v(τ)+ t − τ
S

. (1)

Correspondingly, each queue has a queue virtual time, which advances only
if any of its member tasks is executing. The rate of advance is proportional to
the amount of processing time spent on the task divided by total number of
shares of all tasks on the queue. To be more precise, suppose the current task
being executed has priority P and was initiated at time τ . Let VP (τ) denote
the queue virtual time of the queue with priority P at time τ . Then the queue
virtual time VP (t) of the queue with priority P at current time t is

VP (t) = VP (τ)+ t − τ∑
a∈Ap

Sa
, (2)

where Sa represents the share of application a, and AP is the set of applications
on the queue with priority P .

Previous work in the domain of packet switching provides a theoretical ba-
sis for using the difference between the virtual time of a task and the queue
virtual time as a measure of whether the respective task has consumed its
proportional allocation of resources [Demers et al. 1989; Parekh and Gallager
1993]. If a task’s virtual time is equal to the queue virtual time, it is consid-
ered to have received its proportional allocation of resources. An earlier vir-
tual time indicates that the task has less than its proportional share, and,
similarly, a later virtual time indicates that it has more than its proportional
share. Since the queue virtual time advances at the same rate for all tasks
on the queue, the relative magnitudes of the virtual times provide a mea-
sure of the degree to which each task has received its proportional share of
resources.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 129

The virtual finishing time refers to the virtual time of the application, had
the application been given the currently requested quantum. The quantum for
a conventional task is the unit of time the scheduler gives to the task to run
before being rescheduled. The quantum for a real-time task is the application-
supplied estimate of its service time. A useful property of the virtual finishing
time, which is not shared by the virtual time, is that it does not change as a
task executes and uses up its time quantum, but only changes when the task
is rescheduled with a new time quantum.

In the following, we step through all the events that lead to the adjustment
of the biased virtual finishing time of a task. Let the task in question have
priority P and share S. Let β(t) denote the BVFT of the task at time t.

Task creation time. When a task is created at time τ0, it acquires as its
virtual time the queue virtual time of its corresponding queue. Suppose the
task has time quantum Q , then its BVFT is

β(τ0) = VP (τ0)+ Q
S
. (3)

Completing a Quantum. Once a task is created, its BVFT is updated as fol-
lows. When a task finishes executing for its time quantum, it is assigned a new
time quantum Q . As a conventional task accumulates execution time, a bias is
added to its BVFT when it gets a new quantum. That is, let b represent the in-
creased bias and t be the time a task’s BVFT was last changed. In other words,
if the bias has not changed since the time a task’s BVFT was last changed, the
increased bias b is zero. Then, the task’s BVFT is

β(t) = β(τ)+ Q
S
+ b

S
. (4)

The bias is used to defer long running batch computations during transient
loads to allow real-time and interactive tasks to obtain better immediate re-
sponse time. The bias is increased in a manner similar to the way priorities
and time quanta are adjusted in UNIX SVR4 to implement time-sharing [AT&T
1990]. The total bias added to an application’s BVFT is bounded. Thus, the bias
does not change either the rate at which the BVFT is advanced or the overall
proportional allocation of resources. It only affects the instantaneous propor-
tional allocation. User interaction causes the bias to be reset to its initial value.
Real-time tasks have zero bias.

The idea of a dynamically adjusted bias based on execution time is somewhat
analogous to the idea of a decaying priority based on execution time that is used
in multilevel-feedback schedulers. However, while multilevel-feedback affects
the actual average amount of resources allocated to each task, bias only affects
the response time of a task and does not affect its overall ability to obtain its
proportional share of resources. By combining virtual finishing times with bias,
the BVFT can be used to provide both proportional sharing and better system
responsiveness in a systematic fashion.

Blocking for I/O or events. A blocked task should not be allowed to accumu-
late credit to a fair share indefinitely while it is sleeping; however, it is fair and

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

130 • J. Nieh and M. S. Lam

desirable to give the task a limited amount of credit for not using the processor
cycles and to improve the responsiveness of these tasks. Therefore, SMART
allows the task to remain on its given priority queue for a limited duration
that is equal to the lesser of the deadline of the task (if one exists), or a sys-
tem default. At the end of this duration, a sleeping task must leave the queue,
and SMART records the difference between the task’s and the queue’s virtual
time. This difference is then restored when the task rejoins the queue once it
becomes runnable. Let E be the execution time the task has already received
toward completing its time quantum Q , B be its current bias, and v(t) denote
the task’s virtual time. Then, the difference δ is

δ = v(t)− VP (t), (5)

where

v(t) = β(t)− Q − E
S
− B

S
. (6)

Upon rejoining the queue, its bias is reset to zero and the BVFT is

β(t) = VP (t)+ δ + Q
S
. (7)

Reassigned user parameters. If a task is given a new priority, it is reassigned
to the queue corresponding to its new priority, and its BVFT is simply calculated
as in Equation 3 . If the task is given a new share, the BVFT is calculated by
having the task leave the queue with the old parameters used in Equation 6
to calculate δ, and then join the queue again with the new parameters used in
Equation 7 to calculate its BVFT.

3.4 Best-Effort Real-Time Scheduling

SMART iteratively selects tasks from the candidate set in decreasing value-
tuple order and inserts them into an initially empty working schedule in in-
creasing deadline order. The working schedule defines an execution order for
servicing the real-time resource requests. It is said to be feasible if the set of
task resource requirements in the working schedule, when serviced in the or-
der defined by the working schedule, can be completed before their respective
deadlines. It should be noted that the resource requirement of a periodic real-
time task includes an estimate of the processing time required for its future
resource requests.

To determine if a working schedule is feasible, let Q j be the processing time
required by task j to meet its deadline, and let E j be the execution time task j
has already spent running toward meeting its deadline. Let F j be the fraction
of the processor required by a periodic real-time task; F j is simply the ratio
of a task’s service time to its period if it is a periodic real-time task, and zero
otherwise. Let D j be the deadline of the task. Then, the estimated resource
requirement of task j at a time t such that t ≥ D j is:

R j (t) = Q j − E j + F j × (t − D j), t ≥ D j . (8)

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 131

A working schedule W is then feasible if for each task i in the schedule with
deadline Di, the following inequality holds:

di ≥ t +
∑

j∈W |D j≤Di

R j (Di), ∀i ∈ W. (9)

On each task insertion into the working schedule, the resulting working
schedule that includes the newly inserted task is tested for feasibility. If the
resulting working schedule is feasible and the newly inserted task is a periodic
real-time task, its estimate of future processing time requirements is accounted
for in subsequent feasibility tests. At the same time, lower value-tuple tasks
are only inserted into the working schedule if they do not cause any of the cur-
rent and estimated future resource requests of higher value-tuple tasks to miss
their deadlines. The iterative selection process is repeated until SMART runs
out of tasks or until it determines that no further tasks can be inserted into the
schedule feasibly. Once the iterative selection process has been terminated,
SMART then executes the earliest-deadline runnable task in the schedule.
SMART further uses the selection process for determining which tasks can-
not complete before their respective deadlines when the system is overloaded
and notifies those tasks of the missed deadlines according to their notification
parameters.

If there are no runnable conventional tasks and there are no runnable real-
time tasks that can complete before their deadlines, the scheduler runs the
highest value-tuple runnable real-time task, even though it cannot complete
before its deadline. The rationale for this is that it is better to use the processor
cycles than allow the processor to be idle. The algorithm is therefore work
conserving, meaning that the resources are never left idle if there is a runnable
task, even if it cannot satisfy its deadline.

3.5 Complexity

The cost of scheduling with SMART consists of the cost of managing the value-
tuple list and the cost of managing the working schedule. The cost of managing
the value-tuple list in SMART is O(N), where N is the number of active tasks.
This assumes a linear insertion value-tuple list. The complexity can be reduced
to O(log N) using a tree data structure. For small N , a simple linear list is
likely to be most efficient in practice. The cost of managing the value-tuple list
is the same as WFQ.

The worst case complexity of managing the working schedule is O(N2
R),

where NR is the number of active real-time tasks of higher value than the
highest value conventional task. This worst case occurs if each real-time task
needs to be selected and feasibility tested against all other tasks when rebuild-
ing the working schedule. It is unlikely for the worst case to occur in practice
for any reasonably large NR . Real-time tasks typically have short deadlines so
that if there are a large number of real-time tasks, the scheduler will determine
that there is no more slack in the schedule before all of the tasks need to be
individually tested for insertion feasibility. The presence of conventional tasks
in the workstation environment also prevents NR from growing large. For large

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

132 • J. Nieh and M. S. Lam

Fig. 1. Example illustrating the behavior of SMART.

N , the cost of scheduling with SMART in practice is expected to be similar to
WFQ.

A more complicated algorithm can be used to reduce the complexity of man-
aging the working schedule. In this case, a new working schedule can be in-
crementally built from the existing working schedule as new tasks arrive. By
using information contained in the existing working schedule, the complexity
of building the new working schedule can be reduced to O(NR). When only
deletions are made to the working schedule, the existing working schedule can
simply be used, reducing the cost to O(1).

3.6 Example

We now present a simple example to illustrate how the SMART algorithm
works. Consider a workload involving two real-time applications, A and B, and
a conventional application C. Suppose all the applications belong to the same
priority class, and their proportional shares are in the ratio of 1:1:2, respec-
tively. Both real-time applications request 40 ms of computation time every 80
ms, with their deadlines being completely out of phase, as shown in Figure 1(a).
The applications request to be notified if the deadlines cannot be met; upon no-
tification, the application drops the current computation and proceeds to the
computation for the next deadline. The scheduling quantum of the conventional
application C is also 40 ms and we assume that it has accumulated a bias of 100
ms at this point. For simplicity, we assume that the bias of C remains constant
throughout the example. Figures 1(b) and (c) show the final schedule created
by SMART for this scenario, and the BVFT values of the different applications
at different time instants.

The initial BVFTs of applications A and B are the same; since C has twice
as many shares as A and B, the initial BVFT of C is half of the sum of the
bias and the quantum length. Because of the bias, application C has a later
BVFT and is therefore not run immediately. The candidate set considered for
execution consists of both applications, A and B; A is selected to run because
it has an earlier deadline. (In this case, the deadline is used as a tie-breaker
between real-time tasks with the same BVFT; in general, a task with an early
deadline may get to run over a task with an earlier BVFT but a later deadline.)

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 133

When a task finishes its quantum, its BVFT is incremented. The increment for
C is half of that for A and B because the increment is the result of dividing the
time quantum by its share. Figure 1(c) shows how the tasks are scheduled such
that their BVFTs are kept close together.

