1.0
2.0
3.0

4.0

5.0

6.0
7.0

YATS — ‘et Another Tny Simulator
Users Manual for #rsion 0.3

Matthias Baumann
Dresden Uniersity of Technology
Communications Laboratory

TaY o ¥ Tox 1 o] o 1R 1.
General Remarks, Example Input File............ooooviiiiiiiiiieeeeeeeeeee 1.
Syntax of the Input Language...........coovuviiiiiiiiiiiiiieeeree e 2.....
3.1] =1 (=11 0[] PSP 2.
3.2 [0 [a1 1] 1T £ P PP PR PP PUPRUPOPOPPPPPRY Loeenn.
3.3 Variables, Expressions, and Built-In FUNCLIONS..........ccooeveiiiiiiiiiiiiiiieeeeeee, 5.
3.4 Include Files, System INt@Ee.............oooeiiiiiiiiiii e L.
35 References, LItEralS........coovvuviiiiiiieeiee e e e e s eevn e e e eeesns e
Modular Description of ComplkeNetwork Structures............cccceeeeeeeeennns 8.
4.1 Commented EXAMPLE......cooiiiii et 8.......
4.2 MACIO SHEIIS......oeiiieiittcce e e 10.......
4.3 Input Name Aliasing and Dummy ODbJECLS.......ccvvviieeeiiiiiiiiiieeeeeeee e 11..
Statistical Ewluation, Simulation Control..............cccccveiiiiiiiieeeeeeeeee, 12.
5.1 Calculation of Confidence Inteals............ccccvvviiiiiiiee e 12...
5.2 BatCh Means ProCEAULE.eiiii ittt sraeee e 13.....
Commands to the Simulatioreknel.............ccccceeiiiiiiiieiiiie 13..
Available Netvaork Object Classes............oovvvvviiiiiiiiiiiiie e, 14..
7.1 R0 0] o = 14.......
7.1.1 CBR SOUICE......cceiiiiiiiiiie ittt e e e e e e e e nereeee e ennnenenes 14.....
7.1.2 BerNOUIli SOUICE......ccciiuiiiieiiiiiiie ettt 14.....
7.1.3 Source with Arbitrarily Distrilited Cell Distances............ccccceeee.e... 15
7.1.4 ON/OFF Source with Geometrically Distuted Phase Durations.....15
7.1.5 MMBP Source (ON/OFRF)......ccoiiiiiieiiiiiiie e 15...
7.1.6 GMDP SOUICE.....ccoiiiiiiiiiieieeeee e e e e e er e eeeeeees 16.....
7.1.7 GmdpStop: a Sourceolfowing the Start-Stop Protocaol.................... 16
7.1.8 Source Reading [Ps from a Tace File.........cccoovveveeeeeeiiiicciiiieee, 17.
7.1.9 Source Sending a Directly @n Cell Sequence............c.ccceveennen. 17
7.2 Definition of DisStrilUtioNS............uuviiiiiii 17.....
7.3 MUITPIEXET ..t 18.......
7.3.1 Standard Multiplger (Arrival First)........ccccooocvieeeeeiiiicieieceee e 18..
7.3.2 Multiplexer with Lowver Output Rate (Departure First).................... 19
7.3.3 Multiplexer with Lonver Output Rate (Arvial First).......ccccvveeeviviennnns 19
7.3.4 Multiplexer with Arbitrarily Distributed Serving ime.............ccco...... 19
7.3.5 Multiplexer with Early Rcket Discard Scheme.........cccccceeveveeeiinnns 20
7.3.6 Multiplexer with Weighted Rir Queueing Stratly.......ccccccvveeeeeviinnns 20
7.3.7 Multiplexer with Input BUFErS..........ccooviiiiieiiiiiiiii e 21..
7.4 Multiplexers with Pure Eemt-Triggered Scheduling...............cccooeveiiiiiennnnn.. 22
7.4.1 MuxAsyncDF: Asynchronous Output, Departure First.................. 23

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 i

8.0

9.0

10.0

11.0

7.4.3 MuxSyncDF: Synchronous Output, Departure Fitst..................... 23
7.4.4 MuxSyncAF: Synchronous Output, Aral First.........ccccevvviveeennnne. 24
7.5 (D22 01011 o] == PRSP 24......
7.6 SINKS / DEIAY LINE....cciiiiiiiiiiee et 24......
A0 TS R 11 o PSP PR 24.......
7.6.2 Sink Writing IATS to a Tace File..........oooiiiiiiiiiee, 25..
7.6.3 Delay LINE....cccooiiiieeeee et 25....
7.7 Shaping / PONCING....ueveeiieee et e e e e 25......
7.7.1 Peak Rate Shaper with Iger Cell Spacing.......cccccceevevvvvvvieeennnnnn. 25
7.7.2 Peak Rate Shaper with Arbitrary Cell Spacing..............cccccvvvveeeen.. 26
7.7.3 Shaper Using the Start-Stop Protacal............ccccccvvvveeeeeevieiciinnne, 26.
7.7.4 Leaky Bucket Policing FUNCLION..........cccevvviieeiiiiiiieeeee e 26..
7.8 AAL 5 CONNECHIONS.....eeiiieiiiiiiie ettt ettt sebee e e s et e e e e ennees 27.....
7.8 1 AAL D SENUEL....cc ittt 27.....
7.8.2 AAL B RECEVET.......eeiiii ettt 28.....
7.8.3 AAL 5 Recever with Concurrent Reassembly................ccccvvvineeen. 29
7.9 CTD and [A MEASUIMEMENTSuuueiiiiiieeeiaiiiititeeieeeaaa e e e s seaiabbeseeeeeaaaeeeaaananes 29....
7.9.1 MeasuremMeNnt DBCEuuuiiiiiieeaiie ittt e e a e e 29....
7.9.2 More Compla Measurement Déce for Cells and Frames.............. 30
7.9.3 Updating TMe STamIPS.......uuuueeeiiiaaiaiiiiiiiiieieee e eriveeeeeeea e 32...
7.10 ABR -ATM-FOrum TM 4.0 ... e e e en s 32....
7.10.1 ABR SOUICE.....cci it e e e e e e e e e e e e e e e eeeeeneees 32.....
7.10.2 ABR MUIIPIEXET ..coeiiiiiiiie ittt 33....
7.10.3 ABR SINK...coiiiiiiiiiieee e 35......
711 TCP CONNECHONS......ceiiiiiiiieiiie it see et s 35......
7111 TCP SENUEL.......oiiiieiiieiie e 35.....
7112 TCP RECEIET.......ciiiiiiiii et 37.....
7.11.3 TCP Application: Constant Frame Distances..........cccccccveeeeeiiinnns 39
7.11.4 TCP Application: Arbitrary Frame Distances........ccccccceveeeeviiiinnnns 39
T.12 MISCEIANEOUS.......ceiee ittt e e e e e s e e e s et e e e e e e eraass d 40.......
7.12.1 SIgNAIING SOUCE.uuiiiiiiiiiiiieeei ettt e e e e e e e e 40....
7.12.2 Data type and timing Checks...........ccuuueiiiiiiiiiiiiieeeeee e 40...
7.12.3 Dummy Connection ODJECL..........ooi it 40...
7.12.4 A Class Implementing Non-Locala¥iables............c.ccooiiiin 41
Graphical ONliNe DISPIAYS.....ccuiuiiiiiiiiiiiiii e 41...
8.1 Interactize Control WNOOWcoooiiiiiieiiiiee e 41....
8.2 Sliding Time History of a Mlue............cccuveiieeiiiinieeeeeeee e AL
8.3 Histogram of @ DiStrilition..............cooiiiiiiiii e 42....
8.4 Production of a Distrilstion from Samples of adlue............ccccoveeveveeeeiiinnns 43
Data ObJECE CIASSES......cciiiiiieiiieiiiee et 43....
9.1 Used Data Object Classes, ation Relations..............cooccciviieeieieeeeiniieens 43.
9.2 (D=1 3O o]1=Tot = 431 o =To [o [TV HS SRR a4.....
9.3 Start-Stop ProtoCoL..........uuueiiiiiiiiiiiiiiieeeeeee e A
D= 1141 0] L= RPN 44......
10.1 Complete Simulation Series with Confidence INnsV..............cccoevvevvvvnnnnn. 44
10.2 ABR Multiplexer, Graphical Online Displays.........ccccccceiiiiiiiiiiiiiieeeeeeeeenn . 4B
SOME FUMNEr NOTES.....uuiiiiiiiiiiiiiiie e 48....
11.1 ... Raarding RefErenCeS.........uuviiiiiieeiii i 48.....
11.2 .. REArdiNG LItEIalS......eeeeiiiieeiiieiiie et 49.....
11.3 ... Regarding Macro ShellS.........ccoueeiiiiiiiiiiiieiieee e 49....
11.3.1 Commands to Macro Shell Objects..........cccccccvvveeeereriiicciiiiieenn. .. 49,

7.4.2 MuxAsyncAF: Asynchronous Output, AVEI First..........cccceeeevnnnen. 23

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3

11.3.2 NULL Value for Identifier AQUMENTS.........eeeeiiiiiiieeiiiiiieee e 51.

11.4 ... Regarding Global Mriables...........ccccccveeiiiiiiiec e hl....

11.5 ... Regarding Confidence INtEAIS.cooviiiiiiiiiiiiie e 51...
11.5.1 BaASIC MACIOS....uiiiiiiiiiiie ettt s e e e et e e e e e eaab e e eeees Bl.....
11.5.2 More Cowvenient Ealuation of Confidence Inteas.......................... 52

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3

1.0 Introduction

YATS is a small discrete-time simulation tool tailored feestigations of AM net-
works. The tool is “gren up” during 1995 / 1996 at the chair for telecommunications,
Dresden Uniersity of Technology The deelopment vas partly supported by the
ACTS project &L 049 EXPEH.
An event schedulerm symbol manageand a scanner / parser front end constitute the
kernel of the system. Basic netik elements lig different source types, (de)multi-
plexers, delay lines, measurementides and graphical online-displays areviied.
The system uses a simple script language for the problem description, and is written
itself in C++.
The programpects the name of an input file:

yats inputFile
It contains a description of the model configuration and commands to the simulation
kernel (like: simulate 1 million time slots) and to the model objecte:(likturn losses
in a multiplexer). Model description, simulation control and result analysis are eased
by variables, loops and macros. Objects communicate with other ones and with the
simulation lernel by unified methods.
On the web, XTS is aailable via

http://ww.ifn.et.tu-dresden. de/ TK/ yats/yats. htm

Many thanks go to the folleing people who ha implemented parts of the soére,
were irvolved in deligging or made proposals for imgements:

* Alfonso Santos, TID (Spain)

* Andreas €resiak, TUD

» Axel Buksnavitz, TUD

e Gunnar Léwe, TUD

* Sven Forner TUD

 Torsten Mulley TUD

» Wouter Ooghe, SUG (Belgium)

A trace of the ersion degelopment can be found in the ASCII file yats/HGRY of
the distrilution. Here, all dierences betweerevsions are listed.

2.0 General Remarks, Example Input File

The input file contains a series of statements which can represeatkebject decla-
rations and commands. Statementiti@ng with a netwrk object class identifier are
interpreted as an object declaration. The parser creates an appropriate object and calls
its initialisation method which then reads the parametersclesses with outputs, the
names of the succeeding objects avemin the statement. This defines the oekw
structure.

Simulation control and result analysis are realized by commands to the defined objects
(Sim is the predefined simulatiorrkel object). All statements diening with an

object identifier are recognized as a commandy HBne comerted into a message to

the object which agjn can read parameters from the input.te

The result analysis straggis as follovs: All objects “understand” simple commands

to return the content of counters and otheues collected during a simulation run.

These alues are passed into therkel. Therefore, commands can be used in mathe-

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 1

matical pressions. Since the input language comprises macros, it is possible to define
libraries for statisticalvaluations. Output to the standard output (normally redirected

to a file) is implemented by a print statement whiakegifull flexibility for output for-
matting.

Additionally, measurement giees with graphical online displays can be defined.

These objects ask netvk objects for gporting addresses o&xiables to be displayed,

and process and display the@wes on theirwn. This ensures that the comyptg of

network objects is independent of the possibilities for measurement and online.display

/I example input file

var i, nsrc, load, sent; // declaration of variables
nsrc = 10; load = 0.95;
/I 10 Bernoulli sources:
fori=1to nsrc
GEOquelle src[i]: ED=nsrc/double(load), VCI=i, OUT=mux->I[i];
/[a multiplexer with buffer size 20
Multiplexer mux: NINP=nsrc, BUFF=20, OUT=sink;
/Il the sink:
Senke sink;

/I simulate 100000 time slots
Sim->Run SLOTS=100000;

/[print results
sent = 0;
fori=1tonsrc
sent = sent + src[i]->Count;
print “cells sent: “, sent, “\n”;
print “CLR in mux: “,;mux->Losses(1,nsrc)/double(sent),
“\n";

/I end of example

More compl& examples using also macros can be found in Setfioh on pagd4.

3.0 Syntax of the Input Language

3.1 Statements

Statements are:

» classID declaration *;’

Definition of a netwrk object.The syntax of the definition is determined by the net-
work object class implementation.

 objectID ‘->’ command *;’

Command to an netwk object. The syntax of the command is determined by the
network object class implementation.

» ‘var’ listOfIDsWithOptionallnit *;’

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 2

Definition of ariables. ¥riables can be definedezywhere. The are viavable

until the block end. The entries in the list are seperated by commas. An entry can
simply comprise an identifier (see Sect®8 on pagd), or it may hae the form

‘ID ‘=" expression " (initialisation).

‘global’ listOfIDsWithOptionallnit *;’

Declaration of globalariables. Theseaviables are not local to the current block,

but are vigvable from gerywhere. The syntax otherwise is the same as for normal
variables. This can be used to create e.g. global arrays as routing tables from inside
of a macro. Due to “name space polution”, globals should be used with care. F
restrictions, see Sectidri.4 on pagél.

variablelD ‘=" expression *;’
Assignment to aariable.
‘print’ expression ‘, ..., expression
Print the &pressions in the list to the standard outpatniatting depends on the
expression glue:

integer: \alue, sign only if ngative

double: &ponential representation, 1.10 digits

string: contents
‘print’ ‘" intExpr’, ...\, IntExpr ‘] exprList *;’
Some shells, e.g. sh and bash valto redirect arbitrary file descriptors (e.g.
‘aProgram 3>aFile). print[fd] generates output to file descriptdr. If
fd is not writable, e.g. since it has not been redirected by a shell, an error message
is launched. The output pfint[fd] ... is unhuffered (direct usage of
write(2)), whereas the normatint uses the stdout stream wifluh(stdout) at
the end of eacprint statementprint[fd1,fd2, ...] generates the out-
put for all file descriptors in the list.
{' statement ... statement ‘}

Block, the *;" is part of the statement @kn C). When the block is left, then afirv
iables and macros defined inside are deleted. This does not hold for globals, see
Sectionll.4 on pagé&1l.

