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Abstract
Reliability and scalability are major concerns when designing
operating systems for large-scale shared-memory multiprocessors.
In this paper we describe Hive, an operating system with a novel
kernel architecture that addresses these issues. Hive is structured
as an internal distributed system of independent kernels called
cells. This improves reliability because a hardware or software
fault damages only one cell rather than the whole system, and
improves scalability because few kernel resources are shared by
processes running on different cells. The Hive prototype is a
complete implementation of UNIX SVR4 and is targeted to run on
the Stanford FLASH multiprocessor.

This paper focuses on Hive’s solution to the following key
challenges: (1) fault containment, i.e. confining the effects of
hardware or software faults to the cell where they occur, and (2)
memory sharing among cells, which is required to achieve
application performance competitive with other multiprocessor
operating systems. Fault containment in a shared-memory
multiprocessor requires defending each cell against erroneous
writes caused by faults in other cells. Hive prevents such damage
by using the FLASHfirewall, a write permission bit-vector
associated with each page of memory, and by discarding
potentially corrupt pages when a fault is detected. Memory sharing
is provided through a unified file and virtual memory page cache
across the cells, and through a unified free page frame pool.

We report early experience with the system, including the
results of fault injection and performance experiments using
SimOS, an accurate simulator of FLASH. The effects of faults
were contained to the cell in which they occurred in all 49 tests
where we injected fail-stop hardware faults, and in all 20 tests
where we injected kernel data corruption. The Hive prototype
executes test workloads on a four-processor four-cell system with
between 0% and 11% slowdown as compared to SGI IRIX 5.2 (the
version of UNIX on which it is based).

1 Introduction

Shared-memory multiprocessors are becoming an increasingly
common server platform because of their excellent performance
under dynamic multiprogrammed workloads. However, the
symmetric multiprocessor operating systems (SMP OS)
commonly used for small-scale machines are difficult to scale to
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the large shared-memory multiprocessors that can now be built
(Stanford DASH [11], MIT Alewife [3], Convex Exemplar [5]).

In this paper we describe Hive, an operating system designed
for large-scale shared-memory multiprocessors. Hive is
fundamentally different from previous monolithic and microkernel
SMP OS implementations: it is structured as an internal distributed
system of independent kernels calledcells. This multicellular
kernel architecture has two main advantages:

• Reliability: In SMP OS implementations, any significant
hardware or software fault causes the entire system to crash.
For large-scale machines this can result in an unacceptably low
mean time to failure. In Hive, only the cell where the fault
occurred crashes, so only the processes using the resources of
that cell are affected. This is especially beneficial for compute
server workloads where there are multiple independent
processes, the predominant situation today. In addition,
scheduled hardware maintenance and kernel software upgrades
can proceed transparently to applications, one cell at a time.

• Scalability: SMP OS implementations are difficult to scale to
large machines because all processors directly share all kernel
resources. Improving parallelism in a “shared-everything”
architecture is an iterative trial-and-error process of identifying
and fixing bottlenecks. In contrast, Hive offers a systematic
approach to scalability. Few kernel resources are shared by
processes running on different cells, so parallelism can be
improved by increasing the number of cells.

However, the multicellular architecture of Hive also creates new
implementation challenges. These include:

• Fault containment: The effects of faults must be confined to the
cell in which they occur. This is difficult since a shared-memory
multiprocessor allows a faulty cell to issuewild writes which
can corrupt the memory of other cells.

• Resource sharing: Processors, memory, and other system
resources must be shared flexibly across cell boundaries, to
preserve the execution efficiency that justifies investing in a
shared-memory multiprocessor.

• Single-system image: The cells must cooperate to present a
standard SMP OS interface to applications and users.

In this paper, we focus on Hive’s solution to the fault containment
problem and on its solution to a key resource sharing problem,
sharing memory across cell boundaries. The solutions rely on
hardware as well as software mechanisms: we have designed Hive
in conjunction with the Stanford FLASH multiprocessor [10],
which has enabled us to add hardware support in a few critical
areas.

Hive’s fault containment strategy has three main components.
Each cell usesfirewall hardware provided by FLASH to defend
most of its memory pages against wild writes. Any pages writable
by a failed cell are preemptively discarded when the failure is
detected, which prevents any corrupt data from being read
subsequently by applications or written to disk. Finally, aggressive
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failure detection reduces the delay until preemptive discard occurs.
Cell failures are detected initially using heuristic checks, then
confirmed with a distributed agreement protocol that minimizes
the probability of concluding that a functioning cell has failed.

Hive provides two types of memory sharing among cells. First,
the file system and the virtual memory system cooperate so
processes on multiple cells can use the same memory page for
shared data. Second, the page allocation modules on different cells
cooperate so a free page belonging to one cell can be loaned to
another cell that is under memory pressure. Either type of sharing
would cause fault containment problems on current
multiprocessors, since a hardware fault in memory or in a
processor caching the data could halt some other processor that
tries to access that memory. FLASH makes memory sharing safe
by providing timeouts and checks on memory accesses.

The current prototype of Hive is based on and remains binary
compatible with IRIX 5.2 (a version of UNIX SVR4 from Silicon
Graphics, Inc.). Because FLASH is not available yet, we used the
SimOS hardware simulator [18] to develop and test Hive. Our
early experiments using SimOS demonstrate that:

• Hive can survive the halt of a processor or the failure of a range
of memory. In all of 49 experiments where we injected a fail-
stop hardware fault, the effects were confined to the cell where
the fault occurred.

• Hive can survive kernel software faults. In all of 20
experiments where we randomly corrupted internal operating
system data structures, the effects were confined to the cell
where the fault occurred.

• Hive can offer reasonable performance while providing fault
containment. A four-cell Hive executed three test workloads
with between 0% and 11% slowdown as compared to IRIX 5.2
on a four-processor machine.

These results indicate that a multicellular kernel architecture can
provide fault containment in a shared-memory multiprocessor. The
performance results are also promising, but significant further
work is required on resource sharing and the single-system image
before we can make definitive conclusions about performance.

We begin this paper by defining fault containment more
precisely and describing the fundamental problems that arise when
implementing it in multiprocessors. Next we give an overview of
the architecture and implementation of Hive. The implementation
details follow in three parts: fault containment, memory sharing,
and the intercell remote procedure call subsystem. We conclude
with an evaluation of the performance and fault containment of the
current prototype, a discussion of other applications of the Hive
architecture, and a summary of related work.

2 Fault Containment in
Shared-Memory Multiprocessors

Fault containment is a general reliability strategy that has been
implemented in many distributed systems. It differs from fault
tolerance in that partial failures are allowed, which enables the
system to avoid the cost of replicating processes and data.

Fault containment is an attractive reliability strategy for
multiprocessors used as general-purpose compute servers. The
workloads characteristic of this environment frequently contain
multiple independent processes, so some processes can continue
doing useful work even if others are terminated by a partial system
failure.

However, fault containment in a multiprocessor will only have
reliability benefits if the operating system manages resources well.
Few applications will survive a partial system failure if the
operating system allocates resources randomly from all over the

machine. Since application reliability is the primary goal, we
redefine fault containment to include this resource management
requirement:

A system provides fault containment if the probability that
an application fails is proportional to the amount of
resources used by that application, not to the total amount
of resources in the system.

One important consequence of choosing this as the reliability goal
is that large applications which use resources from the whole
system receive no reliability benefits. For example, some compute
server workloads contain parallel applications that run with as
many threads as there are processors in the system. However, these
large applications have previously used checkpointing to provide
their own reliability, so we assume they can continue to do so.

The fault containment strategy can be used in both distributed
systems and multiprocessors. However, the problems that arise in
implementing fault containment are different in the two
environments. In addition to all the problems that arise in
distributed systems, the shared-memory hardware of
multiprocessors increases vulnerability to both hardware faults and
software faults. We describe the problems caused by each of these
in turn.

Hardware faults: Consider the architecture of the Stanford
FLASH, which is a typical large-scale shared-memory
multiprocessor (Figure 2.1). FLASH consists of multiple nodes,
each with a processor and its caches, a local portion of main
memory, and local I/O devices. The nodes communicate through a
high-speed low-latency mesh network. Cache coherence is
provided by a coherence controller on each node. A machine like
this is called a CC-NUMA multiprocessor (cache-coherent with
non-uniform memory access time) since accesses to local memory
are faster than accesses to the memory of other nodes.

