
YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 i

YATS – Yet Another Tiny Simulator
Programmer’s Manual for Version 0.3

Matthias Baumann
Dresden University of Technology

Communications Laboratory

1.0 Basic Principles...1
1.1 Creation of Network Objects..1

1.2 Connection of Network Objects...1

1.3 Communication between Network Objects..1
1.3.1 Data Transfer...1
1.3.2 Export of Variables for Reading..2
1.3.3 “Special” Communication...2

1.4 Event Scheduler..2

2.0 A Network Object Class: Commented C++ Code...3

3.0 How to Add a New Network Object Class..7
3.1 Configuration by Hand...7

3.2 Automatic Configuration..7

4.0 Frequent Errors and Debugging...8
4.1 Usage of the Rec() Method...8

4.2 Event Handling...8

4.3 Locating Erroneous Network Objects..9

5.0 Network Object Classes and Their Methods...9
5.1 Object Creation...9

5.2 Connection Establishment..10

5.3 Receiving Data...11

5.4 Activation by the Event Scheduler...11

5.5 Processing Commands..11

5.6 Exporting Variable Addresses..12

5.7 Miscellaneous...13

6.0 Data Object Classes, Start-Stop Protocol..13
6.1 Definition of Data Object Classes..13

6.2 Run-Time Data Type Checking..14

6.3 Embedding of Data Objects..14

6.4 Start-Stop Protocol...15

7.0 Generic Network Object Classes...16
7.1 Definition of Inputs...17

7.2 Definition of Outputs..17

7.3 Command() Method, Event Structure..18

7.4 Export() Method, Convenience Functions..18

7.5 Run-Time Data Type Checking..19

7.6 Connection Establishment..19

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 ii

8.0 Event Scheduler...20
8.1 Event Triggered Activation..21

8.2 Time Triggered Activation...21

8.3 Deleting Event Triggered Activations..21

9.0 Parser Utility Routines...21

10.0 Symbol Manager..22

11.0 Queues...22
11.1 Initialisation..23

11.2 Enqueueing...23

11.3 Dequeueing...24

11.4 Information...24

11.5 Walk through a Queue..24

12.0 Random Numbers..25

13.0 Error Messages..25

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 1

1.0 Basic Principles

1.1 Creation of Network Objects

The input file is analyzed by the parser front end. When it recognizes a statement
beginning with a network object class identifier, then it creates an object of the desired
class. This is done by calling an intermediate routine provided by the class (see
Section5.1 on page9). The object constructor normally is empty. Upon object creation
the parser calls its init()-method. Here, the definition statement can be analyzed with
the parser utility routines (see Section9.0 on page21). Inputs can be declared by call-
ing the input()-methods of the generic class ino (see Section7.1 on page17). Output
names can be parsed and registered by using the output()-methods provided by the
classes in1out and inxout (see Section7.2 on page17). When init() returns control, the
parser registers the object at the symbol manager, and expects the final ‘;’ of the defini-
tion statement.

1.2 Connection of Network Objects

After creation, the objects exist without any connections to each others, they are only
registered at the symbol manager. Before running the first simulation (first statement
Sim->Run), the connection process is invoked by the kernel. All objects registered are
informed via the connect()-method (see Section5.2 on page10). The following then is
normally done by the generic base classes in1out and inxout, so you never need to pro-
gramm it when using one of them: The object looks for the succeeding object(s)
obtained by the output()-calls during init(). It calls the symbol manager to get the
object address and then asks the object itself to obtain the input number associated to
the given input name (handle()-method, see Section5.2 on page10). This input key
number lateron accompanies every data object passed to the successor via the rec()-
method (see Section5.3 on page11). For the object data structure members filled dur-
ing the connection process, see Section7.6 on page19.

1.3 Communication between Network Objects

1.3.1 Data Transfer

The standard way for data transfer is calling the rec()-method (see Section5.3 on
page11) of the next object:

retval = SucObjectPtr->rec(DataObjPtr, InputKey);

The method returns an information, whether the sending object now should stop to
send. This allows the receiver to control the sender (see Start-Stop protocol,
Section6.4 on page15). In the most “pure” ATM object classes, however, this kind of
backpressure is not implemented since not according to reality.

Please note two very important conventions (see Section5.3 on page11):

• Rec() can only be used during the early phase of a time slot. You do not know your
succeeding object, and most more complex network objects rely on receiving only
in the early phase.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 2

• Per time slot, you must not send more than one data item. Classes like delay lines
and multiplexers simply cause a core dump when violating this rule.

The type of data transfered by rec() is unspecified, it only must be derived from the
basic data object class “data”. The receiving object has to verify the data type when
relying on a specific one. Please use the typecheck()-methods (see Section7.5 on
page19) for this purpose. They do not perform an absolute check, but they also accept
that the actual data type is derived from the desired one. Since they use an integer table
lookup, they are very fast.

1.3.2 Export of Variables for Reading

Objects can export addresses of their internal variables to other objects like measure-
ment devices or to the simulation kernel. Measurement devices simply ask for the
address of a variable to display, and perform scanning and display on their own. For the
simulation kernel (or more exactly the parser), exported variables automatically are
available to read them in the input file, i.e. they can be used as commands in expres-
sions. Although the parameter structure of the export()-method itself is rather compli-
cated (see Section5.6 on page12), convinience methods provided by the class ino
allow to export scalars and one-dimensional arryas (both integer or double) by writing
one line of source code (see Section7.4 on page18).

1.3.3 “Special” Communication

For all cases, where possibilities or restrictions of the first two methods prohibit their
application, you can use the universal method special() (see Section5.7 on page13).
This method can be used for arbitrary data types (upon propper definition) and bidirec-
tional data transfer. Currently it is used e.g. for r.n. transformation table export to
source objects (see class Distribution), establishment of ABR connections (see ABR
classes), and for writing the routing table of a demultiplexer.

1.4 Event Scheduler

In principle, the event scheduler only is designed to manage time-dependent operations
within the same object. It is e.g. not possible to use the scheduler directly for delayed
delivery of a data item to another object. In such cases, it is always necessary that the
sending object sets a timer with the wished delay, and sends the data item itself by call-
ing the rec()-method of the successor. This may appear as inconvinient, but in practice
only very view object classes have to use this technique, or it is something to do any-
way at the instance of sending.
To solve problems caused by the undefined processing order of simultaneous events,
time slots are divided in an early and a late phase. Since data are only sent during the
early phase, it is possible to implement e.g. the round-robin strategy in a multiplexer in
the late phase.
The scheduler provides routines for single activation upon expiry of a specified time,
and for activation during each time slot. The former kind of registration can be deleted
as long as the event has not yet been activated.
For detailed information how to start and stop timers, see Section8.0 on page20.
Please pay also attention to the problems which may arise with the event scheduler (see
Section3.2 on page7).