‘macro’ ID ‘(* listOfFormalParameters ‘)’ block

Definition of a macro. The formal parameters ()aare local tahe block (block:
{" statements ‘}'). The parameter names are separated by commaedmples
see file “"MACROS” and Sectiod.1 on pag®. Note: macro names cannot ke
riden when entering a weblock (\variables can, hwever). Nevertheless, a macro is
local to a block and is deleted when the block is left.

macrolD ‘=’ expression *;’

Assignment of the macro returalue (rather like in ASCAL). Inside of the macro

body, this assignment can be done arbitrarily often. The macro returnaltiee v

from the last assignment. If no such assignment is processed, then the macro cannot
be used inxpressions (error message otherwise).

macrolD ‘(* listOfExpressions)" *;’

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 3

Macro call. The gpressions in the list are the actual parameterg,dteeseperated
by commas. The number of actual parameters is eldeaginst the number of for-
mal parameters.

» ‘system’ stringExpression ;’

Starts a shell with the command specified by the string.
* ‘exit’ intExpression ‘;’

Leave YATS with the g¥en «it status.

No-op.

Control structures ae:

» ‘if /(" expression ‘)’ statement ‘else’ statement
The else branch is optional.
» ‘for’ variableID ‘=" intExpression ‘to’ intExpression
statement
PASCAL-like loop: the ariable is counted from the first to the second aits.

» ‘while’ ‘(* expression ‘)’ statement
The statement isxecuted until thexg@ression ealuates to zero.

» ‘foreach’ variablelD ‘(* listOfExpressions)’ statement

The statement isxecuted for eachalue (\alues separated by commas)agi in the
braclets.

» ‘switch’ ‘(" intExpression ‘)" {'
‘case’ listOfIntExpressions *:’ statement
‘case’ listOfIntExpressions ‘' statement
‘default’ *:’ statement ‘}

For each case branch, a list alwes can be specified (seperated’pyThe defult
branch is optional.

3.2 ldentifiers

All identifiers for variables, macros, and for netxk objects can be formed using indi-
ces and aggaation (with *?). An example for an identifier with both irder indices
and aggregation is a[1].b[2] ", String expressions also can seras indices, e.g.:
var a[*X];

Including references and literals (see SecBd&non pagé’), the syntax for identifiers
can be summarised as falls:

id: stdld /I standard form, also with ‘lit’
| derefld // somavhat restricted ersion with ‘derefconstruct

/I stdld comprises a kind of aggese identifiers.

stdld: baseld

| stdld ‘[* intExpr ‘]’ /[l normal intger inde

| stdid ‘[* stringExpr ‘] // strings can form indices

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 4

| stdid ‘! baseld /I aggreated 1D
baseld: simpleldentifier /l 'a normal vord like ‘al’, beyinning with a letter
| lit" (" stringExpr *)’ // stringExpr may contain alkeept white space

/I A ‘deref construct only may stand at thegiening, and it only may bexpanded
/I with indices (number ofxepected indices folles from the ref statement).
derefld: 'deref ‘(‘ refStringExpr)’

Il refStringExpr has been generated by’ ‘ref
| derefld ‘[intExpr ‘] // normal inde
| derefld ‘[* stringExpr ‘]'// strings can seevas indices

3.3 Variables, Expressions, and Built-In Functions

The language is block oriented (blogkstatements ‘}). This means that
variables (gcept globals) and macros declared inside of a block are deleted when the
block is left. On the other handanables defined outside of the block andihg the

same name appearaag with their old alue when the block is left. Objects waver,

are viavable for @er and will neer be released.

Global variables are defined using thesword ‘global’. The are not local to the cur-
rent block, lnt are vievable from gerywhere. Globals are wer deleted. A number of
restricitons is bound to globahriables, see Sectidi.4 on pagél.

Variabletypes are integer, double and string.ariables are not declared with a certain
type, lut bear the type resulting from the last assignment. After declaratigrhdhea
special type which ensures thatytltannot be used irxpressions.

Constants have the follaving types:
“xyz” -> string,
123 -> intger,
1.23 -> double,
le-3 -> double.

Type casts

With ‘string” ‘(* expr ‘), ‘int’ ‘(* expr)’ , and‘double’

‘(“ expr Yy , types can be translated. Thewension double -> int performs
rounding instead of truncation. In case of casting string to int or double, no white
spaces are alleed in the string.

Arrays of variables can be defined as fals

var i; [/ auxiliary variable
fori=1to 10
var X[i]; I/ defines x[1] to x[10]

It is essential that thevar statement is not encapsulated by a blogk.(: ‘}’), since
variables are only local to a block. Arrays with more dimensions are possible, strings
can sere as indices. éf an &le, see SectidlD.1 on pagé4.

Note: Actually an element of an array is ariable on its wn, the name comprising the
indices, too. ¥ry laige arrays therefore should bemled (speed, memory space).

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 5

Operators (priorities like in C) are:

i+l [BRANT 3 l/l 5%1

The op ‘%’ is only applicable on injer operandslhe op ‘+' also concatenates
strings.

==’ ‘!:’ < e >

Comparisons yield thealues 0 and 1 (in¢eer). The ops == and != are applicable on
strings.

88 ||

Logical AND and OR, yield 0 and 1 (irger).
‘(* expression ‘)’

g

Negation (yields 0 and 1), unary + and -.
‘int’ ‘(" expression)’

‘double’ ‘(* expression)’

‘string’ ‘(* expression ‘)’

Explicite type casts, see ala

Operandsin expressions can be:

constant
The type results from theay of writing, see ahee.

variablelD
Only initialised \ariables are allwed (otherwise syntax error message).
objectID ‘->’ command

Commands to netwvk objects can return ale. The command method of the
object decides, whether the command returredeyv

macrolD ‘(* listOfExpressions ‘)’

Macros can return aalue. A test is performed, whether a retuaiue has been
specified.

‘env’ ‘(* stringExpression ‘)’

Reads an efronment \ariable and returns itaalue as string. In case thariable
does not ®ist, the empty string (**) is returned.

Built-in mathematical functions:

‘pow’ ‘(* expressionl ‘,’ expression2 ‘)’

Returns gpressionl to the peer of expression2integer and doublexpressions are
allowed, the return type iswahys double.

‘exp’ ‘(‘ expression ‘)’

Returnse to the paver of expressioninteger and doublexpression allwed, the
return type is avays double.

‘log’ ‘(* expression)’

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 6

Returns the natural lagithm. Like exp().
* ‘sqrt’ ‘(* expression ‘)’
Returns the square root. kEilep().
e ‘rand ‘(")
Returns an intger random number (equally distutied in O ... 32767).

3.4 IncludeFiles, System Interface

Include file:
#include “fileName”

The rest of the input line is skipped (also the start of a comment!). The\direas to
be written immediatly at the ganing of a line. Include files can be nested.

System intedce:

» ‘system’ stringExpression ‘;’
Starts a shell with the wgn command.

» ‘exit’ intExpression ‘}’
Leave YATS with the gren «it status.

* ‘env’ ‘(‘ stringExpression ‘)’
Reads an efironment \ariable and returns itsalue as string. In case thariable
does not ®ist, the empty string (**) is returned. &) can beapplied in normal
expressions. The most common application is to read anetaan emironment
variable specifying a parametealue, e.g (see also Sectibd.1 on pagd4):
buf = int(env(*"BUF")); // generates a syntax error if

// BUF not set
Multiplexer mx: NINP=10, BUFF=buf, OUT=sink;

3.5 References, Literals

References
The constructs beloprovide replacements for real pointers to scalars and arrayg. The
allow to create and use referencesdadables, macros, and neivk objects as well as

to arrays of these entity classes.
« ‘ref ‘(entitylD ‘Y
Returns a reference to thevgm single entity (which mertheless may be part of an

array). The generated reference actually is a string encrypting the ID, and additional
block information. It should only be assigned &oiables, bt never be manipu-

lated.

» ‘ref ‘(" baselD *’ validExamplelndices ‘)’

Returns a reference to an array of entitdaselD is the identifier without the indi-
ces which shall be added when resolving the refer&fatelExamplelndices

are used to construct a complesdidl identifier (necessary to bind the reference to
the “home” block of the entity - pvides saety, see Sectiodl.1 on pagd8). The

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 7

generated reference actually is a string encrypting the ID, and additional block and
index information. It should only be assigned t@riables, bt never be manipu-
lated.

o ‘deref ‘(‘ scalarRef ‘)’
‘deref ‘(* arrayRef ‘)’ indices

Deref() resoles the gien reference. The number of indices supplied is @teck
against the number declared in the correspondafy expression.

If the entity is a macro, parameters are appended as usuderefgmRef)(x)

For network objects, gtensions also foll the normal rules, e.qg.
deref(objRef)[index]->command.

Example(see also Sectidn0 on pagd2 and Sectiod0.1 on pagd4)

var x, y[1], y[2], r1, r2;

x=1;y[2] = 2;

rl =ref(x); // reference to x

r2 = ref(y:[1]); // reference to y[1] and y[2]
print deref(rl) + 2, “\n”; // yields output 3
print deref(r2)[2] + 2, “\n”; // yields output 4
deref(rl) = 0; // assignment to x

For an &act syntax definition of identifiers comprising ‘rebnstructs see Secti@?2
on paget, additional remarks are found in Sectidnl on pagds8.

Literals

Generally references should be used wivergossible, since thigorovide some

degree of saety (see Sectiohl.1 on pagd8). Referenceswhys can be used, if an

entity already defined is referred to. When writing e.g. macros which shall create com-
pound netwrk objects lile an entire switch, then problems may arise. Theviaig
identifier substitution will be usefull:

o it (" stringExpr)’

The efect is the same as itould be forderef(stringExpr) , except that
stringExpr ~ can be created arbitrarilkdditionally, the restrictions of ‘deréfonly
index expansion) do not applyfhus, ‘lit' can be used to ftébly generate n& identifi-
ers. for an eact syntax definition of identifiers comprising ‘lit" constructs see
Section3.2 on pagd. For applications, see Sectidril on pag®. Please pay also
attention to the further notes in Sectibh2 on pagd9.

4.0 Modular Description of Complex Network Structures

4.1 Commented Example

Some kind of hierarchical system description can be aethiesing macros, literals,

and string manipulation. Theau in clarity of course depends on the comipyeof the
sub-models. Macros can be used to define sub-models sina@hetjects are not

local to the current block. Tihieontinue to gist and are neer deleted. The folleing
example macro defines a simple end system consisting of a source and a delay line.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 8

Name andnxt , are string ajuments which are cearted into identifiers usingt()
(see SectioB.5 on pag€q).

macro endsys(name, load, delay, nxt)
{ CBRquelle lit(hame).S: DELTA=int(1.0/load), VCI=1,
OUT=lit(hame).L;
Leitung lit(hame).L: DELAY=delay, OUT=lit(nxt);

}
To connect the end systems to a muliiplesome string manipulation can be used
(string(i) corvertsi into a string which can be concatenated with the rest):

macro idx(bas, i) // this macro is defined in “MACROS”

{ idx = bas + "[* + string(i) + "]”;
}

var i

fori=1to 10

endsys(idx(“src”, i), 0.05, i, idx(“mux->1“, 1));
Multiplexer mux: NINP=10, BUFF=100, OUT=snk;
Senke snk;

Sim->Run SLOTS=500;
print src[1].S->Count, “\n”;

This first \ersion has the disadrtage of less readable code due to the idx() macro
calls. The clasMacroShell provides a better inteate for the macro. It alles to

define whole sub-models (implemented by macros)digrmal netwrk objects. Br

larger sub-models it might bearthwhile to write such an intex€e which preides

typed aguments and also alls for optional aguments with defult values (see
Sectiond4.2 on pagd. 0). It is also possible to ‘translate’ commands directed to a macro
shell object into macro calls, see Sectldn3.1 on pagé9.

/I The definition of macro endsys() remains the same.
I Interface:
MacroShell EndSys:
Il Arguments 1 & 4 are identifiers (keyword lit),
// argument 2 is double, argument 3 is integer.
/I The given keywords are expected (none for arg 1).
ARGS = (lit@1: LOAD=double@2, DELAY=int@3,
ouT=lit@4),
I/l arguments 1 & 4 are casted to strings
MACRO = endsys(string(@1), @2, @3, string(@4));

var i
fori=1to 10
EndSys src[i]: LOAD=0.05, DELAY=i, OUT=mux->I[i];
Multiplexer mux: NINP=10, BUFF=100, OUT=snk;
Senke snk;
Sim->Run SLOTS=500;
print src[1].S->Count, “\n”;

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 9

4.2 Macro Shells

Macros are useful to define sub-models in a modular model descripttdhelcode
applying these macros becomes less readable, see Settmmpag®. The object
classMacroShell provides a better inteate to the macro implementation, aliog
a ‘read-and-feel’ like for direct netwrk object declarations.dgwords, typed and
optional parameters with deflt values are supported. Wedentifiers can be written
down as identifiers (without *” signs), tlyecan be coverted to strings by the intaxde
object.

‘MacroShell’ shelllD
‘ARGS’ ‘=" ‘(" argList ') *,’
‘MACRO’ ‘=" maclID ‘(* parList’)’
{‘, commandSpecs }
{* ‘print’ { ‘=" intExpr } } ‘7’

The agument listargList specifies kywords, agument types, and dailt values

for optional aguments. It is bilt as list of entries, the entries being separated by the
same delimiters which areggected lateron during instantiation. As delimiters, cur-
rently only " and *; are available. The end of the list is madk by the closing braek
). A list entry has the follaving syntax:

{keyWord‘'="} typeName ‘@’posNo {'(‘ ‘default’ defval)’}

The entry may lgin with an optional &word (gven as rev word), followed by a ‘=’
sign. Net, a type namé&/peName has to follov. It specifies the type of thegarment.
Possible are ‘int’, ‘double’, ‘string’, and ‘lit’. The type ‘lit’ says that avralentifier is
expected. The@required then is complemented by the gaeposition number which
has to increase one by one, starting with huments with kyword (only these) can

be marled as optional by specifying a daft value. This is done in braets ‘()’ with
leading ‘deéult’ keyword. The &pression or identifiedefVal has to match the type
given for the parametefor an &ception (NULL identifier) see Sectidri.3.2 on
page51. If during later instantiation an optional parameter is missixge(ted ky-

word not found), then the dwilt value is passed to the macro. The delimiter Vaithg

the correspondingrgList entry then is nobected, thus directly continuing with
the net agument.

The parameter ligiarList specifies the macro parameters, delimited by commas °,
A macro parameter declaration can comprise a cast operator specifying ttetiéhe v
shall be casted before it is passed to the macguments declared as ‘string’ can be
transformed to ‘lit’ (the ”” signes are strippedpflit’ can be changed to ‘string’
(simply add the “” signes to the identifier read). Other casts currently are not foreseen.
To summarise, a macro parameter in thepiistist is defined as folls (posNo
again has to count upavds, starting with 1).

{{'li'| ‘string’ } (" } ‘@'posNo {)" }

The optional part madd withcommandSpecs allows to generate an object and
‘translate’ commands to this object into macro calls. This is described in SEti®h

on paged9.

