1.0

2.0
3.0

4.0

5.0

6.0

7.0

YATS — ‘et Another Tny Simulator
Programmes Manual for ¥rsion 0.3

Matthias Baumann
Dresden Uniersity of Technology
Communications Laboratory

BaSIC PrINCIPIES.....cooiiiiiiiiiiiee e 1.
11 Creation of Netwrk ODJECES.........ccoiiiiiieiiii e 1.
1.2 Connection of Net@rk ObJECES........cccuiiiiiiiiee e 1.
1.3 Communication between Nedik ODJECTS...........ceviviiiiiiieiiiiieee e 1.
1.3.1 Data TANSTEN....cciiiiiiiie ettt 1.
1.3.2 Export of \ariables for Reading..........cccccccoviiiiiiiiiiiieiiieiee i 2.
1.3.3 “Special” CommUNICALION.........uuueiiiiiiieaaieiiiiiiiiie e 2.....
14 EVENE SChEAUIET ... 2
A Network Object Class: Commented C++ Cade..........ccooeevvvvvinnnnnnnn. 3..
How to Add a Ne&v Network Object Class.............oooocciiiiiiiiiiiiiieceeeeen 7...
3.1 Configuration by Hand..............cooiiiii e YA
3.2 Automatic Configuration............ccuvveiieiiee e A
Frequent Errors and DBYGINGuueeeiieiiiiiiiiiieieeeeeee e 8.....
4.1 Usage of the Rec() MethQd..........oouvviiiiiiiiiiiii e 8......
4.2 =T 0 = U To | 1 o SRRSO 8.
4.3 Locating Erroneous Netvk ODJECES......ccoiiii i 9.....
Network Object Classes and Their Methods.............coovvviiiiicieeenennn. 9..
5.1 (O o] 1=To1 A @1 (=T 1o o PSRRI 9.
5.2 Connection EstabliShMenL...........coooiiiiiiiii e 10.....
5.3 RECEVING DALAL......eiiiiiiiiiie e 11.....
5.4 Activation by the Egnt Scheduler.............cceevveieeiiiiiiee e 11..
5.5 Processing COMMEANGS.......couiiiiiaiiiiiiie e 11.....
5.6 Exporting \Ariable AddreSSES.......covuiiiiiiiiiiiee e 12....
5.7 MISCEIIANEOUSeeiiiiieiiie et 13......
Data Object Classes, Start-Stop Protocol..............ceeeevvviiiiiiiininnnnnnn, 13.
6.1 Definition of Data Object CIaSSES.........ccoiiiiiiiieiiiiiiee e 13...
6.2 Run-Time Data Ype ChecKing.........cccoveeviiieeii e 14....
6.3 Embedding of Data ODJECLS..........uuiiiiiiiiii e 14....
6.4 Start-Stop ProtoCOL..........coocuiiiiiiiiie e 15......
Generic Netwrk Object Classes........ccoovvvvviiiiiiiiiicic e 16...
7.1 Definition Of INPULS......oocii i 17......
7.2 Definition Of OULPULS.........vviiiiiiiiie e 17.....
7.3 Command() Method, EBnt StrUCtUre............ccvvviiiiiiiee e 18...
7.4 Export() Method, Covenience FUNCLIONS...........cooiiiiiiiiiiieeeeee e 18..
7.5 Run-Time Data Ype ChecCKing..........covuviiiiiiiiiiieiiiiiee e 19....
7.6 Connection EstabliShment............oocviiiiiiiiiie e 19....

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3

8.0

9.0
10.0
11.0

12.0
13.0

EVENt SChEAUIBE.......oeeeee e 20

8.1 Event Triggered ACWAtIONooiiiiiiieieiee et 21....
8.2 Time Triggered ACWHALIONocueiiiiiiiie e 21....
8.3 Deleting Exent Triggered ACNALIONS...........uueeeieeeeeeiiiiiiiiiiiieeeee e e e e e 21...
Parser Utility ROULINES............uuviiiiiiiiiiieee e 21...
SYMDBOI MANAJEL........cco i 22.....
QUEBUES. ... e e e e e e et e e eaaas 22......
5O R [011 F= 11 S7= 14 [PP PPPTUPTRN 23.......
11,2 ENQUEUBING ...eettieiittieee ittt e e ettt e ettt e e skttt e e sttt e e e s bbbt e e s snbbneeeesnneeeee s 23.......
I3 ORC T B T=To [=0 =T o o (P PEEPRRN 24.......
IO S [01 (0] 1 =V o AT PPUPTRRN 24.......
11.5 Walk through @ QUEUE........ccoiiiiiiiiiieiee e 24.....
Random NUMDETIS.........oooiii e 25.....
EITOr MESSAQES. ... o cieeiiie et 25.....

YATS — et Another Thy Simulator: Programmes’Manual for \érsion 0.3

1.0 Basic Principles

1.1 Creation of Network Objects

The input file is analyzed by the parser front end. When it recognizes a statement
beginning with a netwrk object class identifiethen it creates an object of the desired
class. This is done by calling an intermediate routingigeal by the class (see
Section5.1 on pag®). The object constructor normally is emptipon object creation
the parser calls its init()-method. Here, the definition statement can be analyzed with
the parser utility routines (see Sectff on pag1l). Inputs can be declared by call-
ing the input()-methods of the generic class ino (see Settloon pagd7). Output
names can be parsed andiseered by using the output()-methodsviled by the
classes inlout and inxout (see Seclidhon pagd. 7). When init() returns control, the
parser rgisters the object at the symbol managed &pects the final *;’ of the defini-
tion statement.

1.2 Connection of Network Objects

After creation, the objectxst without aly connections to each others,ttege only
registered at the symbol managBefore running the first simulation (first statement
Sim->Run), the connection process igoked by the krnel. All objects rgistered are
informed via the connect()-method (see Sechidon pagd0). The follaving then is
normally done by the generic base classes inlout and inxout, sowsywneed to pro-
gramm it when using one of them: The object looks for the succeeding object(s)
obtained by the output()-calls during init(). It calls the symbol manager to get the
object address and then asks the object itself to obtain the input number associated to
the gven input name (handle()-method, see Sedi@mon pagd.0). This input lky
number lateron accompaniegeey data object passed to the successor via the rec()-
method (see Sectidn3 on pagdl). For the object data structure members filled dur-
ing the connection process, see Secti@on pagd9.