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 3

2.0 A Network Object Class: Commented C++ Code

The following example can be found as source code in the file src/user/vciCount.c. The
example defines a network object class which only forwards cells on a given virtual
channel. All other cells are terminated, i.e. the object acts as sink. Additionally, a
“clock” is implemented (only in order to demonstrate scheduler usage). In the simula-
tor input file, an object is declared e.g. with

 VCICount xyz: VCI=13, TICK=10, OUT=sink;

The Object then counts cells on VCI 13, and forwards these cells to sink. The input
name of the object is ‘xyz’, too. So we can have e.g. a source
CBRquelle src: ... OUT=xyz . The counter for passed cells can be read with
x = xyz->TheCounter . The clock is incremented with each TICK-th simulation
time step, and the clock value can be read withx = xyz->Clock .

We start our description of the C++ code file with the class definition. The new network
object class is derived from the generic base class ‘in1out’ which is described in more
detail in Section7.0 on page16. The most important services of this base class are the
definition of inputs and outputs, and the complete handling of the connection process.

#include “in1out.h” // declaration of class in1out,
 // also includes all other system headers
class vciCnt: public in1out {
typedef in1out baseclass; // often useful for recursion through
 // the class hierarchy
public:
 vciCnt(): clockEvent(this, 0) {} // constructor

Events– clockEvent is defined further below – need to be initialized by the constructor
for safety reasons. The first argument is the pointer to our object, the second is a key
value allowing to distinguish between different events. Actually, we do not need this:
we only have one event. Instead of defining clockEvent, we also could have reused an
event structure which already is provided and initialized by the base class (its name is
std_evt, see Section7.3 on page18).

 void init(); // evaluates the definition statement
 rec_typ REC(data *, int); // receives and forwards data.
 // REC is a macro normally expanding to ‘rec’.
 // REC is overloaded in debugging mode.
 void early(event *); // is called by the scheduler
 int export(exp_typ *); // allows read access to myCounter

 event clockEvent; // an event structure for our clock tick
 int myVCI; // the VCI on which to count cells
 unsigned myCounter; // the counter itself
 tim_typ clockTick; // tick, tim_typ is the type for times
 unsigned myClock; // is incremented with each tick
}; // end of class definition

While the class definition normally should be placed in a header file, the rest has to
reside in the normal C++ code file. Two macro calls establish the connection to the ker-
nel:

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 4

CONSTRUCTOR(VciCnt, vciCnt);
USERCLASS(“VCICount”, VciCnt);

CONSTRUCTOR is a macro wich generates an interface routine (first argument, here
VciCnt()) to be called by the parser when it wants to create a new object. The routine
creates an object of class vciCnt (second argument) and returns the pointer to the
parser.
The line containing USERCLASS(...) is copied by make config (see Section3.2 on
page7) into the source code file “src/kernel/class.c”. It declares the interface routine
VciCnt() in the kernel, and says it has to be called, if a statement begins with “VCI-
Count”. During compilation of our C++ file, USERCLASS is an empty macro. Hence
it does not generate code here.
If the parser now detects a statement beginning with “VCICount”, then it calls the
interface routine VciCnt(). Immediately afterwards it calls the method init() of the
returned new object. At this instant, the input reading pointer still points to the begin-
ning of the statement, i.e. to the class identifier.

void vciCnt::init()
{
 skip(CLASS); // we skip the class ID
 name = read_id(NULL);// NULL: no keyword in front expected

Name is a member of the root class named ‘root ’. If we do not set ‘name’ then it con-
tinues to point to “<name: unknown>” (initialized by the constructor of the base class
root). Read_id() is a parser utility routine. It reads an identifier and checks that this
ID is not yet used.

 skip(‘:’); // we require a ‘:’ to follow
 myVCI = read_int(“VCI”); // read the VCI
 skip(‘,’); // require a ‘,’

We initialize myVCI by calling read_int() which again is a parser utility routine. It
expects the given key word “VCI”, followed by a ‘=’, and an arbitrary expression eval-
uating to an integer value. The value is returned. If something goes wrong, the error
message is automatically generated by the parser, and read_int() does not return (YATS
is terminated).

 clockTick = read_int(“TICK”); // read the clock tick
 if (clockTick < 1)
 syntax0(“invalid TICK”);
 alarme(&clockEvent, clockTick);
 skip(‘,’);

The clock tick may not be zero. Besides that it would not be useful, it is not allowed to
ask the scheduler for an activation after zero time steps. For performance reasons, this
is, however, not tested by the scheduler interface routines. Syntax0() is an error mes-
sage routine which prints the message and terminates YATS. Our error message is pre-
ceeded by the current line of the input text, the line number, and the current input file
name. Additional parameters can be passed like for the printf() function family (see
Section13.0 on page25).
Alarme() is a scheduler routine. The call requests that the early() method of our object
shall be activated in the first half of the time step (SimTime +clockTick). The simula-
tor clockSimTime is zero during init(). As first argument, we pass the event which we

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 5

have initialized with the constructor. This event structure is directly used by the sched-
uler, so it does not need to create and initialize an own data structure.
Remark: The price for the fairly fast operation of the scheduler are some subtle appli-
cation rules, please pay attention for the details given in Section4.0 on page8 and
Section8.0 on page20. The next two code lines define input and output of our object.

 output(“OUT”);
 stdinp();

Ouptut() is a method of class in1out. It reads the word OUT from the input text, fol-
lowed by a ‘=’. Then an input name of another network object is expected and read.
This name is remembered in an internal data structure of class in1out. During the con-
nection process handled by the base classes, the object members suc (pointer to the
successor) and shand (input key number of the successor), which we will use lateron,
are initialized. For objects with more than one output, the base class inxout has to be
used, it provides the necessary methods for multiple outputs (see Section7.0 on
page16).
Stdinp() again is a method of the base class. The call indicates that our object has an
input whichs name equals the object name. The input key number is 0. There are other
methods to declare inputs with name extensions and other key values (see Section7.0
on page16).

 myCounter = 0; // this also could be part of the
 // constructor vciCnt::vciCnt()
 myClock = 0;
} // end of vciCnt::init()

When init() returns, the parser expects the final ‘;’ of the definition statement, registers
the new object at the symbol table (using the member ‘name’), and continues process-
ing the input text. The first simulation statement Sim->Run ... invokes the connection
process which is handled by our base classes. When the simulation then is running, we
- hopefully - will receive data objects. A preceeding object calls our rec() method for
that purpose. In order to allow debugging (see Section4.1 on page8), the macroREC is
used instead of the real namerec for the method definition. In standard mode,REC
expands torec .

rec_typ vciCnt::REC(data *pd, int) // REC is a macro normally
 // expanding to ‘rec’
{