If the final ‘print’ is given (optional), then the generated macro call is printed to stdout,
before the macro actually igecuted. Inserted dadlt values are highlighted by com-

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 10

ments. In case the ‘print’ is folleed by an intger expression with ‘=’, then logging is
performed only if the)gression is non-zero.

Example
/l this macro actually should define our sub-model:
macro sub(nam,a,b)
{ /Il only echo parameters

print “sub: nam=", nam, “ a=", a, “ b=", b, “\n”;
}

/l the macro shell
MacroShell Sub: ARGS=(
lit@1: /[first arg: identifier
/I no keyword, delimiter *’
D=int@2 (default -1) ,
Il optional integer arg, keyword ‘D’
/I default value -1
LD=double@3), // mantadory double arg, keyword ‘LD’

MACRO=sub(/I call the macro sub
string(@1), // convert identifier to string
@2, @3), /I pass arguments 2 and 3 directly
print; /l'log the generated macro call
Il apply the shell
var i,
fori=1to2
Sub s[i]: D=i, LD=i;
fori=3to4
Sub s[i]: LD=i; /l default value -1 for D

Another ékample can be found in Sectidrl on page.

4.3 Input Name Aliasing and Dummy Objects

Sometimes non-matching input names ofedént netwark objects lead to description
problems. Then it is possible first to include dummy nodes (see SéctidB on
page40). Secondly all netark object classes dead from the generic clagso pro-
vide the follaving command:

objName->AliasInput(

aliasinputNameAsString -> originputNameAsString);
mux->Aliasinput(“l[12]” -> “1[10]");

//'1[10] is reachable via the name 1[12], too

For both strings, it is possible to write thend NoEXxt . This specifies the input with-
out extension (input name equals object name).

mux->Aliasinput(NoExt -> “[[10]");

//'1[10] is reachable via the pure multiplexer name
snk->AliasInput(“Data” -> NoEXxt);

/I snk is reachable via snk->Data, too

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 11

The command AliasIinput() does not perforny ahecks, whether thewgn original
input name xists. Thus, errors are detected lateron during connection setup. Recursi
aliasing is not supported.

5.0 Statistical Exaluation, Simulation Control

5.1 Calculation of Confidence Intevals

Confidence interds can be calculated using the object class ConfidObj. Such an object
is defined lile a normal netark object, lnt it does not hae network object functional-

ity. Commands to add measuredues to a dynamic array managed by the object, and
to ask for statistics and confidence intg¢tvounds are pwded. Oldey macro-based
versions to calculate confidence intds/can be found in Sectidd..5 on pagél.

Declaration
Confi dObj conf: LEVEL=0.99;
LEVEL: optional: level of confidence. Delult: 0.95. Br other alues see bela

If LEVEL is not given, then also the ‘' has to be left oubr EEVEL, the \alues 0.9,
0.95, 0.975, and 0.99 are supported. The object has to be defined before the first simu-
lation run & m >Run ...) is performed.

Commands
conf - >Add(doubl e)
Adds a alue to the internal arrago return alue.
conf ->Len
Returns number ofalues collected saf (int).
conf->Val (int)
Returns a specificalue (1 ... Len), double.
conf - >Fl ush
Flushs all alues (Len := 0), no returralue.
conf - >Mean
Returns the mean of thalues collected saf (double).
conf ->Var
Returns theempirical variance of the alues collected saf, double.
conf->Lo
Returns the lver bound of the current confidence intnbased on thealues
collected sodr (double).
conf->Up
Returns the upper bound of the current confidence adidyased on the
values collected saf (double).
conf->Wdth
Returns the width (upper bound - mean) of the current confidenceainterv
based on thealues collected saf (double).
conf - >Lo(doubl e)
conf - >Up(doubl e)
conf - >W dt h(doubl e)
These ersions return thealues, if the leel of confidence equals thalue of
the additional parameters.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 12

5.2 Batch Means Procedure

This macro is part of the macro file “MOROS” in src/@amples.

BatchM eans(level, prec, maxcorr, nbat, batsiz, refObs, refL og)

Implements the algorithm of the so-called batch means procedurgvén lesel of
confidence and relag taget width of the confidence intetaccording to Studest’
t-distribution), obserations are performed until the conditions are methtain
obsenation results and report on procedure progress userprovided macros are
applied (referenceasef Cbs andr ef Log). OnceBat chMeans() has been called, it
entirely controls the simulation progress, repeatedly calling tbespecified macros.
It returns when the simulation goal has been reached. Macro parameters are:

| evel : level of confidence @ues: see maci@onfi d())
pr ec: relatve taget width of confidence inteaV ((upBound- nean) / mean).

maxcor r : upper bound of correlation measures. Additionally to the confidence
intenal, correlations between collected batelues are considered. Measurements
are continued as long as the ¢ma&$nt of correlation between batchlvues gceeds
this bound.

nbat : number of batches to be used

bat si z: initial number of obsertions per batch. This number is doubled with
each iteration step.

r ef Qobs: reference to a macro which performs an oletém. The macro has to
prepare (reset counters etc.) and perform a measurementallibelinterest is
expected as macro returalue. No aguments are passed to this macro.

r ef Log: reference to a macro which is called to report on procedure progress. It is
invoked (upon completion of an iteration) as falo
deref(reflLog)(cnt, nmean, width, cl, c2, flag)

cnt : number of obseations already made

mean: current estimate of meaalue

wi dt h: current absolute width of confidence int@rfupBound- nean)
cl, c2: current correlation measures

f | ag: set to zero, if tayet conditions are met. One otherwise.

6.0 Commandsto the Smulation Kernel

Sim>Run SLOTS=slots {, DOIS=dots};

Simulates the netwk for SLOTS time slots. If DA'S is gven and lager than zero,

then a dot is printed to standard output approximately aftey ®OT S-th time slot.
Approximately means, that the dots are only printed together with each time slot
with (SimulationTme modulo TIME_LEN == 0). TIME_LEN is a constant defined

in the source file “defs.h”, it defines the static length of the calendar queue used by
the scheduleBy defwlt TIME_LEN equals 1000, it might be useful to change it to

a prime number

Si m >Reset Ti ne;

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 13

Reset simulation time. The adtion time of all gents rgistered at thedenelis
diminished by the current time. This command is useddaan werflow of the
simulation clock in case ofvy long runs (for simple models, this can hapaier
two hours!).

e Si m >Set Rand(seed);

The central.n. generator is set to the seadlre. This is only usefull befodefining
ary objects, since some objects call thre generator e.g. for theitial event reyis-
tration. By dedult, the generator is initialized with the systime.

* Sim >Echol nput ;

The input tet (include files gcluded) is printed to standard outpwesy lineis
marked with a hash mark (‘#).

7.0 Available Network Object Classes

7.1 Sources

7.1.1 CBR Source

Declaration
CBRquel I e src: DELTA=5, VC =1, OUT=li ne;
DELTA: cell distance (intger)
VCI: VC number of generated cells
OUT: input name of the succeeding object
Exported ariables
sr c->Count
Returns the number of sent cells.
Commands
sr c- >ResCount
Resets the cell counter
src->Restart
Sets a n@ cell phase (random).
Output data type
Cell

7.1.2 Bernoulli Source

Declaration
CGEQquel l e src: ED=4.5, VCl =1, QOUT=li ne;
ED: mean of the geometrically distuted cell distance (double)
VCI: VC number of generated cells
OUT: input name of the succeeding object
Exported wariables
sr c->Count
number of sent cells.
Commands
sr c- >ResCount
Resets the cell counter

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 14

Output data type
Cell

7.1.3 Sourcewith Arbitrarily Distributed Cell Distances

Declaration
DistSrc src: DI ST=dist, VCl=1, QUT=li ne;
DIST: name of the distrilttion object praiding the distrilntion
VCI: VC number of generated cells
OUT: input name of the succeeding object
Function
The source uses the distrtion table of a distriltion object whicthas to be declared
in adwance (Distrilntion object: Sectiofi.2 on pagd7).
Exported wariables
src->Count
number of sent cells.
Commands
sr c- >ResCount
Resets the cell counter
Output data type
Cell

7.1.4 ON/OFF Source with Geometrically Distributed Phase Durations

Declaration
BSquel |l e src: EX=10, ES=100, DELTA=10, VCl =1, QOUT=li ne;
EX: mean number of cells peutst (double)
ES: mean duration of the silence phase (in time slots, double)
DELTA: cell distance in the ON-state (in time slots, g&g
VCI: VC number of generated cells
OUT: input name of the succeeding object
Exported wariables
sr c->Count
number of sent cells.
Commands
sr c- >ResCount
Resets the cell counter
Output data type
Cell

7.1.5 MMBP Source (ON/OFF)

Declaration
MVBPquel | e src: EB=100, ES=100, ED=10, VCl =1, QUT=lIi ne;
EB: mean duration of the ON-state (in time slots, double)
ES: mean duration of the OFF-state (in time slots, double)
ED: mean of the geometrically distuited cell distance (double)
VCI: VC number of generated cells
OUT: input name of the succeeding object
Exported wariables

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 15

sr c->Count

number of sent cells.
Commands
sr c- >ResCount

Resets the cell counter
Output data type

Cell

7.1.6 GMDP Source

Declaration
GWDPquel | e src: NSTAT=2, DELTA=(2,3), EX=(10, 20),
TRANS=(0, 1,1,0), VC =1, QUT=li ne;
or:
GWDPquel | e src: NSTAT=2, DELTA=(2,3), DI ST=(d1, d2),
TRANS=(0, 1,1,0), VC =1, QUT=li ne;
NSTAT: number of states (inger)
DELTA: cell distances (intger, for zero cell rate see bald
EX: mean numbers of cells per state - geom. digtib (double, for zero cell rate
see belw)
DIST: objects pruiding distritutions of cells per state (for zero cell rate seevipelo
TRANS: matrix of transition probabilities, woby row (double)
VCI: VC number of generated cells
OUT: input name of the succeeding object
Eunction
The object class pwides a GMDP source with geometrically (if EX is@n), or with
arbitrarily (DIST is gven) distrituted sojourn times. In the latter case, the distigins
are imported from Distrilition objects (Sectiod.2 on pagd.7) wich hae to be
defined in adance.
To define states with zero cell rate, define a DElalue of zero. The EX entry then
specifies the mean duration of this silence state, the DIST ewdythe distribtion of
the duration.
Exported wariables
sr c->Count
number of sent cells.
Commands
sr c- >ResCount
Resets the cell counter
Output data type
Cell

7.1.7 GmdpStop: a Source Following the Start-Stop Protocol

The source recognizes start and stop messages (see S&tiorpagd4) sent by the
succeeding object. Therefore, it possesses an input src->Start. Declaration and com-
mands do not diér from GMDPquelle. Up to ma the only corresponding object class

is ShapCitrl (see Sectiadh7.3 on pag@6). Both are used for the test of\nelasses.

Oct 5, 1996: Nwy, also the ABR source is a candidate for GmdpStop.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 16

7.1.8 Souce Reading IAT's from a Trace File

Declaration
Filsrc src: FILE="trace.bin”, REPEAT=10, START=20,
WAIT=100000, VCI=1, OUT=line;
FILE: name of the file containing the inter galitimes (see bel)
REPEA: number of trace repetitions. Can be omitted, then the file is read once.
START: start with the SART-th entry in the trace file
WAIT: wait WAIT time slots before sending first cell. Can be omitted.
VCI: VC number of generated cells
OUT: input name of the succeeding object
Eunction
The object reads the inter aml times from the gien trace file. The stored TA/alues
are in binary format (unsigned igger). In case of entries with TAzero, the source
fails. The parameters REPEASTART, and VAIT are optional.
Exported wariables
src->Count
number of sent cells.
Commands
src->ResCount
Resets the cell counter
Output data type
Cell

7.1.9 Souce Sending a Diectly Given Cell Sequence

Declaration
ListSrc: src: N=3, DELTA=(10,10000,5), VCI=1, OUT=line;
N: number of cells, int
DELTA: inter departure times (first cell sent at the first D&}, int
VCI: VCI number of cells generated, int
OUT: where to send cells
Exported ariables
src->Count
number of sent cells.
Commands
src->ResCount
Resets the cell counter
Output data type
Cell

7.2 Definition of Distributions

A distribution object generates artransformation table from avgn distritution.
This table can be imported by other objects - see e.g. DistSrc (Sedtidron
pagel5) and GMDPquelle (Sectiohl.6 on pagé6). The distrilation must not hee a
nonzero probability for thew. value zero. There is a couple @frsions to specify the
distribution:

Distribution dist: FILE="xyz";

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 17

In the gven ASCII file, each line contains the. wvalue (intger, greater than zero,
ascending order) and the associated probability (double).dlbhesvare delimited
by white space. R.walues with probability zero can be omitted. A ‘# marks the
rest of a line as comment.
Distribution dist: TABLE=(1, 0.5), (2, 0.5);
The probabilities are directly\gn in the input tet.
Distribution dist: DISTRIB=(x = x_mn to x_nax,
1.0/ (1 + x_max - x_mn));
Calculation of the distriltion from a formula. Theariable x has to be defined in
adwance, the formula can be an arbitrary doukfgession. In case okwy “long”
distributions, the repeated interpretatievaluation can become slo
Distribution dist: GEOVETRI C(E=4.5);
Gemetrical distribtion with the giken mean. The distnithion is shifted by one, i.e.
P(X=0)=0.
Distribution dist: BINOM AL(N=20, P=0.5);
Binomial distritution with parameters n and p. The digitibn is shifted by one,
i.e. P(X=0)=0.

7.3 Multiplexer

7.3.1 Standard Multiplexer (Arrival First)

Declaration
Mul tipl exer nmux: N NP=10, BUFF=50, MAXVCl =50, QOUT=si nk;
NINP: number of inputs (inger)
BUFF: kuffer size (cells, intger)
MAXVCI: optional: max. VC number (datilt: NINP)
OUT: input name of the succeeding object
Function
Multiplexer with serer stratgy Arrival First, inputs are seed in random order
Losses are counted per input and per VC. The/@eregistration is only performed
for cell-like data items and in the VCI range O ... MAXVCI.
The input names are nameOfObject->1[inputNumber], where inputNumber ranges
from 1 to NINP
Remark - Bug
The implementation isakt lut the sojourn time in the mutlipler is exactly one time
slot too long. The netark object clas$lix AF (Section7.3.3 on pagé9) implements
the correct sojourn time.
Exported wariables
mux- >Loss(i) or
nmux- >Lossl np(i)
loss at input i.
mux- >LossVC (i)
loss at VCI i.
mux- >LossTot
total loss.
nux->QLen
current queue length (actually: system occupation).
Commands

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 18

mux- >Losses(i, k) or
mux- >Lossesl np(i, k)

Returns sum of losses on inputs i to k.
mux- >LossesVCl (i, k)

Returns sum of losses on VCs i to k.
mux- >ResLoss

Resets all loss counters.
Input data type

Data

7.3.2 Multiplexer with Lower Output Rate (Departure First)

Declaration
MuxDF rmux: NI NP=10, BUFF=100, MAXVCI =100, ACTI VE=4,
QUT=l i ne;

NINP: number of inputs (int)

BUFF: number of bffer places (int)

MAXVCI: optional: max. VC number (datilt: NINP)

ACTIVE: optional: sere output queue onlywery ACTIVE-th time slot

OUT: where to send cells
Function
Multiplexer with Departure First stragg Inputs are seed in random ordeil he out-
put queue is seed only during each @TIVE-th time slot in case BTIVE is gven.
Remark- Lax Model
The model is simple: a queue comprises both the real queue places andethe serv
place. A deomon at multipter output scans the queue during eaCITWE-th time
slot, and sends a data itemvhdable. Thus, some data may stay in the ‘eerfor
less then £TIVE time slots. Br more sophisticated models, see mulipts in
Section7.4 on page?2.
Exported Variables and Commands
like for Multiplexer (see Sectior.3.1 on pagés8).