This example illustrates several important characteristics of SMART. First,
SMART implements proportional sharing properly. In the steady state, C is
given twice as much resources as A or B, which reflects the ratio of shares
given to the applications. Second, the bias allows better response in temporary
overload, but it does not reduce the proportional share given to the biased
task. Because of C’s bias, A and B get to run immediately at the beginning;
eventually their BVFTs catch up with the bias, and C is given its fair share.
Third, the scheduler is able to meet many real-time constraints, while skipping
tardy computations. For example, at time 0, SMART schedules application A
before B so as to satisfy both deadlines. On the other hand, at time 120 ms
into the execution, realizing that it cannot meet the A1 deadline, it executes
application B instead and notifies A of the missed deadline.

4. ANALYSIS OF THE BEHAVIOR OF THE ALGORITHM

In the following, we describe how the scheduling algorithm follows the prin-
ciples of operations as laid out in Section 3.1. From the principles, priority is
discussed in Section 4.1, proportional sharing and support for fluctuations in
load are discussed in Section 4.2, satisfying real-time constraints is discussed
in Section 4.2.2, trading off instantaneous fairness for better response time is
discussed in Section 4.2.1, and notification of resource availability is discussed
in Section 4.2.2.

4.1 Priority

Our principle of operation regarding priority is that the performance of high
priority tasks should not be affected by the presence of low priority tasks. As
the performance of a conventional task is determined by its completion time,
a high priority conventional task should be run before any lower priority task.
Step 1 of the algorithm guarantees this behavior because a high priority task
always has a higher value-tuple than any lower priority task.

On the other hand, the performance metric of a real-time application is the
number of deadlines satisfied, not how early the execution takes place. The
best-effort scheduling algorithm in Step 3 will run a lower priority task with
an earlier deadline first, only if it can determine that doing so does not cause
the high priority task to miss its deadline. In this way, the system delivers a
better overall value to the user. Note that the scheduler uses the timing infor-
mation supplied by the applications to determine if a higher priority deadline
is to be satisfied. It is possible for a higher priority deadline to be missed if its
corresponding time estimate is inaccurate.

4.2 Proportional Sharing

Having described how time is apportioned across different priority classes, we
now describe how time allocated to each priority class is apportioned between

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

134 • J. Nieh and M. S. Lam

applications in the class. If the system is populated with only conventional
tasks, we simply divide the cycles in proportion to the shares across the dif-
ferent applications. As noted in Table I, interactive and real-time applications
may not use up all the resources that they are entitled to. Any unused cycles
are proportionally distributed among those applications that can consume the
cycles.

4.2.1 Conventional Tasks. Let us first consider conventional tasks whose
virtual finishing time has not been biased. We observe that even though real-
time tasks may not execute in the order dictated by WFQ, the scheduler will
run a real-task only if it has an earlier VFT than any of the conventional tasks.
Thus, by considering all the real-time tasks with an earlier VFT as one single
application with a correspondingly higher share, we see the SMART treatment
of the conventional tasks is identical to that of a WFQ algorithm. From the
analysis of the WFQ algorithm, it is clear that conventional tasks of equal
priority are given their fair shares.

A bias is added to a task’s VFT only after it has accumulated a significant
computation time. As a fixed constant, the bias does not change the relative
proportion between the allocation of resources. It only serves to allow a greater
variance in instantaneous fairness, thus allowing a better interactive and real-
time response in transient overloads.

4.2.2 Real-Time Applications. We say that a system is underloaded if there
are sufficient cycles to give a fair share to the conventional tasks in the system
while satisfying all the real-time constraints. When a system is underloaded,
the conventional tasks will be serviced often enough with the left-over pro-
cessor cycles so that they will have later BVFTs than real-time applications.
The conventional applications will therefore only run when there are no real-
time applications in the system. The real-time tasks are thus scheduled with
a strict best-effort scheduling algorithm. It has been proven that in under-
load, the best-effort scheduling algorithm degenerates to an earliest-deadline
scheduling algorithm [Liu and Layland 1973], which has been shown to satisfy
all scheduling constraints, periodic or aperiodic, optimally [Dertouzos 1974].
A real-time scheduler is considered optimal if it can meet the deadlines of all
tasks whenever such a schedule exists. In particular in this paper, we refer to
the optimality of a scheduler with respect to real-time tasks only, assuming no
conventional tasks are present.

In an underloaded system, the scheduler satisfies all the real-time appli-
cations’ requests. CPU time is given out according to the amounts requested,
which may have a very different proportion from the shares assigned to the
applications. The assigned proportional shares are used in the management of
real-time applications only if the system is oversubscribed.

A real-time application whose request exceeds its fair share for the cur-
rent loading condition will eventually accumulate a BVFT later than other
applications’ BVFTs. Even if it has the earliest deadline, it will not be run
immediately if there is a conventional application with a higher value, or if
running this application will cause a higher valued real-time application to

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 135

miss its deadline. If the application accepts notification, the system will in-
form the application when it determines that the constraint will not be met.
This interface allows applications to implement their own degradation poli-
cies. For instance, a video application can decide whether to skip the current
frame, skip a future frame, or display a lower quality image when the frame
cannot be fully processed in a timely fashion. The application adjusts the tim-
ing constraint accordingly and informs the system. If the application does not
accept notification, however, eventually all the other applications will catch
up with their BVFT, and the scheduler will allow the now late application
to run.

Just as the use of BVFT regulates the fair allocation of resources for con-
ventional tasks, it scales down the real-time tasks proportionally. In addition,
the bias introduced in the algorithm, as well as the use of a best-effort sched-
uler among real-time tasks with sufficiently high values, allows more real-time
constraints to be met.

5. RELATED WORK

Recognizing the need to provide better scheduling to support the needs of
modern applications such as multimedia, a number of resource management
mechanisms have been proposed. These approaches can be loosely classified
as real-time scheduling, fair queueing, feedback-based allocation, and hierar-
chical scheduling. We discuss these approaches in the context of supporting
multimedia applications.

5.1 Real-Time Scheduling

Real-time schedulers such as rate-monotonic scheduling [Lehoczky et al. 1989;
Liu and Layland 1973] and earliest-deadline scheduling [Dertouzos 1974; Liu
and Layland 1973] are designed to make better use of hardware resources in
meeting real-time requirements. In particular, earliest-deadline scheduling is
optimal in underload. These approaches are widely used in supporting real-
time embedded systems. However, they do not perform well when the system is
overloaded, nor are they designed to support conventional applications, which
have limited their utility in more general-purpose computing environments.

Resource reservations are commonly combined with real-time scheduling in
an attempt to run real-time tasks with conventional tasks [Coulson et al. 1995;
Jones et al. 1997; Leslie et al. 1996; Mercer et al. 1994]. These approaches
are used with admission control to allow real-time tasks to reserve a fixed
percentage of the resource in accordance with their resource requirement. Any
leftover processing time is allocated to conventional tasks using a standard
timesharing or round-robin scheduler.

Several differences in these reservation approaches are apparent. While the
approaches in Coulson et al. [1995] and Leslie et al. [1996] take advantage of
earliest-deadline scheduling to provide optimal real-time performance in un-
derload, the rate monotonic utilization bound used in Mercer et al. [1994] and
the time interval assignment used in Rialto [Jones et al. 1997] are not opti-
mal, resulting in lower performance than earliest-deadline approaches. Unless

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

136 • J. Nieh and M. S. Lam

conventional tasks are also assigned reservations, starvation can be a problem.
This problem is exacerbated in Rialto in which even in the absence of reserva-
tions, applications with time constraints buried in their source code are given
priority over conventional applications [M. B. Jones, Personal communication].

The use of reservations relies on admission control and resource negotiation
policies to avoid overload. Rather than shedding load dynamically during pro-
gram execution, as SMART does, such systems typically allow applications to
reserve their needed amounts of resources in advance in an attempt to ensure
up front that all deadlines can be met. Like in SMART, if all resource needs can-
not be met in a reservation system, load will have to be shed. The difference is
that reservation systems attempt to shed the load up front at reservation time,
rather than dynamically, during program execution. Reservation systems are
thus better suited when it is possible to determine up front what resources are
necessary and for applications needing to know up front that they should be
able to meet all their deadlines. However, these systems are not designed to ef-
fectively support applications that can dynamically adapt to varying amounts
of offered resources.

Most resource reservation schemes have used a first-come-first-served ap-
proach, which is simple but has obvious drawbacks. Such schemes result in
later arriving applications being denied resources even if they are more impor-
tant. Others have proposed allowing users to specify the relative importance
of applications, much like SMART does, while acting on these user preferences
at reservation time, rather than dynamically during program execution. How-
ever, we are not aware of any importance-based resource reservation scheduler
implementations.

Unlike first-come first-served reservation approaches, best-effort real-time
scheduling [Locke 1986] provides optimal performance in underload while en-
suring that tasks of higher priority can meet their deadlines in overload. How-
ever, it provides no way of scheduling conventional tasks and does not support
common resource sharing policies such as proportional sharing.

By introducing admission control, SMART can also provide resource reser-
vations with optimal real-time performance. In addition, SMART subsumes
best-effort real-time scheduling to provide optimal performance in meeting time
constraints in underload even in the absence of reservations. This is especially
important for common applications such as MPEG video whose dynamic re-
quirements match poorly with static reservation abstractions [Baiceanu et al.
1996; Goyal et al. 1996].

5.2 Fair Queueing

Fair queueing provides a mechanism that allocates resources to tasks in pro-
portion to their shares. It was first proposed for network packet scheduling
in Demers et al. [1989], with a more extensive analysis provided in Parekh
and Gallager [1993], and later applied to processor scheduling in Waldspurger
[1995] as stride scheduling. Recent variants [Bennett and Zhang 1996; Stoica
et al. 1996] provide more accurate proportional sharing at the expense of addi-
tional scheduling overhead. Fair queueing approaches have been particularly

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 137

useful in the context of network routers in managing resources in the face of
many competing flows.

Fair queueing can be effective at meeting real-time requirements if the re-
source requirements of the tasks are less than their respective assigned shares.
However, determining a set of share assignments that achieves this for a set of
tasks with dynamically changing resource requirements is difficult. This prob-
lem can be simplified if tasks are assumed to have strictly periodic resource
requirements [Parekh and Gallager 1993; Stoica et al. 1997], but common mul-
timedia applications such as the JPEG video player application discussed in
Section 7.4 do not satisfy this property. Another approach would be to overpro-
vision the share assignments for real-time tasks while sacrificing utilization.