The pointer pd contains the pointer to the data object, the second argument is the input
key number. Since we only have one input, we do not need to evaluate it. The pointer
pd points to a general data object. If we want to access the VCI then we first have to
ensure that the data object actually is of class cell or of a derived class (only cells have
a VCI). This is done by typecheck(). The method provided by the base class checks the
data type and generates an error message if the class does not fit (termination of YATS).
In case we had more than one input, we would have had to use typecheck_i() (see
Section7.5 on page19).
Now we are sure that pd points to a cell (or derived class), thus we can cast the pointer.

 typecheck(pd, CellType); // CellType is a key number
 // for cell objects
 cell *pc = (cell *) pd;

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 6

 if (pc->vci == myVCI) // without pc:
 // if(((cell*)pd)->vci==myVCI)
 { if (++myCounter == 0)
 errm1s(“%s: overflow of counter”, name);
 return suc->rec(pd, shand);
 // Do *not* use REC when calling a rec() method.
 // Otherwise, a syntax error appears in debug mode.
 }

Errm1s() resembles the syntax() function family, but it does not print any information
related to the input text (see Section13.0 on page25). It remains to forward the data
object to the successor. The pointer ‘suc’, and the input key number ‘shand’ have been
initialized by in1out. The return value of the rec() method indicates whether a sender of
data may continue transmission. We simply pass this return value to our preceeding
object. If the cell does not carry the right VCI, it is deleted, and we return ContSend.
This means that the preceeding object may continue to send in the next time step.

 else
 { delete pd;
 return ContSend;
 }
} // end of vciCnt::rec()

When the firstclockTick time steps have been processed, we are called in the first
half of the time step (the scheduler divides each time step into two phases, during the
first phase already early() is called). We increment the clock and register again. The
argument of early() is just the event structure we have used for registration. This is
sometimes useful since an event comprises a key value which allows to tell between
different timers, if more than one are in usage. Here we only have one timer, so we do
not need to look into the key. The important members in the event structure have not
been changed, so we can directly reuse the event structure for the next registration.

void vciCnt::early(event *)
{
 if (++myClock == 0)
 errm1s(“%s: overflow of clock”, name);
 alarme(&clockEvent, clockTick); // register again
} // end of vciCnt::early()

The base class provides a counter named ‘counter’, together with methods allowing to
read and reset this counter from the simulator input file (see Section7.0 on page16).
Since we did not use ‘counter’, these methods have to be provided. In order to not over-
complicate this example, only the method for reading is described here. For reseting,
see the command() method specified in Section5.5 on page11.
Export() is a method used both by the parser and by other network objects (e.g. online
displays), if they want to gain read access to a certain variable. The asking party speci-
fies a string, and we have to reply with a pointer to the wished variable. By convention
this pointer is only used for reading. Both request and reply information are part of an
object of class exp_typ which is argument of export(). The method shall return TRUE,
if the operation was successful, FALSE otherwise.

int vciCnt::export(exp_typ *msg)
{
 return baseclass::export(msg) ||
 intScalar(msg, “TheCounter”, (int *) &myCounter) ||

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 7

 intScalar(msg, “Clock”, (int *) &myClock);
} // end of vciCnt::export()

First we try our base class (baseclass is the typedef in the class definition very above).
If it was successful, then the evaluation of the or-expression is finished, and export()
returns TRUE. Otherwise the result is determined by the calls of intScalar(). This is a
method of the base class, other versions to export double values and arryas are availa-
ble (see Section7.4 on page18). The arguments of the first call specify that the address
of myCounter shall be returned via msg, if the name ‘TheCounter’ has been asked for.
If this is not the case - the first intScalar() returned FALSE -, finally ‘Clock’ is tried.

The simplest way to include the new class into YATS is to play the code file (extension
has to be .c) into the directory yats/src/user/. Typing ‘make config ’ in the yats/bin/
directory generates entries for the new class in yats/bin/Makefile, and in the central
configuration file yats/src/kernel/class.c. Typing ‘make’ afterwards compiles our
source code file and the changed yats/src/kernel/class.c (see Section3.0 on page7),
and links all together. Now the new class should be available for usage.

3.0 How to Add a New Network Object Class

Normally, each object class is coded in its own source code file. There are two ways to
add a network class.

3.1 Configuration by Hand

To establish the connection to the simulation kernel by hand, three things have to be
done:

1. Definition of an intermediate routine which can be called by the parser for object
creation. This is easily done by including the macro
CONSTRUCTOR(NameOfIntermRout, InternalClassName);
into the source code file (see Section5.1 on page9).

2. Declaration of the new class in the source code file “class.c”. Here, the name of the
intermediate routine is associated to the class name to be used in the simulation
input file.

3. Include the name of the object code file into the list in the Makefile, and call make
depend.

3.2 Automatic Configuration

All code files for user specific network object classes are collected in the directory
src/user/

To install a network object class, simply put copies of or links to the corresponding .c
and .h files into the src/user directory. Typing

% make config
in the bin/ directory scans src/user/ for .c files and generates appropriate entries in the
Makefile and in src/kernel/class.c. Your .c file has to comprise two things:

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 8

1. Definition of the intermediate routine which can be called by the parser for object
creation. This is done as described in Section3.1 on page7.

2. The macro USERCLASS(NameAsString, NameOfIntermRout). NameAsString is
the name of the object class to be used in the simulator input file. Make config
searches the .c files in src/user for lines containing USERCLASS, and copies this
lines into src/kernel/class.c.

For an example, see the file src/usr/example.c. To install this example, rename src/usr
to src/user, and type ‘make config’ and ‘make’ in the bin/ directory.

4.0 Frequent Errors and Debugging

4.1 Usage of the Rec() Method

Remainder (see Section5.3 on page11):

• Rec() can only be used during the early phase of a time slot. You do not know your
succeeding object, and most more complex network objects rely on receiving only
in the early phase.

• Per time slot, you must not send more than one data item. Classes like delay lines
and multiplexers simply cause a core dump when violating this rule.

A first way to debug violations of this two rules is to uncomment the definition of the
pre-processor variableRECEIVE_DEBUG at the beginning of the file src/kernel/defs.h.
This redefines all calls of rec() methods to calls of a check routine provided by the base
classroot. The base class performs the tests and generates error messages if neces-
sary. Then the original rec() method is called. This requires that the rec() methods of all
network object classes are declared (in the class definition) and defined (method body)
with the macro nameREC(...) instead of rec(...).TheRECEIVE_DEBUG mode
cannot be used together with classes which do not use theREC() macro, since this
leads to incorrect C++ code. Thus, syntax errors during compilation with
RECEIVE_DEBUG show the places where the change toREC() has been forgotten.
The debugging mode slows the simulator down by typically 50 per cent.
Important: Calls of the rec() methodsmust not be changed. Otherwise, a syntax error is
generated in debugging mode (Hence, these mistakes are easily found, too).

Note: The RECEIVE_DEBUG mode can generate wrong (i.e. too many) error mes-
sages, if the simulation time is reset between two runs (command Sim->ResetTime).