1.3 Communication between Network Objects

1.3.1 Data Transfer

The standard ay for data transfer is calling the rec()-method (see Sest®an
pagell) of the ngt object:

retval = SucObjectPtr->rec(DataCbjPtr, |nputKey);

The method returns an information, whether the sending objecsimould stop to
send. This alles the recefer to control the sender (see Start-Stop protocol,
Section6.4 on pagd5). In the most “pure” BM object classes, keever, this kind of
backpressure is not implemented since not according to reality

Please note tavvery important coventions (see Sectidn3 on pagdl):

* Rec() can only be used during the early phase of a time sotdd not kna your
succeeding object, and most more completwork objects rely on recang only
in the early phase.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 1

* Per time slot, you must not send more than one data item. Clagsdslél lines
and multiplecers simply cause a core dump when violating this rule.

The type of data transfered by rec() is unspecified, it only must beddérom the
basic data object class “data”. The rec#g object has toerify the data type when
relying on a specific one. Please use the typecheck()-methods (see &&ction
pagel9) for this purpose. Tlyedo not perform an absolute checldt they also accept
that the actual data type is dexd from the desired one. Sinceythise an intger table
lookup, thg are \ery fast.

1.3.2 Export of \ariables for Reading

Objects canxport addresses of their internarables to other objects ékmeasure-
ment deices or to the simulationeknel. Measurement diees simply ask for the
address of aariable to displayand perform scanning and display on theinoFor the
simulation lernel (or moreactly the parser) xported \ariables automatically are
available to read them in the input file, i.e.yttwmn be used as commands kpres-
sions. Although the parameter structure of tky@oet()-method itself is rather compli-
cated (see Sectidn6 on pagéd.2), cowinience methods puided by the class ino
allow to export scalars and one-dimensional arryas (botlgérter double) by writing
one line of source code (see Secfiohon pagd3).

1.3.3 “Special” Communication

For all cases, where possibilities or restrictions of the firsth&thods prohibit their
application, you can use the waisal method special() (see Sectton on pagd3).

This method can be used for arbitrary data types (upon propper definition) and bidirec-
tional data transfeCurrently it is used e.g. fomr. transformation tablexport to

source objects (see class Digtitibn), establishment of ABR connections (see ABR
classes), and for writing the routing table of a demukgale

1.4 Ewent Scheduler

In principle, the eent scheduler only is designed to manage time-dependent operations
within the same object. It is e.g. not possible to use the scheduler directly for delayed
delivery of a data item to another object. In such cases, Ww#yalnecessary that the
sending object sets a timer with the wished delag sends the data item itself by call-
ing the rec()-method of the successdris may appear as inagnient, kut in practice

only very view object classes ka to use this technique, or it is something to de an

way at the instance of sending.

To sohe problems caused by the undefined processing order of simultamentss e

time slots are dided in an early and a late phase. Since data are only sent during the
early phase, it is possible to implement e.g. the round-robingtret@ multipleer in

the late phase.

The scheduler prades routines for single aettion upon gpiry of a specified time,

and for actration during each time slot. The former kind gfistration can be deleted

as long as thevent has not yet been actted.

For detailed information he to start and stop timers, see Sec8dhon page0.

Please pay also attention to the problems which may arise withehieseheduler (see
Section3.2 on pag€).

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 2

2.0 A Network Object Class: Commented C++ Code

The followving example can be found as source code in the file src/user/vciCount.c. The
example defines a nebtsk object class which only foavds cells on a gen virtual

channel. All other cells are terminated, i.e. the object acts as sink. Additi@nally
“clock” is implemented (only in order to demonstrate scheduler usage). In the simula-
tor input file, an object is declared e.g. with

VCICount xyz: VCI=13, TICK=10, OUT=sink;

The Object then counts cells on VCI 13, and fanag these cells to sink. The input
name of the object is ‘xyz’, too. So we cawvé&.g. a source

CBRquelle src: ... OUT=xyz . The counter for passed cells can be read with
X = xyz->TheCounter . The clock is incremented with each TICK-th simulation
time step, and the cloclale can be read with= xyz->Clock

We start our description of the C++ code file with the class definition. Thaeteork

object class is dered from the generic base class ‘inlout’ which is described in more
detail in Sectiory.0 on pagd 6. The most important services of this base class are the
definition of inputs and outputs, and the complete handling of the connection process.

#include “inlout.h” // declaration of class inlout,
I/ also includes all other system headers
class vciCnt: public inlout {
typedef inlout baseclass; // often useful for recursion through
I the class hierarchy
public:
vciCnt(): clockEvent(this, 0) {} // constructor

Events- clockEwent is defined further belo- need to be initialized by the constructor
for safety reasons. The firsgament is the pointer to our object, the second &ya k
value allaving to distinguish between égirent @ents. Actuallywe do not need this:
we only hae one gent. Instead of defining clockErt, we also could ka reused an
event structure which already is prded and initialized by the base class (its name is
std_et, see Sectioii.3 on pagds).

void init(); Il evaluates the definition statement
rec_typ REC(data *, int); // receives and forwards data.
/I REC is a macro normally expanding to ‘rec’.
/I REC is overloaded in debugging mode.
void early(event *); // is called by the scheduler
int export(exp_typ *); /I allows read access to myCounter

event clockEvent; // an event structure for our clock tick
int myVClI; /l the VCI on which to count cells
unsigned myCounter; // the counter itself
tim_typ clockTick; // tick, tim_typ is the type for times
unsigned myClock; //is incremented with each tick

}. 1 end of class definition

While the class definition normally should be placed in a header file, the rest has to
reside in the normal C++ code filavd macro calls establish the connection to e k
nel:

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 3

CONSTRUCTOR(VciCnt, vciCnt);
USERCLASS(“VCICount”, VciCnt);

CONSTRJCTOR is a macro wich generates an irdeé routine (first @ument, here
VciCnt()) to be called by the parser when @ms to create a weobject. The routine
creates an object of class vciCnt (secomiisrent) and returns the pointer to the
parser

The line containing USERCLASS(...) is copied by maknfig (see Sectidh2 on
page?) into the source code file “srefinel/class.c”. It declares the intré routine
VciCnt() in the kernel, and says it has to be called, if a statemem$devith “VClI-
Count”. During compilation of our C++ file, USERCLASS is an empty macro. Hence
it does not generate code here.