7.3.3 Multiplexer with Lower Output Rate (Arrival First)

MuxAF mux: N NP=10, BUFF=100, MAXVCI =100, ACTI VE=4,

QUT=l i ne;
Declaration, function, and commands as for MuxDite serer stratgy is Arrival
First.
Remark- Lax Model
The model is simple: a queue comprises both the real queue places andethe serv
place. A deomon at multipter output scans the queue during ea€TWE-th time
slot, and sends a data itemvhdable. Thus, some data may stay in the “serior
less then £TIVE time slots. Br more sophisticated models, see mulipts in
Section7.4 on page?2.

7.3.4 Multiplexer with Arbitrarily Distributed Serving Time

Declaration
MuxDi st mux: N NP=10, BUFF=50, MAXVCI =100,
DI ST=serv_di st, QOUT=si nk;

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 19

NINP: number of inputs (intger)

BUFF: luffer size (cells, intger)

MAXVCI: optional: largest VC number for loss count, daft: NINP

DIST: name of the distriltion object defining service time distuiioon

OUT: input name of the succeeding object
Function
Multiplexer with Departure First stragg Inputs are seed in random ordefl he time
spent in the selr at queue output is distuted according to the specified distrtion
(Distribution object: Sectioi.2 on pagd.7).
Exported Variables and Commands
like for Multiplexer (see Sectior.3.1 on pagés8).

7.3.5 Multiplexer with Early Packet Discard Scheme

Declaration
MuXEPD mux: NI NP=<int>, BUFF=<int> MAXVCl =<i nt >,
THRESH=<i nt >, OUT=<o0bj ect i nput >;

NINP: number of inputs

BUFF: kuffer size in cells

MAXVCI: optional: maximum VC numbedefault: NINP

THRESH: luffer occupation at which to b to discard brsts

OUT: where to send cells
Function
The object implements an early padidiscard straggy: for all connections sending
data type AAL5Cell (see Secti@l on pagé3) on VCI 0 to MAXVCI, lurst dura-
tions are kept track of With each bginning of a lorst, the currentudfer occupation is
compared to THRESH. If this mark is reached, then all cells ofutst &re dropped.
Bursts which bgan successfullydi nevertheless lost a cell (due to backgrounditraf
or too high threshold), are also dropped til the end. Connections with out-of-range VCI
and non-AAL5Cell data items are multigél folloving the normal &y (using the
same commonuifer).
Remark
The last cell of a dropped framenist passed. If THRESH has been set appropriately
then this should not be a problem: frames are eitheafoi®d or dropped completely
Otherwise it could be a problem. Therefore it is planed to add a flag which turns on for-
warding of last cell (the dabilt should remain as it is).
Exported Variables and Commands
like for Multiplexer (see Sectior.3.1 on pagés8).

7.3.6 Multiplexer with Weighted Fair Queueing Strategy

Declaration
MuxWFQ mux: NI NP=<i nt>, MAXVCl =<i nt>, OUT=<object i nput>;
NINP: number of inputs
MAXVCI: optional: largest VC number possible. deilt: NINP
OUT: where to send cells
Eunction
The weighteddir queueing algorithm according to J.Rbberts is implemented. The
connection specific parameterdfer size and iverse of the mean cell rate are set by

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 20

the commandrux- >Set Par (. . .), see bela. An incomming cell causes an error
message in case its VCI has not yet been initializedSatHPar () .
WEQ Algorithm
Per VC, an input queue is maintained. A sort queue at the output manages the order in
which to sere cells from the VC queues. It holds the front cell from each VC queue
(provided there is one). The decision about serving order is made asstoalobal
variable “Spacing ifme” — it is common for all VCs —wahys contains the “ittual
Time” of the last cell which has left the multigés. This “Virtual Time” has been
assigned to the cell when ia& entering the sort queue (the preceeding cell of this VC
just had been seed, or the VC recently had not been present in the sort queue). The
“Virtual Time” is alvays set to the current “Spacingnk” plus the inerse mean cell
rate of the n& cell’'s connection gistered at the multipker. The sort queue sess
cells in the order corresponding to theiirtual Times”.
The efect of the algorithm is that a cell entering the sort queue\eatate other cells,
if its inverse mean cell rate isdoenough compared to the other connections already
waiting in the queue.
In the current implementation, the sort queue does not really hold celtslip refers
to the corresponding VC queues. A cell is dequeued from a VC queue in the instance it
has to be sent, and theifial Time” is assigned to the whole associated VC queue.
Thus, possibly one additionalitber place might be needed in each VC queue (com-
pared to the original algorithm).
Exported \ariables(additional to Multipleer, see Sectioid.3.1 on pagé8)
mux->QLenVCI(vc)
current queue length of this VC
Commandgadditional to Multipleer, see Sectioid.3.1 on pagés8)
mux->SetRr(vci, invCellRate, BufSiz)
The command sets the connection-specific WFQ parameters for VC vcivEhe in
cells rate has to be iger (mean cell spacing in time slots), as well as tiffetsize
in cells.
Input data type
Cell

7.3.7 Multiplexer with Input Buffers

Declaration
Mux| npBuf nx: NI NP=10, BUF=100, BSTART=90,
{ BYTEFACT=0. 3 | SERVI CE=1}, RELAX=3,
QUTCTRL=(i: src[i]->Start), OUT=snk;
NINP: int, number of inputs
BUF: int, kuffer size per input, counting in data objects.
BSTART: optional, int. Tirns on start-stop protocol at inputs. f&ufsize at which
to start agin a stopped sendédefault: no start-stop at inputs.
BYTEFACT: double, number of simulation time steps needed tesare byte.
Specify either BYTERCT or SER/ICE. See belw.
SERVICE: int, number of time steps needed to sesne data object. See baslo
RELAX: optional, int. Length of a relaxation period introduced between after each
finished service (in simulation time steps). &4f: 0.
OUTCTRL: optional, only if BSART has been gen. Control inputs for
start-stop protocol. Names can be specified using the same constructs as for

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 21

output names of demultipters (see Section5 on page4).
OUT: where to connect multipter output (netwrk object inupt name).

Function
A multiplexer with following features:

* Input kuffers (same size per input). The inputfbr size counts in data objects.

» Start-stop protocol at output (see SecBadon pagd4). The corresponding con-
trol input is mx->Start.

» Optional start-stop protocol (Secti®r8 on pagd4) at inputs. If ‘ BSART’ has
been g¥en, then this is turned on, and ‘OUTCTRth the specification of the
control inputs of the preceding objects xpected.

» Service time constant or depending on data object size. If ‘BXTHFhas been
given, then the service of a data objectesalBY TEFACT*LenOfDataObject) sim-
ulation time steps (rounded to iges; at least 1). If ‘'SERICE’ is specified, then
each service tas this number of time steps.

» Optional relaxation period betweendwervices. lirned on with ‘RELAX’.

Exported \ariables
nx->Loss(i)

Number of data objects lost at input i (int).
mx->QLen(i)

Current queue length at input i in data objects (int).
Command
nx- >ResLosses

Reset all loss counters. No retuadue.

7.4 Multiplexerswith Pure Event-Triggered Scheduling

The folloving multiplexers are sometimes a bit sler than their counterparts which
apply a combination ofvent- and time-triggered scheduling (Secfrfod on pagd.8).
The combined approach has adtages if the output line operates at full speed. But if
e.g. one output PM time slot corresponds to 10 simulation time steps, then the pure
event-triggered scheduling becomaster This also holds in case oenry low traffic
loads.

Asynchronous Operation

The multiplexer consists of an input queue (capacityH8 data items), and a serv
Data items are fed into the serwhenger the deice is free. The then are fonarded
SERVICE time steps lateiThe serer therefore emulates awsler output line with
asynchronousycles.

If a data item reaches an empty multkgle then it is immediately placed in the serv
from where it is fonarded SERICE steps laterA data item approaching a non-empty
system has to ait in the queue.

Synchronous Operation

The multiplexer consists of an input queue (capacityH¥ data items), and a serv
Data items are fed into and takfrom the seer only at time steps with (Sinmie
modulo SERICE = 0). The serer therefore emulates awsler output line with syn-
chronous gcles.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 22

If a data item reaches an empty multyglewith the first time step of an outpyftcte,

then it is immediately placed in the servfrom where it is fonarded SERICE steps
later If a data item reaches an empty multiele but not with bginning of the first

step of an outputycle, then it has to ait for service until start of mécycle (while
remaining in the queue). Then it is put into the sefitom where it is forarded after
another SERICE time steps. A data item approaching a non-empty system hastto w
in the queue.

Departure First

DF relates toents taking place during the same simulation time step. If therserv
completes a service, then first thetngata item is tadn from the queue (if &h and

then nev arrivals are queued.

Arrival First

AF relates to eents taking place during the same simulation time step. If therserv
becomesailable to bgin a service, then first nearrivals are queued, and then the
next data item (if ap) is transfered from the queue to the serv

When combined with synchronous output operation, this also holds for the case where
the data item is transferred from the queue to thees@mth bginning of a nes output
cycle, since the item did not are with g/cle start: the transfer occurs afteving
gueued the current avalls.

7.4.1 MuxAsyncDF: Asynchronous Output, Departure First

Declaration

As for MuxDF (see Section.3.2 on pagé9):

MuxAsyncDF rmux: N NP=10, BUFF=100, MAXVCI =100, SERVI CE=4,
QUJT=l i ne;

Function

Asynchronous Output, Departure First (specification: see Setdomn page?2)

Exported \ariables and Commands

As for Multiplexer (see Sectior.3.1 on pagés8).

7.4.2 MuxAsyncAF: Asynchronous Output, Arrival First

Declaration

As for MuxDF (see Section.3.2 on pagé6):

MuxAsyncAF rmux: N NP=10, BUFF=100, MAXVCI =100, SERVI CE=4,
QUJT=l i ne;

Function

Asynchronous Output, Aral First (specification: see Sectidrd on page?2)

Exported \ariables and Commands

As for Multiplexer (see Sectior.3.1 on pagéb).

7.4.3 MuxSyncDF: Synchronous Output, Departure First

Declaration

As for MuxDF (see Section.3.2 on pagé6):

MuxSyncDF nmux: NI NP=10, BUFF=100, MAXVCl =100, SERVI CE=4,
QUJT=l i ne;

Function

Synchronous Output, Departure First (specification: see Sectlan page?2)

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 23

Exported \riables and Commands
As for Multiplexer (see Sectior.3.1 on pagé5).

7.4.4 MuxSyncAF: Synchronous Output, Arrival First

Declaration

As for MuxDF (see Section.3.2 on pagé6):

MuxSyncAF nmux: NI NP=10, BUFF=100, MAXVCl =100, SERVI CE=4,
QUJT=l i ne;

Eunction

Synchronous Output, Al First (specification: see Sectiér on pag?2)

Exported Variables and Commands

As for Multiplexer (see Sectioi.3.1 on pagé5).

7.5 Demultiplexer

Declaration
Denul ti pl exer dermux: MAXVCI =100, NOUT=3,
QUT=si nk[1], sink[2], sink[3];

or:
Denul tiplexer ... OUT=(i: sink[i]);

or:

Dermul tiplexer ... OUT=(i=1to 2: sx[i]->Start, 3: snk[i]);

MAXVCI: dimension of the routing table, VCI range from 0 to MAXVCI

NOUT: number of outputs (inggr)

OUT: input names of succeeding objects (three possibilities: se&)belo
Function
Incomming cells are forarded to the output which corresponds to the VCls of the
cells. The routing table can be written with

Si gnal demux (vci O d, vci New, outpNun;
/'l see Signal object.

There are three possibilities to specify the names of the succeeding objects: a complete
list, or - if possible - the generation by a template. In the second case(abo), the
variable has to be defined in at¢e and is counted from 1 to NOUii the third case
(i=...) a list of ranges can be specified. A rangevsrgin the form “i to k”, the first
range has to start with 1, the last has to end with N@U@&nge with one member can
be written short (only the one number), all ranges in the list are seperated by commas.
If a cell with unassigned VCI is resed, an error message is generated.
No commands
Input data type

Cell

7.6 Sinks/ Delay Line

7.6.1 Sink

Declaration
Senke snk;
Exported wariables

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 24

snk->Count

number of arsed cells.
Commands
snk->ResCount

Resets the counter
Input data type

Data

7.6.2 Sink Writing IATstoa TraceFile

Declaration

SinkTrace snk: FILE="iat.dat”;

All functions as Serk (see Sectio.6.1 on pag@4), additionally the inter axal
times are written to thegen file (ASCII format, one IR per line).