Instead of assigning shares based on task resource requirements, shares can
be assigned in accordance with user desired allocations [Waldspurger 1995].
For instance, all tasks can be given equal shares by default to provide fair de-
fault resource allocations. However in this case, fair queueing does not perform
well for real-time tasks because it does not account for their time constraints.
In underload, time constraints are unnecessarily missed when a fair share al-
location is less than the resource requirements of a real-time task. In overload,
all tasks are proportionally late, potentially missing all time constraints.

Unlike real-time reservation schedulers, fair queueing can integrate reser-
vation support for real-time tasks with proportional sharing for conventional
tasks [Stoica et al. 1997]. However, shares for real-time applications must then
be assigned based on their resource requirements; they cannot be assigned
based on user desired allocations.

By providing time constraints and shares, SMART can more effectively meet
real-time requirements, with or without reservations. Unlike fair queueing, it
can provide optimal real-time performance while allowing proportional sharing
based on user desired allocations. Furthermore, SMART also supports simulta-
neous prioritized and proportional resource allocation. SMART subsumes fair
queueing in that it provides fair queueing behavior when time constraints are
not used and all tasks are at the same priority.

The notion of a bias used in SMART is similar to the delta used in conjunction
with the virtual time in Demers et al. [1989]. SMART’s bias is adjusted by the
system to systematically improve the performance of interactive applications.
More recent work [Duda and Cheriton 1999] has built on this idea by exploring
the use of direct user-level controls for adjusting the bias in the absence of
support for real-time applications.

5.3 Feedback-Based Allocation

More recently, feedback-based allocation [Steere et al. 1999] has been developed
in conjunction with reservation-based scheduling. It monitors the progress of
applications and uses that information to guide the allocation of resources.
The contributions of this work are primarily in deriving the appropriate as-
signment of scheduling parameters for different applications based on their re-
source requirements, especially in the presence of application dependencies. For
instance, if a producer application is frequently being prevented from making

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

138 • J. Nieh and M. S. Lam

progress because the corresponding consumer application is not able to run
frequently enough, the proposed system controller will provide feedback to the
scheduler to increase the allocation of the consumer application. The system
feedback controller provides an alternative framework for varying the alloca-
tion of resources to different applications yet avoiding the priority inversion
problem [Lampson and Redell 1980] that arises with priority-based schemes.
The primary contribution of this work is complementary to our work on schedul-
ing mechanisms for allowing real-time and conventional applications to co-exist
while efficiently using system resources for meeting real-time requirements.

5.4 Hierarchical Scheduling

Because creating a single scheduler to service both real-time and conven-
tional resource requirements has proven difficult, a number of hybrid schemes
[Bollella and Jeffay 1995; Custer 1993; Golub 1994; Goyal et al. 1996; AT&T
1990] have been proposed. These approaches statically separate scheduling
policies for real-time and conventional applications, respectively. Hierarchical
scheduling is supported in a number of commercial operating systems, includ-
ing Windows, Solaris, and Linux, and has been useful for providing support for
different scheduling policies in a single underlying scheduling framework. The
policies are combined using either priorities [Custer 1993; Golub 1994; AT&T
1990] or proportional sharing [Bollella and Jeffay 1995; Goyal et al. 1996; Hanko
1993] as the base level scheduling mechanism. However, the method used for
combining different policies can be a limitation with these approaches.

With priorities, all tasks scheduled by the real-time scheduling policy are
assigned higher priority than tasks scheduled by the conventional scheduling
policy. This causes all real-time tasks, regardless of whether or not they are
important, to be run ahead of any conventional task. The lack of control results
in experimentally demonstrated pathological behaviors in which runaway real-
time computations prevent the user from even being able to regain control of
the system [Nieh et al. 1993].

With proportional sharing, a real-time scheduling policy and a conventional
scheduling policy are each given a proportional share of the machine to man-
age by the underlying proportional share mechanism, which then timeslices be-
tween them. Proportional-share hierarchical scheduling can provide the benefit
of performance isolation among different scheduling policies, which can be very
desirable in support of a system with several competing entities. However, while
real-time applications will not take over the machine, they also cannot meet
their time constraints as effectively as a result of the underlying proportional
share mechanism taking the resource away from the real-time scheduler at an
inopportune and unexpected time in trying to ensure fairness [Goyal 1996].

In the context of supporting real-time multimedia applications, the problem
with previous mechanisms that have been used for combining these scheduling
policies is that they do not explicitly account for real-time requirements. These
schedulers rely on different policies for different classes of computations, but
they are limited in being able to propagate these decisions to the lowest-level
of resource management where the actual scheduling of processor cycles takes

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 139

place. This simplifies the scheduling framework and works well in providing
proportional fairness or strict prioritization of scheduling policies. However, it
can be a limitation in maximizing the overall system utility.

SMART behaves like a real-time scheduler when scheduling only real-time
requests and behaves like a conventional scheduler when scheduling only con-
ventional requests. However, it combines these two dimensions in a dynamically
integrated way that fully accounts for real-time requirements. SMART ensures
that more important tasks obtain their resource requirements, whether they
be real-time or conventional. In addition to allowing a wide range of behavior
not possible with static schemes, SMART provides more efficient utilization of
resources, is better able to adapt to varying workloads, and provides dynamic
feedback to support adaptive real-time applications that is not found in previ-
ous approaches.

6. IMPLEMENTATION

We have implemented SMART in Sun Microsystems’s Solaris UNIX operating
system, version 2.5.1. Our implementation provides interfaces between SMART
and existing operating system code in a way that is backwards compatible with
the existing Solaris scheduling framework. In this section, we describe some
important implementation issues. Section 6.1 provides some necessary back-
ground about the two-level Solaris scheduling framework. Section 6.2 describes
our implementation methodology, which was to replace the existing Solaris dis-
patcher and introduce a new scheduling class.

6.1 Solaris Scheduling Framework

The Solaris operating system is a multithreaded UNIX SVR4 conformant op-
erating system. Unlike older UNIX systems that only provide kernel support
for UNIX processes, Solaris scheduling is based on threads. The Solaris sched-
uler is a two-level UNIX SVR4 priority scheduling framework consisting of a
set of scheduling classes and a dispatcher. Each thread is assigned to a single
scheduling class. The job of each scheduling class is to make its own policy de-
cisions regarding how to schedule threads assigned to the class. The job of the
dispatcher is to merge the policy decisions of the different scheduling classes.
It determines a global ordering in which to execute threads from all of the
scheduling classes, and then performs the actual work of executing the threads
according to that global ordering.

The scheduling classes and the dispatcher use priorities to perform their
functions. When a thread is assigned to a scheduling class, a set of class schedul-
ing parameters is associated with that thread. Associated with each scheduling
class is a continuous range of class priorities. Using the class scheduling param-
eters of the thread and information about its execution history, the scheduling
class determines a class priority for the thread. The class priority of a thread
can change as the class scheduling parameters for the thread change, or as the
execution history of the thread changes. Consider for instance the time-sharing
(TS) class that comes as the default scheduling class for any UNIX SVR4 sched-
uler. A thread is assigned to the TS class with some nice value. The TS class

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

140 • J. Nieh and M. S. Lam

determines a class priority for a thread by using the thread’s nice value and in-
formation about how much processing time the thread has consumed recently.
The TS class will periodically adjust the class priority of a thread depending on
how much processing time the thread has consumed recently.

The policy decisions of the scheduling classes are merged by mapping their
respective ranges of class priorities onto a continuous range of global priori-
ties. The dispatcher then schedules threads based on these global priorities.
Consider for instance two of the default scheduling classes that come with any
UNIX SVR4 scheduler, the real-time (RT) class and the TS class. Since it is a
UNIX SVR4 scheduler, the Solaris scheduler has global priorities 0-159. The
class priorities of the RT class and the TS class each range from 0-59. However,
the RT class priorities are mapped to global priorities 100-159 while the TS
class priorities are mapped to global priorities 0-59. As a result, threads from
the TS class are only executed if there are no threads from the RT class to
execute.

The dispatcher uses a set of run queues to select threads for execution based
on their global priorities. Each global priority value has a run queue associated
with it. Since there are 160 global priorities in the Solaris scheduler, there
is a corresponding set of 160 run queues. When a thread is runnable, it is
assigned to the run queue corresponding to its global priority. The dispatcher
is called whenever the processor becomes available to execute a thread. To
select a thread to execute, the dispatcher scans the run queues from highest
to lowest priority and chooses the thread at the front of the first nonempty
queue for execution. In other words, the highest priority runnable thread is
selected for execution. Note that where the thread is placed on the run queue
will impact when the thread is selected for execution by the dispatcher. The
scheduling framework allows scheduling classes to determine where a thread
should be placed on the run queue when it is runnable. A scheduling class can
choose to place a thread at the back of a run queue or at the front of a run
queue. For example, if a scheduling class always inserts threads at the back
of run queues, then threads that were inserted earlier will run before threads
that were inserted later. This will result in a First-In-First-Out scheduling
policy.

In addition to determining the priority assignment of threads, the scheduling
classes control how long a thread should be allowed to execute. A scheduling
class may assign a time quantum to each thread. The time quantum defines the
maximum amount of time that a thread can execute before the scheduler will
preempt the thread and make another scheduling decision. Like other UNIX
systems, this is enforced through the use of a periodic interrupt generated by a
hardware clock. The interrupt calls a clock function for the respective schedul-
ing class of the currently running thread. The function checks the execution
time of the running thread and preempts the thread if it has used up its time
quantum. If a scheduler class does not assign time quanta to its threads and
does not support a clock function, threads belonging to the respective schedul-
ing class will only be preempted by the dispatcher when a higher priority thread
is available to run. Note that a thread will continue to run if it is higher priority
than all other threads even if it has used up its time quantum.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 141

While the scheduling framework provides several default scheduling classes,
the framework is extensible. New scheduling classes can be implemented that
are mapped to different global priority ranges. To support this extensible frame-
work, an extensible system call is provided that allows users and applications
to assign and change scheduling class parameters. These parameters can be
assigned on a per thread basis. Each scheduling class takes the set of class pa-
rameters for a given thread and reduces it to a class priority and time quantum
assignment for the thread.

6.2 SMART Scheduling Framework in Solaris

To implement SMART in the Solaris operating system, we replaced the existing
priority dispatcher with a SMART dispatcher that incorporates information
about a thread’s deadlines and shares as well as priorities. We then created a
new scheduling class to provide access for users and applications to the new
functionality offered by SMART. Threads were used as the basic schedulable
entity in our SMART framework to provide a natural mapping to the structure
of the Solaris operating system.