In a CC-NUMA machine, an important unit of failure is the
node. A node failure halts a processor and has two direct effects on
the memory of the machine: the portion of main memory assigned
to that node becomes inaccessible, and any memory line whose
only copy was cached on that node is lost. There may also be
indirect effects that cause loss of other data.

For the operating system to survive and recover from hardware
faults, the hardware must make several guarantees about the
behavior of shared memory after a fault. Accesses to unaffected
memory ranges must continue to be satisfied with normal cache
coherence. Processors that try to access failed memory or retrieve
a cache line from a failed node must not be stalled indefinitely.
Also, the set of memory lines that could be affected by a fault on a
given node must be limited somehow, since designing recovery
algorithms requires knowing what data can be trusted to be correct.

These hardware properties collectively make up a memory fault
model, analogous to the memory consistency model of a
multiprocessor which specifies the behavior of reads and writes.
The FLASH memory fault model was developed to match the
needs of Hive: it provides the above properties, guarantees that the
network remains fully connected with high probability (i.e. the
operating system need not work around network partitions), and
specifies that only the nodes that have been authorized to write a
given memory line (via the firewall) could damage that line due to
a hardware fault.

Software faults: The presence of shared memory makes each cell
vulnerable to wild writes resulting from software faults in other
cells. Wild writes are not a negligible problem. Studies have
shown that software faults are more common than hardware faults
in current systems [7]. When a software fault occurs, a wild write
can easily follow. One study found that among 3000 severe bugs
reported in IBM operating systems over a five-year period,
between 15 and 25 percent caused wild writes [20].
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Unfortunately, existing shared-memory multiprocessors do not
provide a mechanism to prevent wild writes. The only mechanism
that can halt a write request is the virtual address translation
hardware present in each processor, which is under the control of
the very software whose faults must be protected against.

Therefore an operating system designed to prevent wild writes
must either use special-purpose hardware, or rely on a trusted
software base that takes control of the existing virtual address
translation hardware. For systems which use hardware support, the
most natural place to put it is in the coherence controller, which
can check permissions attached to each memory block before
modifying memory. Systems following a software-only approach
could use a microkernel as the trusted base, or could use the lower
levels of the operating system’s own virtual memory system, on
top of which most of the kernel would run in a virtual address
space.

The hardware and software-only approaches provide
significantly different levels of reliability, at least for an operating
system that is partitioned into cells. In the hardware approach,
each cell’s wild write defense depends only on the hardware and
software of that cell. In the software-only approach, each cell’s
wild write defense depends on the hardware and trusted software
layer of all other cells. By reducing the number and complexity of
the components that must function correctly to defend each cell
against wild writes, the hardware approach provides higher
reliability than the software-only approach.

We chose to add firewall hardware, a write permission bit-
vector associated with each page of memory, to the FLASH
coherence controller. We found that the firewall added little to the
cost of FLASH beyond the storage required for the bit vectors.
Other large multiprocessors are likely to be similar in this respect,
because the hardware required for access permission checking is
close to that required for directory-based cache-coherence. The
firewall and its performance impact are described in Section4.2.

3 Hive Architecture

Hive is structured as a set of cells (Figure3.1). When the system
boots, each cell is assigned a range of nodes that it owns
throughout execution. Each cell manages the processors, memory,
and I/O devices on those nodes as if it were an independent
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FIGURE 2.1. FLASH architecture.
The machine is structured as a set of nodes in a mesh network.
Each node contains a portion of the main memory and a coherence
controller which communicates with other nodes to maintain cache
coherence. When a hardware fault occurs, the node is a likely unit
of failure, so portions of main memory can be lost.

operating system. The cells cooperate to present the required
single-system image to user-level processes.

On top of this structure, the architectural features of Hive fall
into two broad categories: those related to implementing fault
containment, and those related to providing resource sharing
despite the fault containment boundaries between cells. After
describing both parts of the architecture, we will briefly summarize
the implementation status of the Hive prototype.

3.1  Fault containment architecture

Fault containment at the hardware level is a hardware design
problem, with requirements specified by the memory fault model
that Hive relies on. At the operating system level, there are three
channels by which a fault in one cell can damage another cell: by
sending a bad message, providing bad data or errors to remote
reads, or by causing erroneous remote writes. A cell failure can
also deny access to some important resource (such as a common
shared library), but that is a different problem which is a subject
for further work. We discuss each of the three operating system
fault containment problems in turn.

Message exchange: Most communication between cells is done
through remote procedure calls (RPCs). Each cell sanity-checks all
information received from other cells and sets timeouts whenever
waiting for a reply. Experience with previous distributed systems
shows that this approach provides excellent fault containment,
even though it does not defend against all possible faults.

Remote reads: Cells also read each other’s internal data structures
directly, which can be substantially faster than exchanging RPCs.
It is the reading cell’s responsibility to defend itself against
deadlocking or crashing despite such problems as invalid pointers,
linked data structures that contain infinite loops, or data values that
change in the middle of an operation. This is implemented with a
simple careful reference protocol that includes checks for the
various possible error conditions. Once the data has been safely
read, it is sanity-checked just as message data is checked.

Remote writes: Cells never write to each other’s internal data
structures directly, as this would make fault containment
impractical. This is enforced by using the FLASH firewall to
protect kernel code and data against remote writes. However, cells
frequently write to each other’s user-level pages since pages can be

FIGURE 3.1. Partition of a multiprocessor into Hive cells.
Each cell controls a portion of the global physical address space
and runs as an independent multiprocessor kernel.
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shared by processes running on different cells. This creates two
issues that must be addressed:

• Choosing which pages to protect: Each cell always protects the
user-level pages that are only used by processes local to that
cell. This ensures maximum reliability for most small processes
in the system. Each cell also protects as many of the shared
pages as possible without causing an excessive number of
protection status changes. Protection changes can be expensive:
when using the FLASH firewall, revoking remote write
permission requires communication with remote nodes to
ensure that all valid writes have been delivered to memory.
Thus firewall management is a tradeoff between fault
containment and performance.

• Wild writes to unprotected pages: Wild writes to user pages are
a problem because they violate the data integrity expected by
users. The chance of data integrity violations must be reduced
to near that provided by the memory of the machine, or Hive
will not be usable for any important applications.

Hive attempts to mask corrupt data by preventing corrupted
pages from being read by applications or written to disk.
However, by the time a cell failure is detected, it is too late to
determine which pages have been corrupted. Hive makes the
pessimistic assumption that all potentially damaged pages have
been corrupted. When a cell failure is detected, all pages
writable by the failed cell are preemptively discarded.

Unfortunately, the preemptive discard policy can not prevent all
user-visible data integrity violations caused by wild writes.
Corrupt data might be used before the cell failure is detected.
Alternatively, a faulty cell might corrupt a page, then give up its
write permission before the failure is detected, so the page will not
be discarded.

This problem appears to be fundamental to a multicellular
kernel architecture. The only way to prevent all data integrity
violations (without excessive hardware overhead to log updates) is
to avoid write-sharing user pages across cell boundaries. Giving up
write-shared pages would give up one of the main performance
advantages of a shared-memory multiprocessor.

It is unclear at present whether the probability of data integrity
violations will be higher in a multicellular system than in a current
SMP OS implementation. We intend to evaluate this in future
studies. One way to reduce the probability is to shorten the time
window within which corrupt data might be used, by detecting
failures quickly.

Failure detection is a well-studied problem in the context of
distributed systems. For Hive, there are two main issues. Although
a halted cell is easily recognizable, a cell that is alive but acting
erratically can be difficult to distinguish from one that is
functioning correctly. Additionally, if one cell could declare that
another had failed and cause it to be rebooted, a faulty cell which
mistakenly concluded that other cells were corrupt could destroy a
large fraction of the system.

Hive uses a two-part solution. First, cells monitor each other
during normal operation with a number of heuristic checks. A
failed check provides a hint that triggers recovery immediately.
Second, consensus among the surviving cells is required to reboot
a failed cell. When a hint alert is broadcast, all cells temporarily
suspend processes running at user level and run a distributed
agreement algorithm. If the surviving cells agree that a cell has
failed, user processes remain suspended until the system has been
restored to a consistent state and all potentially corrupt pages have
been discarded.