As a second way, you can use the network object class TypeCheck (see User’s Man-
ual). This object can be included into each output line of your new object. It checks,
that both rules are met, and produces appropriate error messages.

4.2 Event Handling

Remainder (see Section8.0 on page20):

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 9

• An event structure must not be used twice at the same time. It can be reused only if
the corresponding timer has expired (the object has been activated), or if the timer
has been stopped with unalarme() or unalarml().

• The time difference specified in alarme() / alarml() calls may not be lower than one.
There are two exceptions of this rule: If the simulation is not running (e.g. during
the init() method or when processing a command except Sim->Run), the time differ-
ence may be zero. Zero time difference also is legal during the early slot phase when
setting a timer for the late phase of the same slot (alarml(..., 0)).

To find violations of this rules, you can define the C++ preprocessor variable
EVENT_DEBUG in the source code file “defs.h” (uncomment the line at the beginning
of the file). Afterwards you have to recompile. Now, tests are performed for all
alarme(), alarml(), eache(), and eachl() calls. The additional code will slow down the
simulator by approximately 10 to 15 per cent.

4.3 Locating Erroneous Network Objects

When developing more complex network object modules, core dumps unfortunately
are used to happen. To locate the causing network module in a straightforward manner,
you can turn on logging of object activation (calls of early()/late()). In the source code
file “kernel/sim.c”, there is a preprocessor variable EVENT_LOG. It is normally com-
mented. Defining this variable causes the scheduler to print a log message for each acti-
vation occuring at a simulation time not smaller than EVENT_LOG. The message has
the form
 currTime: objName->{early|late}{Evt|Tim}(begin ... end)
Early andlate tell early and late time slot phase,Evt andTim distinguish
between event and time triggered activation (see Section8.0 on page20). The message
is printed to standard output – except the finalend) – before entering the object
method. The tail of the message appears upon method completion.

With a debugger, you gain access to the erroneous object e.g. as follows. Define a glo-
bal pointer variable (type as the class you want to debug) in the source code file of the
object class. In the init() method, you initialize the global pointer, if the object name is
the right one:
 if (strcmp(name, “xyz”) == 0) theDebugPtr = this;
Upon processing the declaration statement in the simulator input file, you can access
the object members viatheDebugPtr .

5.0 Network Object Classes and Their Methods

The root class for network objects is “root”. This class declares the methods described
below as virtual functions containing an error message.

5.1 Object Creation

The parser does not call directly the constructor of a class. Instead he invokes the inter-
mediate routine declared in usr_classes() (source code file “class.c”). This routine is
part of the source code file of the object class and creates the object. The registration of

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 10

the object at the symbol manager is done by the parser after calling the new object’s
init()-method. To define the intermediate routine, you can use the macro
CONSTRUCTOR(NameOfIntermRout, InternalClassName);
In case the object class shall not really create objects, the intermediate routine has to be
programmed “by hand” and has to return a NULL pointer (normally, the new object’s
address, see e.g. signal.c).

In most cases, the constructor of a class can stay empty. At least, the constructor should
not read from the input file, since the constructor is also executed when creating objects
of derived classes. The definition statement is processed in the init()-method.

void newClass::init(void);

When called by the parser, the current input symbol is yet the class name. The name
can be taken fromtval.nam , but must not be freed. The symbol is skipped with
skip(CLASS) . Reading the object name and evaluating of parameters is done via
parser utility routines (see Section9.0 on page21). To ease derivation of other
classes, the method addpars() (see next) is called at the place where derived classes
should read their additional parameters. Classes with an own init()-method define
addpars() as empty (or inherit the empty method from root).

void newClass::addpars(void);

A class derived from another one can reuse the init()-method of its base class. Read-
ing of own parameters is done by overloading the addpars()-method. Addpars()
should behave as follows:
void xyz::addpars(void)
{ // first call addpars() of the base class
 // baseclass is an appropriate typedef
 baseclass::addpars();
 // then read own parameters:
 xyzpar = read_int(“XYZPAR”);
 skip(‘,’);
}

By doing so, more than one derived class can reuse the init()-method. The class
most “closed” to the base class first reads its parameters.

5.2 Connection Establishment

The methods for connection establishment mostly can be inherited from the generic
classesin1out andinxout .

void newClass::connect(void);

This is a broadcast message from the kernel to cause connection establishment. All
objects are defined, and the firstSim->Run statement has been reached. With
root *find_obj(char *name);
the succeeding objects can be found. Continuation see handle()-method.

int newClass::handle(char *inpName, root *callgObject);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 11

The preceeding objects sends this message to obtain the input key number of the
given input. The method should ensure that an input is not connected to more than
one other object.

5.3 Receiving Data

rec_typ newClass::rec(data *dataPtr, int inputKey);

InputKey is the value returned by handle() during connection setup.
An object is allowed to call rec() of its successor
* only once a time slot, and
* only during the early slot phase.
Since the exact type of the data item is unknown, it has to be checked prior to access
to data item members. See Section6.2 on page14.
Rec_typ is an enumeration type defined in the source code file “special.h”. The rec()
return value can be evaluated by objects which want to be controlled by the succeed-
ing object. The convention is, however, that a data item sent always remains at the
receiver (or is lost there). The receiver only can protect against buffer overflow,
when returning the stop value of rec_typ early enough. The Start-Stop protocol (see
Section6.4 on page15) uses this mechanism.
Objects transparently passing data items (measurement devices, demultiplexer ...)
should return the value given by the succeeding object to its precceeding one. Thus,
these objects can be included into handshake lines.

REMARKS
In order to allow debugging of the usage of rec() (see Section4.1 on page8), the macro
nameREC has to be used for method declaration (in the class definition) and method
definition (method body). Calls of rec() methods, however, must not use theREC
macro. Otherwise, C++ syntax errors are generated when compiling in debug mode.

5.4 Activation by the Event Scheduler

The event scheduler divides each time slot into an early and a late phase. Dependent on
the registration, one of the following methods is called for activation.

void newClass::early(event *eventPtr);
void newClass::late(event *eventPtr);

The event pointer is the address of the event structure used for registration. The
event member eventPtr->key can be used to distinguish between different timers.
The event structure may be reused immediately to register again. See also
Section8.0 on page20.

5.5 Processing Commands

int newClass::command(char *cmdName, tok_typ *retVal);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 12

A command shall be processed by the object. The command name is given in cmd-
Name. If the command is known, it is carried out. Command arguments can be
taken from the input file via parser utility routines (see Section9.0 on page21).
Upon successfull completion, TRUE is returned by command(). In case the com-
mand is unknown, FALSE is returned.

The structure tok_typ contains the two members tok and val, where the latter is a union
of an integer value, a double value, and a char pointer. In tok, the return type of the
command is passed back, the val union is used to store the value (if any). The following
values are possible for retVal->tok:

• NILVAR: The command does not return a value, and therefore can not be used in
expressions

• IVAL: The return type is integer. The value is stored in retVal->val.i.