7.6.3 Delay Line

Declaration

Leitung line: DELAY=100, OUT=meas;
DELAY: delay of the line (intger, in time slots)
OUT: input name of the succeeding object

No commands

Input data type
Data

7.7 Shaping/ Policing

7.7.1 Peak Rate Shaper with Integer Cell Spacing

Declaration
Shaper shap: DELTA=10, BUFF=100, OUT=line;
DELTA: cell spacing enforced by the shaper (time slotsgere
BUFF: shaper wifer size (cells, intger)
OUT: input name of the succeeding object
Remark
In case of RIFF=0, a “hard” spacing is performed.
Exported \ariables
shap->QLen
current queue length
shap->Count
number of lost cells.
Command
shap->ResCount
Resets the loss counter
Input data type
Data

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 25

7.7.2 Peak Rate Shaper with Arbitrary Cell Spacing

Declaration
Shaper 2 shap: DELTA=3.5, BUFF=100, OUT=li ne;
DELTA: effective cell spacing enforced by the shaper (time slots, double)
BUFF: shaper wffer size (cells, intger)
OUT: input name of the succeeding object
Function
The shaper wrks with 2 spacingalues. The ratio of both yields thdezftive cell rate.
In case of BIFF=0, a “hard” spacing is performed.
Exported \ariables, Command, Datydes
like for Shaper (Sectioh7.1 on page5)

7.7.3 Shaper Using the Start-Stop Protocol

Declaration
ShapCtrl shap: DELTA=10, BUFF=100, BSTART=10,
OUTCTRL=src->Start, OUTDATA=lIi ne;

DELTA: cell spacing enforced by the shaper (time slotsgarie

BUFF: shaper wffer size (cells, intger)

BSTART: buffer occupation, at which the sender iskad up agin

OUTCTRL: control input name of the preceeding object

OUTDATA: input name of the succeeding object
Function
This class is similar to the Shaper class. The object triasgvieg to control its pre-
ceeding object by the Start-Stop protocol (see Se6ét®on pagd4). The data sender
is stopped, if theuddfer is full. It is started agjn at a iffer occupation of BSART. Up
to now, the only corresponding object class is GmdpStop (see under Sources). Both are
used for the test of meclasses.
Exported \ariables, Command, Datggdes
like for Shaper (Section7.1 on pag@5)

7.7.4 Leaky Bucket Policing Function

Declaration
LeakyBucket | b: | NC=10, DEC=5, SIZE=20, VCl =1, OUT=lI ne;

INC: bucket increment with each incomming cell (igéz)

DEC: hucket decrement with each time slot (igé€)

SIZE: hucket size (intger)

VCI: if given (can be omitted), then only this VC is subject to policing

OUT: input name of the succeeding object
Function
With each time slot, theucket size is decremented by DEC (until zero). Upon receipt
of a cell, it is tested whether the incremeiid result in anerflow. If yes, then the
cell is discarded (nodzket increment). If no, then the increment is performed, and the
cell is passed. In case no VCI is@n, all cells are subject to policing.
A histogram abouturcket sizes seen by armg “good” cells is maintained. It can be
displayed and used in commands.
Remark

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 26

The algortihm doesot coincide with the continuous time algorithnven by AAM
Forum TM 4.0. There, the cell passes, and the increment is performed whenokeéte b
contents is not greater than the lifpgfore incrementing.
Exported \ariables
| b- >Count
number of lost cells.
| b->LbSi ze
current lucket size.
| b->LbSt at (i)
number of arring cells which hee seen bcket size i. The size is the size before
increment.
Commands
| b- >ResCount
Resets the counter
| b- >ResLbSt at
Resets LbStat counters.
Input data type
Data - if no VCI gven
Cell - otherwise.

7.8 AAL 5 Connections

7.8.1 AAL 5 Sender

Declaration
AAL5Send aal s: VCl =1, BUF=100, BSTART=20,
OUTDATA=l i ne, QUTCTRL=sr;
AAL5Send aal s: COPYCI D, BUF=100, BSTART=20,
OUTDATA=I i ne, OUTCTRL=sr C;
AAL5Send aal s: MAXCI D=100, BUF=100, BSTART=20,
OUTDATA=Il i ne, OUTCTRL=src;
VCI: VC number of cells generated (int)
COPYCID gven: use the connection ID of the current frame as VCI
MAXCID: establish a translation table (connection ID) -> (VCI), table length
BUF: input luffer size (int)
BSTART: input luffer occupation at which toake up stopped data sender (int)
OUTDATA: where to send cells
OUTCTRL: control input of preceeding neivk object
Function
The object implements the AALS5 sender functionality: Incoming data items which
have to prwvide the interfce for data item embedding (Secttb@ on pagd4) are
transformed into sequences dfM cells. The AM cells contain sequence numbers
for both cells and AAL SDUSs. This alis the recefer to detect cell losses. Thus, only
uncorrupted AAL SDUs arexegracted from transmitted cells and delied to the data
recever. If MAXCID has been gien, then the translation table can be filled using com-
mand SetVCI().
On input and output, the start-stop protocol (see Segtbon pagd4) is supported.
The data input iaal s- >Dat a, the control input igal s- >Start .
Commands

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 27

aal s- >Reset St at

Resets all statisitcs counter
aal s->Set VCl (cid, vci)

Write translation table: connection ID cid is gerted in VCI vci.

Exported \ariables
For use in commands and with displayides, the follving variables arexgorted:
aal s->QLen

current input queue length
aal s- >Cel | Count

number of cells sent
aal s- >SDUCount

number of AAL SDUs sent
aal s- >Del Count

number of incoming data items dropped since start-stop not recognized
Input Data Vpe
Data on inputs ->Data and ->Start.
Output Data ypes
OUTDATA: AALSCell
OUTCTRL: Data

7.8.2 AAL 5 Receiver

Declaration
AALS5Rec aalr: QUT=tcpr;

OUT: where to send reconstructed data items
Function
Data items sgmented by the corresponding AAL 5 sender are reassembled. Cell and
SDU losses are detected using sequence numbers: The incomming frame is embedded
into the first cell of thelrst generated by the send&dditionally, the first cell carries
the SDU sequence numbgail cells contain a cell sequence numliberefore the
recever can detect cell loss and flushes its input cell queue when detecting cell loss.
The last cell is magd with PT = 1, and a field of this cell repeats the cell sequence
number of the first cell of theubst. The receer checks whether the first cell in the
input queue bears this sequence numbeyes, then the frame has been transmitted
succesfully and it can beteacted from the first cell. Otherwise, all cells in the queue
are dropped. Thanks to the SDU sequence nyriieenumber of lost SDU also can be
detected.
Commands
aal r - >Reset St at

Resets all statisitcs counter
Exported \ariables
For use in commands and with displayides, the follaving variables arexgorted:
aal r->QLen

current input queue length
aal r - >Cel | Count

number of cells receed
aal r - >SDUCount

number of AAL SDUs successfully transmitted
aal r->Cel | Loss

number of cells lost

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 28

aal r - >SDULoss
number of AAL SDUSs lost
aal r - >Del ayMean
Mean SDU transfer delay (measured from sending first untiliagdast cell of
SDU)
Input Data Vpe
AALSCell
Output Data ype
The output data type is the type which has been encapsulated by the corresponding
AAL 5 sender

7.8.3 AAL 5 Receiver with Concurrent Reassembly
Declaration
AALS5RecMul t aal : MAXVCI =100, QOUT=t cp;
MAXVCI: int, largest VCI number
OUT: where to send paeks
Function
The function is the same as ®WAL5Rec (Section7.8.2 on pagé8), kut multiple
frames can be reassembled concurrefithys eases the definition of AAL end systems
over which more than one highkatyer connection is set up. Otherwise, the streams had
to be demultipleed, and for each connection an AAL5Rec objeatid be necessary
Commands
aal->ResetStat
Resets all statistics counters.
Exported \ariables
For use in commands and with displayides, the follaving arrays arexgorted. The
parametewc is the AM connection (1 ... MAXVCI).
aal - >Q.en(vc)
current cell queue length
aal - >Cel | Loss(vc)
number of cells lost
aal - >Cel | Count (vc)
number of cells receed
aal - >SDULoss(vc)
number of SDUs lost
aal - >SDUCount (vc)
number of SDUs succesfully transmitted
aal - >Del ayMean(vc)
mean SDU delay (from sending first cell until reagg the last)

7.9 CTD and IAT Measurements

7.9.1 Measurement Device

Declaration

Meas2 ms: MAXCTD=100, MAXI AT=100, VCl =1, OUT=li ne;
MAXCTD: largest cell transfer delay which can be measured
MAXIAT: largest cell inter arvial time which can be measured
VCI: if given (can be omitted), only cells on this VC are recognized

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 29

OUT: input name of the succeeding object, can be omitted
Eunction
The object generates statistia®pcell transfer delays and inter aalitimes. If no
OUT is gven, it acts as sink. The VCI can also be omitted.
Remark
The deice fails at Sim->Resetine.
Exported \ariables
nms- >Count
number of arned cells.
nme- >CTD(ti ne)
cell counter for this transfer delay
ns- >CTDover
number of CTD alues lager than CTDMAX.
nms- >l AT(ti nme)
counter for this inter anal time.
ns- >| ATover
number of IAT values lager than IAMAX.
Commands
ns- >ResCount
Resets the counter
nms- >ResDi st s
Resets all counters.
The folloving commands are priwled for conenience, the could be realized in the
input file or by macros, too. Th@nly evaluate the stored distribions (\alues up to
MAXCTD and MAXIAT).
ns- >Meanl AT
nms- >MeanCTD
Return meanalues of the recorded distutions.
ns->M nl AT
ms- >M nCTD
nms- >Max| AT
ms- >MaxCTD
Return the minimum and maximumTAnd CTD walues with counters Iger than
zero (only inside of the specified MAX borders).
Input data type
Data - if no VCI gven
Cell - otherwise.

7.9.2 More Complex Measurement Devicefor Cellsand Frames

Declaration(full version):
Meas3 ns: CTD=(m n, max), CTDDI V=10, |AT=(m n, max),
| ATDI V=10, VCl =(m n, max), ERANCGE, OUT=si nk;

Function

All parameters are optionalybone parameter has to bgag at least. If OUT is omit-
ted, the the object acts as sink. Theick expects cells, if ‘VCI' is gven. Frames can

be measured, if theawd ‘VCI' is replaced by ‘CONNID’.

If the keyword ‘CTD’ is given, then meanalues andxdreme \alues (min/max) of the
transfer delays are measured (either measured from the source of the data object or

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 30

from the last setting of the time stamps, see SeGt@3 on pag82). In case
‘=(min,max)’ is added to ‘CTD’, then a complete distrion between min and max is
collected. The specification of ‘CTDDI\¢ v’ (optional, only if complete distrilition
collected) says that all measuredues are ¢eded bydi v, before thg are counted in
the distritution. Note, hwever, that the mean ancieeme alues (commands
MeanCTD, MinCTD, MaxCTD) are not influenced by thismbescaling. The parame-
ters ‘IAT’ and ‘IATDIV’ follo w the same rules. The ‘VCI’ or ‘CONNID=(min,max)’
specifies the range of channel IB&owhich the measurements are performed. If nei-
ther of both is gien, then the range is (0,0). If ‘' ERANGE’ isrgn (optional), then an
error message is generated if a data object with out-of-range V@sar@therwise,
only the global counter ‘Count’ is incremented.

Commands
nms- >ResSt at s

Resets all CTD and IAstatistics and all counters, no retuaiue.
s - >ResCount

Resets the global count€ount , no return alue.

Exported \ariables
For use in commands and with displayides, the follaving arrays arexgorted.
ns- >Count
overall number of arvals (int).
ns- >Count s(i)
number of arnals for this inde (int)
ms->CTD(i, tim
counter for cell transfer delay tinheé m scaled by CTDDIV (int)
ms->1 AT(i, tim
counter for inter arval timet i m scaled by IADIV (int)
ns- >CTDover (1)
overflow counter for CTD distribtion (int)
ns- >CTDunder (i)
underflav counter for CTD distribtion (int)
ns- >l ATover (i)
overflow counter for IA distribution (int)
ns- >1 ATunder (i)
underflav counter for 1A distribution (int)
ms- >MeanCTD(i)
current cumulatie mean CTD alue (double). Is updated ‘on-the-fly’ with each
arrival. Note the dierence to the command of Meas2 (Sectidhl on page9).
nms- >MaxCTD(i)
largest encountered CTD (int). Same notes as for MeanCTD.
nms->M nCTD(i)
smallest encountered CTD (int). Same noteas for MeanCTD.
ns- >Meanl AT(1)
current cumulatie mean IA value (double). Same Note as for MeanCTD.
nms- >Max| AT(i)
largest encountered TA(int). Same note as for MeanCTD.
nms->M nl AT(i)
smallest encountered TA(int). Same note as for MeanCTD.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 31

Input Data Vpe
Cell - if VCI given
Frame - if CONNID gien
Data - if neither of both gen

7.9.3 Updating Time Stamps

Declaration
TimeStanp ts: VC =1, OUT=lI ne;
Eunction
Updates time stamps in all data items, or only on theng/C (VCI can be omitted).
Input data type
Data - if no VCI gven
Cell - otherwise.

7.10 ABR - ATM-Forum TM 4.0

7.10.1 ABR Source

Declaration
Abr Src src: BUFF=100, BSTART=50, LI NKCR=2.2e5, MCR=200,
PCR=1000, FRTT=1000, ROQUTE=(2, abrnx, abrsnk),
AUTOCONN, QUTCTRL=src->Start, OUTDATA=l I ne;

BUFF: input luffer size (int)

BSTART: buffer occupation at which to startag the data source (int)

LINKCR: optional: output link cell rate (cells per second, doublerulef

353207.55

MCR: minimum cell rate (cells per second, double)

PCR: peak cell rate (cells per second, double)

FRTT: fixed round tripp time (micro seconds, double)

ROUTE: ABR routing members, see b&lo

AUTOCONN: optional: if gken, connection establishment with first incomming

cell

OUTCTRL: control input of the data source (start-stop protocol)

OUTDATA: ABR cell output
Function
The class AbrSrc implements the reference sourcevimeaf ATM-Forum TM 4.0.
All parameters not specified are set to thewdifalues gien in TM 4.0. The source
possesses four inputs:
e inputsr c: data input
* inputsr c- >BRMC: input for backvard RM cells
* inputsrc->Start:anincomming cell causes connection establishment
* inputsrc->St op: an incomming cell causes connection release
If the output link rate LINKCR is not gén, then it is set to the egalent of 149.76
Mbps. The ®UTE contains first the number of ABR members and then the members
itself. These objects are contacted (in theegiorder) at first cell akl - in case
AUTOCONN is gven -, or at request for connection establishment on input src->Start.
In both cases, a connection with the VCI of the incomming cell is established. Since

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 32

FRTT in the gven \ersion can not be determined during connection setup, it has to be
given «plicitly.

The ABR source needs a data source implementing the start-stop protocol (e.g. Gmdp-
Stop, see Sectioh3 on pagd4). Otherwise, error messages are generated upon input
buffer overflow.

The eact internal behaour of the source (timer actions) are documented in the source
code file abrsrc.c.

Exported \ariables

The following variables arexported for use with commands or measuremevitds:

* src->Count Dat a: number of data cells sent, int

* src->Count RMCl : number of in-rate RM cells sent, int

* src->Count RMCO number of out-of-rate RM cells sent, int

* src->QL.en: current input queue length, int

* src->| AT: current IA, int (changes permanently due to non-igéercell spacing)

* src->ACR current ACR, double

Data types

Atsrc, src->Start, andsrc->Stop, cellsaregpected. Asrc- >BRMC,

RM cells are rpected.