This approach ensures that the window of vulnerability to wild
writes lasts only until the first check fails and the agreement
process runs (assuming the failure is correctly confirmed by the
agreement algorithm). The window of vulnerability can be reduced

by increasing the frequency of checks during normal operation.
This is another tradeoff between fault containment and
performance.

3.2  Resource sharing architecture

The challenge of resource sharing in Hive is to implement the tight
sharing expected from a multiprocessor despite the fault
containment boundaries between cells. The mechanisms for
resource sharing are implemented through the cooperation of the
various kernels, but the policy is implemented outside the kernels,
in a user-level process called Wax.

This approach is feasible because in Hive, unlike in previous
distributed systems, cells are not responsible for deciding how to
divide their resources between local and remote requests. Making
that tradeoff correctly requires a global view of the system state,
which is available only to Wax. Each cell is responsible only for
maintaining its internal correctness (for example, by preserving
enough local free memory to avoid deadlock) and for optimizing
performance within the resources it has been allocated.

Resource sharing mechanisms: The resources that need to be
shared particularly efficiently across cell boundaries are memory
and processors.

Memory sharing occurs at two levels (Figure 3.2). In logical-
level sharing, a cell that needs to use a data page from a file can
access that page no matter where it is stored in the system.
Logical-level sharing supports a globally-shared file buffer cache
in addition to allowing processes on different cells to share
memory. In physical-level sharing, a cell that has a free page frame
can transfer control over that frame to another cell. Physical-level
sharing balances memory pressure across the machine and allows
data pages to be placed where required for fast access on a CC-
NUMA machine.

To share processors efficiently, Hive extends the UNIX process
abstraction to span cell boundaries. A single parallel process can
run threads on multiple cells at the same time. Such processes are
called spanning tasks. Each cell runs a separate local process
containing the threads that are local to that cell. Shared process
state such as the address space map is kept consistent among the
component processes of the spanning task. This mechanism also
supports migration of sequential processes among cells for load
balancing.

Resource sharing policy: Intercell resource allocation decisions
are centralized in Wax, a multithreaded user-level process
(Figure 3.3). Table 3.4 lists some of the allocation decisions made
by Wax.

Wax addresses a problem faced by previous distributed
systems, which were limited to two unattractive resource
management strategies. Resource management can be distributed,
in which case each kernel has to make decisions based on an
incomplete view of the global state. Alternatively, it can be
centralized, in which case the kernel running the policy module
can become a performance bottleneck, and the policy module has
difficulty responding to rapid changes in the system.

Wax takes advantage of shared memory and the support for
spanning tasks to provide efficient resource management. Wax has
a complete, up-to-date view of the system state but is not limited to
running on a single cell. The threads of Wax running on different
cells can synchronize with each other using standard locks and
nonblocking data structures, enabling efficient resource
management decisions.

Despite its special privileges, Wax is not a special kind of
process. It uses resources from all cells, so its pages are discarded
and it exits whenever any cell fails. The recovery process starts a
new incarnation of Wax which forks to all cells and rebuilds its
picture of the system state from scratch. This avoids the
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considerable complexity of trying to recover consistency of Wax’s
internal data structures after they are damaged by a cell failure.

Wax does not weaken the fault containment boundaries
between cells. Each cell protects itself by sanity-checking the
inputs it receives from Wax. Also, operations required for system
correctness are handled directly through RPCs rather than
delegated to Wax. Thus if Wax is damaged by a faulty cell it can
hurt system performance but not correctness.

3.3  Implementation status

We have focused development so far on fault containment and
memory sharing. Most of the fault containment features of the
architecture are implemented and functioning: the internal
distributed system, careful reference protocol, wild write defense,
and failure hints and recovery. Memory sharing among cells is
implemented at both logical-level and physical-level. We have also
developed a low-latency intercell RPC subsystem.

The single-system image is only partially complete at present. It
provides forks across cell boundaries, distributed process groups
and signal delivery, and a shared file system name space. Spanning
tasks, Wax, the distributed agreement protocol, and a fault-tolerant
file system with single-system semantics remain to be
implemented.

The current prototype is sufficient to demonstrate that fault
containment is possible in a shared-memory multiprocessor, and
that memory sharing can function efficiently without weakening
fault containment. Performance results from the current prototype
are promising, but further work is required to determine whether a

(b) Physical-level sharing of page frames

Cell 0 Cell 1

Cell 0 Cell 1

process
address space

process
address space

(a) Logical-level sharing of data pages

FIGURE 3.2. Types of memory sharing.
In logical-level sharing, a process on one cell maps a data page
from another cell into its address space. In physical-level sharing,
one cell transfers control over a page frame to another. One page
might be shared in both ways at the same time.

fully-implemented system will perform as well as previous UNIX
kernels.

The performance measurements reported in the following
sections were obtained using SimOS [18]. We model a machine
similar in performance to an SGI Challenge multiprocessor with
four 200-MHz MIPS R4000 processors and a 700 nanosecond
main memory access latency. We use two types of workloads,
characteristic of the two environments we expect to be most
common for Hive. For compute-server usage, we use pmake
(parallel compilation). To model use by large parallel applications,
we use ocean (scientific simulation) and raytrace (graphics
rendering). Section 7 describes SimOS, the machine model, and
the workloads in detail.

4 Fault Containment Implementation

As described earlier, the three ways one cell can damage another
are by sending bad messages, providing bad data to remote reads,
and writing to remote addresses. The mechanisms that Hive uses to
prevent damage from spreading through messages have proven
their effectiveness in previous distributed systems such as NFS.
Therefore, we will focus on the novel mechanisms related to
remote reads and writes: the careful reference protocol for remote
reads, the wild write defense, and aggressive failure detection.

4.1  Careful reference protocol

One cell reads another’s internal data structures in cases where
RPCs are too slow, an up-to-date view of the data is required, or

FIGURE 3.3. Intercell optimization using a user-level process.
Wax reads state from all cells. Wax provides hints that control the
resource management policies that require a global view of the
system state. Since Wax is a user-level process, the threads in Wax
can use shared memory and synchronize freely without weakening
the fault isolation of the cells.

TABLE 3.4. Examples of policies in each cell driven by Wax.

Module Policy

Page allocator Which cells to allocate memory from

Virtual memory
clock hand

Which cells should be targeted for page
deallocation

Scheduler Gang scheduling, space sharing (granting a
set of processors exclusively to a process)

Swapper Which processes to swap

Cell 0

Process Process
Process

Wax

State Hints State Hints

Cell 1
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the data needs to be published to a large number of cells. Once the
data has been read, it has to be sanity-checked just as an RPC
received from the remote cell would be checked. However, the
remote reads create additional fault containment problems.

An access to the memory of a remote cell can result in a
hardware exception. For example, a bus error will occur if the
remote node has failed. Cells normally panic (shut themselves
down) if they detect such hardware exceptions during kernel
execution, because this indicates internal kernel corruption. Some
mechanism is needed to prevent errors that occur during remote
reads from causing a kernel panic.

Hive uses a simple careful reference protocol to avoid these
problems, as well as to handle data errors such as linked data
structures with loops and values that change unexpectedly. The
reading cell follows these steps:

1. Call the careful_on function, which captures the current
stack frame and records which remote cell the kernel intends to
access. If a bus error occurs while reading the memory of that
cell, the trap handler restores to the saved function context.

2. Before using any remote address, check that it is aligned
properly for the expected data structure and that it addresses the
memory range belonging to the expected cell.

3. Copy all data values to local memory before beginning sanity-
checks, in order to defend against unexpected changes.

4. Check each remote data structure by reading a structure type
identifier. The type identifier is written by the memory allocator
and removed by the memory deallocator. Checking for the
expected value of this tag provides a first line of defense against
invalid remote pointers.

5. Call careful_off when done so future bus errors in the
reading cell will correctly cause the kernel to panic.

An example use of the careful reference protocol is the clock
monitoring algorithm, in which the clock handler of each cell
checks another cell’s clock value on every tick (Section 4.3). With
simulated 200-MHz processors, the average latency from the
initial call to careful_on until the terminating careful_off
call finishes is 1.16 µs (232 cycles), of which 0.7 µs (140 cycles) is
the latency we model for the cache miss to the memory line
containing the clock value. This is substantially faster than sending
an RPC to get the data, which takes a minimum of 7.2 µs
(Section 6) and requires interrupting a processor on the remote
cell.