If the parser o detects a statementdiening with “VCICount”, then it calls the
interface routine VciCnt(). Immediately afteawds it calls the method init() of the
returned ne object. At this instant, the input reading pointer still points to tigenbe
ning of the statement, i.e. to the class identifier

void vciCnt::init()
{
skip(CLASS); /I we skip the class ID

name = read_id(NULL);// NULL: no keyword in front expected

Name is a member of the root class namedt’ . If we do not set ‘name’ then it con-
tinues to point to “<name: unknm>" (initialized by the constructor of the base class
root). Read_id() is a parser utility routine. It reads an identifier and checks that this
ID is not yet used.

skip(:); /I we require a “:’" to follow
myVCI = read_int(“VCI"); // read the VCI
skip(*,); /[require a*,’

We initialize myVCI by calling read_int() which am is a parser utility routine. It
expects the gien key word “VCI”, followed by a ‘=", and an arbitrarykpression eal-
uating to an intger \alue. The glue is returned. If something goes wrong, the error
message is automatically generated by the pamsdiread_int() does not returrAIYS

is terminated).

clockTick = read_int(“TICK"); // read the clock tick
if (clockTick < 1)

syntax0(“invalid TICK");
alarme(&clockEvent, clockTick);

skip(',));

The clock tick may not be zero. Besides thatauid not be useful, it is not alled to

ask the scheduler for an agiion after zero time stepsofperformance reasons, this

is, havever, not tested by the scheduler intexé routines. Syntax0() is an error mes-
sage routine which prints the message and termin&€S.YOur error message is pre-
ceeded by the current line of the inputi¢he line numberand the current input file
name. Additional parameters can be passedftikthe printf() functiondmily (see
Section13.0 on pageb).

Alarme() is a scheduler routine. The call requests that the early() method of our object
shall be actiated in the first half of the time stepifiTime +clockTick). The simula-

tor clockSimTime is zero during init(). As first gument, we pass theent which we

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 4

have initialized with the constructorhis e/ent structure is directly used by the sched-
uler, so it does not need to create and initializevan data structure.

Remark: The price for thaifly fast operation of the scheduler are some subtle appli-
cation rules, please pay attention for the deta¥lsrgin Sectiort.0 on pag& and
Section8.0 on pag0. The ngt two code lines define input and output of our object.

output(*OUT");
stdinp();

Ouptut() is a method of class inlout. It reads tbedDUT from the input e, fol-

lowed by a ‘=". Then an input name of another retobject is gpected and read.

This name is remembered in an internal data structure of class inlout. During the con-
nection process handled by the base classes, the object members suc (pointer to the
successor) and shand (inpey khumber of the successor), which we will use lateron,
are initialized. Br objects with more than one output, the base class inxout has to be
used, it preides the necessary methods for multiple outputs (see S&dliam

pagel6).

Stdinp() a@in is a method of the base class. The call indicates that our object has an
input whichs name equals the object name. The inguhimber is 0. There are other
methods to declare inputs with namxemsions and otheek values (see Sectioh0

on pagelo).

myCounter = 0; // this also could be part of the
Il constructor vciCnt::vciCnt()
myClock = 0;
} // end of vciCnt:init()

When init() returns, the parsexpects the final ‘;’ of the definition statemengisters

the nev object at the symbol table (using the member ‘name’), and continues process-
ing the input tet. The first simulation statement Sim->Run .voikes the connection
process which is handled by our base classes. When the simulation then is running, we
- hopefully - will receve data objects. A preceeding object calls our rec() method for
that purpose. In order to alodehugging (see Sectiof 1 on pagd), the macr&RECis

used instead of the real namee for the method definition. In standard moR&C

expands taec .

rec_typ vciCnt::REC(data *pd, int) // REC is a macro normally
I/l expanding to ‘rec’
{

The pointer pd contains the pointer to the data object, the segandeanrt is the input
key number Since we only ha one input, we do not need wakiate it. The pointer

pd points to a general data object. If wanivto access the VCI then we firsv@ao
ensure that the data object actually is of class cell or of eedeasiass (only cells ke

a VCI). This is done by typecheck(). The methods/mled by the base class checks the
data type and generates an error message if the class does not fit (terminagitB)of Y
In case we had more than one input, veeilad have had to use typecheck_i() (see
Section7.5 on pagd9).

Now we are sure that pd points to a cell (orwkticlass), thus we can cast the pointer

typecheck(pd, CellType); // CellType is a key number
/I for cell objects
cell *pc = (cell *) pd;

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 5

if (pc->vei == myVCl) // without pc:
Il if(((cel®)pd)->vci==myVCI)
{ if (++myCounter == 0)
errm1s(“%s: overflow of counter”, name);
return suc->rec(pd, shand);
/I Do *not* use REC when calling a rec() method.
/I Otherwise, a syntax error appears in debug mode.

}

Errm1s() resembles the syntax() functiamily, but it does not print gninformation
related to the input x& (see Sectiod3.0 on pag5). It remains to forard the data
object to the successdre pointer ‘suc’, and the inpugknumber ‘shand’ ha been
initialized by inlout. The returradue of the rec() method indicates whether a sender of
data may continue transmissione\8Iimply pass this returralie to our preceeding
object. If the cell does not carry the right VCI, it is deleted, and we return ContSend.
This means that the preceeding object may continue to send irxtieneestep.

else
{ delete pd;
return ContSend;

}
} /' end of vciCnt::rec()

When the firstlockTick time steps ha been processed, we are called in the first
half of the time step (the schedulevides each time step into &phases, during the
first phase already early() is called)e\Wicrement the clock andgister agin. The
argument of early() is just thevent structure we lva used for rgistration. This is
sometimes useful since aveat comprises agg value which allavs to tell between
different timers, if more than one are in usage. Here we oug/dvae timerso we do
not need to look into thesi. The important members in theeat structure hae not
been changed, so we can directly reuse\katestructure for the meregistration.

void vciCnt;:early(event *)

{
if (++myClock == 0)
errml1s(“%s: overflow of clock”, name);
alarme(&clockEvent, clockTick); // register again
} /' end of vciCnt::early()

The base class proles a counter named ‘counter’, together with methodsiggpto
read and reset this counter from the simulator input file (see S&diam pagd6).
Since we did not use ‘counter’, these methode ha be preided. In order to not\er-
complicate thisxample, only the method for reading is described hererdseting,
see the command() method specified in Se&ibéron pagd 1.