6.2.1 SMART Dispatcher. The SMART scheduler exploits a greater
amount of information in making a scheduling decision than the existing So-
laris scheduling framework. In particular, the SMART dispatcher makes use
of more than just the single priority value associated with each thread in the
Solaris scheduling framework. In addition to a priority, the dispatcher assumes
that each thread is assigned a share, a bias, a deadline, and a time quantum.
These parameters are determined by the scheduling classes and passed to the
dispatcher. Default values are initially assigned for each parameter associated
with a thread.

Our SMART dispatcher implementation maintains the same set of run
queues as the Solaris scheduling framework, but uses them in a different way.
Like Solaris, each run queue corresponds to a priority, and there are 160 priori-
ties numbered 0-159. However, the run queues in SMART are not used directly
for selecting which thread should execute. Instead, they are used for main-
taining an importance ordering of all threads based on the respective thread
priorities and biased virtual finishing times. Threads are assigned to the re-
spective run queues based on priorities. Threads on the same run queue are
ordered based on their biased virtual finishing times. When a thread needs to
be selected for execution, the dispatcher starts from this importance ordered
list of threads and uses the SMART algorithm to create a working schedule.
The first runnable thread in the generated working schedule is then selected
for execution.

Our SMART prototype uses the same Solaris function prototypes for insert-
ing and removing threads from the run queues, but changes the underlying
semantics of the functions. In the original framework, there were two queue
insertion functions which respectively placed a thread at the front or back of a
run queue. For our SMART framework, we need to be able to place threads in
a run queue such that they are ordered by their respective biased virtual fin-
ishing times. To achieve this, we change the semantics of the queue insertion

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

142 • J. Nieh and M. S. Lam

functions such that both functions now insert a thread in a run queue in biased
virtual finishing time order. In the event that multiple threads have the same
biased virtual finishing time, ties are broken based on the original semantics of
the queue insertion functions. The queue insertion function that originally in-
serted at the front of the run queue will break ties by inserting a thread in front
of any threads with the same biased virtual finishing time. The queue insertion
function that originally inserted at the back of the run queue will break ties by
inserting a thread in back of any threads with the same biased virtual finishing
time. We will discuss later how this feature is used for backwards compatibility
with the original Solaris scheduling framework.

The SMART dispatcher may run less important threads before more im-
portant threads when it determines that there is excess slack in the system.
When a thread is selected for execution, the dispatcher should ensure that
the thread only runs for an amount of time that still allows less urgent but
more important threads to meet their timing requirements. As a result, the
dispatcher must enforce a bound on the execution time given to a thread. This
is done in our implementation by having the dispatcher set its own time quan-
tum for a thread when the thread is selected to execute. The dispatcher itself
will check to see whether the time quantum of the thread has expired, in which
case it will preempt the thread. This dispatcher time quantum is internal to
the dispatcher and is separate from the time quantum used by the scheduling
classes.

The standard UNIX SVR4 scheduling framework upon which the Solaris
operating system is based employs a periodic 10 ms clock tick. It is at this
granularity that scheduling events can occur, which can be quite limiting in
supporting real-time computations that have time constraints of the same
order of magnitude. In particular, the granularity of the time quantum pa-
rameter can be no smaller than the timer resolution. To allow a much finer
resolution for scheduling events, we added a high resolution timeout mech-
anism to the kernel and reduced the time scale at which timer based inter-
rupts can occur. The exact resolution allowed is hardware dependent, but was
typically 1 ms for the hardware platforms we considered. The high-resolution
timeout implementation is also hardware dependent. When the hardware pro-
vides a single cycle counter register that is automatically decremented to zero
and reset to its initial value in hardware, the implementation simply reduces
the initial value to incur a periodic 1 ms timer interrupt instead of a peri-
odic 10 ms timer interrupt. When the hardware provides two registers, a cycle
counter register that is incremented by hardware at each processor cycle and
a compare register that is set by the operating system to trigger a timer in-
terrupt when the register values are equal, the implementation sets the com-
pare register to correspond to the next time-based event that requires a timer
interrupt.

In our SMART implementation, the dispatcher is given the share and bias
of each thread by the scheduling classes and uses that information to compute
the biased virtual finishing time as each thread executes. The biased virtual
finishing time is computed by the dispatcher because it serves as a global order-
ing function for threads from different scheduling classes that are at the same

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 143

priority. This allows the SMART dispatcher to provide a proportional share
abstraction to the scheduling classes, allowing for the creation of scheduling
classes with different proportional share scheduling policies.

6.2.2 Legacy Scheduling Classes. In addition to providing SMART func-
tionality, the SMART dispatcher is designed to support legacy scheduling
classes without modification of those classes. This is done through a legacy
scheduling class test function and proper definition of the default thread dis-
patcher parameters. All legacy scheduling classes are listed in an array pro-
vided to the legacy scheduling class test function. When a thread is assigned to
a scheduling class, the test function checks if the scheduling class is a legacy
scheduling class. If so, it assigns the thread a set of default dispatcher param-
eters. These are the same defaults that are assigned when a thread is created.
The priority is set to the same default as used with the original Solaris dis-
patcher, the share is set to zero, the bias is set to zero, the deadline is set to a
maximum value, and the time quantum is set to a maximum value. If a thread
has zero share, its biased virtual finishing time is set to a maximum value.
As a result, all threads with nonzero shares will be enqueued in front of all
threads with zero shares. More importantly, since all threads with zero shares
will have the same maximum biased virtual finishing time, the tie breaking
rules of the queue insertion functions will be used for those threads, reducing
those functions to the original Solaris queue insertion functions. If a thread has
a deadline set to the maximum value, the thread is considered a conventional
thread. In particular, if all threads are conventional, the SMART dispatcher re-
duces to selecting the first runnable thread on the highest priority non-empty
run queue. If a thread has a time quantum set to the maximum value, the time
quantum is effectively ignored by the dispatcher. In summary, a thread with
default values for its dispatcher parameters is scheduled in exactly the same
way as the original Solaris dispatcher. This ensures that the SMART schedul-
ing framework is backwards compatible with the original Solaris scheduling
framework.

Legacy scheduling classes can be used at the same time as new scheduling
classes written for the SMART scheduling framework. If all scheduling classes
are mapped to nonoverlapping ranges of global priorities, the interaction of the
scheduling classes in the SMART scheduling framework is similar to the stan-
dard UNIX SVR4 framework. If a new scheduling class and a legacy scheduling
class are mapped to overlapping ranges of global priorities, the SMART frame-
work gives preference to the new scheduling class over the legacy scheduling
class for threads at the same priority. This is because threads in legacy schedul-
ing classes were each assigned zero shares with a corresponding maximum
biased virtual finishing time. This causes such threads to be considered after
threads in new scheduling classes which are each assigned non-zero shares and
a smaller biased virtual finishing time. The choice of favoring new scheduling
classes over legacy scheduling classes at the same priority level was to some
degree an arbitrary one; the reverse could also have been done. Both choices
would provide support for new SMART functionality and legacy scheduling
class functionality.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

144 • J. Nieh and M. S. Lam

6.2.3 SMART Scheduling Class. In addition to supporting legacy schedul-
ing classes, the SMART dispatcher provides new functionality that can be ex-
ploited through the creation of new scheduling classes. For our SMART proto-
type, we also created a SMART scheduling class that is by default allowed to
use the same range of priorities as the SVR4 TS scheduling class. The primary
purpose of this class is to support the SMART scheduling interface for users
and applications. The class not only ensures that scheduling parameters pro-
vided from users and applications are valid, but it also sets default parameters
when such information is not provided. The user and application interfaces are
based on the Solaris priocntl system call, an extensible interface for setting
and reading scheduling class parameters.

In our implementation, the SMART scheduling class is also responsible for
automatically adjusting the bias associated with conventional threads. This is
done in a table-driven manner using a UNIX SVR4 scheduler mechanism that
is supported in the Solaris operating system. This mechanism was originally
designed to support the multi-level feedback discipline used by the TS schedul-
ing class. The TS class reads in a scheduling table with entries corresponding
to priority levels. Each entry specifies a priority, a time quantum that is to be
assigned to a thread at the given priority, and the priority to assign a thread at
the given priority when its time quantum is used up. As a thread executes and
completes its time quanta, it is reassigned a new priority after each time quan-
tum completion, with the assigned priorities monotonically decreasing. Instead
of using this scheduling table to adjust priorities, the SMART scheduling class
uses a scheduling table to adjust biases. Each entry in the SMART scheduling
table specifies a bias, a time quantum that is to be assigned to a thread at the
given bias, and the bias to assign a thread at the given priority when its time
quantum is used up. As a thread executes and completes its time quanta, it is
reassigned an increasing bias after each time quantum completion.

For real-time threads, the SMART scheduling class implements the notifi-
cation mechanism that is used for informing real-time applications when their
deadlines cannot be met. This is done using the basic timeout and signal mech-
anism in standard UNIX SVR4 systems. When a thread specifies a notify-time
with its time constraint, the scheduler sets a timeout corresponding to the
notify-time. The timeout causes a clock interrupt to go off at the prescribed
time. A flag is set once the notify time expires. Once the flag is set, each time the
thread is selected for execution, the scheduling class checks to see if the thread
will meet its deadline. This requires that the scheduling class be informed when
a thread belonging to the class is selected for execution by the dispatcher. The
original UNIX SVR4 scheduling framework had no such way of doing this, so a
new class function was added in the SMART scheduling framework. This class
function is called when a thread from the respective scheduling class is selected
for execution. The function can be used for performing necessary operations on
the thread that has been selected for execution, including checking to see if
the deadline will be met. If the thread will not be able to meet its deadline, a
signal is sent to the process indicating that the deadline will not be satisfied. A
previously unused signal number is used to distinguish the notification signal
from other signals that the process may receive. If the process does not have

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 145

a signal handler installed, the notification signal is ignored. Because notifica-
tions are implemented as signals for simplicity in the prototype, the delivery of
notifications in the prototype follows the same semantics of signals as used in
Solaris.

6.2.4 Summary. Although the Solaris scheduling framework was not de-
signed to support the demands of multimedia applications, we have been able
to extend the framework to implement the SMART scheduler in the Solaris op-
erating system. This prototype implementation demonstrates that it is possible
to include SMART support for multimedia applications in the context of cur-
rently available general-purpose operating systems. It also demonstrates that
SMART functionality can be implemented in a way that continues to provide
backwards compatibility for legacy scheduling policies.

7. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the SMART scheduler, we conducted a number
of experiments on our SMART prototype, running microbenchmarks as well
as real applications. Because of the complex interactions between applications
and operating systems in general-purpose computer systems, we placed an em-
phasis on evaluating SMART with real applications in a fully functional system
environment. We describe the experimental testbed that was used for our ex-
periments. We highlight some experiments with various microbenchmarks that
demonstrate the range of behavior possible with the scheduler in a real system
environment. We then focus on comparing the performance of SMART against
two other schedulers commonly used in practice and research by running real
applications and measuring the resulting behavior. This comparison considers
not only real-time multimedia application performance, but also quantitatively
measures the performance of interactive and batch applications.

7.1 Experimental Testbed

The experiments were performed on a standard, production SPARCstation 10
workstation with a single 150 MHz hyperSPARC processor, 64 MB of primary
memory, and 3 GB of local disk space. The testbed system included a standard
8-bit pseudo-color frame buffer controller (i.e., GX). The display was managed
using the X Window System. The Solaris 2.5.1 operating system was used as
the basis for our experimental work. The high resolution timing functionality
discussed in Section 6.2.1 was used for all of the schedulers to ensure a fair
comparison. On the testbed workstation used for these experiments, the timer
resolution was 1 ms.

All measurements were performed using a minimally obtrusive tracing fa-
cility that logs events at significant points in application, window system, and
operating system code. This is done via a light-weight mechanism that writes
timestamped event identifiers into a memory log. The timestamps are at 1 ms
resolution. We measured the cost of the mechanism on the testbed workstation
to be 2-4 ms per event. We created a suite of tools to post-process these event
logs and obtain accurate representations of what happens in the actual system.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

146 • J. Nieh and M. S. Lam

Table II. Microbenchmark Experiments

Experiment Duration Tasks Shares R service time R deadline C bias

Conventional 1000 s C1 : C2 : C3 3 : 2 : 1 N/A N/A 0
Real-time 80 s R1 : R2 : R3 3 : 2 : 1 20 ms 40 ms 0
Mix 80 s R4 : C1 1 : 1 10-30 ms 40 ms 0-100 ms

All measurements were performed on a fully functional system to represent a
realistic workstation environment. By a fully functional system, we mean that
all experiments were performed with all system functions running, the window
system running, and the system connected to the network. At the same time,
an effort was made to eliminate variations in the test environment to make the
experiments repeatable. To this end, the testbed system was restarted prior to
each experimental run.

7.2 Microbenchmarks

We highlight some microbenchmark performance results for three mixes of
real-time and conventional resource requests that illustrate SMART’s behav-
ior under a dynamically changing load. These requests were generated using a
set of simple applications that allow us to vary their resource requirements to
demonstrate the effectiveness of SMART under a variety of workloads. In par-
ticular, we focus on the more novel proportional sharing aspects of SMART. We
demonstrate that proportional sharing is achieved for all the cases, regardless
of whether the real-time requests present (if any) have overloaded the system.
We show that the scheduler drops the minimum number of deadline requests
to achieve fair sharing, in the case of overload. Finally, we also show that bias
helps minimize the number of deadlines dropped.

We used a simple conventional compute-oriented application C and a sim-
ple real-time application R for our microbenchmark experiments. The conven-
tional application C does some simple CPU computations for a configurable
number of loop iterations without blocking. The real-time application R also
does some simple CPU computations for a configurable number of loop itera-
tions, but each loop iteration must be completed within a given time constraint.
If the loop cannot complete before its deadline, it skips the given iteration. If
the loop completes before its deadline, the application sleeps until the start of
the next time constraint. The number of loop iterations, the periodic deadline
of each time constraint, and the duration of the loop computation are all config-
urable. We configured these applications in three simple experiments listed in
Table II.

In the first experiment listed in Table II, we ran C1, C2, and C3, three in-
stances of conventional application C with relative shares of the ratio 3 : 2 : 1.
The applications were started at approximately the same time and each was
configured with a running time of about 338 s. No bias was used for the con-
ventional applications in this experiment.

If the system were perfect, we would expect the applications to obtain pro-
cessing time in proportion to their shares and C1 to complete first since it has
the largest share. Since it is assigned half of the total shares, C1 should obtain

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 147

Fig. 2. Cumulative execution time of conventional applications.

half of the total processing time and complete in about 676 s. After C1 completes,
C2 will obtain about two-thirds of the processing time since its share is twice
as large as C3. We would then expect C2 to complete at about 846 s into the
experiment. After C2 completes, C3 will obtain all of the processing time and
should complete at about 1014 s into the experiment.

As shown in Figure 2, our measurements from the first experiment show
that SMART delivers behavior close to what would be expected if the system
were perfect. C1, C2, and C3 complete their execution at times 678 s, 848 s,
and 1018 s, respectively. Furthermore, the resource consumption rates of the
applications were as expected throughout the experiment, 3 : 2 : 1 during the
first 678 s of the experiment when all of the applications were running, and 2 : 1
during the next 170 s of the experiment when just C2 and C3 were running.

In the second experiment listed in Table II, we ran R1, R2, and R3, three
instances of real-time application R with relative shares of the ratio 3 : 2 : 1.
Each real-time resource request took approximately 20 ms of execution time to
complete, and each resource request had a 40 ms deadline from its instantiation.
To show the dynamic behavior of these applications when the application mix
changes, the applications are started at approximately the same time, but each
application is executed for a different number of iterations. R1 processed a
sequence of 1000 real-time requests, R2 processed a sequence of 1500 real-time
requests, and R3 processed a sequence of 2000 real-time requests during the 80
s experiment. As a result, the applications completed their requests at different
times during the experiment.

If the system were perfect, we would expect the three applications to accumu-
late processing time in accordance with their shares during the first 40 s of the
experiment while the system is overloaded. In particular, we would expect R1
to accumulate 20 s of processing time, enough to meet all of its deadlines until
it completes. Because the system is overloaded, R2 and R3 would not be able
to meet all of their deadlines but instead would meet deadlines in proportion
to their shares, 66% and 33% of deadlines, respectively. During the second 40 s
of the experiment after R1 completes, we would expect R2 and R3 to be able to

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

148 • J. Nieh and M. S. Lam

Fig. 3. Deadlines met by real-time applications.

meet the remainder of their deadlines since the system is no longer overloaded.
Although R2’s share is twice as large as R3’s, the two applications will share
processing time equally during the second 40 s of the experiment since R2 does
not need twice as much processing time as R3.

As shown in Figure 3, our measurements from the second experiment show
that SMART delivers behavior close to what would be expected if the system
were perfect. During the first 40 s of the experiment, R1, R2, and R3 consumed
resources in proportion to their shares and were able to meet 99.9%, 60%, and
34% of their respective deadlines. The deviation from perfect behavior is in part
caused by higher priority system threads that occasionally execute as part of
the Solaris operating system. During the second 40 s of the experiment, both
R2 and R3 missed a couple of deadlines as R1 completed its execution, but
then were able to meet all of their remaining deadlines. The results of this
experiment illustrate SMART’s behavior on real-time applications when the
system is overloaded, when the system is underloaded, and when the load on
the system is dynamically changing.

In the third experiment listed in Table II, we ran R4, an instance of real-
time application R, and C1, an instance of conventional application C. with
relative shares of the ratio 1 : 1. For R4, each real-time resource request took
on average 20 ms of execution time to complete, but the execution time varied
between 10 to 30 ms. The deadline of each resource request was 40 ms from
its instantiation, resulting in 2000 real-time resource requests over the 80 s
experiment. In this experiment, we adjusted the SMART scheduler to allow us
to fix the bias assigned to a conventional application. For C1, we ran it with
a bias of 0 ms and then repeated the experiment with a bias of 100 ms. Both
applications were assigned equal shares.

Our measurements from the third experiment show that the bias can re-
sult in substantial improvement in performance for R4 without changing the
overall average resource allocation. When C1 is given a bias of 0 ms in this
experiment, R4 misses 192 out of 2000 deadlines. However, when C1 is given a
bias of just 100 ms, R4 can execute without missing any of its deadlines, despite

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 149

the fact that its desired resource consumption for any given resource request
varies from 25% to 75% of the machine. On average, both R4 and C1 received
50% of the machine in our experiments regardless of the bias. Note that if the
system were perfect and R4 required 20 ms to process each 40 ms deadline
request, we would expect R4 to obtain 50% of the CPU and not miss any of its
deadlines. We also ran this experiment and verified that SMART provided this
performance.

7.3 Multimedia Applications

While microbenchmark performance is commonly used as a basis for evaluating
a scheduler, the real test of the effectiveness of a scheduler is its performance on
mixes of real applications. Real applications are much more complex than mi-
crobenchmarks. While many multimedia application studies focus exclusively
on audio or video applications, multimedia encompasses a much broader range
of activities. In addition, it is important to realize that audio and video appli-
cations must co-exist with conventional interactive and batch applications in
a general-purpose computing environment. We believe it is important to un-
derstand the interactions of these different classes of applications and provide
good performance for all of them.

To evaluate SMART in this context, we have conducted experiments on an
application workload with a wide range of classes of applications in a fully-
functional workstation environment. We describe two sets of experiments with
a mix of real-time, interactive and batch applications executing in a workstation
environment. The first experiment compares SMART with two existing sched-
ulers: the UNIX SVR4 scheduler, both real-time (UNIX RT) and time-sharing
(UNIX TS) policies, and a WFQ processor scheduler. These schedulers were
chosen as a basis of comparison because of their common use in practice and
research. UNIX SVR4 is a common basis of workstation operating systems used
in practice, and WFQ is a popular scheduling technique that has been the basis
of much recent scheduling research. The second experiment demonstrates the
ability of SMART to provide the user with predictable resource allocation con-
trols, adapt to dynamic changes in the workload, and deliver expected behavior
when the system is not overloaded.

Three applications were used to represent batch, interactive and real-time
computations:

—Dhrystone (batch)—This is the Dhrystone benchmark (Version 1.1), a syn-
thetic benchmark that measures CPU integer performance.