4.2  Wild write defense

Hive defends against wild writes using a two-part strategy. First, it
manages the FLASH hardware firewall to minimize the number of
pages writable by remote cells. Second, when a cell failure is
detected, other cells preemptively discard any pages writable by
the failed cell.

FLASH fir ewall: The firewall controls which processors are
allowed to modify each region of main memory. FLASH provides
a separate firewall for each 4 KB of memory, specified as a 64-bit
vector where each bit grants write permission to a processor. On
systems larger than 64 processors, each bit grants write permission
to multiple processors. A write request to a page for which the
corresponding bit is not set fails with a bus error. Only the local
processor can change the firewall bits for the memory of its node.

The coherence controller of each node stores and checks the
firewall bits for the memory of that node. It checks the firewall on
each request for cache line ownership (read misses do not count as
ownership requests) and on most cache line writebacks. Uncached
accesses to I/O devices on other cells always receive bus errors,

while DMA writes from I/O devices are checked as if they were
writes from the processor on that node.

We chose a 4 KB firewall granularity to match the operating
system page size. Anything larger would constrain operating
system memory allocation, whereas it is unclear whether a finer
granularity would be useful.

We chose a bit vector per page after rejecting two options that
would require less storage. A single bit per page, granting global
write access, would provide no fault containment for processes
that use any remote memory. A byte or halfword per page, naming
a processor with write access, would prevent the scheduler in each
cell from balancing the load on its processors.

The performance cost of the firewall is minimal. We ran several
of the test workloads twice using a cycle-accurate FLASH
memory system model, once with firewall checking enabled and
once with it disabled. The firewall check increases the average
remote write cache miss latency under pmake by 6.3% and under
ocean by 4.4%. This increase has little overall effect since write
cache misses are a small fraction of the workload run time.

Fir ewall management policy: Firewall management is a tradeoff
between fault containment and performance. The only time remote
write access to a page is required is when a write-enabled mapping
to the page is present in a processor of another cell. However, the
set of active hardware mappings changes on each TLB miss, a rate
that is far too high to send RPCs requesting firewall status changes.
Some other policy is needed to decide when firewall write
permission should be granted.

Choosing the correct policy requires careful evaluation under
various workloads. At present we use a policy that was
straightforward to implement and keeps the number of writable
pages fairly small.

Write access to a page is granted to all processors of a cell as a
group, when any process on that cell faults the page into a writable
portion of its address space. Granting access to all processors of
the cell allows it to freely reschedule the process on any of its
processors without sending RPCs to remote cells. Write
permission remains granted as long as any process on that cell has
the page mapped.

The address space region is marked writable only if the process
had explicitly requested a writable mapping to the file. Thus this
policy ensures that a fault in a cell can only corrupt remote pages
to which a process running on that cell had requested write access.

To measure the effectiveness of this policy we used pmake,
which shares few writable pages between the separate compile
processes, and ocean, which shares its data segment among all its
threads. We observed that, over 5.0 seconds of execution sampled
at 20 millisecond intervals, pmake had an average of 15 remotely
writable pages per cell at each sample (out of about 6000 user
pages per cell), while ocean showed an average of 550 remotely
writable pages.

The behavior of the firewall under pmake shows that the current
policy should provide good wild write protection to a system used
predominately by sequential applications. The highest recorded
number of writable pages during the workload was 42, on the cell
acting as the file server for the directory where compiler
intermediate files are stored (/tmp).

In the case of ocean, the current policy provides little protection
since the global data segment is write-shared by all processors.
However, the application is running on all processors and will exit
anyway when a cell fails, so any efforts to prevent its pages from
being discarded will be wasted. The simple firewall management
policy appears to be working well in this case, avoiding protection
status changes that would create unnecessary performance
overheads.
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Preemptive discard: It is difficult to efficiently determine which
pages to discard after a cell failure. Many cells could be using a
given page and therefore need to cooperate in discarding it, but
only one cell knows the precise firewall status of that page (the
data home cell, defined in Section5). Distributing firewall status
information during recovery to all cells using the page would
require significant communication. Instead, all TLBs are flushed
and all remote mappings are removed during recovery. This
ensures that a future access to a discarded page will fault and send
an RPC to the owner of the page, where it can be checked.

The accesses need to be checked because discarding a page can
violate the expected stable write semantics of the file system, if the
page was dirty with respect to disk. Processes that attempt to
access a discarded dirty page should receive an error. However, the
accesses might occur arbitrarily far in the future, making it quite
expensive to record exactly which pages of each file have been
discarded. We solve this problem by relaxing the process-visible
error semantics slightly.

In most current UNIX implementations the file system does not
attempt to record which dirty pages were lost in a system crash. It
simply fetches stale data from disk after a reboot. This is
acceptable because no local processes can survive the crash, so a
process that accessed the dirty data will never observe that it was
unstable.

We take advantage of this in Hive and allow any process that
opens a damaged file after a cell failure to read whatever data is
available on disk. Only processes that opened the file before the
failure will receive I/O errors. This is implemented with a
generation number, maintained by the file system, that is copied
into the file descriptor or address space map of a process when it
opens the file. When a dirty page of a file is discarded, the file’s
generation number is incremented. An access via a file descriptor
or address space region with a mismatched generation number
generates an error.

4.3  Failure detection and recovery

Hive attempts to detect the failure of a cell quickly in order to
reduce the probability that wild writes will cause user-visible data
corruption. This is implemented with consistency checks that run
regularly in normal operation. When one of the checks fails, it is
confirmed by a distributed agreement algorithm.

Just as in previous distributed systems, a cell is considered
potentially failed if an RPC sent to it times out. Additionally, a cell
is considered potentially failed if:

• An attempt to access its memory causes a bus error. This will
occur if there is a serious hardware failure.

• A shared memory location which it updates on every clock
interrupt fails to increment. Clock monitoring detects hardware
failures that halt processors but not entire nodes, as well as
operating system errors that lead to deadlocks or the inability to
respond to interrupts.

• Data or pointers read from its memory fail the consistency
checks that are part of the careful reference protocol. This
detects software faults.

To prevent a corrupt cell from repeatedly broadcasting alerts and
damaging system performance over a long period, a cell that
broadcasts the same alert twice but is voted down by the
distributed agreement algorithm both times is considered corrupt
by the other cells.

The distributed agreement algorithm is an instance of the well-
studied group membership problem, so Hive will use a standard
algorithm (probably [16]). This is not implemented yet and is
simulated by an oracle for the experiments reported in this paper.

Recovery algorithms: Given consensus on the live set of cells,
each cell runs recovery algorithms to clean up dangling references
and determine which processes must be killed. One interesting
aspect of these algorithms is the use of a double global barrier to
synchronize the preemptive discard operation. The double barrier
in recovery is part of a strategy to increase the speed of page faults
that hit in the file cache, an extremely common intercell operation.

When a cell exits distributed agreement and enters recovery, it
is not guaranteed that all page faults and accesses to its memory
from other cells have finished. User-level processes will be
suspended, but processes running at kernel level will not be
suspended. (Allowing kernel-level processes to continue during
recovery permits the recovery algorithms to grab kernel locks and
modify kernel data structures.) Each cell only joins the first global
barrier when it has flushed its processor TLBs and removed any
remote mappings from process address spaces. A page fault that
occurs after a cell has joined the first barrier is held up on the client
side.

After the first barrier completes, each cell knows that no further
valid page faults or remote accesses are pending. This allows it to
revoke any firewall write permission it has granted to other cells
and clean up its virtual memory data structures. It is during this
operation that the virtual memory subsystem detects pages that
were writable by a failed cell and notifies the file system, which
increments its generation count on the file to record the loss.

Each cell joins the second global barrier after it has finished
virtual memory cleanup. Cells that exit the second barrier can
safely resume normal operation, including sending page faults to
other cells.

Given this design, the server-side implementation of a page
fault RPC need not grab any blocking locks to synchronize with
the recovery algorithms. This allows page faults that hit in the file
cache to be serviced entirely in an interrupt handler, which has
significant performance benefits (Section5.2).