7.10.2 ABR Multiplexer

Declaration
Abr Mux mux: N NP=10, MAXVCI =100, BUFFCBR=200,
BUFFABR=10000, BUFFRMCO=1000, HI _THRESH=7000,
LO THRESH=5000, TBE=2000, Al =30, CBRI =100, zOL=12.5,
LI NKCR=2. 2e5, TARGUTI L=0. 9, DYNFAI RSHARE, Bl NMODE,
OUTBRMC=dnx, OUTDATA=Il i ne;
NINP: number of inputs, int
MAXVCI: largest VCI number possible, int
BUFFCBR: luffer size for non-ABR trdic, int
BUFFABR: overall uffer for ABR trafic, int
BUFFRMCO: optional: max. number of out-of-rate cells to be stored, iratief
BUFFABR)
HI_THRESH: optional: turn congestion indication on, int &g BUFFABR)
LO_THRESH: optional: turn congestion indicatior, afit (default: H_ THRESH)
TBE: transient bffer exposure for connection getiation, int
Al: measurement inteal for ABR trafic (time slots, int)
CBRI: optional: measurement intahfor non-ABR trafic (time slots, int), defult:
Al
ZOL: optional: z-alue in case no ABR bandwidtikealable. defult: 1000
LINKCR: optional: output link cell rate (cells per second, doublerulef
353207.55
TARGUTIL: target link utilisation (double)
DYNFAIRSHARE: optional: use number of aaiconnections for calculations (see
belaw)
BINMODE: optional: no ER feedback is written into RM cells (“pure” CI bit mode)
OUTBRMC: where to send bacland RM cells
OUTDATA: multiplexer output
Eunction

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 33

The AbrMux is an ABR multipbeer with ERICA and binary (CI bit) feed back and

backward RM cell processing. ABR and non-ABR fratise diferent lffers. All

ABR traffic (virtually) shares oneuffer, but the amount of out-of-rate RM cells can be

limited. The multipleer seres cells in the follving order:

1. non-ABR cells

2. in-rate RM cells

3. out-of-rate RM cells

4. ABR data cells

Thus, RM cells wvertale ABR data cells. The binary feedbacltermarks are related

only to the ABR hffer. During congestion indication, the ClI bit is set in fardrand

backward direction.

For the intgration of non-ABR, the current non-ABR load is measured (iakerv

CBRI time slots, defult: Al). The fir and VC shareatues of the ERICA algorithm

then are computed as folis. For the &ir share, the dérence of taget rate (LINKCR

times TARGUTIL) and current non-ABR rate iswliled by the number of ABR con-

nections. It is set to zero in case no ABR bandwidéiable. The z-alue for the VC

share is the ratio of current ABR input rate (measuved Al time slots) and the dif-

ference between et and non-ABR input rate. Z is set to 1000 in case no ABR band-

with available, or to ZOL if specified in the definition statement. The current rate of a

connection is taén from the CCR of forard RM cells, the current ER of a connection

is included in both forard and backard RM cells.

If DYNFAIRSHARE is gven, then thedir share computation is based on the number

of connections which wva sent during the last Al inteal(no aeraging with preious

values is performed). Wout DYNFAIRSHARE, the &ir share results from the

number of established connectiongérlless wether actually sending or not).

In BINMODE, no ER feedback is filled into RM cells. Therefore, the muitgile

behaes like a dgice with only binary feedback.

During connection setup (initialized by the ABR source), only a check of the sum of

the current MCRs anst the taget rate is performed. The current non-ABR load is not

taken into account. & computing the initial cell rate, also the ERICA algorithm is

used: CCR is set to MCR in this case.

The multiplexer has NINP + 1 inputs:

e mux->I[i] ... mux->I[N NP]:forward data inputs

* nmux- >BRMC: input for backvard RM cells

Exported \ariables

An object eports the follaving variables for use with commands or measurement

devices:

* nmux->Q.enNABR: current non-ABR queue length, int

* mux->Q.enABR: current ABR queue length (all kinds of ABR cells), int

* nmux->QL.enABRDat a: current ABR data cell queue length, int

* nmux->Q.enRMCI : current in-rate RM cell queue length, int

e mux->Q.enRMCO: current out-of-rate RM cell queue length, int

* mnmux->LossDat a(vci _no) : number of cells lost on this VC (hon-ABR or ABR
data), int

e mux->LossRMCI (vci _no) : number of in-rate RM cells lost on this VC, int

* mux->LossRMCQ(vci _no) : number of out-of-rate RM cells lost on this VC, int

* mux- >CRNABR: current non-ABR input cell rate, double

* mux- >CRABR: current ABR input cell rate (all kinds of cells), double

* mux->Z: current z-alue (ERICA algorithm), double

Data types

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 34

The inputstux- >1 [x] expect Cell and RMCell , omux- >BRMC RMCell is
expected.

7.10.3 ABR Sink

Declaration
Abr Si nk si nk: BUFF=1000, TARGBUFF=500, HI _THRESH=800,
LO THRESH=600, Al =100, LI NKCR=2.2e5, TARGUTI L=0. 9,
OUTBRMC=I i ne, QOUTDATA=aal 5;
BUFF: output loffer size (int),!! ATTENTION !! see belw.
TARGBUFF: optional: lnffer occupation at which to decrease ERadé&f BUFF/2
HI_THRESH: optional: turn congestion indication on, int > BUFF)
LO_THRESH: optional: turn congestion indicatior, afit (default: H_ THRESH)
Al: optional: measurement intealvfor output rate measurement, algdt: 30
LINKCR: optional: output link cell rate (cells per second, doublerulef
353207.55
TARGUTIL: optional: ER reductionafctor see belw. Default: 1.0
OUTBRMC: where to send bacland RM cells
OUTDATA: where to send data cells
Function
AbrSrc implements an ABR sink which also can act as virtual sink. The sink function
is very simple: RM cells are reflectednards the SES (DIR bit set, BN bit cleared).
Data cells are passed to theinabject.
I ATTENTION !!:
Also if the next object neer stops the ABR sink, thelB-F value limits the TBE alue
negotiated during connection setup. So S&FB high enough in gncase.
Backpressure:
The binary feedback is performed as in the ABR mubtgn@escribed. If the current
output luffer occupation reacheARGBUFF (due to stop send caused by the data sink
or next ABR control loop), ER is reduced t&ARGUTIL times the current output link
rate. The latter one is measure@i0Al time slots. Br the start-stop protocol (see
Section9.3 on pagd4), the source has an input src->Start.
Exported \ariables
An object eports the follaving variables for use with commands or measurement
devices:
* si nk->Q en: current output queue length, int
* si nk->Loss: number of lost cells (outputifer), int
* si nk->Count Dat a: number of ABR data cells passed, int
* si nk->Count RMCI : number of in-rate RM cells reflected, int
* si nk->Count RMCO number of out-of-rate RM cells reflected, int
* si nk->CRCut : current output cell rate, double

Data lypes
Inputsi nk expects Cell and RMCell, &ti nk- >St art Data is accepted.

7.11 TCP Connections

7.11.1 TCP Sender

Declaration

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 35

TCPI Psend tcps: BUF=<i nt >, BSTART=<int>, MIU=<int>,
TS=<0/ 1>, NAGLE=<0/ 1>, FRETR=<0/1>, BI TRATE=<doubl e>,
PROCTI M=<doubl e>, TI CK=<doubl e>, RTOM N=<doubl e>,
OQWVE<i nt >, LOGRETR=<0/ 1>, REC=<obj ect >,
OUTDATA=<o0bj ect i nput>, OUTCTRL=<obj ect i nput>;
BUF: input uffer size (bytes)
BSTART: optional: luffer occupation where toake up sendedefult: BUF-4096
MTU: optional: maximum output frame size (bytes),addt 9180 bytes
TS: optional: time stamp option (RFC1323) ofi/default: on
NAGLE: optional: Nagles algorithm (RFC1122) on/pfdefault: on
FRETR: optional: dst retransmission and reeoy on/of, default: on
BITRATE: optional: AM layer bit rate (Mbit/s), deifult: 149.76 Mbit/s
PROCTIM: optional: processing time per sent petofmsec), defult: 0.3msec
TICK: optional: length of TCP clock tick (msec), daft: 500msec
RTOMIN: optional: minimum retransm. timeout (msec),aléf. 1500msec
OQWNM: optional: maximum output queue length (petsk, dedult: 2 packts
LOGRETR: optinal: print retransmission messages grdefault: of
REC: name of the peer TCP reasiobject
OUTDATA: where to send TCP frames
OUTCTRL: control input of the preceeding netk object
Function
The object implements the TCP sender functiondlitye IP part only is reflected by 20
bytes IP werhead in each paekgenerated. On the input ps- >Dat a, frames con-
taining a length indicator aregected. On this input, a netvk object follaving the
start-stop protocol (see Secti®r8 on pagd4) is epected: it is stopped in case the
input kuffer is full. The frames are gmented, and appropriate TCP/IP frames are gen-
erated. The TCP sender also can be stopped by its succeedingkradiject (start-
stop protocol, the start inputti€ps- >St ar t). The input gpecting the acknal-
edgement paeks ist cps- >Ack.
The following algorithms are implemented by the object class:
» Slow start and congestiorv@dance
* Silly window syndrome (SWS)widance according to RFC 1122, section 4.2.3.4.
The implementation diérs slightly: condition (3) in this section is not subject to
Nagle’s algorithm, i.e. a ggnent of half of the recegr’s luffer size is sent alays.
» Nagles algorithm according to RFC 1122, section 4.2.3.4. See remarks to SWS.
» Karn’s algorithm (no RT measurement during retransmissions)
» Fast retransmission and reeoy
* RTT measurement with time stamp option according to RFC 1323

After connection setup, both TCP sender and vec&nav the identity of the peer
object. The identifiers are written in each frame sent (data @kdframes). Thus
checks can be performed, whether anvamgi frame stems from the peer object or
whether it has awed due to erroneous routing (problem ig&anetvork configura-
tions). Error messages are launched in this case.

Remarks

The object DOES NDYET IMPLEMENT the zero windo probe: if an ackmedge-

ment packt reopening the recar windaw is lost, then the connection stops feere

To model the soak interbice (input cps- >Dat a) in a useful vy, the sending object
already has to splivailable data into pieces of e.g. 4096 bytes. This is hecessary since
the start-stop protocol does not (yet) alla partial reject of a recsid data item.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 36

Exported \ariables

An object eports the follaving variables for use with commands or measurement
devices:

t cps- >NXT: data sequence numbeixhé send (bytes)

t cps- >UNA: first unacknwledged data sequence number (bytes)

t cps- >RTT: estimated round trip time in ticks

t cps- >RTTr eal : “real” (measured in the simulator) round trip time in time slots
t cps- >RTCcal c: retransmission timeoutlue most recently calculated fronf R

t cps- >WND: recever windaw size currently seen (bytes)

tcps->WD M N, tcps->WND_ MAX: min an maXA\ND

t cps- >CWAD: current congestion widosize (bytes)

t cps->I NPQ, tcps->1 NPQ LEN: current input queue length (bytes)

t cps->1 NPQ_MAX_LEN: max.| NPQ_LEN.

t cps- >PRCQ_LEN: current processing queue length (Qqueue mdeleBCTI M

t cps- >PRCQ_MAX_ LEN: max.PRCQ_LEN

t cps- >REXMIQO number of retransmission timeouts

t cps- >RECEI VED_BYTES: number of bytes reoe2d from the application

t cps- >XM TTED_BYTES: total number of bytes sent (with headers and retransm.)
t cps- >XM TTED _USER BYTES: the same, Ut without headers

t cps- >XM TTED_SEGVENTS: overall number of paeks sent

t cps- >REXM TTED_BYTES: total number of retransmitted bytes (headers included)
t cps- >REXM TTED_ SEGMVENTS: number of pacsts retransmitted

t cps- >RECElI VED_ACKS: number of receed ack packts

t cps- >REX_PERC: current percentage of retransmissions

Commands

The command cps- >Reset St at resets the follwing variables:

I NPQ_MAX_LEN, PRCQ MAX LEN, REXMIO, RECEI VED_BYTES,

XM TTED_BYTES, XM TTED _USER BYTES, XM TTED_SEGVENTS,

REXM TTED BYTES, REXM TTED SEGVENTS, RECEIl VED ACKS,
REX_PERC.

Data types

Input tcps->Data: Frame

Input tcps->Start: Data

Input tcps->Ack: TCRcknowledge

Output OUTDATA: TCPIPFrame

Output OUTCTRL: Data

7.11.2 TCP Receiver

Declaration
TCPI Prec tcpr: WND=<int>, PROCTI M=<doubl e>,
ACKDEL=<doubl e>, | ACKDEL=<doubl e>,
OUTDATA=<o0bj ect i nput>, OUTACK=<obj ect i nput>;
WND: recever luffer size, including resequencing queue (bytes)
PROCTIM: optional: processing time per regsil packt (msec), defult: 0.3msec
ACKDEL: optional: delay of “delayed” ackmdedgmts (msec), datilt: 200 msec
IACKDEL: optional: delay of “immediate” acks (msec), algf: PROCTIM msecs
OUTDATA: where to send recetd data
OUTACK: where to send ackmndedgement frames
Function

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 37

The object implements the TCP reagifunctionality TCP/IP packts are gpected at
the inputt cpr - >Dat a. The object can be stopped by the succeedingonketwbject
which stops eentually the windw update process of the regsi (start-stop protocol,
inputt cpr - >St ar t). During connection setup, the object is informed by the peer
sender about M bit rate (to translate seconds into slots), the time stamp option, and
the maximum sgment size. The sendén turn, is preided with the maximum win-
dow size. In case turned on by the peer sernbtertime stamp option according to RFC
1323 is supported.
A delayed acknwledgement is mggistered with eery paclet receved in-sequence.
Immediate ACKs are sent:
« if an out-of-sequence paekarrves,
* if the recever windav closes to zero,
» if a zero windav probe is receed, and
« if the right windav edge shifts by at least one maximum-sizegirsmt or half of

the total recefer kuffer size.

After connection setup, both TCP sender and vec&inav the identity of the peer
object. The identifiers are written in each frame sent (data @#xdframes). Thus
checks can be performed, whether anvargi frame stems from the peer object or
whether it has awed due to erroneous routing (problem ig&anetvork configura-
tions). Error messages are launched in this case.