—Typing (interactive)—This application emulates a user typing to a text editor
by receiving a series of characters from a serial input line and using the
X window server [Scheifler and Gettys 1986] to display them to the frame
buffer. To enable a realistic and repeatable sequence of typed keystrokes for
interactive applications, a hardware keyboard simulator was constructed and
attached via a serial line to the testbed workstation. This device is capable
of recording a sequence of keyboard inputs, and then replaying the sequence
with the same timing characteristics.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

150 • J. Nieh and M. S. Lam

—Integrated Media Streams Player (real-time)—The Integrated Media
Streams (IMS) Player from Sun Microsystems Laboratories is a timestamp-
based system capable of playing synchronized audio and video streams. It
adapts to its system environment by adjusting the quality of playback based
on the system load. The application was developed and tuned for the UNIX
SVR4 time-sharing scheduler in the Solaris operating system. For the exper-
iment with the SMART scheduler, we have inserted additional system calls
to the application to take advantage of the features provided by SMART.
The details of the modifications are presented in Section 7.4. We use this
application in two different modes:

—News (real-time)—This application displays synchronized audio and video
streams from local storage. Each media stream flows under the direction
of an independent thread of control. The audio and video threads commu-
nicate through a shared memory region and use timestamps to synchro-
nize the display of the media streams. The video input stream contains
frames at 320x240 pixel resolution in JPEG compressed format at roughly 15
frames/second. The audio input stream contains standard 8-bit µ-law (CCIT
standard G.711) monaural samples, as used in the AU audio file format pop-
ularized by Sun Microsystems. The captured data is from a satellite news
network.

—Entertain (real-time)—This application processes video from local storage.
The video input stream contains frames at 320x240 pixel resolution in JPEG
compressed format at roughly 15 frames/second. The application scales and
displays the video at 640x480 pixel resolution. The captured data contains a
mix of television programming, including sitcom clips and commercials.

7.4 Programming with Time Constraints

The SMART application interface makes it easier to develop a real-time appli-
cation. The software developer can express the scheduling constraints directly
to the system and have the system deliver the expected behavior. To illustrate
this aspect of SMART, we first describe what it took to develop the IMS Player
for UNIX SVR4, then discuss how we modified it for SMART.

7.4.1 Video Player. The video player reads a timestamped JPEG video in-
put stream from local storage, uncompresses it, dithers it to 8-bit pseudo-color,
and renders it directly to the frame buffer. When the video player is not used
in synchrony with an audio player, as in the case of Entertain, the player uses
the timestamps on the video input stream to determine when to display each
frame and whether a given frame is early or late. When used in conjunction
with the audio player, as in the case of News, the video player attempts to syn-
chronize its output with that of the audio device. In particular, since humans
are more sensitive to intra-stream audio asynchronies (i.e. audio delays and
drop-outs) than to asynchronies involving video, the thread controlling the au-
dio stream free-runs as the master time reference and the video “slave” thread
uses the information the audio player posts into the shared memory region to
determine when to display its frames.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 151

If the video player is ready to display its frame early, then it delays until the
appropriate time; but if it is late, it discards its current frame on the assumption
that continued processing will cause further delays later in the stream. The
application defines early and late as more than 20 ms early or late with respect
to the audio. For UNIX SVR4, the video player must determine entirely on its
own whether or not each video frame can be displayed on time. This is done by
measuring the amount of wall clock time that elapses during the processing of
each video frame. An exponential average [Fosback 1976] of the elapsed wall
clock time of previously displayed frames is then used as an estimate for how
long it will take to process the current frame. If the estimate indicates that
the frame will complete too early (more than 20 ms early), the video player
sleeps an amount of time necessary to delay processing to allow the frame to
be completed at the right time. If the estimate indicates that the frame will be
completed too late (more than 20 ms late), the frame is discarded.

The application adapted to run on SMART uses the same mechanism as
the original to delay the frames that would otherwise be completed too early.
We simply replace the application’s discard mechanism with a time constraint
system call to inform SMART of the time constraints for a given block of ap-
plication code, along with a signal handler to process notifications of time
constraints that cannot be met. The time constraint informs SMART of the
deadline for the execution of the block of code that processes the video frame.
The deadline is set to the time the frame is considered late, which is 20 ms
after the ideal display time. It also provides an estimate of the amount of
execution time for the code calculated in a similar manner as the original pro-
gram. In particular, an exponential average of the execution times of previ-
ously displayed frames scaled by 10% is used as the estimate. Upon setting
the given time constraint, the application requests that SMART provide a no-
tification to the application right away if early estimates predict that the time
constraint cannot be met. When a notification is sent to the application, the
application signal handler simply records the fact that the notification has
been received. If the notification is received by the time the application begins
the computation to process and display the respective video frame, the frame
is discarded; otherwise, the application simply allows the frame be displayed
late.

Figure 4 indicates that simple exponential averaging based on previous
frame execution times can be used to provide reasonable estimates of frame
execution times even for JPEG compressed video in which frame times vary
from one frame to another. Note that MPEG video would require averaging for
each type of frame. Each graph shows the actual execution time for each frame
and the estimate error for each frame. The estimate error is the difference
between the estimated and actual execution time for each frame. The slight
positive bias in the difference is due to the 10% scaling in the estimate versus
the actual execution time. As shown in the figure, there is a wide variance in
the time it takes to handle a frame. The results also illustrate the difficulty of
using a resource reservation scheme when resource requirements can vary sub-
stantially over time, as has been further demonstrated in Duda and Cheriton
[1999]. Using the upper bound on the processing time as an estimate may yield

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

152 • J. Nieh and M. S. Lam

Fig. 4. Actual vs. estimated execution time per JPEG image.

a low utilization of resources; using the average processing time may cause too
many deadlines to be missed.

7.4.2 Audio Player. The audio player reads a timestamped audio input
stream from local storage and outputs the audio samples to the audio device.
The processing of the 8-bit µ-law monaural samples is done in 512 byte seg-
ments. To avoid audio dropouts, the audio player takes advantage of buffering
available on the audio device to work ahead in the audio stream when proces-
sor cycles are available. Up to 1 second of workahead is allowed. For each block
of code that processes an audio segment, the audio player aims to complete
the segment before the audio device runs out of audio samples to display. The
deadline communicated to SMART is therefore set to the display time of the
last audio sample in the buffer. The estimate of the execution time is again
computed by using an exponential average of the measured execution times
for processing previous audio segments. Audio segments that cannot be pro-
cessed before their deadlines are simply displayed late. Note that because of

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 153

Table III. Standalone Execution Times of Applications

Application Measurement CPU Time Avg CPU
Name Basis Number Avg Std Dev Utilization

News audio per segment 4700 1.54 ms 0.79 ms 2.42%
News video per frame 4481 28.35 ms 2.19 ms 42.34%
Entertain per frame 4487 39.16 ms 2.71 ms 58.55%
Typing per character 1314 1.96 ms 0.17 ms 0.86%
Dhrystone per execution 1 298.73 s N/A 99.63%

the workahead feature and the audio device buffering, the resulting deadlines
can be highly aperiodic.

7.5 Application Characteristics and Quality Metrics

Representing different classes of applications, Typing, Dhrystone, News and
Entertain have very different characteristics and measures of quality. For ex-
ample, we care about the response time for interactive tasks, the throughput
of batch tasks and the number of deadlines met in real-time tasks. Before dis-
cussing how a combination of these applications executes on different sched-
ulers, this section describes how we measure the quality of each of the different
applications, and how each would perform if it were to run on its own.

Table III shows the execution time of each application on an otherwise qui-
escent system using the UNIX SVR4 scheduler, measured over a time period of
300 seconds. We note that there is no significant difference between the perfor-
mance of different schedulers when running only one application. The execution
times include user time and system time spent on behalf of an application. The
Dhrystone batch application can run whenever the processor is available and
can thus fully utilize the processor. The execution of other system functions
(fsflush, window system, etc.) takes less than 1% of the CPU time. The mea-
surements on the real-time applications are taken every frame, and those for
Typing are taken every character. None of the real-time and interactive appli-
cations can take up the whole machine on its own, with both News audio and
Typing taking hardly any time at all. The video for News takes up 42% of the
CPU, whereas Entertain, which displays scaled video, takes up almost 60% of
the processor time.

For each application, the quality of metric is different. For Typing, it is de-
sirable to minimize the time between user input and system response to a level
that is faster than what a human can readily detect. This means that for sim-
ple tasks such as typing, cursor motion, or mouse selection, system response
time should be less than 50–150 ms [Shneiderman 1992]. As such, we mea-
sured the Typing character latency and determine the percentage of characters
processed with latency less than 50 ms, with latency between 50–150 ms, and
with latency greater than 150 ms. For News audio, it is desirable not to have
any artifacts in audio output. As such, we measured the number of News audio
samples dropped. For News video and Entertain, it is desirable to minimize
the difference between the desired display time and the actual display time,
while maximizing the number of frames that are displayed within their time
constraints. As such, we measured the percentage of News and Entertain video

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

154 • J. Nieh and M. S. Lam

Table IV. Standalone Application Quality Metric Performance

Name Quality Metric On Time Early Late Dropped Avg Time Std Dev

News Number of audio 100.00% 0.00% 0.00% 0.00% 0 0
audio dropouts
News Actual minus desired 99.75% 0.09% 0.13% 0.02% 1.50 ms 2.54 ms
video display time
Entertain Actual minus desired 99.58% 0.22% 0.13% 0.07% 1.95 ms 3.61 ms

display time
Typing Delay from character 100.00% N/A 0% N/A 26.40 ms 4.12 ms

input to display
Dhrystone Accumulated CPU N/A N/A N/A N/A 298.73 s N/A

time

frames that were displayed on time (displayed within 20 ms of the desired
time), displayed early, displayed late, and the percentage of frames dropped
not displayed. Finally, for batch applications such as Dhrystone, it is desir-
able to maximize the processing time devoted to the application to ensure as
rapid forward progress as possible. As such, we simply measured the CPU time
Dhrystone accumulated. To establish a baseline performance, Table IV shows
the performance of each application when it was executed on its own.

While measurements of accumulated CPU time are straightforward, we note
that several steps were taken to minimize and quantify any error in measuring
audio and video performance as well as interactive performance. For News and
Entertain, the measurements reported here are performed by the respective
applications themselves during execution. We also quantified the error of these
internal measurements by using a hardware device to externally measure the
actual user perceived video display and audio display times [Schmidt 1995].
External versus internal measurements differed by less than 10 ms. The dif-
ference is due to the refresh time of the frame buffer. For Typing, we measured
the end-to-end character latency from the arrival of the character to the sys-
tem in the input device driver, through the processing of the character by the
application, until the actual display of the character by the X window system
character display routine.

7.6 Scheduler Characteristics

To provide a characterization of scheduling overhead, we measured the con-
text switch times for the UNIX SVR4, WFQ, and SMART schedulers. Average
context switch times for UNIX SVR4, WFQ, and SMART are 27 µs, 42 µs, and
47 µs, respectively. These measurements were obtained running the mixes of
applications described in this paper. Similar results were obtained when we
increased the number of real-time multimedia applications in the mix up to 15,
at which point no further multimedia applications could be run because there
was no more memory to allocate to the applications.