At the end of every recovery round, a recovery master is elected
from the new live set. The recovery master runs hardware
diagnostics on the nodes belonging to the failed cells. If the
diagnostic checks succeed, the failed cells are automatically
rebooted and reintegrated into the system. Reintegration is not yet
implemented but appears straightforward.

5 Memory Sharing Implementation

Given the fault containment provided by the features described in
the previous section, the next challenge is to share resources
flexibly across cell boundaries without weakening fault
containment. This section describes Hive’s solution to one of the
major resource sharing problems, memory sharing among cells.

As described earlier (Figure3.2) there are two types of memory
sharing: logical-level sharing and physical-level sharing. The two
types require different data structure management and are
implemented at different places in the system.

We found it useful to give names to the three roles that cells can
play in sharing a memory page:

• Client cell: A cell running a process that is accessing the data.

• Memory home: The cell that owns the physical storage for the
page. Cell 1 is the memory home in both parts of Figure3.2.

• Data home: The cell that owns the data stored in the page. Cell
1 is the data home in Figure3.2a, but cell 0 is the data home in
Figure3.2b.

The data home provides name resolution, manages the coherency
data structures if the page is replicated, and ensures that the page is
written back to disk if it becomes dirty. In the current prototype the
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data home for a given page is always the cell that owns the backing
store for that page.

We start our description of memory sharing by introducing the
virtual memory page cache design in IRIX, because it is the basis
for the implementation. Then we discuss each of the types of
memory sharing in turn.

5.1  IRIX page cache design

In IRIX, each page frame in paged memory is managed by an entry
in a table of page frame data structures (pfdats). Each pfdat
records the logical page id of the data stored in the corresponding
frame. The logical page id has two components: a tag and an
offset. The tag identifies the object to which the logical page
belongs. This can be either a file, for file system pages, or a node in
the copy-on-write tree, for anonymous pages. The offset indicates
which logical page of the object this is. The pfdats are linked into a
hash table that allows lookup by logical page id.

When a page fault to a mapped file page occurs, the virtual
memory system first checks the pfdat hash table. If the data page
requested by the process is not present, the virtual memory system
invokes the read operation of the vnode object provided by the file
system to represent that file. The file system allocates a page
frame, fills it with the requested data, and inserts it in the pfdat
hash table. Then the page fault handler in the virtual memory
system restarts and finds the page in the hash table.

Read and write system calls follow nearly the same path as page
faults. The system call dispatcher calls through the vnode object
for the file. The file system checks the pfdat hash table for the
requested page in order to decide whether I/O is necessary.

5.2  Logical-level sharing of file pages

In Hive, when one cell needs to access a data page cached by
another, it allocates a new pfdat to record the logical page id and
the physical address of the page. These dynamically-allocated
pfdats are called extended pfdats. Once the extended pfdat is
allocated and inserted into the pfdat hash table, most kernel
modules can operate on the page without being aware that it is
actually part of the memory belonging to another cell.

The Hive virtual memory system implements export and
import functions that set up the binding between a page of one
cell and an extended pfdat on another (Table 5.1). These functions
are most frequently called as part of page fault processing, which
proceeds as follows.

TABLE 5.1. Virtual memory primitives for memory sharing .

Logical level

/* Record that a client cell is now accessing a data page. */
export(client_cell, pfdat, is_writable)

/* Allocate an extended pfdat and bind to a remote page. */
import(page_address, data_home,

logical_page_id, is_writable)

/* Free extended pfdat, send RPC to data home to free page. */
release(pfdat)

Physical level

/* Record that a client cell now has control over a page frame.*/
loan_frame(client_cell, pfdat)

/* Allocate an extended pfdat and bind to a remote frame. */
borrow_frame(page_address)

/* Free extended pfdat, send free RPC to memory home. */
return_frame(pfdat)

A page fault to a remote file is initially processed just as in other
distributed file systems. The virtual memory system first checks
the pfdat hash table on the client cell. If the data page requested by
the process is not present, the virtual memory system invokes the
read operation on the vnode for that file. This is a shadow vnode
which indicates that the file is remote. The file system uses
information stored in the vnode to determine the data home for the
file and the vnode tag on the data home, and sends an RPC to the
data home. The server side of the file system issues a disk read
using the data home vnode if the page is not already cached.

Once the page has been located on the data home, Hive
functions differently from previous systems. The file system on the
data home calls export on the page. This records the client cell
in the data home’s pfdat, which prevents the page from being
deallocated and provides information necessary for the failure
recovery algorithms. export also modifies the firewall state of
the page if write access is requested.

The server-side file system returns the address of the data page
to the client cell. The client-side file system calls import, which
allocates an extended pfdat for that page frame and inserts it into
the client cell’s pfdat hash table. Further faults to that page can hit
quickly in the client cell’s hash table and avoid sending an RPC to
the data home. The page also remains in the data home’s pfdat
hash table, allowing processes on other cells to find and share it.
Figure 5.3a illustrates the state of the virtual memory data
structures after export and import have completed.

When the client cell eventually frees the page, the virtual
memory system calls release rather than putting the page on the
local free list. release frees the extended pfdat and sends an
RPC to the data home, which places the page on the data home free
list if no other references remain. Keeping the page on the data
home free list rather than client free lists increases memory
allocation flexibility for the data home. The data page remains in
memory until the page frame is reallocated, providing fast access if
the client cell faults to it again.

We measure the overhead of the entire mechanism described in
this section by comparing the minimal cost of a page fault that hits
in the client cell page cache with one that goes remote and hits in
the data home page cache. The local case averages 6.9 µs while the
remote case averages 50.7 µs in microbenchmarks run on SimOS.
Table 5.2 shows a detailed breakdown of the remote page fault
latency. 17.3 µs of the remote case is due to RPC costs which are
explained in Section 6. Another 14.2 µs (listed in the table as client
cell locking overhead and miscellaneous VM) is due to an

TABLE 5.2. Components of the remote page fault latency.
Times are averaged across 1024 faults that hit in the data home
page cache.

Total local page fault latency
Total remote page fault latency

6.9 µsec
50.7 µsec

Client cell 28.0
File system 9.0
Locking overhead 5.5
Miscellaneous VM 8.7
Import page 4.8

Data home 5.4
Miscellaneous VM 3.4
Export page 2.0

RPC 17.3
Stubs and RPC subsystem 4.9
Hardware message and interrupts 4.7
Arg/result copy through shared memory 4.0
Allocate/free arg and result memory 3.7
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implementation structure inherited from IRIX. IRIX assumes that
any miss in the client cell’s hash table will result in a disk access,
and so does not optimize that code path. Reorganizing this code
could provide substantial further reduction in the remote overhead.

In practice the remote costs can be somewhat higher, because
some of the remote faults cannot be serviced at interrupt level.
Faults which encounter certain synchronization conditions at the
data home must be queued for an RPC server process, which adds
substantial latency (Section 6). To check the overall effect of
remote faults, we measured their contribution to the slowdown of
pmake on a four-cell system compared to a one-cell system.
During about six seconds of execution on four processors, there
are 8935 page faults that hit in the page cache, of which 4946 are
remote on the four-cell system. This increases the time spent in
these faults from 117 to 455 milliseconds (cumulative across the
processors), which is about 13% of the overall slowdown of pmake
from a one-cell to a four-cell system. This time is worth optimizing
but is not a dominant effect on system performance.

5.3  Logical-level sharing of anonymous pages

The virtual memory system uses nearly the same mechanisms to
share anonymous pages (those whose backing store is in the swap
partition) as it uses to share file data pages. The interesting
difference is the mechanism for finding the requested page when a
process takes a page fault.

In IRIX, anonymous pages are managed in copy-on-write trees,
similar to the MACH approach [15]. An anonymous page is
allocated when a process writes to a page of its address space that
is shared copy-on-write with its parent. The new page is recorded
at the current leaf of the copy-on-write tree. When a process forks,
the leaf node of the tree is split with one of the new nodes assigned
to the parent and the other to the child. Pages written by the parent
process after the fork are recorded in its new leaf node, so only the
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FIGURE 5.3. Implementation of memory sharing.
The entries in the pfdat table bind a logical page id (file, offset) to a physical page frame. In logical-level sharing (a), the data home (cell 1)
marks its pfdat as exported and records the identity of the client (cell 0). The data home continues to manage the page. In physical-level
sharing (b), the memory home (cell 1) marks its pfdat as loaned to the data home (cell 0) and ignores the page until the data home returns it.