• DVAL: The return type is double. Value stored in retVal->val.d.

• SVAL: The return type is string. The pointer given in retVal->val.s has to specify a
dynamic copy, since it is deleted in the kernel if necessary.

ATTENTION: do not return IVAR, SVAR, or DVAR.

Commands can be inherited as follows:
int xyz::command(char *s, tok_typ *v)
{ // first try base class
 if (baseclass::command(s, v))
 return TRUE;
 // then try it yourself and return TRUE or FALSE
}

5.6 Exporting Variable Addresses

To ease the rather complicated operations described next, the generic classino pro-
vides convenience functions which allow to export a variable with one line of source
code (see Section7.4 on page18).

int newClass::export(exp_typ *msg);

Either the parser or another object look for the address of a certain variable. The
parser does so before trying the command()-method in order to evaluate the value of
a command-like expression in the input file. Measurement objects as another exam-
ple want to display the variable asked for.
The type exp_typ is defined in the source code file “special.h”. Msg->varname con-
tains the name of the variable wanted. Msg->ninds specifies the number of indices
given by a user, msg->indices[] specifies the indices itselfs. In case variable name,
as well as number and ranges of indices are o.k., the field msg->addrtype has to be
filled with the type of address (integer / double?, scalar / array?). The address itself
then is written into the right filed of the address union in *msg. The method returns
TRUE. In case the variable is an array, additionally the following fields have to be
set. Msg->dimensions[] has to be initialized with the number of entries per dimen-
sion, and msg->displacements[] specifies for each dimension the displacement

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 13

between logical x value and physical index in the array pointer.
Export() returns FALSE if the variable is unknown or an error occured. Inheritance
is implemented applying the same scheme as shown for command().

5.7 Miscellaneous

char *newClass::special(specmsg *msg, char *caller);

This is the method for “all cases”. For every kind of usage, a class containing the
needed members has to be derived from class specmsg defined in “special.h”. Spec-
msg comprises a field type to tell different message types from each others. An
object implementing the special()-method always first has to check this field. For
every application, an extra value has to be included into the enumeration
specmsg_typ (“special.h”). Special() should return the NULL pointer in case all is
o.k. If an error occured, an error description should be returned. If this is not possi-
ble or too complicated, an error message can be launched by the object itself. For
this purpose, the name of the calling object is given as second argument.
Find application examples in “demux.c” (writing the routing table) or in “distrib.c”
(exporting the r.n. transformation table).

void newClass::restim(void);

Message from the kernel that the simulation clock is to reset (the command read:
Sim->ResetTime). This method only has to be implemented by classes which store
times internally (see e.g. “line.c” and “leakyb.c”). Events which have been regis-
tered at the scheduler, are corrected automatically. The method is predefined by
class root as no-op (no error message).

6.0 Data Object Classes, Start-Stop Protocol

6.1 Definition of Data Object Classes

The rec()-method is defined for the class data which is the basic class for all data
objects. All data object classes and their derivation relations are defined in the source
code file “data.h”. The derivation of data classes and a fast mechanism for run-time
data type checking allow that

• objects processing a certain data type can also process all data types derived from
the intended one,

• error messages are generated, however, if incomming data items do not contain the
necessary members (i.e. they are not derived from the intended data class).

In parallel, destructors of all data classes are virtual. Thus, the right destructor is found
for an object regardless of the type of pointer used in the delete statement. The combi-
nation of run-time type checking and late binding of destructors costs - even for very
simple models - not more than 10 % speed.
Unfortunately, derivation relations can not (yet) be examined automatically. If a new
data class is added, then therefore a couple of things has to be done in “data.h” and
“data.c”:

1. Add a new value to the enum dat_typ.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 14

2. The following macros have to be part of each class definition:

• BASECLASS(base_class_name): declaration of the base class

• CLASS_KEY(dat_typ_value): specification of the dat_typ value associated to the
new class

• NEW_DELETE(number_of_objects_allocated_together): defines inline new and
delete operators. They decrease the simulation time by approx. 30% and initialize
the ‘type’ object members.

• CLONE(class_name): defines the method clone() which produces a copy of a data
object of unknown type (see Section6.3 on page14).

3. Define the static class member (data *new_class::pool) in “data.c”,it has been
declared by NEW_DELETE().

4. Register the new class in data_classes() (very below in “data.h”). The macro
DATA_CLASS(internal_class_name, external_name) uses the information of previ-
ousBASECLASS() and CLASS_KEY() statements to examine the derivation rela-
tionships.

5. Do not forget to define the method new_class::pdu_len() which returns the real-
world size of a data object.

ATTENTION
If a data object is not created via the new operator, it cannot be sent to other network
objects. Additionally, the type field of the data object is not initialized automatically,
since this normally should not be done by the constructor (otherwise it would be
changed several times during calling all constructors of the object and its bas classes).
For objects created via new, the type field is initialised once by the memory allocation
routine, and then never again.

6.2 Run-Time Data Type Checking

The run-time data type check is performed by the methods typecheck(), typecheck_i(),
and typequery() which are provided by the generic class ino (see Section7.5 on
page19). During initialisation of the simulator, an integer table reflecting the deriva-
tion relations is computed. The type check methods then perform a simple lookup in
this table.

6.3 Embedding of Data Objects

Certain network objects have to encapsulate data objects, e.g. to segment them, to
transport them in own data objects, and to reconstruct them at the receiver end of a
peer-to-peer connection. To organize this process transparently, the following interface
has been defined for class data:

class data {
data *embedded; // ‘hook’ for other data objects
data()
{ embedded = NULL; }
virtual ~data()

// delete possibly embedded data objects

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 15

{ if (embedded) delete embedded; }
virtual size_t pdu_len() { return xyz; }

// return the “real-world” size of the object
};

A data object which shall be transported via another object class is mounted into the
embeded pointer of one of the lower-layer data objects (e.g. the last cell of the stream
of AAL 5 cells representing a frame). If the critical lower-layer data item is lost and
therefore deleted in the network, then the higher-layer object is deleted automatically
(embedded is non-NULL, so adelete is performed). Initially, theembedded
pointer is set to NULL by the constructor of classdata . The methodpdu_len() has
to return the “real-world” size of the object in bytes. This allows a lower-layer network
object to figure out, how many lower-layer data objects have to be sent.

When a receiving network object expects a mounted data object, it should testembed-
ded on non-NULL before it passes the pointer to a successor.
Important:
It is essential that theembedded pointer is reset to NULL, if the transported data
object is taken from the lower-layer data object. Otherwise, the higher-layer object is
deleted twice: at the receiver of the object and together with the lateron deleted lower-
layer object.

// data *pd contains the lower-layer object
if (pd->embedded)
{ // extract and forward higher-layer object

suc->rec(pd->embedded, shand);
pd->embedded = NULL; // !! important !!