Remark
RFC 1122, section 4.2.3.2 recommends to sendCi¢ far at least each second full-
sized sgment. This currently is only realised indirectly via the immedi&i&A
launched by the subsequent windapdate. In case the recei has been stopped by
the successpthis algortihm will &il (ho windav update will occur as long as the
recever remains stopped).
Exported \ariables
An object eports the folleving variables for use with commands or measurement
devices:
t cpr - >THROUGHPUT: mean throughtput since first patlsent by sender (bit/s)
t cpr - >SDU_DELAY: mean TCP paak delay (slots)
t cpr - >RESQ_LEN: current length of the resequencing queue (p&gk
t cpr - >RESQ_MAX LEN: max.RESQ _LEN
t cpr - >PRCQ _LEN: current length of the processing queue (p&k
t cpr- >PRCQ_MAX LEN: max.PRCQ LEN
t cpr - >ACK_CNT: number of ACKs sent
t cpr - >WAD: current windw size (bytes, not yet necessarily adised)
t cpr - >ARRI VED_SEGVENTS: total number of arvied packts
t cpr - >ARRI VED_BYTES: total number of arvied bytes (without headers)
t cpr- >ARRI VED VALI D_BYTES:
bytes arwed in the adertised windw (between nxt and nxt+wnd)
t cpr - > USER_PACKETS: number of packts sent to the successor
t cpr - >USER_BYTES: number of bytes forarded to the successor
t cpr - >OUT_OF_ORDER_SEGVENTS: number of padits receied out-of-order
t cpr - >OUT_OF_ORDER_BYTES: bytes recefed out-of-order (without headers)
Commands
The command cpr - >Reset St at resets the folling variables:
ARRI VED_SEGMVENTS, ARRI VED BYTES, ARRI VED VALI D_BYTES,
USER_PACKETS, USER BYTES, PRCQ MAX LEN, RESQ MAX LEN,

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 38

OUT_OF_ORDER_SEGVENTS, OUT_OF_ORDER BYTES, ACK _CNT,
THROUGHPUT, SDU_DELAY

Data types

Input tcpr>Data: TCPIPFrame

Input tcpr>Start: Data

Output OUTOATA: Frame

Output OURCK: TCFAcknowledge

7.11.3 TCP Application: Constant Frame Distances

Declaration
CBRFrane src: DELTA=<int>, LEN=<int>, StartTi ne=<int>,
EndTi ne=<i nt >, BYTES=<i nt>, CONNI D=<i nt >,
QUT=<o0bj ect i nput >;

DELTA: distance between twgenerated frames (time slots)

LEN: length of one frame (bytes)

StartTime: optional, when to start to send (see Wglaefwlt: DELTA

EndTime: optional: when to stop to send (time slot) adétf (virtually) infinite

BYTES: with wich byte stop to send, aett: (virtually) infinite

CONNID: optional: layer 4 connection ID of the generated frameautied

OUT: where to send frames generated
Eunction
This object class can be used to modgk lolata transfer for TCP (see Sectibfil.1
on page35). Every DELTA-th time slot, a frame of length LEN is sent. The object rec-
ognizes the start-stop protocol (Sect®hB on pagé4), the control input for this pur-
pose issr c- >CTRL. If StartTime is gven and greater than zero, the objedfiheto
send at this instant. In case Starté& is set to zero, then the objecgims to send
between time slot 0 and 500’000 (random choice, equally disdh.
Output data type
Frame

7.11.4 TCP Application: Arbitrary Frame Distances

The object clasPat a2Fr ane converts each incoming data item (e.g. cell) into a
frame with constant length. Hence, it is possible to useatety of cell sources for
the generation of frames.
Declaration
Dat a2Frame d2f: FLEN=20, CONNI D=10, OUT=tSss;

FLEN: length of generated frames (int)

CONNI D: optional: layer4 identifier default: 0

OUT: where to send frames

In order to connect this object to a TCP sender or another object relying on the Start-
Stop protocol, an inteate object has to be placed between frame source and TCP

input. This interhceTer ntSt ar t St op has not been ingeated intadDat a2Fr ane

since it is useful also for other purposes. When the predecessor continues to send, if the
sucessor has stopped the irded, then simply the inputifier overflows. But the

interface behaes according to the Start-Stop protocol at its output. The object has a
control inputt ss->St art .

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 39

Declaration
TernStart Stop tss: BUF=100, OUT=tcpi psend->Dat a;
BUF: input kuffer size in frames (int)
QOUT: where to send frames
Commands
t ss- >Count is the number of lost data iteniss- >ResCount resets this counter

7.12 Miscellaneous

7.12.1 Signalling source

This is more a command, since no object is generated. The routing table of the speci-
fied object is written.

Declaration

Signal denux (ol dvCl, newCl, outpNo), ...;

Example:

Si gnal demux (1,2,1), (7,8,2);

Cells with VCI 1 are passed to output 1, the VCI is changed to 2.

Cells with VCI 7 are passed to output 2, the VCI is changed to 8.

The number of signalling messages specified with one Signal statement is atbitrarily
Since the signalling is performed instantlye destination object has to be defined in
adwance.

7.12.2 Datatype and timing checks

For purposes of delgging:
TypeCheck tc: TYPE=RMCel |, VCl =1, OUT=denux;
TYPE: data item type
VCI: if given (can be omitted), only data items on this VCI are aueck
OUT: input name of the succeeding object
Function
The object ensures that all passing data items are of the specified class or of a class
which is denved from the gien one. Yolating data items cause an error message. Fur-
thermore, data items are accepted only in the early slot phase, amthgegwire than
one item per time slot causes an error message.
No commands

7.12.3 Dummy Connection Object

When using e.g. loops to describe natg structures, then sometimes some names do
not fit at all into the rule which is\gn for the whole loop.d*translate” names, this
dummy object is usefull. It really does nothing than famading an incomming data

item to its output.

DunmyCbj dny: QUT=li ne;

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 40

7.12.4 A Class | mplementing Non-L ocal Variables

Variables are local to the enclosing block. It is therefore not possible to create auxiliary
variables with macros. Since objects are not local to the block of definition, a special
object class may sadvsome problems.

ValArray arr: LEN=10;
This defines an object containing an array of doualees. The alues can be written
with arr->Set(index, value) , Where indeg is an intger between 0 and LEN-
1. The alues can be read withir->Get(index)

8.0 Graphical Online Displays

8.1 Interactive Control Window

Declaration
Control: POS=(50,50), DELTA=100, SLEEP=100000,
FILE="xx.pos”, CORR=(3,20);

POS: screen position of the control wimd@nteger)

DELTA: number of time slots between to @eations (intger)

SLEEP: time enforced between 2 gations (micro seconds, imgfer)

FILE: optional: file where positions and dimensions of graphical objects are stored

CORR: optional: correction of windoshift caused by winde manager frames
Function
The object generates a winvdentitled “YATS” which displays the current simulation
time, and the current state (running / stopped). The initial state is “stopped”. Mouse
clicks on the windev area toggle between the statemddwy update and test on mouse
events are performed witlvery DELTA-th time slot. If SLEEP is gen (it can be
omitted), then a pause is generated after each wingdate, if the timexpired since
the last update is smaller than the specified one.
If the optional FILE is gien, then all changes of windalimensions and postions are
stored in this file. These storedlves lateron\erride the specifications of the normal
input text.
ATTENTION: The position file only éécts objects which are defined after the Control
window definition.
The CORR parameter (aefit: (5,30) according to Solaris 2.5 DCE manager) corrects
the windav shift caused by the windomanages windav frames. If windav posi-
tions mwe between tw calls of YATS, then look into the position file and observ
changes in the windopositions. Yu then can specify the appropriate CORIRIgS.
Remarks
The object is actated during the early slot phase, andgisters at thevent scheduler
like every other object. Therefore, it is unspecified which otlenes destined for the
current time slot hae been actiated already - and which not. Graphical online dis-
plays, havever, normally rgister for the late slot phase. Thusytiheay display an old
value. By choosing appropriate sample distances, it can be ensuredytlzaetben-
chronized with each other when stopping the simulator

8.2 Sliding TimeHistory of a Value

Declaration

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 41

Meter meter: VAL=src->Count, TITLE="Cell Rate in src”,

WIN=(100,100,400,200), MODE=DiffMode, NVALS=200,

MAXVAL=100, DELTA=100, UPDATE=10;

VAL: object and ariable name to be displayed

TITLE: window title, can be omitted (then the object name is used)

WIN: (xPos, yPos, width, height) (irger)

MODE: DiffMode or AbsMode (see bel)

NVALS: number of displayedalues (history length) (ingeer)

MAXVAL: values are normalized to MAXAL

DELTA: number of time slots betweendvgamples (intger)

UPDATE: the windav is updated only withveery UPDATE-th sample (can be omit-

ted)
Function
The object specified byAL is aslked for the address of thevgn \ariable. Its contents
then is read duringvery DELTA-th time slot. The time history comprises ANS
samples, the full winde height corresponds to MAXAL. The mode AbsMode dis-
plays the samples itself, BMode displays the diérences between subsequent sam-
ples. If UPDATE is given (can be omitted), then the winds updated only withvery
UPDATE-th sample.
On a mouse click on the windcarea, a file name to store the current history content
(ASCII format) is askd for
Remarks
The object rgisters at thevent scheduler for the late slot phase. Therefaees
modified during the late phase can not be displayedtly with a resolution of one
time slot. D enable the display ofiviables, the data source has to implement the
export() method (see object methods).

8.3 Histogram of a Distribution

Declaration
Histogram histo: VALS=meas->IAT, TITLE="IAT Distribution”,
WIN=(100,100,400,200), MAXFREQ=0.2, DELTA=100;
VALS: object and array name to be displayed
TITLE: window title, can be omitted (then the object name is used)
WIN: (xPos, yPos, width, height) (irger)
MAXFREQ: normalisation, corresponds to the windaeight (double, can be omit-
ted)
DELTA: number of time slots betweendvgamples (intger)
Eunction
The object specified byALS is asked for address and dimension of theegi array
The contents of the array is interpreted as a digtab (the alues are dided by the
sum of them). Sampling and display are performed during each/AtLtime slot. If
MAXFREQ is not specified, then the display normalisation is done automatically (the
window height corresponds to thedasst frequenctimes 1.25).
On a mouse click on the windcarea, a file name to store the current distidm con-
tent (ASCII format) is astd for
Remarks
See remarks for the Meter object.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 42

8.4 Production of a Distribution from Samples of a Value

Declaration
Histo2 histo: VAL=mux->QLen, TITLE="Queue Length Distrib”,
WIN=(100,100,400,200), NVALS=52, MAXFREQ=0.2,
DELTA=1, UPDATE=1000;
VAL: value from which to produce the distiiibn
TITLE: window title, can be omitted (then the object name is used)
WIN: (xPos, yPos, width, height) (irger)
NVALS: length of the distribtion. Value range: 0 ... NALS-1
MAXFREQ: normalisation, corresponds to the windaeight (double, can be omit-
ted)
DELTA: number of time slots betweendvgamples (intger, can be omitted)
UPDATE: the windav is updated only withvery UPDATE-th sample (can be omit-
ted)
Function
The object specified byAL is aslked for the address of thevgn \ariable. Its contents
then is read duringvery DELTA-th time slot. The produced disttibon comprises
NVALS values. If UPIATE is gven (can be omitted), then the wind® updated only
with every UPDATE-th sample. If MAXFREQ is not specified, then the display nor-
malisation is done automatically (the wimdbeight corresponds to thedast fre-
gueny times 1.25).
On a mouse click on the windcarea, a file name to store the current distidm con-
tent (ASCII format) is astd for
Exported \ariables
histo->Dist(i)
frequeng counter of alue i.
Commands
histo->ResDist
Resets all counters
Remarks
See remarks for the Meter object.

9.0 Data Object Classes

9.1 Used Data Object Classes, Derivation Relations

Different netwrk object classes communicate videliént data object classes. Cur-
rently, the folloving data classes are defined:

1. Data
Base class. Only contains a time stamp (generation time). Contains a hook to embed
other data objects.

2. Cell
ATM cell, derived from Data. Contains a VCI number

3. RMCell
ABR ressource management cell, ded from Cell. Contains RM data.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 43

4. AALSCell
Cell with payload, carrying cell and AAL SDU sequence numbersyv@&efrom
Cell. Normally is used to embed other data objetcs.

5. Frame
Data frame only containing a length indicator (used for, 1S&Rtion7.11 on
page35). Derved from Data.

6. TCPIPFrame
PDU of TCP connections (Secti@rnll on pag85). Derved from Frame.

7. TCPAcknowledge
PDU of TCR carrying acknaledgement information. Desd from Frame.

The check, whether the data item reediby a netark object is the same aspected

or derved from it, is performed at run-time. The mechanism is implemented gsrinte
table lookup and costs not more than 5 % spagdyies maximum fleibility: Net-
work objects processing e.g. class Data do not complain abowtimgdgell. In con-
trast, a Data item incomming at the baeka/RM cell input of an ABR source causes
an error message.

9.2 Data Object Embedding

The specification of the “Data” object class defines a mechanism to embedd data
objects into other objects. This alls to implement protocol layers which are transpar-
ent for the net higher layerThe first @ample will be the implementation of AAL5
connections which can “tunnel” arbitrary data objectsyipgex the implement the
methods for embedding.

9.3 Start-Stop Potocol

Sometimes a loss-free transmission of data objects betweeorketvyects is neces-
sary e.g. for the communication between higher protocol layers. The dateerecei
should be able to stop and start the data sender depending on its internal s&ate or e
the state of the succeeding netiwobject. r this purpose, the start-stop protocol has
been defined. As a sidefedt of delvering the data item, the sender is informed
whether the receer can accept more data. If not, then the sender has to stop. Itis
informed by the receer via an gtra input - often called Start - that more data can be
sent. The protocol currently is used by ABR objects (Seétibd on pag82), the
source GmdpStop (Secti@nl.7 on pagé6), AAL 5 objects (Sectioii.8 on pagl7),
and the shaping giee ShapCitrl (Sectioi.7.3 on pag@6). TCP/IP will be ne candi-
date.

10.0 Examples

10.1 Complete Simulation Series with Confidence Inteals

In the follaving, an @ample producing a cuevof the cell loss probability in a multi-
plexer over the luffer length is gien. Confidence inteals for the measurements are
calculated, and the produced output file can be visualized directly by gnuplot.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 44

The parameters of a simulation model can be changed bynderalues from eviron-
ment \ariables. These can be set by appropriate shell scripts. The snptdettothe
variable BLEN to 10, 20, ..., 100 and call&Ts for each &lue.

#!/bin/sh
BLEN=10
while [$BLEN -le 100]
do
export BLEN
yats y.in 1>>y.out 2>>y.err
BLEN="expr $BLEN + 10°
done
end of shell script

BLEN is recognized in the folaing simulator input file “yn”. It performs a varm-up
and 10 runs for eachalue. A confidence inteaV (95 %) is computed, and results are
written to standard output which has been redirected by the shell script.

#include “MACROS” /l'load macro library
var i, nruns, nsrc, blen, slots;

blen = int(env(“"BLEN")); // read environment variable for
/I buffer length, convert to int

slots = int(5e6); I/ length of one simulation run
nruns = 10; Il perform 10 simulation runs
fori=1to nruns

var plossi]; /I an array to store results of runs

/***/

/*

* model description

*/

nsrc = 60; /I number of sources

fori=1to nsrc /I nsrc Ethernet-like sources

BSquelle src[i]: EX=32, ES=2720, DELTA=15, VClI=i, OUT=mux->I[i];
Multiplexer mux: NINP=nsrc, BUFF=blen, OUT=sink;
Senke sink;

/***/
/*

* warm-up, nruns simulation runs

*

/

Sim->Run SLOTS=slots; // one run for warm-up

fori=1to nruns
{ vark, sent;
mux->ResLoss; /I reset loss counters in mux
for k = 1 to nsrc
src[k]->ResCount; // reset departure counters

Sim->Run SLOTS=slots; // simulate the model

sent = 0.0; / force sent to be a double value
fork=1tonsrc // add departure counters

sent = sent + src[k]->Count;
ploss[i] = mux->Losses(1, nsrc) / sent; // store the result

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 45

/***/
/*
* calculate confidence interval, output result

*

* The macro Confid95() is defined in the file “MACROS".

* |t expects the reference to the array containing values, its

* length, and the references to the variables where to store results
*/

var mean, lo, up;

Confid95(ref(ploss: [1]), nruns, ref(mean), ref(lo), ref(up));

print blen, “\t", mean, “\t”, lo, “\t”, up, “\n";

/I end of YATS input file

After having run the shell script, gnuplot can vizualize the eufihe follaving com-
mands hee to be gren:
$ gnuplot

gnuplot> set log y
gnuplot> plot “y.out” with errorbars

A simpler possibility to calculate confidence intdly is described in Sectidnl on
pagel2. For the macro ersion used here, see Sectidn5.1 on pagél.