(b) Physical-level sharing(a) Logical-level sharing

Memory
pages

Data home

Client cell Data home

Memory home

anonymous pages allocated before the fork are visible to the child.
When a process faults on a copy-on-write page, it searches up the
tree to find the copy created by the nearest ancestor who wrote to
the page before forking.

In Hive, the parent and child processes might be on different
cells. There are several different ways to change anonymous page
management to respond to this. We chose this issue as the subject
for an experiment on the effectiveness of building distributed
kernel data structures.

We keep the existing tree structure nearly intact, and allow the
pointers in the tree to cross cell boundaries. The leaf node
corresponding to a process is always local to a process. Other
nodes might be remote. This does not create a wild write
vulnerability because the lookup algorithms do not need to modify
the interior nodes of the tree or synchronize access to them.

When a child read-faults on a shared page, it searches up the
tree, potentially using the careful reference protocol to read from
the kernel memory of other cells. If it finds the page recorded in a
remote node of the tree, it sends an RPC to the cell that owns that
node to set up the export/import binding. The cell that owns the
node is always the data home for the anonymous page.

The fact that this implementation appears to work reliably in the
face of fault injection experiments (Section 7) indicates that
distributed data structures can be built without weakening fault
containment. However, we do not observe any substantial
performance benefit in this case. When the child finds a desired
page it usually has to send an RPC to bind to the page in any case,
so the use of shared memory does not save much time unless the
tree spans multiple cells. A more conventional RPC-based
approach would be simpler and probably just as fast, at least for
the workloads we evaluated.
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5.4  Physical-level sharing

The logical-level design just described for both file data and
anonymous data has a major constraint: all pages must be in their
data home’s page cache. If this design constrained all pages to be
stored in the data home’s memory, Hive would have poor load
balancing and would not be able to place pages for better locality
to the processes that use them, which is required for performance
on a CC-NUMA machine. Physical-level sharing solves this
problem.

Hive reuses the extended pfdat mechanism to enable a cell, the
memory home, to loan one of its page frames to another cell,
which becomes the data home (Figure 5.3b). The memory home
moves the page frame to a reserved list and ignores it until the data
home frees it or fails. The data home allocates an extended pfdat
and subsequently manages the frame as one of its own (except it
must send an RPC to the memory home when it needs to change
the firewall state).

Frame loaning is usually demand-driven by the page allocator.
When the page allocator receives a request, it may decide to
allocate a remote frame. Wax will eventually provide the policy
support for remote allocation. If a cell decides to allocate remotely,
it sends an RPC to the memory home asking for a set of pages.

Borrowed frames are not acceptable for all requests. For
example, frames allocated for internal kernel use must be local,
since the firewall does not defend against wild writes by the
memory home. The page allocator supports constraints by taking
two new arguments, a set of cells that are acceptable for the
request and one cell that is preferred.

Hive’s current policy for freeing borrowed frames is similar to
its policy for releasing imported pages. It sends a free message to
the memory home as soon as the data cached in the frame is no
longer in use. This can be a poor choice in some cases because it
results in immediately flushing the data. We have not yet
developed a better policy.

5.5  Logical/physical interactions

In general, the two types of memory sharing operate independently
and concurrently. A given frame might be simultaneously
borrowed and exported (when the data home is under excessive
memory pressure so it caches pages in borrowed frames). More
interestingly, a frame might be simultaneously loaned out and
imported back into the memory home. This can occur when the
data home places a page in the memory of the client cell that has
faulted to it, which helps to improve CC-NUMA locality.

To support this CC-NUMA optimization efficiently, the virtual
memory system reuses the preexisting pfdat rather than allocating
an extended pfdat when reimporting a loaned page. This is
possible because the logical-level and physical-level state
machines use separate storage within each pfdat.

5.6  Memory sharing and fault containment

Memory sharing allows a corrupt cell to damage user-level
processes running on other cells. This has several implications for
the system:

• The page allocation and migration policies must be sensitive to
the number and location of borrowed pages already allocated to
a given process. If pages are allocated randomly, a long-running
process will gradually accumulate dependencies on a large
number of cells.

• The generation number strategy used for preemptive discard
(Section 4.2) makes the file the unit of data loss when a cell
fails. Therefore the page allocation and migration policies must
be sensitive to the number of different cells that are memory
homes for the dirty pages of a given file.

The tradeoffs in page allocation between fault containment and
performance are complex; we have not yet studied them in enough
detail to recommend effective allocation strategies.

5.7  Summary of memory sharing implementation

The key organizing principle of Hive memory sharing is the
distinction between the logical and physical levels. When a cell
imports a logical page it gains the right to access that data
wherever it is stored in memory. When a cell borrows a physical
page frame it gains control over that frame. Extended pfdats are
used in both cases to allow most of the kernel to operate on the
remote page as if it were a local page. Naming and location
transparency are provided by the file system for file data pages and
by the copy-on-write manager for anonymous pages.

There are no operations in the memory sharing subsystem for a
cell to request that another return its page or page frame. The
information available to each cell is not sufficient to decide
whether its local memory requests are higher or lower priority than
those of the remote processes using those pages. This information
will eventually be provided by Wax, which will direct the virtual
memory clock hand process running on each cell to preferentially
free pages whose memory home is under memory pressure.

6 RPC Performance Optimization

We have focused development so far on the fault containment and
memory sharing functionality of Hive. However, it was clear from
the start that intercell RPC latency would be a critical factor in
system performance. RPCs could be implemented on top of
normal cache-coherent memory reads and writes, but we chose to
add hardware message support to FLASH in order to minimize
latency.

Without hardware support, intercell communication would have
to be layered on interprocessor interrupts (IPIs) and producer-
consumer buffers in shared memory. This approach is expensive if
the IPI carries no argument data, as on current multiprocessors.
The receiving cell would have to poll per-sender queues to
determine which cell sent the IPI. (Shared per-receiver queues are
not an option as this would require granting global write
permission to the queues, allowing a faulty cell to corrupt any
message in the system.) Data in the queues would also ping-pong
between the processor caches of the sending and receiving cells.

We added a short interprocessor send facility (SIPS) to the
FLASH coherence controller. We combine the standard cache-line
delivery mechanism used by the cache-coherence protocol with
the interprocessor interrupt mechanism and a pair of short receive
queues on each node. Each SIPS delivers one cache line of data
(128 bytes) in about the latency of a cache miss to remote memory,
with the reliability and hardware flow control characteristic of a
cache miss. Separate receive queues are provided on each node for
request and reply messages, making deadlock avoidance easy. An
early version of the message send primitive is described in detail
in [8].

The Hive RPC subsystem built on top of SIPS is much leaner
than the ones in previous distributed systems. No retransmission or
duplicate suppression is required because the primitive is reliable.
No message fragmentation or reassembly is required because any
data beyond a cache line can be sent by reference (although the
careful reference protocol must then be used to access it). 128
bytes is large enough for the argument and result data of most
RPCs. The RPC subsystem is also simplified because it supports
only kernel-to-kernel communication. User-level RPCs are
implemented at the library level using direct access to the message
send primitive.
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The base RPC system only supports requests that are serviced at
interrupt level. The minimum end-to-end null RPC latency
measured using SimOS is 7.2 µs (1440 cycles), of which 2 µs is
SIPS latency. This time is fast enough that the client processor
spins waiting for the reply. The client processor only context-
switches after a timeout of 50 µsec, which almost never occurs.

In practice the RPC system can add somewhat more overhead
than measured with the null RPC. As shown in Table 5.2, we
measured an average of 9.6 µs (1920 cycles) for the RPC
component of commonly-used interrupt-level request (excluding
the time shown in that table to allocate and copy memory for
arguments beyond 128 bytes). The extra time above the null RPC
latency is primarily due to stub execution.

Layered on top of the base interrupt-level RPC mechanism is a
queuing service and server process pool to handle longer-latency
requests (for example, those that cause I/O). A queued request is
structured as an initial interrupt-level RPC which launches the
operation, then a completion RPC sent from the server back to the
client to return the result. The minimum end-to-end null queued
RPC latency is 34 µsec, due primarily to context switch and
synchronization costs. In practice the latency can be much higher
because of scheduling delays.