}
else // error message: we expected sth embedded

For an example, see src/tcpip/aal5send.c and src/tcpip/aal5rec.c.
If a data item has to be duplicated for some reason, the method clone() should help.

data *p2; // p1 comes from somewhere
p2 = p1->clone(); // p1 returns a new object with a copy

// of itself. We don’t need to know
// the class.

6.4 Start-Stop Protocol

To realize a loss free transmission of data objects, e.g. between objects implementing
higher layer protocols, the Start-Stop protocol has been defined.

• In case the rec()-method of the data receiver returns StopSend, the data sender must
not continue to send.

• Data items sent during the stop state of the data sender are dropped by the data
receiver, and rec() again returns StopSend.

• The stopped data sender is started again by sending him a data item on the control
input.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 16

• The data receiver may send the start data item in the same slot when buffer becomes
available.

• Upon receiption of the start signal, the data sender has to postpone sending, if data
have been send during the current time slot (this is possible!). The throughput is not
decreased, if this is ensured by a general delay by one time slot.

• The data sender starts in the state of sending allowed.

This basic version has been extended for future usage together with higher-layer proto-
cols:

• ContSend is defined by -2.

• StopSend equals -1.

• All other values (only >= 0) have the following meaning: We must stop to send, and
logically a part of the data item has been rejected. This means, that thephysical data
object remains at the receiver, but the receiver has only accepted the amount of asso-
ciated data given by the return value. This may include that the receiver accepted
only a part of the data, or even nothing (recRetVal == 0). In case all data have been
accepted, but we shall stop to send, the receivermust return StopSend as in the basic
protocol.

Network objects which only can handle the two basic values ContSend and StopSend
have to check the return value of the rec() call. A utility method is provided by class
ino: void ino::chkStartStop(rec_typ recRetVal);
It evaluates the given value and generates an error message in case neither ContSend
nor StopSend has been returned.

The basic protocol currently is implemented by GmdpStop, ShapCtrl, AbrSrc, and
AbrSink. Next candidates are the anticipated AAL5 and the TCP/IP implementations.

7.0 Generic Network Object Classes

There are three generic classes which hide details of connection establishment more or
less completely.

• class ino: public root
Network object with arbitrarily many (also zero) inputs. Is not used directly, but is
the base class ofin1out andinxout

• class in1out: public ino
Network object with inputs and at most one output.

• class inxout: public ino
Network object with inputs and arbitrarily many outputs.

They provide the following services:

• management of inputs and outputs, parsing of output names

• methods for connection establishment (connect() and handle())

• export()-method for reading a universal counter

• convenience functions to apply in export()

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 17

• command()-method for resetting the counter

• methods for run-time data type checking

• provision and initialisation of an event structure

7.1 Definition of Inputs

The three following methods can be called from init() or addpars(), the can be used
arbitrarily often, and mixed together with calls to define outputs. If none of the input()-
methods is called, then the network object has no inputs.

void ino::stdinp(void);

Definition of an input whichs name equals the network object’s name. The input key
number lateron returned by handle() is 0.

void ino::input(char *ext, int key);

An input with the name‘objName’->’*ext’ . The input key number is key. In
caseext == NULL , the input name equals the object name.

void ino::inputs(char *ext, int ninp, int displ);

Define a set of ninp inputs. The inputs have the names
‘objName’->’*ext’[no] , where no is ranging from 1 to ninp. The input keys
are (no + displ). If e.g. the first input shall have the key 0, then displ is -1.

Handle() lateron generates error messages, when input names different from the
defined ones are requested. Multiple connections also cause error messages, inputs
staying unconnected are not reported (they do not cause errors).

7.2 Definition of Outputs

The methods can be called from init() or addpars(), they can be mixed with input()-
calls. They can be called arbitrarily often (exception: in1out::output() only once).

void in1out::output(char *keyw);

Definition of an output. The output name is read from the input text. In case keyw is
not the NULL pointer, the keyword followed by a ‘=’ sign has to preceed the output
name. After connection establishment by connect(), the object elementroot
*suc is initialized with the pointer to the next network object,int shand con-
tains the input key number associated to the wished input. In case the output()-
method is not called, the network object has no output, and suc remains NULL.

void inxout::output(char *keyw, int idx);

Like in1out::output(). Additionally, the index which the successor shall have in the
arrays root sucs[] and int shands[], is specified in idx. To pass lateron data on output
idx: sucs[idx]->rec(pdata, shands[idx]) .

void inxout::outputs(char *keyw, int nout, int displ);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 18

Define a set of outputs. If keyw != NULL, the keyword and a ‘=’ are expected as
introduction. The output indices in sucs[] and shands[] are (no + displ), where no
ranges from 1 to nout (example: to generate indices 0 ... (nout-1), specify displ=-1).
The output names are expected according to one of three possibilities:
‘(‘ variable ‘:’ nameTemplateContainingVariable ‘)’
The variable has to be declared in advance and is counted from 1 to nout to obtain
the names.

‘(‘ variable ‘=’ lo ‘to’ up ‘:’ Template ‘,’ ... ‘)’

The variable has to be declared in advance, and a number of ranges with different
name templates can be specified. Ranges can be abbreviated. See User’s Manual,
section about Demultiplexer.
output1 ‘,’ ... ‘,’ outputNout
The names are listed completely.

7.3 Command() Method, Event Structure

unsigned ino::counter;
int ino::command(char *, tok_typ *);

The class ino contains a counter which is initialized with zero by the constructor.
With the command objName->ResCount, the counter can be reset (implemented by
command()). Reading counter is provided by the export()-method (see next).

even ino::std_evt;

This is a predefined event which is part ofino . The event key number is 0.

7.4 Export() Method, Convenience Functions

int ino::export(exp_typ *);

The address of the Variable objName->Count is exported, no indices are allowed.
The address type is exp_typ::IntScalar (see “special.h”).

The following methods allow an uncomplicated export of integer and double scalars
and one- and two-dimensional arrays.
For application examples, see e.g. mux::export() in the source code file “mux.c”.

int ino::intScalar(exp_typ *msg, char *nam, int *ptr);
int ino::doubleScalar(exp_typ *msg, char *nam,
 double *ptr);

In case the variable name given in the msg structure equals nam and no indices have
been specified, the address ptr is filled into *msg. The address type then is filled
with exp_typ::IntScalar or exp_typ::DoubleScalar, and the method returns TRUE. If
the conditions are not met, FALSE is returned.

int ino::intArray1(exp_typ *msg, char *nam,
 int *ptr, int dim, int displ);
int ino::doubleArray1(exp_typ *msg, char *nam,
 double *ptr, int dim, int displ);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 19

Like intScalar() / doubleScalar(), but additionally the length of the array is noted in
the message. The value displ specifies the differenc between logical value and index
in the array. Shall an array e.g. possess the logical indices 1 ... dim (in the simulation
input file or on a measurent display), then displ has to be set to 1. The address types
filled into the message are exp_typ::IntArray1 or exp_typ::DoubleArray1.

int ino::intArray2(exp_typ *msg, char *nam,
 int **ptr, int dim1, int displ1,
 int dim2, int displ2);
int ino::doubleArray2(exp_typ *msg, char *nam,
 double **ptr, int dim1, int displ1,
 int dim2, int displ2);

These two methods allow to export two-dimensional arrays of integer and double
values. For both dimensions,dim anddispl have to be given (same meaning as
for the one-dimensional versions). For an application, see file ‘src/misc/meas3.c’.