Export() is a method used both by the parser and by otheorketljects (e.g. online
displays), if thg want to @in read access to a certaariable. The asking party speci-
fies a string, and we @ to reply with a pointer to the wishedriable. By cowention
this pointer is only used for reading. Both request and reply information are part of an
object of class»@_typ which is agument of gport(). The method shall return UE,

if the operation \as successful ALSE otherwise.

int vciCnt::export(exp_typ *msg)
{
return baseclass::export(msg) ||
intScalar(msg, “TheCounter”, (int *) &myCounter) ||

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 6

intScalar(msg, “Clock”, (int *) &myClock);
} // end of vciCnt::export()

First we try our base class (baseclass is the typedef in the class defenji@bwe).

If it was successful, then theaguation of the aexpression is finished, anaort()
returns TRJE. Otherwise the result is determined by the calls of intScalar(). This is a
method of the base class, otherstons to gport double alues and arryas areaala-

ble (see Sectior.4 on pagd.8). The aguments of the first call specify that the address
of myCounter shall be returned via msg, if the name ‘TheCounter’ has beghfask

If this is not the case - the first intScalar() return@U$E -, finally ‘Clock’ is tried.

The simplest ay to include the e class into YATS is to play the code fileXgnsion
has to be .c) into the directory yats/src/usgnpiig ‘make config ’in the yats/bin/
directory generates entries for thevngass in yats/bin/Ma#file, and in the central
configuration file yats/srcétnel/class.c.yping ‘make’ afterwards compiles our
source code file and the changed yats/sro#/class.c (see Secti8rD on pagd),
and links all togetheNow the nev class should bevailable for usage.

3.0 How to Add a New Netvwork Object Class

Normally, each object class is coded in enosource code file. There areotways to
add a netwrk class.

3.1 Configuration by Hand

To establish the connection to the simulatiemiel by hand, three thingsveato be
done:

1. Definition of an intermediate routine which can be called by the parser for object
creation. This is easily done by including the macro
CONSTRUCTOR(NameOfintermRout, InternalClassName);
into the source code file (see Sectioh on pag®).

2. Declaration of the ne class in the source code file “class.c”. Here, the name of the
intermediate routine is associated to the class name to be used in the simulation
input file.

3. Include the name of the object code file into the list in thedfligk and call mad
depend.

3.2 Automatic Configuration

All code files for user specific netrk object classes are collected in the directory
src/user/
To install a netwrk object class, simply put copies of or links to the corresponding .c
and .h files into the src/user directofyping
% male config
in the bin/ directory scans src/user/ for .c files and generates appropriate entries in the
Makefile and in src/@rnel/class.c. dur .c file has to comprise dathings:

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 7

1. Definition of the intermediate routine which can be called by the parser for object
creation. This is done as described in Secidnon pagé.

2. The macro USERCLASS(NameAsString, NameOfintermRout). NameAsString is
the name of the object class to be used in the simulator input file dbakg
searches the .c files in src/user for lines containing USERCLASS, and copies this
lines into src/krnel/class.c.

For an é&le, see the file src/ustémple.c. © install this @ample, rename src/usr
to src/userand type ‘ma& config’ and ‘mak’ in the bin/ directory

4.0 Frequent Errorsand Debugging

4.1 Usage of the Rec() Method

Remainder (see Secti@3 on pagdl):

* Rec() can only be used during the early phase of a time siotdd not kna your
succeeding object, and most more completwork objects rely on recang only
in the early phase.

» Per time slot, you must not send more than one data item. Clagsdslél lines
and multipleers simply cause a core dump when violating this rule.

A first way to delng violations of this tw rules is to uncomment the definition of the
pre-processorariableRECEI VE_DEBUGat the bginning of the file srcirnel/defs.h.

This redefines all calls of rec() methods to calls of a check routinglpobby the base
classr oot . The base class performs the tests and generates error messages if neces-
sary Then the original rec() method is called. This requires that the rec() methods of all
network object classes are declared (in the class definition) and defined (method body)
with the macro namBEC(. . .) instead of rec(...)lhe RECEI VE_DEBUG mode

cannot be used together with classes which do not ugE®€ macro, since this

leads to incorrect C++ code. Thus, syntax errors during compilation with

RECEI VE_DEBUG shaw the places where the changdrieC() has been fgotten.

The delngging mode shes the simulator den by typically 50 per cent.

Important: Calls of the rec() methoadmsust not be changed. Otherwise, a syntax error is
generated in delyging mode (Hence, these mistalare easily found, too).

Note: The RECEIVE_DERG mode can generate wrong (i.e. too y)arror mes-
sages, if the simulation time is reset betweemrwwns (command Sim->Resetie).

As a second ay, you can use the netrk object classypeCheck (see UserMan-
ual). This object can be included into each output line of youratgect. It checks,
that both rules are met, and produces appropriate error messages.

4.2 Event Handling

Remainder (see Secti@0 on page0):

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 8

* An event structure must not be used twice at the same time. It can be reused only if
the corresponding timer hagpéred (the object has been aated), or if the timer
has been stopped with unalarme() or unalarmi().

» The time diference specified in alarme() / alarml() calls may not eidhan one.
There are tw exceptions of this rule: If the simulation is not running (e.g. during
the init() method or when processing a commadpt Sim->Run), the time dr-
ence may be zero. Zero timefdience also is &l during the early slot phase when
setting a timer for the late phase of the same slot (alarml(..., 0)).

To find violations of this rules, you can define the C++ preproceasiable
EVENT_DEBUG the source code file “defs.h” (uncomment the line at tgenbiang
of the file). Aftervards you hee to recompile. Nw, tests are performed for all
alarme(), alarml(), eache(), and eachl() calls. The additional code wildsion the
simulator by approximately 10 to 15 per cent.