The significant difference in latency between interrupt-level
and queued RPCs had two effects on the structure of Hive. First,
we reorganized data structures and locking to make it possible to
service common RPCs at interrupt level. Second, common
services that may need to block are structured as initial best-effort
interrupt-level service routines that fall back to queued service
routines only if required.

7 Experimental Results

In this section we report the results of experiments on the Hive
prototype. First we describe SimOS and the machine model used
for our experiments in more detail. Next we present the results of
performance experiments, fail-stop hardware fault experiments,
and software fault experiments.

7.1  SimOS environment
SimOS [18] is a complete machine simulator detailed enough to
provide an accurate model of the FLASH hardware. It can also run
in a less-accurate mode where it is fast enough (on an SGI
Challenge) to boot the operating system quickly and execute
interactive applications in real time. The ability to dynamically
switch between these modes allows both detailed performance
studies and extensive testing.

Operating systems run on SimOS as they would run on a real
machine. The primary changes required to enable IRIX and Hive
to run on SimOS are to the lowest level of the SCSI driver,
ethernet and console interfaces. Fewer than 100 lines of code
outside the device drivers needed modification.

Running on SimOS exposes an operating system to all the
concurrency and all the resource stresses it would experience on a
real machine. Unmodified binaries taken from SGI machines
execute normally on top of IRIX and Hive running under SimOS.
We believe that this environment is a good way to develop an
operating system that requires hardware features not available on
current machines. It is also an excellent performance measurement
and debugging environment [17].

7.2  Simulated machine
We simulate a machine similar in performance to an SGI
Challenge multiprocessor, with four 200-MHz MIPS R4000-class
processors, 128 MB of memory, four disk controllers each with
one attached disk, four ethernet interfaces, and four consoles. The

machine is divided into four nodes, each with one processor, 32
MB of memory, and one of each of the I/O devices. This allows
Hive to be booted with either one, two or four cells.

Each processor has a 32 KB two-way-associative primary
instruction cache with 64-byte lines, a 32 KB two-way-associative
primary data cache with 32-byte lines, and a 1 MB two-way-
associative unified secondary cache with 128-byte lines. The
simulator executes one instruction per cycle when the processor is
not stalled on a cache miss.

A first-level cache miss that hits in the second-level cache stalls
the processor for 50 ns. The second-level cache miss latency is
fixed at the FLASH average miss latency of 700 ns. An
interprocessor interrupt (IPI) is delivered 700 ns after it is
requested, while a SIPS message requires an IPI latency plus
300 ns when the receiving processor accesses the data.

Disk latency is computed for each access using an
experimentally-validated model of an HP 97560 disk drive [9].
SimOS models both DMA latency and the memory controller
occupancy required to transfer data from the disk controller to
main memory.

There are two inaccuracies in the machine model that affect our
performance numbers. We model the cost of a firewall status
change as the cost of the uncached writes required to communicate
with the coherence controller. In FLASH, additional latency will
be required when revoking write permission to ensure that all
pending valid writebacks have completed. The cost of this
operation depends on network design details that have not yet been
finalized. Also, the machine model provides an oracle that
indicates unambiguously to each cell the set of cells that have
failed after a fault. This performs the function of the distributed
agreement protocol described in Section 4.3, which has not yet
been implemented.

7.3  Performance tests

For performance measurements, we selected the workloads shown
in Table 7.1. These workloads are characteristic of the two ways
we expect Hive to be used. Raytrace and ocean (taken from the
Splash-2 suite [22]) are parallel scientific applications that use the
system in ways characteristic of supercomputer environments.
Pmake (parallel make) is characteristic of use as a multi-
programmed compute server. In all cases the file cache was
warmed up before running the workloads.

We measured the time to completion of the workloads for Hive
configurations of one, two, and four cells. For comparison
purposes, we also measured the time under IRIX 5.2 on the same
four-processor machine model. Table 7.2 gives the performance of
the workloads on the various system configurations.

As we expected, the overall impact of Hive’s multicellular
architecture is negligible for the parallel scientific applications.
After a relatively short initialization phase which uses the file
system services, most of the execution time is spent in user mode.

Even for a parallel make, which stresses operating system
services heavily, Hive is within 11% of IRIX performance when
configured for maximum fault containment with one cell per
processor. The overhead is spread over many different kernel
operations. We would expect the overhead to be higher on
operations which are highly optimized in IRIX. To illustrate the
range of overheads, we ran a set of microbenchmarks on
representative kernel operations and compared the latency when
crossing cell boundaries with the latency in the local case.

Table 7.3 gives the results of these microbenchmarks. The
overhead is quite small on complex operations such as large file
reads and writes. It ranges up to 7.4 times for simple operations
such as a page fault that hits in the page cache. These overheads
could be significant for some workloads, but the overall
performance of pmake shows that they are mostly masked by other
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effects (such as disk access costs) which are common to both SMP
and multicellular operating systems.

7.4  Fault injection tests
It is difficult to predict the reliability of a complex system before it
has been used extensively, and probably impossible to demonstrate
reliability through fault injection tests. Still, fault injection tests
can provide an initial indication that reliability mechanisms are
functioning correctly.

For fault injection tests in Hive, we selected a few situations
that stress the intercell resource sharing mechanisms. These are the
parts of the architecture where the cells cooperate most closely, so
they are the places where it seems most likely that a fault in one
cell could corrupt another. We also injected faults into other kernel
data structures and at random times to stress the wild write defense
mechanism.

When a fault occurs, the important parts of the system’s
response are the latency until the fault is detected, whether the
damage is successfully confined to the cell in which the fault
occurred, and how long it takes to recover and return to normal
operation. The latency until detection is an important part of the
wild write defense, while time required for recovery is relatively

TABLE 7.1. Workloads and datasets used for tests.

TABLE 7.2. Workload timings on a four-processor machine.
As expected, the partition into cells has little effect on the
performance of parallel scientific applications. It has a larger effect
on compilation, which uses operating system services intensively.

TABLE 7.3. Local vs. remote latency for kernel operations.
The overhead of crossing cell boundaries is low for complex
operations such as file read and write, but high for operations
which are highly optimized in the local case such as quick fault.
Times were measured on a two-processor two-cell system using
microbenchmarks, with the file cache warmed up.

Name Description

ocean simulation; 130 by 130 grid, 900 second interval

raytrace rendering a teapot; 6 antialias rays per pixel

pmake compilation; 11 files of GnuChess 3.1, four at a time

Workload
IRIX 5.2
time (sec)

Slowdowns on Hive

1 cell
4 CPUs/cell

2 cells
2 CPUs/cell

4 cells
1 CPU/cell

ocean 6.07 1 % 1 % –1 %

raytrace 4.35 0 % 0 % 1 %

pmake 5.77 1 % 10 % 11 %

Operation Local Remote
Remote/

local

4 MB file read (msec) 65.0 76.2 1.2

4 MB file write/extend (msec) 83.7 87.3 1.1

open file (µsec) 148 580 3.9

page fault that hits in file
cache (µsec)

6.9 50.7 7.4

unimportant because faults are assumed to be rare. We measured
these quantities using both thepmake and raytrace workloads,
because multiprogrammed workloads and parallel applications
stress different parts of the wild write defense.

We used a four-processor four-cell Hive configuration for all
the tests. After injecting a fault into one cell we measured the
latency until recovery had begun on all cells, and observed
whether the other cells survived. After the fault injection and
completion of the main workload, we ran thepmake workload as a
system correctness check. Sincepmake forks processes on all
cells, its success is taken as an indication that the surviving cells
were not damaged by the effects of the injected fault. To check for
data corruption, all files output by the workload run and the
correctness check run were compared to reference copies.

Table7.4 summarizes the results of the fault injection tests. In
all tests, the effects of the fault were contained to the cell in which
it was injected, and no output files were corrupted.

• Hardware fault injection tests: We simulated fail-stop node
failures by halting a processor and denying all access to the
range of memory assigned to that processor. We observe that
the latency until the fault is detected always falls within a
narrow range. This is an effect of the clock monitoring
algorithm, which puts a narrow upper bound on the time until
some cell accesses the failed node’s memory, receives a bus
error, and triggers recovery.