The UNIX SVR4 context switch time essentially measures the context switch
overhead for a scheduler that takes almost no time to decide what task it needs
to execute. The scheduler simply selects the highest priority task to execute,
with all tasks already sorted in priority order. Note that this measure does

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 155

not account for the periodic processing done by the UNIX SVR4 timesharing
policy to adjust the priority levels of all tasks. Such periodic processing is not
required by WFQ or SMART, which makes the comparison of overhead based
on context switch times more favorable for UNIX SVR4. Nevertheless, as tasks
are typically scheduled for time quanta of several milliseconds, the measured
context switch times for all of the schedulers were not found to have a significant
impact on application performance.

For SMART, we also measured the cost to an application of assigning schedul-
ing parameters such as time constraints or reading back scheduling informa-
tion. The cost of assigning scheduling parameters to a task is 20 µs while the
cost of reading the scheduling information for a task is only 10 µs. The small
overhead easily allows application developers to program with time constraints
at a fine granularity without much penalty to application performance.

7.7 Comparison of Default Scheduler Behavior

Our first experiment is simply to run all four applications (News, Entertain,
Typing, and Dhrystone) with the default user parameters for each of the
schedulers:

—SVR4-RT: The real-time News and Entertain applications are put in the real-
time class, leaving Typing and Dhrystone in the time-sharing class.

—SVR4-TS: All the applications are run in time-sharing mode. (We also experi-
mented with putting Typing in the interactive application class and obtained
slightly worse performance.)

—WFQ: All the applications are run with equal share.
—SMART: All the applications are run with equal share and equal priority.

Because of their computational requirements, the execution of these appli-
cations results in the system being overloaded. In fact, the News video and the
Entertain applications alone will fully occupy the machine. Both the Typing and
News audio applications hardly use any CPU time, taking up a total of only 3-4%
of the CPU time. It is thus desirable for the scheduler to deliver short latency
on the former application and meet all the deadlines on the latter application.
With the default user parameters in SVR4-TS, WFQ, and SMART, we expect
the remainder of the computation time to be distributed evenly between News
video, Entertain, and Dhrystone.

To provide a baseline for comparing scheduler performance, we define an
ideal scheduler in this context as as one that makes the best use of each appli-
cation’s allocation toward maximizing that application’s quality metric. For the
default scheduler behavior in which applications are weighted equally, the ideal
scheduler will be one that is fair and can perfectly use the allocated CPU cy-
cles for the real-time applications toward meeting their deadlines. Because the
system is overloaded, we expect that even for an ideal scheduler, the percent-
ages of the frames dropped to be 25% and 45% for News video and Entertain,
respectively.

Figure 5 presents the CPU allocation across different applications by differ-
ent schedulers. It includes the percentage of the CPU used for executing other

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

156 • J. Nieh and M. S. Lam

Fig. 5. Comparison of scheduler application performance.

system functions such as the window system (labeled Other). The figure also
includes the expected result of an ideal scheduler for comparison purposes. For
the real-time applications, the figure also shows the percentages of media units
that are displayed on-time, early, late, or dropped. For the interactive Typing
application, the figure shows the number of characters that take less than 50
ms to display, take 50–150 ms to display, and take longer than 150 ms to display.
Figure 6 presents more detail by showing the distributions of the data points.
We have also included the measurements for each of the applications running
by itself (labeled Standalone) in the figure. We observe that every scheduler
handles the News audio application well with no audio dropouts. Because the
audio application required little resources relative to the resource allocation
given to it by each scheduler, all of the schedulers were able to meet its real-
time constraints. In particular, the audio application performance illustrates
SMART’s ability to also meet real-time constraints by simply using a much
larger share allocation than needed. Since there was no difference in the au-
dio application performance among the schedulers, we will only concentrate on
discussing the quality of the rest of the applications.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 157

Fig. 6. Distributions of quality metrics.

Unlike the other schedulers, the SVR4-RT scheduler gives higher priority to
applications in the real-time class. It devotes most of the CPU time to the video
applications, and thus drops the least number of frames. (Nevertheless, SMART
is able to deliver more on-time frames than SVR4-RT for the News video, while
using less resources.) Unfortunately, SVR4-RT runs the real-time applications
almost to the exclusion of conventional applications. Dhrystone gets only 1.6% of
the CPU time. More disturbingly, the interactive Typing application does not get
even the little processing time requested, receiving only 0.24% of the CPU time.
Only 635 out of the 1314 characters typed are even processed within the 300
second duration, and nearly all the characters processed have an unacceptable
latency of greater than 150 ms. Note that putting Typing in the real-time class
does not alleviate this problem as the system-level I/O processing required by
the application is still not able to run, because system functions are run at
a lower priority than real-time tasks. Clearly, it is not acceptable to use the
SVR4-RT scheduler.

All the other schedulers spread the resources relatively evenly across the
three demanding applications. The SVR4-TS scheduler has less control over
the resource distribution than WFQ and SMART, resulting in a slight bias
towards Entertain over Dhrystone. The basic principles used to achieve fairness

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

158 • J. Nieh and M. S. Lam

across applications are the same in WFQ and SMART. However, we observe
that the WFQ scheduler devotes slightly more (3.8%) CPU time to Dhrystone
at the expense of News video. This effect can be attributed to the standard
implementation of WFQ processor scheduling whereby the proportional share
of the processor obtained by a task is based only on the time that the task is
runnable and does not include any time that the task is sleeping.

Since the video applications either process a frame or discard a frame al-
together from the beginning, the number of video frames dropped is directly
correlated with the amount of time devoted by the scheduler to the applica-
tions, regardless of the scheduler used. The difference in allocation accounts
for the difference among the schedulers in the number of frames dropped. We
found that in each instance the scheduler drops about 6–7% more frames than
the ideal computed using average computation times and the scheduler’s spe-
cific allocation for the application.

The schedulers are distinguished by their ability to meet the time constraints
of those frames processed. SMART meets a significantly larger number of time
constraints than the other schedulers, delivering over 250% more video frames
on time than SVR4-TS and over 60% more video frames on time than WFQ.
SMART’s effectiveness holds even for cases where it processes a larger total
number of frames, as in the comparison with WFQ. Moreover, as shown in
Figure 6, the late frames are handled soon after the deadlines, unlike the case
with the other schedulers. As SMART delivers a more predictable behavior,
the applications are better at determining how long to sleep to avoid delay
displaying the frames too early. As a result, there is a relatively small number
of early frames. It delivers on time 57% and 37% of the total number of frames
in News video and Entertain, respectively. They represent, respectively, 86%
and 81% of the frames displayed.

To understand the significance of the bias introduced to improve the real-
time and interactive application performance, we have also performed the same
experiment with all biases set to zero. The use of the bias is found to yield a
10% relative improvement on the scheduler’s ability in delivering the Entertain
frames on time.

In contrast, WFQ delivers 32% and 26% of the total frames on time, which
represents only 53% and 58% of the frames processed. There are many more late
frames in the WFQ case than in SMART. The tardiness causes the applications
to initiate the processing earlier, thus resulting in a correspondingly larger
number of early frames. The SVR4-TS performs even more poorly, delivering
15% and 11% of the total frames, representing only 22% and 21% of the frames
processed. Some of the frames handled by SVR4-TS are extremely late, causing
many frames to be processed extremely early, resulting in a very large variance
in display time across frames.

Finally, as shown in Figure 6, SMART is superior to both SVR4-TS and WFQ
in handling the Typing application. SMART has the least average and standard
deviation in character latency and completes the most number of characters in
less than 50 ms, the threshold of human detectable delay.

While both SMART and WFQ deliver acceptable interactive performance,
Typing performs worse with WFQ because a task does not accumulate any credit

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 159

at all when it sleeps. We performed an experiment where the WFQ algorithm
is modified to allow the blocked task to accumulate limited credit just as it
would when run on the SMART scheduler. The result is that Typing improves
significantly, and the video application gets a fairer share of the resources.
However, even though the number of dropped video frames is reduced slightly,
the modified WFQ algorithm has roughly the same poor performance as before
when it comes to delivering the frames on time.

7.8 Adjusting the Allocation of Resources

Besides being effective for real-time applications, SMART has the ability to
support arbitrary shares and priorities and to adapt to different system loads.
We illustrate these features by running the same set of applications from before
with different priority and share assignments under different system loads.
In particular, News is given a higher priority than all the other applications,
Entertain is given the default priority and twice as many shares as any other
application, and all other applications are given the same default priority and
share. This level of control afforded by SMART’s priorities and shares is not
possible with other schedulers. The experiment can be described in two phases:

—Phase 1: Run all the applications for the first 120 seconds of the experiment.
News exits after the first 120 seconds of the experiment, resulting in a load
change.

—Phase 2: Run the remaining applications for the remaining 180 seconds of
the experiment.

Besides News and Entertain, the only other time-consuming application
in the system is Dhrystone. Thus, in the first part of the experiment, News
should be allowed to use as much of the processor as necessary to meet its
resource requirements since it has a higher priority than all other applica-
tions. Since News audio uses less than 3% of the machine and News video uses
only 42% of the machine on average, over half of the processor’s time should
remain available for running other applications. As Typing consumes very lit-
tle processing time, almost all of the remaining computation time should be
distributed between Entertain and Dhrystone in the ratio 2:1. The time allot-
ted to Entertain can service at most 62% of the deadlines on average. When
News finishes, however, Entertain is allowed to take up to 2/3 of the processor,
which would allow the application to run at full rate. The system is persis-
tently overloaded in Phase 1 of the experiment, and on average underloaded in
Phase 2, though transient overloads may occur due to fluctuations in processing
requirements.

Figure 7 shows the CPU allocation and quality metrics of the different appli-
cations run under SMART as well as an ideal scheduler. The figure shows that
SMART’s performance comes quite close to the ideal. First, it implements pro-
portional sharing well in both underloaded and overloaded conditions. Second,
SMART performs well for higher priority real-time applications and real-time
applications requesting less than their fair share of resources. In the first phase
of the computation, it provides perfect News audio performance, and delivers

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

160 • J. Nieh and M. S. Lam

Fig. 7. SMART application performance under a changing load when using end user controls.