10.2 ABR Multiplexer, Graphical Online Displays

The follonving input file defines an ABR multiex loaded by 200 ABR sources and an
optional background source. Between ABR sources and muéiptéfferent delay

lines are placed both in foard and backerd direction. The data sourceways want

to send with the full rate, tyeare stopped by the ABR sources via the start-stop proto-
col. To turn on the background tfi&f uncomment the backround source helo

The graphical displays ti@ to be placed on the screen with the first run (initiatiyst
of them werlap). The n& positions are stored in the file “ghws”, see Control object
below.

/l ABR example for YATS

var i, nsrc;
nsrc = 200; /I # of ABR sources

/***/
/*
* model description
*/
fori=1tonsrc
{ /I data source
GmdpStop gmdpli]: NSTAT=2, DELTA=(1,1), EX=(10,50),
TRANS=(0,1,1,0), VCI=i, OUT=abrsrc[i];
/I ABR source
AbrSrc abrsrcli]: BUFF=5, BSTART=2, MCR=0, PCR=100000, FRTT=100,
ROUTE=(2, abrmux1, abrsink[i]), AUTOCONN,
OUTCTRL=gmdp]i]->Start, OUTDATA=linefw[i];

/I delay forward
Leitung linefw[i]: DELAY=i*10, OUT=abrmux1->I[i];
/I delay backward

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 46

Leitung linebw[i]: DELAY=i*10, OUT=abrsrc[i]->BRMC;

/I ABR sink

AbrSink abrsink[i]: BUFF=1000, OUTBRMC=snkmux->I[i],
OUTDATA=datasink([i];

Senke datasink([i];

}

/*

* background source and sink:

* uncomment next two lines to turn on background traffic

*/

/I MMBPquelle bgsrc: EB=3000, ES=3000, ED=1.3, VCl=nsrc+1,
1 OUT=abrmux1->I[nsrc+1];

Senke abrsink[nsrc + 1]; // background sink

/*

* forward direction

*/

AbrMux abrmux1: NINP=nsrc+1, MAXVCl=nsrc+1, BUFFCBR=100,
BUFFABR=100000,

1 HI_THRESH=5000, LO_THRESH = 4000,
TBE=1000, Al=100, TARGUTIL=0.95,
OUTBRMC=srcdmx1, OUTDATA=msload1;

Meas2 msloadl: MAXCTD=100, MAXIAT=100, OUT=demux1;

Demultiplexer demuxl1: MAXVCI=nsrc+1, NOUT=nsrc+1,

OUT=(i: abrsink]i]);
fori=1to nsrc+1
Signal demux1 (i,i,i);

/*
* backward direction
*/
Multiplexer snkmux: NINP=nsrc, BUFF=100, OUT=abrmux1->BRMC;
Demultiplexer srcdmx1: MAXVCI=nsrc+1, NOUT=nsrc, OUT=(i: linebwf[i]);
fori=1to nsrc

Signal sredmx1 (i, i, i);

/***/

/*

* Graphics: place the windows with first call, positions are stored
* in the file “abr.pos”

*/

Control: POS=(50,50), DELTA=10000, FILE="abr.pos”;

Meter mq: VAL=abrmux1->QLenABR, TITLE="Queue Len in muxabrl”,
WIN=(200,200,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=10000, DELTA=100, UPDATE=100;

Meter mqz: VAL=abrmux1->Z, TITLE="Z in muxabrl”,
WIN=(200,200,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=5, DELTA=100, UPDATE=100;

Meter mgnabr: VAL=abrmux1->CRNABR, TITLE="CRNABR in muxabrl”,
WIN=(200,200,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=4e5, DELTA=100, UPDATE=100;

Meter mgabr: VAL=abrmux1->CRABR, TITLE="CRABR in muxabrl”,
WIN=(200,200,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=4e5, DELTA=100, UPDATE=100;

Meter m1: VAL=abrsrc[1]->ACR, TITLE="ACR abrsrc[1]",

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3

47

WIN=(700,200,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=10000, DELTA=100, UPDATE=100;

Meter mlir: VAL=abrsrc[1]->CountData, TITLE="data abrsrc[1]",
WIN=(700,200,400,200), MODE=DiffMode, NVALS=100,
MAXVAL=100, DELTA=1000, UPDATE=10;

Meter mlirm: VAL=abrsrc[1]->CountRMCI, TITLE="RMCI abrsrc[1]”,
WIN=(700,200,400,200), MODE=DiffMode, NVALS=100,
MAXVAL=100, DELTA=1000, UPDATE=10;

Meter mlor: VAL=abrsrc[1]->CountRMCO, TITLE="RMCO abrsrc[1]",
WIN=(700,200,400,200), MODE=DiffMode, NVALS=100,
MAXVAL=100, DELTA=1000, UPDATE=10;

Meter m2: VAL=abrsrc[nsrc]->ACR,

TITLE="ACR abrsrc[* + string(nsrc) + “7",
WIN=(700,500,400,200), MODE=AbsMode, NVALS=1000,
MAXVAL=10000, DELTA=100, UPDATE=100;

/***/
/*

* Simulation run of 1 million time slots

*

/

Sim->Run SLOTS=int(1e6);

/I ouptut some statistics
print “load in abrmux1: “, msload1->Count / 1e6, “\n”;
var I;1=0;
fori=0tonsrc+1
| = | + abrmux1->LossData(i);
print “loss in abrmux1: “, I, “\n”;

print “departures from abrsrc[1]: “, abrsrc[1]->CountData, “\n”;
print “arrivals in datasink[1]: “, datasink[1]->Count, “\n”;
print “data arrivals in abrsink[1]: “, abrsink[1]->CountData, “\n”;
print “RMCI arrivals in abrsink[1]: “, abrsink[1]->CountRMCI, “\n”;
print “RMCO arrivals in abrsink[1]: “, abrsink[1]->CountRMCO, “\n”;
print “arrivals in datasink[“, nsrc/2, “]: “,

datasink[nsrc/2]->Count, “\n”;
print “arrivals in datasink[“, nsrc, “]: “,

datasink[nsrc]->Count, “\n”;

/I end of YATS input file

11.0 Some Further Notes

11.1 ... Regarding References

1. For variables and macros, a reference is bound to the “home” block of the entity
(unique ID for each block instance, e.g. in a loop). The reference therefore becomes
invalid in case the block has been already left when resolving the reference which
results in an error messagearMbles with the same identifiéut used in diierent
blocks, can be dérentiated due to the block information contained in a reference
generated by ref().

2. Although referencesventually are normal strings, thenly should be assigned to
variables, bt never be processedoTavoid unintended mistas, references twice
contain the character \O01’ which, of course, is not a protectiaimsicalbise.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 48

3. The null reference i§' , e.g.: if (r 1= ") deref(r) = 1,

4. When recognizing the folling rule, then references should be reallyes@void
to declare — in the same block — arrays which onkgdif the ind& ranges. The
next example probably will not belva as intended. Instead of causing an error mes-
sagea[10] will be accessed by the macroeWould get an error messagewio
ever, if the second array declaration and the macro aallldvbe placed in a me
block.

macro mac(x) { deref(x)[10] = 1; }
var i,r;
fori=1to5
var afi]; // creates a[1]...a[5]
r = ref(a: [1]); // intention: reference to a[1]...a[5]

fori=10to 15
var a[i]; // ! this extends the scope of r !!
mac(r); /I will cause: a[10] =1

11.2 ... Regarding Literals

As has been sl in the @ample of Sectiod.1 on pag®, the string ggument of

lit) may contain input nameensions hilt upon ‘->'. This is \ery useful ot
somavhat dirty therefore a note here.

The possible inclusion of input namdensions is based ondviacts. Firstlylit() does

only check that its gument does not contain white space or the special character
\O01’ which is essential for references. Thus, in principle allyfedentifiers can be
generated. Secondlghe routine used by nebnk objects whenwaluating names of

their succeeding objects, is based on the same piece of code also implementing the lax
lit() transformation (krnel/id.c::parse_id()).

An important consequence of this ‘by-chance’ possibility is that it unfortunately does
not work for commands andkported \ariables. There, the whole thing has to be split-
ted into two parts, e.g.:

Senke sink;

/l does NOT work (syntax error):
print lit(“sink->Count”), “\n”;

Il works fine:

print lit(“sink”)->lit(“Count”), “\n”;

11.3 ... Regarding Macro Shells

11.3.1 Commandsto Macro Shell Objects

Together with the instantiation of a macro shell, an object can be created, and com-
mands can be directed later on to the iatzfobject. These commands are mapped
into macro calls. This is only possible, if

1. the macro shell has at least onguanent, and

2. the first agument is of type ‘lit’ (identifier). The actuahle of this agument is
taken as name of the generated irdeef object.

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 49

It is then possible, to include a list of command specifications in the macro shell defi-
nitions. The specifications are separated by commas, each elegiantrizewith ley-

word CMD or CMDV. CMD defines a command wich cannot be usedpmessions.

The corresponding macro does not need to retuatug WAith CMDV, commands

with return \alue are defined, and the corresponding macro has to retalunea(syn-

tax error message, otherwise). The syntax of a command specification isvas. follo

{‘CMD’ | ‘CMDV’ } ‘=" *(* cmdName { ‘(' cmdArgs)" } *,
‘MACRO’ ‘=" macroName ‘)’

If the command (namemdNameg has no parametethen the patmdArgs (with
braclets) has to be skippedameters are specified using the tygenords ‘int’,
‘double’, or ‘string’. Keywords and defult values as for the macro shell itself, ace
supported. The parameter specifications are separated by commas. Thenamaero (
macroName) has to gpect Shell + nCmd) aguments, wheraShell is the number of
arguments of the shell, amCmd is the number of command parameters. The first
nShell values passed to the macro are thlees used for the instantiation of the macro
shell. Thg are follaved by thenCmd values used in the command statemenkpres-
sion. Example:

macro defX(id) // definition macro
{ Senke lit(id).s; // do NOT use lit(id): this is used
// as name of the interface object

}

macro getX(id, n) // command ‘Get(int)’

{ if (n!=1) // only to demo sth ...
{ print[2] id, “: an error.\n”;

exit 1,

getX = lit(id).s->Count;

}

macro resX(id) // command ‘Reset’

{ lit(id).s->ResCount;

}

MacroShell X: ARGS=(lit@1), MACRO=defX(string(@1)),
CMD=(Reset, MACRO=resX),
/I no parameters, no return value
CMDV=(Get(int), MACRO=getX),
Il integer parameter, returns a value
print;

X bla;

bla->Reset;

print “bla->Get(1) = “, bla->Get(1), “\n”;
bla->Get(2); // we should see our error message

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 50

11.3.2 NULL Value for Identifier Ar guments

For the definition of sub-models with optional outputsqlitr a measurement\dee)

the followving might be useful. Dalllt aguments of type ‘lit’ (identifier) can ke the
default vale ‘0. This leads to an empty identifidihe normally applied cast to string
then results in the empty string ““ which in turn can be tested by the macro. Example:

macro hh(id, 00)

{ ...
if (00 == ")
Meas?2 lit(id): MAXCTD=10, MAXIAT=10;
else
Meas?2 lit(id): MAXCTD=10, MAXIAT=10, OUT=lit(00);
}

MacroShell HH: ARGS=(lit@1: OUT=lit@2(default 0)),
MACRO=hh(string(@1), string(@2)), print;

HH h1l: OUT=snk;

Senke snk;

HH h2; /I no succeeding object

11.4 ... Regarding Global ¥riables

The following restrictions apply:

* When a global ariable is defined, then it is chexkthat currently no otheaxiable,
macro or object with the same name is defined ynsanrounding block.

* Once a global has been defined, the namerrean be used am. This also holds
for “normal” variables which cannot Yerlaod” global ariables as thyecan do with
“normal”, local ones.

Globals therefore only should be used if really necessary

11.5 ... Regarding Confidence Intefals

The library “MACROS” (directory yatsfeamples) comprises the folling macros for
statistical galuation and simulation control. Thewer version based on an object
class is described in Sectibril on pagd 2, the old, macro-baseéngions are gen
here.

11.5.1 Basic Macos

MeanVar (), Confid (), andConfid95 () require that the user defines the necessary
arrays. More corenient macros are described in Secfirb.2 on pags2.

MeanVar(r efVals, rval, refMean, refVar)
Calculates empirical mean andriance of an array oflues. Rrameters are:

refVals :reference to the array oéhes
nval : number of elues. Thexpected array indices are [1] tovfd].
refMean : where to write the empirical mean (reference)

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 51

refVar : where to write the empiricabviance (reference)

Confid(level, refVals, rval, refMean, refWidth)
Calculates the confidence intahfrom an array ofalues and to a specified/ég of
confidence (using quantiles of Studeritdistritution). The parameters are

level :level of confidence (possiblales are 0.9, 0.95, 0.975, and 0.99)
refVals : reference to the array ohles

nval : number of alues. Thexgpected array indices are [1] tovgd].

refMean : where to write estimate of meaalwe (reference)

refWidth : where to write interal width (reference). The intealextends from
(mean-width) to (mean+width)

Confid95(refVals, rval, refMean, refLo, refUp)

Resemble€onfid() , but the level of confidence is fed to 95 per cent. Instead of
the intenal width, its laver and upper bounds are returned (refererefés and
refUp).

11.5.2 Mor Corvenient Evaluation of Confidence Intewals

For the follaving macro class, it is not necessary to define auxiliary arrays which
sometimes makthe input file rather messy

ConfObj(name, level, maxNwals);

This defines an auxiliary array object (see Sectid2.4 on pagdl) with the gien
name (string). The leel of confidence is passedlével (double)maxNvals (inte-
ger) specifies the maximum number of obagons which can be stored in the array
Example:ConfObj(“ccc”, 0.95, 20); // object ccc defined

ConfAdd(r efObj, value);

This addsvalue (double) to the object referencedr@iObj
Example:ConfAdd(ref(ccc), x); // x is a measured value

ConfMean(refObj);

ConfMean () returns the mearalue (as double) of thealues collected sat
Example:mean = ConfMean(ref(ccc));

ConfLo(r efObj);

Returns the lver bound of the confidence intatv

ConfUp(refObj);

Returns the upper bound of the confidence ialerv

ConfVar(r efObj);

Returns the empericahriance of the alues collected saf

ConfBase(efObj, refMean, refWidth);

Calculates mean and half intalwidth asConfid ().

Example
#include “MACROS”

var i, nruns;

nruns = 9;

/I define the object abc
ConfObj(*abc”, 0.95, nruns);
/I do the measurements

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3 52

fori=1to nruns
ConfAdd(ref(abc), i); // i is our “measurement”
/I print results
print ConfLo(ref(abc)), “\t”, ConfMean(ref(abc)),
“\t", ConfUp(ref(abc)), “\n”;

YATS — et Another Thy Simulator: Uses Manual for ¥érsion 0.3

53