• Software fault injection tests: Each software fault injection
simulates a kernel bug by corrupting the contents of a kernel
data structure. To stress the wild write defense and careful
reference protocol, we corrupted pointers in several
pathological ways: to address random physical addresses in the
same cell or other cells, to point one word away from the
original address, and to point back at the data structure itself.
Some of the simulated faults resulted in wild writes, but none
had any effect beyond the preemptive discard phase of
recovery. The careful reference protocol successfully defended
cells when they traversed corrupt pointers in other cells.

We also measured the latency of recovery. The latency of recovery
varied between 40 and 80 milliseconds, but the use of the failure
oracle in these experiments implies that the latency in practice
could be substantially higher. We intend to characterize the costs
of recovery more accurately in future studies.

Development of the fault containment mechanisms has been
substantially simplified through the use of SimOS rather than real
hardware. The ability to deterministically recreate execution from
a checkpoint of the machine state, provided by SimOS, makes it
straightforward to analyze the complex series of events that follow

TABLE 7.4. Fault injection test results.
The tests used a four processor system booted with four cells. In all
tests Hive successfully contained the effects of the fault to the cell
in which it was injected.

Injected fault type and workload
(P =pmake, R = raytrace)

#
tests

Latency until
last cell enters
recovery(msec)

Avg Max

Node failure:
during process creation P 20 16 21
during copy-on-write search R 9 10 11
at random time P 20 21 45

Corrupt pointer in:
process address map P 8 38 65
copy-on-write tree R 12 401 760
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after a software fault. We expect to continue using SimOS for this
type of development even after the FLASH hardware is available.

8 Discussion

The current Hive prototype demonstrates that it is possible to
provide significantly better reliability for shared-memory
multiprocessors than is achieved by SMP OS implementations.
However, there are several issues that must be addressed before we
can suggest that production operating systems be constructed
using the techniques described in this paper:

Hardware support: Various aspects of the Hive design depend on
hardware features that are not standard in current multiprocessors.
Table8.1 summarizes the special-purpose support that we added to
FLASH, including a few features not discussed earlier in the paper.
Of these features, the firewall requires the most hardware
resources (for bit vector storage). The memory fault model
requires attention while designing the cache-coherence protocol,
but need not have a high hardware cost as long as it does not try to
protect against all possible faults.

The hardware features used by Hive appear to allow a range of
implementations that trade off among performance, cost, and fault
containment. This suggests that a system manufacturer interested
in improved reliability could choose an appropriate level of
hardware support. We do not see this issue as a barrier to
production use of a system like Hive.

Architectural tradeoffs: Significant further work on the Hive
prototype is required to explore the costs of a multicellular
architecture.

• Wax: There are two open questions to be investigated once Wax
is implemented. We must determine whether an optimization
module that is “out of the loop” like Wax can respond rapidly to
changes in the system state, without running continuously and
thereby wasting processor resources. We also need to
investigate whether a two-level optimization architecture
(intracell and intercell decisions made independently) can
compete with the resource management efficiency of a modern
UNIX implementation.

• Resource sharing: Policies such as page migration and intercell
memory sharing must work effectively under a wide range of
workloads for a multicellular operating system to be a viable

TABLE 8.1. Summary of custom hardware used by Hive.

Feature Description

Required features:

Firewall Access control list per page of memory. This
enables each cell to defend against wild writes.

Memory
fault
model

Interface between the OS and the memory system
that specifies how memory behaves when a
hardware fault occurs.

Remap
region

Range of physical memory addresses that is
remapped to access node-local memory. This
enables each cell to have its own trap vectors.

Optimizations:

SIPS Low-latency interprocessor message send.

Memory
cutoff

Coherence controller function that cuts off all
remote accesses to the node-local memory. This
is used by the cell panic routine to prevent the
spread of potentially corrupt data to other cells.

replacement for a current SMP OS. Spanning tasks and process
migration must be implemented. The resource sharing policies
must be systematically extended to consider the fault
containment implications of sharing decisions. Some statistical
measure is needed to predict the probability of data integrity
violations in production operation.

• File system: A multicellular architecture requires a fault-
tolerant high performance file system that preserves single-
system semantics. This will require mechanisms that support
file replication and striping across cells, as well as an efficient
implementation of a globally coherent and location indepen-
dent file name space.

Other advantages of the architecture: We also see several areas,
other than the reliability and scalability issues which are the focus
of this paper, in which the techniques used in Hive might provide
substantial benefits.

• Heterogenous resource management: For large diverse
workloads, performance may be improved by managing
separate resource pools with separate policies and mechanisms.
A multicellular operating system can segregate processes by
type and use different strategies in different cells. Different
cells can even run different kernel code if their resource
management mechanisms are incompatible or the machine’s
hardware is heterogenous.

• Support for CC-NOW: Researchers have proposed workstation
add-on cards that will provide cache-coherent shared memory
across local-area networks [12]. Also, the FLASH architecture
may eventually be distributed to multiple desktops. Both
approaches would create a cache-coherent network of
workstations (CC-NOW). The goal of a CC-NOW is a system
with the fault isolation and administrative independence
characteristic of a workstation cluster, but the resource sharing
characteristic of a multiprocessor. Hive is a natural starting
point for a CC-NOW operating system.

9 Related Work
Fault containment in shared-memory multiprocessor operating
systems appears to be a new problem. We know of no other
operating systems that try to contain the effects of wild writes
without giving up standard multiprocessor resource sharing.
Sullivan and Stonebraker considered the problem in the context of
database implementations [19], but the strategies they used are
focused on a transactional environment and thus are not directly
applicable to a standard commercial operating system.

Reliability is one of the goals of microkernel research. A
microkernel could support a distributed system like Hive and
prevent wild writes, as discussed in Section2. However, existing
microkernels such as Mach [15] are large and complex enough that
it is difficult to trust their correctness. New microkernels such as
the Exokernel [6] and the Cache Kernel [4] may be small enough
to provide reliability.

An alternative reliability strategy would be to use traditional
fault-tolerant operating system implementation techniques.
Previous systems such as Tandem Guardian [2] provide a much
stronger reliability guarantee than fault containment. However, full
fault tolerance requires replication of computation, so it uses the
available hardware resources inefficiently. While this is
appropriate when supporting applications that cannot tolerate
partial failures, it is not acceptable for performance-oriented and
cost-sensitive multiprocessor environments.

Another way to look at Hive is as a distributed system where
memory and other resources are freely shared between the kernels.
This approach to achieving scalability in a multiprocessor
operating system has been previously explored by the Hurricane
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project [21]. Although Hurricane is a microkernel that does not
implement full SMP OS functionality or fault containment, and
does not use shared memory between the separate kernels, its
implementation strategies are close to those developed
independently in Hive.

The NOW project at U.C. Berkeley is studying how to couple a
cluster of workstations more tightly for better resource sharing [1].
The hardware they assume for a NOW environment does not
provide shared memory, so they do not face the challenge of wild
writes or the opportunity of directly accessing remote memory.
However, much of their work is directly applicable to improving
the resource management policies of a system like Hive.

The internal distributed system of Hive requires it to synthesize
a single-system image from multiple kernels. The single-system
image problem has been studied in depth by other researchers
(Sprite [13], Locus [14], OSF/1 AD TNC [23]). Hive reuses some
of the techniques developed in Sprite and Locus.

10 Concluding Remarks
Fault containment is a key technique that will improve the
reliability of large-scale shared-memory multiprocessors used as
general-purpose compute servers. The challenge is to provide
better reliability than current multiprocessor operating systems
without reducing performance.

Hive implements fault containment by running an internal
distributed system of independent kernels called cells. The basic
memory isolation assumed by a distributed system is provided
through a combination of write protection hardware (the firewall)
and a software strategy that discards all data writable by a failed
cell. The success of this approach demonstrates that shared
memory is not incompatible with fault containment.

Hive strives for performance competitive with current
multiprocessor operating systems through two main strategies.
Cells share memory freely, both at a logical level where a process
on one cell accesses the data on another, and at a physical level
where one cell can transfer control over a page frame to another.
Load balancing and resource reallocation are designed to be driven
by a user-level process, Wax, which uses shared memory to build a
global view of system state and synchronize the actions of various
cells. Performance measurements on the current prototype of Hive
are encouraging, at least for the limited tests carried out so far.

Finally, the multicellular architecture of Hive makes it
inherently scalable to multiprocessors significantly larger than
current systems. We believe this makes the architecture promising
even for environments where its reliability benefits are not
required.
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