4.3 Locating Erroneous Network Objects

When deeloping more compienetwork object modules, core dumps unfortunately
are used to happenoTocate the causing netwk module in a straightforavrd manner
you can turn on logging of object agttion (calls of early()/late()). In the source code
file “kernel/sim.c”, there is a preprocessariable EVENT_LOG. It is normally com-
mented. Defining thisariable causes the scheduler to print a log message for each acti-
vation occuring at a simulation time not smaller than EVENT_LOG. The message has
the form
currTime: objName->{early|late{Evt|Tim}(begin ... end)
Early andlate tell early and late time slot phagest andTim distinguish
between gent and time triggered acétion (see Sectio®.0 on pag0). The message
is printed to standard output xcept the finaend) — before entering the object
method. The tail of the message appears upon method completion.

With a delmgger you qain access to the erroneous object e.g. asisliBefine a glo-
bal pointer ariable (type as the class yoant to dehg) in the source code file of the
object class. In the init() method, you initialize the global pojiiténe object name is
the right one:

if (strcmp(name, “xyz”) == 0) theDebugPtr = this;
Upon processing the declaration statement in the simulator input file, you can access
the object members vitaeDebugPtr

5.0 Network Object Classes and Their Methods

The root class for netwk objects is “root”. This class declares the methods described
below as virtual functions containing an error message.

5.1 Object Creation

The parser does not call directly the constructor of a class. Insteamkesithe inter-
mediate routine declared in usr_classes() (source code file “class.c”). This routine is
part of the source code file of the object class and creates the objecgi$tiatien of

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 9

the object at the symbol manager is done by the parser after callingvtiobjeets
init()-method. D define the intermediate routine, you can use the macro
CONSTRUCTOR(NameOfintermRout, InternalClassName);

In case the object class shall not really create objects, the intermediate routine has to be
programmed “by hand” and has to return a NULL pointer (normié/nev objects

address, see e.g. signal.c).

In most cases, the constructor of a class can stay efipdast, the constructor should
not read from the input file, since the constructor is alsowged when creating objects
of derved classes. The definition statement is processed in the init()-method.

void newClass::init(void);

When called by the parséhe current input symbol is yet the class name. The name
can be tag&n fromtval.nam , but must not be freed. The symbol is skipped with
skip(CLASS) . Reading the object name ancleating of parameters is done via
parser utility routines (see Secti®r® on pag1). To ease devation of other

classes, the method addpars() (see)ne called at the place where dexd classes
should read their additional parameters. Classes witlvanrit()-method define
addpars() as empty (or inherit the empty method from root).

void newClass::addpars(void);

A class dened from another one can reuse the init()-method of its base class. Read-
ing of ovn parameters is done byerloading the addpars()-method. Addpars()
should behee as follavs:
void xyz::addpars(void)
{ /I first call addpars() of the base class

Il baseclass is an appropriate typedef

baseclass::addpars();

/Il then read own parameters:

xyzpar = read_int(*XYZPAR?”);

skip(’,’);
}
By doing so, more than one dexd class can reuse the init()-method. The class
most “closed” to the base class first reads its parameters.

5.2 Connection Establishment

The methods for connection establishment mostly can be inherited from the generic
classesnlout andinxout

void newClass::connect(void);

This is a broadcast message from temkl to cause connection establishment. All
objects are defined, and the fi&tn->Run statement has been reachedhw

root *find_obj(char *name);

the succeeding objects can be found. Continuation see handle()-method.

int newClass::handle(char *inpName, root *callgObject);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 10

The preceeding objects sends this message to obtain the égputraber of the
given input. The method should ensure that an input is not connected to more than
one other object.

5.3 Receiving Data

rec_typ newCl ass::rec(data *dataPtr, int inputKey);

InputKey is the \alue returned by handle() during connection setup.

An object is allaved to call rec() of its successor

* only once atime dot, and

* only during the early slot phase.

Since the gact type of the data item is unkmo, it has to be cheekl prior to access

to data item members. See Sectioh on pagd4.

Rec_typ is an enumeration type defined in the source code file “special.h”. The rec()
return \alue can bevaluated by objects whichamt to be controlled by the succeed-
ing object. The carention is, havever, that a data item sentaays remains at the
recever (or is lost there). The reger only can protect ainst luffer overflow,

when returning the stopaiue of rec_typ early enough. The Start-Stop protocol (see
Section6.4 on pagd5) uses this mechanism.

Objects transparently passing data items (measuremaoaésiedemultiplger ...)
should return thealue gven by the succeeding object to its precceeding one. Thus,
these objects can be included into handshizles.

REMARKS

In order to allev delugging of the usage of rec() (see Secddhon pag®), the macro
nameREC has to be used for method declaration (in the class definition) and method
definition (method body). Calls of rec() methodswaeer, must not use theREC

macro. Otherwise, C++ syntax errors are generated when compilingug oielale.

5.4 Activation by the Event Scheduler

The e/ent scheduler dides each time slot into an early and a late phase. Dependent on
the raistration, one of the follsing methods is called for aettion.

voi d newCl ass::early(event *eventPtr);
void newCl ass:: |l ate(event *eventPtr);

The event pointer is the address of theeet structure used forgestration. The
event memberentPtr>key can be used to distinguish betweefrfedént timers.
The event structure may be reused immediately gpster agin. See also
Section8.0 on pageo0.

5.5 Processing Commands

i nt newC ass::command(char *cndNanme, tok typ *retVal);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 11

A command shall be processed by the object. The command namenisrgcmd-
Name. If the command is kna, it is carried out. Commandgaments can be
taken from the input file via parser utility routines (see Se@ifron pagel).
Upon successfull completion, TE is returned by command(). In case the com-
mand is unknan, FALSE is returned.

The structure tok_typ contains theottwembers tok ancal, where the latter is a union
of an int@er alue, a doublealue, and a char pointdn tok, the return type of the
command is passed back, tla union is used to store thelue (if ary). The folloving
values are possible for retiM>tok:

 NILVAR: The command does not returnaue, and therefore can not be used in
expressions

* IVAL: The return type is ingger The \alue is stored in re@l->val.i.
» DVAL: The return type is double.alue stored in ret->val.d.