97% of the frames of News video on time and meets 99% of the deadlines. In the
second phase, SMART displays 98% of the Entertain frames on time and meets
99% of the deadlines. Third, SMART is able to adjust the rate of the application
requesting more than its fair share, and can meet a reasonable number of its
deadlines. In the first phase for Entertain, SMART drops only 5% more total
number of frames than the ideal, which is calculated using average execution
times and an allocation of 33% of the processor time. Finally, SMART provides
excellent interactive response for Typing in both overloaded and underloaded
conditions. 99% of the characters are displayed with a delay, unnoticeable to
typical users, of less than 100 ms [Card et al. 1983].

8. CONCLUSIONS AND FUTURE WORK

Our experiments in the context of a full featured, commercial, general-purpose
operating system show that SMART: (1) reduces the burden of writing adaptive
real-time applications, (2) has the ability to cooperate with applications in man-
aging resources to meet their dynamic time constraints, (3) provides resource
sharing across both real-time and conventional applications, (4) delivers im-
proved real-time and interactive performance over widely-used UNIX SVR4

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 161

and fair queueing schedulers without requiring users to reserve resources,
adjust scheduling parameters, or know anything about application require-
ments, (5) provides flexible, predictable controls to allow users to bias the
allocation of resources according to their preferences. SMART achieves this
range of behavior by differentiating between the importance and urgency of
real-time and conventional applications. This is done by integrating priorities
and weighted fair queueing for importance, then using urgency to optimize the
order in which tasks are serviced based on earliest-deadline scheduling. Our
measured performance results demonstrate SMART’s effectiveness over that of
weighted fair queueing and UNIX SVR4 schedulers in supporting multimedia
applications in a realistic workstation environment.

While effective processor scheduling is crucial to support multimedia appli-
cations, processors are just one set of components in an overall system. Other
resources that require effective resource management include I/O bandwidth,
memory, networks, and the network/host interface. Meeting the demands of
future multimedia applications will require coordinated resource management
across all critical resources in the system. Providing resource management
mechanisms and policies across multiple resources that effectively support
adaptive and interactive multimedia applications remains a key challenge. We
believe that the ideas discussed here for processor scheduling will serve as a ba-
sis for future work in addressing the larger problem of managing system-wide
resources to support multimedia applications.

ACKNOWLEDGMENTS

We thank Jim Hanko, Duane Northcutt, and Brian Schmidt for their help with
the applications and measurement tools used in our experiments. We also thank
the anonymous reviewers for comments on earlier drafts that have helped to
improve the paper.

REFERENCES

AT&T. 1990. UNIX System V Release 4 Internals Student Guide.
BAICEANU, V., COWAN, C., MCNAMEE, D., PU, C., AND WALPOLE, J. 1996. Multimedia Applications

Require Adaptive CPU Scheduling. In Proceedings of the IEEE RTSS Workshop on Resource
Allocation Problems in Multimedia Systems. Washington, DC.

BENNETT, J. C. R. AND ZHANG, H. 1996. WF2Q: Worst-case Fair Weighted Fair Queueing. In IEEE
INFOCOM ‘96. San Francisco, CA, 120–128.

BOLLELLA, G. AND JEFFAY, K. 1995. Support for Real-Time Computing Within General Purpose
Operating Systems: Supporting Co-Resident Operating Systems. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium. Chicago, IL, 4–14.

CARD, S. K., MORAN, T. P., AND NEWELL, A. 1983. Psychology of Human-Computer Interaction. L.
Erlbaum Associates, Hillsdale, NJ.

COULSON, G., CAMPBELL, A., ROBIN, P., BLAIR, G., PAPATHOMAS, M., AND HUTCHINSON, D. 1995. The
Design of a QoS Controlled ATM Based Communications System in Chorus. IEEE J. Selected
Areas Comm. (JSAC) 13, 4 (May), 686–699.

CUSTER, H. 1993. Inside Windows NT. Microsoft Press, Redmond, WA.
DEMERS, A., KESHAV, S., AND SHENKER, S. 1989. Analysis and Simulation of a Fair Queueing Algo-

rithm. In Proceedings of SIGCOMM ‘89. 1–12.
DERTOUZOS, M. 1974. Control Robotics: The Procedural Control of Physical Processors. In Pro-

ceedings of the IFIP Congress. Stockholm, Sweden, 807–813.

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

162 • J. Nieh and M. S. Lam

DUDA, K. AND CHERITON, D. 1999. Borrowed-Virtual-Time (BVT) Scheduling: Supporting Latency-
Sensitive Threads in a General-Purpose Scheduler. In Proceedings of the Seventeenth ACM Sym-
posium on Operating Systems Principles. Kiawah Island Resort, SC, 261–276.

EYKHOLT, J. R., KLEIMAN, S. R., BARTON, S., FAULKNER, R., SHIVALINGIAH, A., SMITH, M., STEIN, D., VOLL,
J., WEEKS, M., AND WILLIAMS, D. 1992. Beyond Multiprocessing. . .Multithreading the SunOS
Kernel. In Proceedings of the 1992 Summer USENIX Conference. San Antonio, TX, 11–18.

FFOULKES, P. AND WIKLER, D. 1997. Workstations Worldwide Market Segmentation. In Advanced
Desktops and Workstations Worldwide. Dataquest.

FOSBACK, N. G. 1976. Stock Market Logic. Institute for Econometric Research, Ft. Lauderdale,
FL.

GOLUB, D. B. 1994. Operating System Support for Coexistence of Real-Time and Conventional
Scheduling. Tech. Rep. CMU-CS-94-212, School of Computer Science, Carnegie Mellon Univer-
sity. Nov.

GOYAL, P. 1996. Panel talk. In IEEE RTSS Workshop on Resource Allocation Problems in Multi-
media Systems. Washington, DC.

GOYAL, P., GUO, X., AND VIN, H. M. 1996. A Hierarchical CPU Scheduler for Multimedia Operating
Systems. In Proceedings of the Second Symposium on Operating Systems Design and Implemen-
tation. Seattle, WA, 107–122.

HANKO, J. G. 1993. A New Framework for Processor Scheduling in UNIX. In Abstract talk at the
Fourth International Workshop on Network and Operating Systems Support for Digital Audio
and Video. Lancaster, U. K.

IEEE. 1996. IEEE Micro 15, 4 (Aug.).
JONES, M. B., ROSU, D., AND ROSU, M.-C. 1997. CPU Reservations and Time Constraints: Effi-

cient, Predictable Scheduling of Independent Activities. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles. St. Malo, France, 198–211.

LAMPSON, B. W. AND REDELL, D. D. 1980. Experience with processes and monitors in Mesa. Com-
mun. ACM 23, 2 (Feb.), 105–117.

LEFFLER, S. J., MCKUSICK, M. K., KARELS, M. J., AND QUARTERMAN, J. S. 1989. The Design and
Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, MA.

LEHOCZKY, J., SHA, L., AND DING, Y. 1989. The Rate Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior. In Proceedings of the IEEE Real-Time Systems Sympo-
sium. 166–171.

LESLIE, I. M., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P., EVERS, D., FAIRBAIRNS, R., AND HYDEN,
E. 1996. The Design and Implementation of an Operating System to Support Distributed
Multimedia Applications. IEEE J. Selected Areas Comm. (JSAC) 14, 7 (Sept.), 1280–1297.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. JACM 20, 1 (Jan.), 46–61.

LOCKE, C. D. 1986. Best-Effort Decision Making for Real-Time Scheduling. Ph.D. thesis, Depart-
ment of Computer Science, Carnegie Mellon University.

MERCER, C. W., SAVAGE, S., AND TOKUDA, H. 1994. Processor Capacity Reserves: Operating System
Support for Multimedia Applications. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems. Boston, MA, 90–99.

NIEH, J., HANKO, J. G., NORTHCUTT, J. D., AND WALL, G. A. 1993. SVR4 UNIX Scheduler Unac-
ceptable for Multimedia Applications. In Proceedings of the Fourth International Workshop on
Network and Operating Systems Support for Digital Audio and Video. Lancaster, U. K., 35–
48.

NIEH, J. AND LAM, M. S. 1997a. SMART UNIX SVR4 Support for Multimedia Applications. In Pro-
ceedings of the IEEE International Conference on Multimedia Computing and Systems. Ottawa,
Canada, 404–414.

NIEH, J. AND LAM, M. S. 1997b. The Design, Implementation and Evaluation of SMART: A sched-
uler for Multimedia Applications. In Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles. ACM, St. Malo, France, 184–197.

NORTHCUTT, J. D. 1987. Mechanisms for Reliable Distributed Real-Time Operating Systems: The
Alpha Kernel. Academic Press, Boston, MA.

NORTHCUTT, J. D. AND KUERNER, E. M. 1991. System Support for Time-Critical Applications. In
Proceedings of the Second International Workshop on Network and Operating Systems Support

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

A SMART Scheduler for Multimedia Applications • 163

for Digital Audio and Video, Lecture Notes in Computer Science. Vol. 614. Heidelberg, Germany,
242–254.

PAREKH, A. K. AND GALLAGER, R. G. 1993. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case. IEEE/ACM Trans. Netw. 1, 3
(June), 344–357.

SCHEIFLER, R. W. AND GETTYS, J. 1986. The X Window System. ACM Trans. Graph. 5, 2 (Apr.),
79–109.

SCHMIDT, B. K. 1995. A Method and Apparatus for Measuring Media Synchronization. In Pro-
ceedings of the Fifth International Workshop on Network and Operating Systems Support for
Digital Audio and Video. Durham, NH, 203–214.

SHNEIDERMAN, B. 1992. Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 2nd ed. Addison-Wesley, Reading, MA.

STEERE, D. C., GOEL, A., GRUENBERG, J., MCNAMEE, D., PU, C., AND WALPOLE, J. 1999. A Feedback-
driven Proportion Allocator for Real-Rate Scheduling. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation. New Orleans, LA, 145–158.

STOICA, I., ABDEL-WAHAB, H., AND JEFFAY, K. 1997. On the Duality between Resource Reserva-
tion and Proportional Share Resource Allocation. In Multimedia Computing and Networking
Proceedings, SPIE Proceedings Series. Vol. 3020. San Jose, CA, 207–214.

STOICA, I., ABDEL-WAHAB, H., JEFFAY, K., BARUAH, S. K., GEHRKE, J. E., AND PLAXTON, C. G. 1996.
A Proportional Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems. In
Proceedings of the Seventeenth IEEE Real-Time Systems Symposium. Washingtion, DC, 288–
299.

WALDSPURGER, C. A. 1995. Lottery and Stride Scheduling: Flexible Proportional-Share Re-
source Management. Ph.D. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

Received May 2001; revised March 2002, August 2002; accepted October 2002

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