7.5 Run-Time Data Type Checking

Network objects expecting certain data object types from their preceeding objects have
to check the actual type of arriving data items. This is because the input file syntax can
not check whether objects which incompatible data object types are connected. The
following inline-methods (defined in “ino.h”) are provided.

void ino::typecheck_i(data *pd, dat_typ typ, int key);

Using a table created during simulator initialisation, it is determined whether the
incomming data item is of the requested type or of a derived type. If neither of them,
then an error message is generated. Key is the input key number which has been
passed to the rec()-method. It is used to derive input name and name of preceeding
object for an error message.

void ino::typecheck(data *pd, dat_typ typ);

Simpler version of typecheck_i(). Can be used for network objects only possessing
one input. If the method is used for objects with more than one input, then the type
check is perfomed accuratly, but an error message will probably contain the wrong
input and preceeding object name.

int ino::typequery(data *pd, dat_typ typ);

This is a “soft” version of typecheck(). The method returns TRUE if the data item
has the right type, FALSE otherwise. No error message is generated. Using this
method, different data types can be distinguished without additional flags.

7.6 Connection Establishment

These methods are called by the kernel prior to the first simulation run.

void in1out::connect(void);
void inxout::connect(void);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 20

The information obtained by output()-calls is used to connect to the successors.
After connection establishment, the following data object members (of the own
object) are initialized:
Class in1out:
root *suc; // pointer to the successor
int shand; // input key value to pass together with
 // every data item
Class inxout:
Similar, but the values now are arrays. The array length is derived from the largest
index whished by an output()-call.
root **sucs;
int *shands;

8.0 Event Scheduler

The event scheduler divides each time slot into an early and a late phase. Therefore,
problems arising from simultaneity can be solved inside of the network objects without
making the scheduler large and slow (example: “mux.c”). Network objects can register
for single activation upon expiry of a specifeid time (“event triggered”), or they can
register for activation during each time slot (“time triggered”). During each slot phase,
first the event triggered, and then the time triggered events are activated. The global
variableint TimeType specifies the current slot phase, values are EARLY and
LATE. The global variabletim_typ SimTime displays the current time.

To avoid repeated allocations and deallocations of event management structures in the
kernel, the event structures are directly associated to the network objects. Fix event
entries like the pointer to the network object and the event key (to distinguish different
timers set by an object) are initialized once at network object creation. When register-
ing at the scheduler, a network object passes the address of the event structure to the
scheduler. The latter one directly uses the structure in the event lists. The consequence
is that an event structure must not be reused for starting another timer prior to

1. Event activation by the kernel. The object method called by the kernel (early() or
late()), however, can reuse the event immediately for e new registration. Or:

2. Deleting the registration via unalarme() / unalarml().

For the most applications, this will not cause any inconvenience: They use the scheme:

1. Register for activation

2. Return control

3. Activation by Kernel, do something (send a cell ...)

4. Register again for activation (according to an IAT ...)

If more than one timer has to be used (for protocols, for ABR, for combination between
event and time triggered processing ...), than the appropriate number of events has to be
part of the object. The very last possibility is: create an event with operator new, fill the
object and key members, use it for registration, return control; when early() / late is
called, then the pointer to the event is passed, so you can delete it.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 21

8.1 Event Triggered Activation

void alarme(event *evt, tim_typ delta); // register for
 // for early phase
void alarml(event *evt, tim_typ delta); // for late phase

The network object specified by evt->obj is activated at the time (SimTime + delta).
When calling early() or late() of the object, the event pointer evt is passed back. The
time difference delta has to be larger than 0. Otherwise the object will be activated
never again. There are two exceptions, where delta may be zero:

• During the early slot phase, it is possible to register for activation in the late phase of
the same slot (alarml(..., 0)).

• When no simulation is running, e.g. during initialisation or when perfoming a com-
mand(), delta may be zero. This then means that the object will be activated during
the first time slot of the next simulation run.

8.2 Time Triggered Activation

void eache(event *); // call every early slot phase
void eachl(event *); // late slot phase

The network object is activated during each time slot.

8.3 Deleting Event Triggered Activations

An event registered with alarme() / alarml() can be deleted as long as the event has not
yet been activated. Since deleting the event requires some search operations in the
event lists, these routines are relativly expensive.

void unalarme(event *); // when registered with alarme()
void unalarml(event *); // when registered with alarml()

9.0 Parser Utility Routines

For an easy evaluation of network object parameters, a set of routines is provided.
These routines expect a certain input text and automatically generate error messages, if
the desired text can not be found. Upon successful completion, the input file reading
pointer is shifted appropriately.
The current input symbol type (i.e. token) always is stored in the global variable
int token;
The token types are defined in “defs.h”. The token attributes (name, value ...) are stored
in
tok_typ tval;

void skip(int tok);
The given token type is expected in the input text. It is skipped if found there. Other-
wise, a syntax error message is generated. For single characters like ‘:’ or ‘,’, the
token type equals the character value. Do not use skip() to skip strings or identifiers,
since dynamic copies created by the scanner are possibly not freed.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 22

char *read_id(char *keyw);
An identifier is read from the input text. In case keyw != NULL, it has to be intro-
duced by the keyword and a ‘=’. The identifier may contain indices, they are
included into the string returned by the routine. It is checked, that the identifier is
not yet used for a network object, a variable, or a macro. The string returned is a
dynamic copy which can be used directly for storing into the object membername.

char *read_suc(char *keyw);
Like read_id(), but the identifier can be used already. Additionally, the identifier
may contain an extension with ‘->’.

int read_int(char *keyw);
An (arbitrarily complex) integer expression is expected. Its value is returned. Keyw:
see read_id().

double read_double(char *keyw);
An (arbitrarily complex) double expression is expected. Its value is returned. Keyw:
see read_id().

char *read_string(char *keyw);
A string expression is expected. The return value points to a dynamic copy which
may be stored for internal use and should be deleted when not longer needed. Keyw:
see read_id().

char *read_word(char *keyw);
A raw word (identifier ...) is expected. The return value points to a dynamic copy of
the word read. It should be deleted when not needed any longer. Keyw: see read_id()

int test_word(char *txt);
It is tested whether the given word is next to read. The word is expected raw, not as
string. If the word is found, TRUE is returned, otherwise FALSE. The input text
reading pointer is not shifted. The routine fails in case of input language key words
like if, else, macro ...

void skip_word(char *txt);
Like test_word(), but the word is skipped when found (reading pointer is shifted). A
syntax error message is generated if the word is not found.

int scan(void);
Scan() reads the next input token from the input text. Like skip(), it should be
applied carefully (see there).