» SVAL: The return type is string. The pointergn in ret\al->val.s has to specify a
dynamic cop, since it is deleted in theeknel if necessary

ATTENTION: do not return I¥R, S\AR, or DVAR.

Commands can be inherited as falf
int xyz::command(char *s, tok _typ *v)
{ [l first try base class
i f (basecl ass::comand(s, V))
return TRUE;
/[l then try it yourself and return TRUE or FALSE

}

5.6 Exporting Variable Addresses

To ease the rather complicated operations describedthe generic clagsno pro-
vides conenience functions which alloto export a \ariable with one line of source
code (see Section4 on pagds).

i nt newCl ass: :export(exp_typ *nsg);

Either the parser or another object look for the address of a caatable. The

parser does so before trying the command()-method in ordeslteaée the a&lue of

a command-lik expression in the input file. Measurement objects as another-e

ple want to display theariable as&d for

The type &p_typ is defined in the source code file “special.h”. Msgrrame con-
tains the name of theaviable vanted. Msg->ninds specifies the number of indices
given by a usemsg->indices|[] specifies the indices itselfs. In case@able name,

as well as number and ranges of indices are o.k., the field msg->addrtype has to be
filled with the type of address (iger / double?, scalar / array?). The address itself
then is written into the right filed of the address union in *msg. The method returns
TRUE. In case theariable is an arrayadditionally the follaving fields hae to be

set. Msg->dimensions[] has to be initialized with the number of entries per dimen-
sion, and msg->displacements[] specifies for each dimension the displacement

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 12

between logical xalue and p¥sical inde in the array pointer
Export() returns ALSE if the \ariable is unknen or an error occured. Inheritance
is implemented applying the same scheme awshior commandy().

5.7 Miscellaneous

char *newC ass: :special (specnsg *nsg, char *caller);

This is the method for “all cases”ofFevery kind of usage, a class containing the
needed members has to be deilifrom class specmsg defined in “special.h”. Spec-
msg comprises a field type to tellfdifent message types from each others. An
object implementing the special()-method/ays first has to check this fieldo-

every application, anxéra value has to be included into the enumeration
specmsg_typ (“special.h”). Special() should return the NULL pointer in case all is
o.k. If an error occured, an error description should be returned. If this is not possi-
ble or too complicated, an error message can be launched by the objectatself. F
this purpose, the name of the calling objectvegias second gument.

Find application xamples in “demux.c” (writing the routing table) or in “distcdb
(exporting the m. transformation table).

voi d newCl ass: :restimvoid);

Message from thedknel that the simulation clock is to reset (the command read:
Sim->Resetime). This method only has to be implemented by classes which store
times internally (see e.g. “line.c” and “lgdikc”). Events which hee been rgis-

tered at the schedu)are corrected automaticallijhe method is predefined by

class root as no-op (no error message).

6.0 Data Object Classes, Start-Stop Btocol

6.1 Definition of Data Object Classes

The rec()-method is defined for the class data which is the basic class for all data
objects. All data object classes and theirv@gion relations are defined in the source
code file “data.h”. The destion of data classes andastf mechanism for run-time
data type checking allothat

objects processing a certain data type can also process all data tyyess fiem
the intended one,

error messages are generatedavdser, if incomming data items do not contain the
necessary members (i.e. yrare not devied from the intended data class).

In parallel, destructors of all data classes are virtual. Thus, the right destructor is found
for an object rgardless of the type of pointer used in the delete statement. The combi-
nation of run-time type checking and late binding of destructors cost f@& \ery

simple models - not more than 10 % speed.

Unfortunately dervation relations can not (yet) braenined automaticallyf a nev

data class is added, then therefore a couple of things has to be done in “data.h” and
“data.c™

1. Add a nev value to the enum dat_typ.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 13

2. The folloving macros hee to be part of each class definition:
* BASECLASS(base_class_name): declaration of the base class

* CLASS_KEY(dat_typ_salue): specification of the dat_typlue associated to the
new class

* NEW_DELETE(number_of objects_allocated_together): defines inlweand
delete operators. Thielecrease the simulation time by approx. 30% and initialize
the ‘type’ object members.

* CLONE(class_name): defines the method clone() which producey afcaplata
object of unknwn type (see Sectiofi3 on pagd4).

3. Define the static class member (datawnelass::pool) in “data.c’lt has been
declared by NEW_DELETE().

4. Register the ne class in data_classes(e(y belav in “data.h”). The macro
DATA_CLASS(internal_class_namesternal_name) uses the information ofypre
0UsSBASECLASS() and CLASS_KEY/() statements i@mine the devation rela-
tionships.

5. Do not foget to define the methodweclass::pdu_len() which returns the real-
world size of a data object.

ATTENTION

If a data object is not created via thevr@peratoy it cannot be sent to other neik
objects. Additionallythe type field of the data object is not initialized automatically
since this normally should not be done by the constructor (otherwiseilid \Wwe

changed seeral times during calling all constructors of the object and its bas classes).
For objects created via wethe type field is initialised once by the memory allocation
routine, and then wer agin.

6.2 Run-Time Data Type Checking

The run-time data type check is performed by the methods typecheck(), typecheck i(),
and typequery() which are pided by the generic class ino (see Sectidnon

pagel9). During initialisation of the simulatoan intger table reflecting the dea-

tion relations is computed. The type check methods then perform a simple lookup in
this table.

6.3 Embedding of Data Objects

Certain netwrk objects hee to encapsulate data objects, e.g. gpret them, to
transport them inwn data objects, and to reconstruct them at thewercend of a
peerto-peer connection.ololganize this process transparenthe folloving interface
has been defined for class data:

class data {
data *embedded; // ‘hook’ for other data objects
data()
{ embedded = NULL,; }
virtual ~data()
/Il delete possibly embedded data objects

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 14

{ if (embedded) delete embedded; }
virtual size_t pdu_len() { return xyz; }
Il return the “real-world” size of the object

|8

A data object which shall be transported via another object class is mounted into the
embeded pointer of one of the lperlayer data objects (e.g. the last cell of the stream
of AAL 5 cells representing a frame). If the criticavler-layer data item is lost and
therefore deleted in the natvk, then the higheiayer object is deleted automatically
(embedded is non-NULL, so alelete is performed). Initiallytheembedded

pointer is set to NULL by the constructor of cldssa . The methoghdu_len() has

to return the “real-wrld” size of the object in bytes. This alle a laver-layer netvark
object to figure out, v mary lower-layer data objects kia to be sent.

When a receing network object &pects a mounted data object, it should eéesbed-

ded on non-NULL before it passes the pointer to a successor

Important:

It is essential that thembedded pointer is reset to NULL, if the transported data
object is takn from the laver-layer data object. Otherwise, the highegrer object is

deleted twice: at the reseir of the object and together with the lateron deletedio
layer object.

/l data *pd contains the lower-layer object

if (pd->embedded)

{ /Il extract and forward higher-layer object
suc->rec(pd->embedded, shand);
pd->embedded = NULL; // ! important !!

}

else /I error message: we expected sth embedded

For an &le, see src/tcpip/aalssend.c and src/tcpip/aal5rec.c.
If a data item has to be duplicated for some reason, the method clone() should help.

data *p2; I/l p1 comes from somewhere

p2 = pl->clone(); I/l p1 returns a new object with a copy
/I of itself. We don’t need to know
/I the class.

6.4 Start-Stop Protocol
To realize a loss free transmission of data objects, e.g. between objects implementing
higher layer protocols, the Start-Stop protocol has been defined.

* In case the rec()-method of the data remereturns StopSend, the data sender must
not continue to send.

» Data items sent during the stop state of the data sender are dropped by the data
recever, and rec() agin returns StopSend.

* The stopped data sender is startemiragy sending him a data item on the control
input.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 15

» The data receer may send the start data item in the same slot wiféar becomes
available.

» Upon receiption of the start signal, the data sender has to postpone sending, if data
have been send during the current time slot (this is possible!). The throughput is not
decreased, if this is ensured by a general delay by one time slot.

* The data sender starts in the state of sendingedlo

This basic ersion has beerxtended for future usage together with higlaser proto-
cols:

» ContSend is defined by -2.
» StopSend equals -1.

» All other values (only >= 0) hae the follaving meaning: W must stop to send, and
logically a part of the data item has been rejected. This means, tiphysital data
object remains at the rewer, but the receier has only accepted the amount of asso-
ciated data gen by the returnalue. This may include that the ree=i accepted
only a part of the data, oven nothing (recRetM == 0). In case all data V&been
accepted, it we shall stop to send, the reezimust return StopSend as in the basic
protocol.

Network objects which only can handle theotasic alues ContSend and StopSend
have to check the returralue of the rec() call. A utility method is ptided by class

ino: void ino::chkStartStop(rec_typ recRetVal);

It evaluates the gen \alue and generates an error message in case neither ContSend
nor StopSend has been returned.

The basic protocol currently is implemented by GmdpStop, ShapCtrl, AbrSrc, and
AbrSink. Net candidates are the anticipated AAL5 and the TCP/IP implementations.

7.0 Generic Network Object Classes

There are three generic classes which hide details of connection establishment more or
less completely

 class ino: public root
Network object with arbitrarily man(also zero) inputs. Is not used directyt is
the base class oinlout andi nxout

e class inlout: public ino
Network object with inputs and at most one output.

* class inxout: public ino
Network object with inputs and arbitrarily maioutputs.
They provide the follaving services:
* management of inputs and outputs, parsing of output names
» methods for connection establishment (connect() and handle())
» export()-method for reading a warsal counter
» cornvenience functions to apply ixgort()

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 16

» command()-method for resetting the counter
» methods for run-time data type checking
» provision and initialisation of anvent structure

7.1 Definition of Inputs

The three follwing methods can be called from init() or addpars(), the can be used
arbitrarily often, and mied together with calls to define outputs. If none of the input()-
methods is called, then the netk object has no inputs.

void ino::stdinp(void);
Definition of an input whichs name equals the mekwbjects name. The inputey
number lateron returned by handle() is O.

void ino::input(char *ext, int key);
An input with the namé&bjName’->*ext’ . The input lkey number is ky. In
caseext == NULL , the input name equals the object name.

void ino::inputs(char *ext, int ninp, int displ);

Define a set of ninp inputs. The inputydahe names
‘objName’->"*ext’'[no] , Where no is ranging from 1 to ninp. The inpegk
are (no + displ). If e.g. the first input shalveahe ley 0, then displ is -1.

Handle() lateron generates error messages, when input nafeesndifrom the
defined ones are requested. Multiple connections also cause error messages, inputs
staying unconnected are not reportedy(tthe not cause errors).

7.2 Definition of Outputs

The methods can be called from init() or addpars(y, tae be mird with input()-
calls. The can be called arbitrarily often{geption: inlout::output() only once).

void inlout::output(char *keyw);

Definition of an output. The output name is read from the ingtititecase kyw is

not the NULL pointerthe leyword followed by a ‘=" sign has to preceed the output
name. After connection establishment by connect(), the object eleooent

*suc is initialized with the pointer to the xienetwork object,int shand con-
tains the input & number associated to the wished input. In case the output()-
method is not called, the netvk object has no output, and suc remains NULL.

void inxout::output(char *keyw, int idx);

Like inlout::output(). Additionallythe ind& which the successor shalMeain the
arrays root sucs[] and int shands[], is specified in id¥pdss lateron data on output
idx: sucs[idx]->rec(pdata, shandsJ[idx])

void inxout::outputs(char *keyw, int nout, int displ);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 17

Define a set of outputs. Iekw != NULL, the keyword and a ‘=" arexpected as
introduction. The output indices in sucs[] and shands[] are (no + displ), where no
ranges from 1 to noutXample: to generate indices O ... (nout-1), specify displ=-1).
The output names argpected according to one of three possibilities:

‘(“ variable ' nameTemplateContainingVariable *)’

The \ariable has to be declared in adee and is counted from 1 to nout to obtain
the names.

‘(“ variable ‘=" lo ‘to’ up ' Template ‘," ...)’