10.0 Symbol Manager

Since registering a new object is done automatically by the parser, only the search rou-
tine is needed.

root *find_obj(char *nam);

The object nam is searched. Nam may contain name extensions (appended with ‘-
>’), e.g. input name specifications. These extensions are ignored by the routine. The
return value points to the wished object, it is NULL in case the object is unknown.

11.0 Queues

In the header file “queue.h”, data item queues with limited and unlimited capacity are
defined and implemented (all methods are defined inline). The queues are virtually as

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 23

fast as programmed “by hand” for FIFO access. Although the classes also provide
methods for time-sorted queueing and random access, these functions probably are not
as optimal with respect to speed. The class name for the limited queue (which also may
be switched into an unlimited state) isqueue, the unlimited version is called
uqueue. In the following, the class methods are described.

11.1 Initialisation

Class uqueue
uqueue::uqueue(void);

Constructor. Sets current length to zero.
Class queue
queue::queue(int mx = 0);

Constructor. Sets current length to zero, limit to mx. Default mx: 0.Mx < 0 is cor-
rected to 0 (use unlimit() afterwards).

int queue::setmax(int mx);
Changes the queue limit to mx.
Returns TRUE: o.k.
FALSE: current queue length is larger than mx, limit not changed.

void queue::unlimit(void);
Deletes the capacity limitation of a queue. If possible, the class uqueue should be
used instead.

11.2 Enqueueing

Class uqueue
void uqueue::enqueue(data *pd);

Enqueues the given item at the tail of the queue.
void uqueue::enqHead(data *pd);

Enqueues the given item at the head of the queue.
void uqueue::enqTime(data *pd);

Enques the item in front of the first item with a time member not smaller than pd-
>time (creates a sorted queue with increasing time stamps). Ifpd->time is larger
than all other times, pd is added at the tail.

int uqueue::enqPrec(data *pd, data *ref);
Looks for ref and enqueues pd in front of ref.
Returns TRUE: o.k.
FALSE: ref not found in the queue

int uqueue::enqSuc(data *pd, data *ref);
Looks for ref and enqueues *pd behind *ref.
Returns TRUE: o.k.
FALSE: ref not found in the queue

Class queue
All uqueue methods are also available for queue. They first check on overflow and then
call uqueue’s method. All methods return int:

FALSE on overflow or unsuccesssfull uqueue method,
 TRUE otherwise.

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 24

11.3 Dequeueing

Classes uqueue and queue
data *(u)queue::dequeue(void);

Dequeues and returns the item at the front. An empty queue returns NULL.
data *(u)queue::deqTail(void);

Dequeues and returns the item at the tail. An empty queue returns NULL.
data *(u)queue::deqTime(tim_typ tim);

Dequeues and returns the first item with a time member not smaller than tim.
Returns NULL if no appropriate item found.

data *(u)queue::deqThis(data *pd);
Dequeues the specified item. Returns pd if found in the queue, otherwise NULL.

11.4 Information

Classes uqueue and queue
int (u)queue::isEmpty(void);

Returns TRUE if queue is empty, FALSE otherwise.
int (u)queue::isQueued(data *pd);

Returns TRUE if *pd is queued, FALSE otherwise.
int (u)queue::getlen(void);

Returns the current queue length.
data *(u)queue::first(void);

Returns the item which would be returned by (u)queue::deq(), but does not actually
dequeue it. Returns NULL in case the queue was empty.

data *(u)queue::last(void);
Returns the last item of the queue. It is not dequeued. Returns NULL if the queue
was empty.

data *(u)queue::sucOf(data *pd);
Returns the item behind the specified one. Returns NULL if pd notfound or pd is
the last item of the queue.

data *(u)queue::precOf(data *pd);
Returns the item in front of the specified one. Returns NULL if pd not found or pd is
the first item of the queue.

Class queue
int queue::isFull(void);

Returns TRUE if queue is full, FALSE otherwise.
int queue::getmax(void);

Returns the current queue limit. In case unlimit() was called in advance, -1 is
returned.

11.5 Walk through a Queue

int (u)queue::resCursor();
Initializes the internal cursor for subsequent calls of getNext(). Returns TRUE on
success, FALSE otherwise (queue empty).

data *(u)queue::getNext();

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 25

Each call returns the pointer to the next data object queued. Returns NULL, if end of
queue reached. The first call returns the front of the queue.
Prior to the first call of getNext(), resCursor() has to be called. If resCursor() wasn’t
successful, getNext() must not be called. Between resCursor() and all subsequent
calls of getNext(), no enqueueing or dequeueing actions are allowed.

Example
if (q.resCursor())
{ data*p;

while ((p = q.getNext()) != NULL)
{ // do sth with p
}

}
else // queue empty.

12.0 Random Numbers

The random nuber generator has been integrated into the system to be independent of
different implementations on different platforms. The implemented generator is, how-
ever, the simplest one which is known to be not very good. You can choose the ran-
dom() routine from Berkley by editing the header file “defs.h”. Uncomment the line
defining the preprocessor variable USE_MY_RAND. Anyway, it is recommended to
use always the name my_rand() when asking for a random number. The routine actu-
ally used then can be determined by an inline function in “defs.h”.

For the generation of random numbers distributed non-uniformly, a table-based version
has been chosen. Besides the network object class Distribution (see User’s manual)
which can generate transformation tables for arbitrary distributions, a modul providing
transformation tables for geometrical distributions has been implemented. A user need-
ing r.n.s registers with

int get_geo1_handler(double expectation);
The returned key value is used lateron to obtain a r.n.:

int geo1_rand(key);
It is also possible to ask for the transformation table (length: RAND_MODULO)
itself:

tim_typ *get_geo1_table(int key);
Key again is the value returned by get_geo1_handler(). For applications see e.g. the
object class GMDPquelle.

13.0 Error Messages

There are two families of error message routines. Both pass different numbers of string
and integer arguments to an embedded fprintf(stderr, ...) call. To obtain an overview
which error messages are available, take a look at src/kernel/all.c.

Syntax error messages (with relation to the input text):
void syntax_XX(...);

YATS – Yet Another Tiny Simulator: Programmer’s Manual for Version 0.3 26

According to the current position of the input text reading pointer, the current input
text line, the line number, the file name and a sign pointing to the current input token
are written to stderr. The embedded error message is printed, YATS is left with exit
status 1.

Plain error messages (without input text relation)
void errm_XX(...);

Like syntax_XX(), but no information related to the input text is given.