The \ariable has to be declared in adee, and a number of ranges withHetd#nt
name templates can be specified. Ranges can bevaibbde See Uses’Manual,
section about Demultipker.

outputl ‘" ..., outputNout
The names are listed completely

7.3 Command() Method, Event Structure

unsigned ino::counter;
int ino::command(char *, tok_typ *);

The class ino contains a counter which is initialized with zero by the constructor
With the command objName->ResCount, the counter can be reset (implemented by
command()). Reading counter is pided by the rport()-method (see ®§.

even ino::std_ewvt;

This is a predefinedvent which is part oino . The eent key number is 0.

7.4 Export() Method, Convenience Functions

int ino::export(exp_typ *);

The address of theaviable objName->Count ixgorted, no indices are alled.
The address type ixe _typ::IntScalar (see “special.h”).

The folloving methods ally an uncomplicatedxgort of integer and double scalars
and one- and tardimensional arrays.
For application ramples, see e.g. muxxport() in the source code file “mux.c”.

int ino::intScalar(exp_typ *msg, char *nam, int *ptr);
int ino::doubleScalar(exp_typ *msg, char *nam,

double *ptr);

In case theariable name gen in the msg structure equals nam and no indices ha
been specified, the address ptr is filled into *msg. The address type then is filled
with exp_typ::IntScalar orxg_typ::DoubleScalaand the method returns UE. If

the conditions are not metAESE is returned.

int ino::intArrayl(exp_typ *msg, char *nam,

int *ptr, int dim, int displ);

int ino::doubleArrayl(exp_typ *msg, char *nam,

double *ptr, int dim, int displ);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 18

Like intScalar() / doubleScalar()tadditionally the length of the array is noted in
the message. Thable displ specifies the tBfenc between logicablue and inde

in the arrayShall an array e.g. possess the logical indices 1 ... dim (in the simulation
input file or on a measurent display), then displ has to be set to 1. The address types
filled into the message argpe typ::IntArrayl or gp_typ::DoubleArrayl.

int ino::intArray2(exp_typ *msg, char *nam
int **ptr, int dinml, int displl,
int din2, int displ2);

i nt ino::doubleArray2(exp_typ *nsg, char *nam
double **ptr, int dinl, int displl,
int din2, int displ2);

These two methods alle to export two-dimensional arrays of ider and double
values. ler both dimensions]i manddi spl have to be gren (same meaning as
for the one-dimensionakvsions). Br an application, see file ‘src/misc/meas3.c’.

7.5 Run-Time Data Type Checking

Network objects gpecting certain data object types from their preceeding objeats ha
to check the actual type of afing data items. This is because the input file syntax can
not check whether objects which incompatible data object types are connected. The
following inline-methods (defined in “ino.h”) are prded.

voi d ino::typecheck i(data *pd, dat_typ typ, int key);

Using a table created during simulator initialisation, it is determined whether the
incomming data item is of the requested type or of aetype. If neither of them,
then an error message is generatesy. ik the input ky number which has been
passed to the rec()-method. It is used tovedanput name and name of preceeding
object for an error message.

voi d ino::typecheck(data *pd, dat_typ typ);

Simpler ersion of typecheck i(). Can be used for reknobjects only possessing

one input. If the method is used for objects with more than one input, then the type
check is perfomed accuratlyut an error message will probably contain the wrong
input and preceeding object name.

int ino::typequery(data *pd, dat_typ typ);

This is a “soft” \ersion of typecheck(). The method returndJERf the data item
has the right type ALSE otherwise. No error message is generated. Using this
method, diferent data types can be distinguished without additional flags.

7.6 Connection Establishment
These methods are called by tegriel prior to the first simulation run.

voi d i nlout::connect(void);
voi d i nxout::connect(void);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 19

The information obtained by output()-calls is used to connect to the successors.
After connection establishment, the foliog data object members (of thero
object) are initialized:
Class inlout:
root *suc; // pointer to the successor
int shand; // input key value to pass together with
/'l every data item
Class inxout:
Similar, but the \alues nwv are arrays. The array length is ged from the lagest
index whished by an output()-call.
root **sucs;
i nt *shands;

8.0 Event Scheduler

The event scheduler dides each time slot into an early and a late phase. Therefore,
problems arising from simultaneity can be salinside of the netwk objects without
making the scheduler ige and sl (example: “mux.c”). Netwrk objects can ggster

for single actration upon gpiry of a specifeid time (‘ent triggered”), or thecan
register for actration during each time slot (“time triggered”). During each slot phase,
first the @ent triggered, and then the time triggeredras are actated. The global
variablei nt Ti meType specifies the current slot phasaluwes are EARY. and

LATE. The global ariablet i m t yp Si mili ne displays the current time.

To avoid repeated allocations and deallocationsvehé management structures in the
kernel, the gent structures are directly associated to the otwbjects. Fix eent
entries lile the pointer to the nebrk object and thevent ley (to distinguish diierent
timers set by an object) are initialized once at netvobject creation. Whengester-
ing at the schedulga netvark object passes the address of trenestructure to the
schedulerThe latter one directly uses the structure in tleelists. The consequence
is that an eent structure must not be reused for starting another timer prior to

1. Event actvation by the krnel. The object method called by tresrkel (early() or
late()), havever, can reuse thevent immediately for e meregistration. Or:

2. Deleting the rgistration via unalarme() / unalarmi().

For the most applications, this will not causg arcornvenience: Thg use the scheme:

1. Register for actration

2. Return control

3. Activation by Kernel, do something (send a cell ...)

4. Register agin for actvation (according to an A...)

If more than one timer has to be used (for protocols, for ABR, for combination between
event and time triggered processing ...), than the appropriate numbents kas to be

part of the object. Theevy last possibility is: create amemt with operator v, fill the

object and By members, use it for gestration, return control; when early() / late is
called, then the pointer to theent is passed, so you can delete it.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 20

8.1 Event Triggered Activation

voi d al arme(event *evt, timtyp delta); // register for
/1l for early phase
void alarm (event *evt, timtyp delta); // for |ate phase

The netvork object specified bywé>obj is actvated at the time (Simifie + delta).
When calling early() or late() of the object, thelt pointer et is passed back. The
time difference delta has to bedar than 0. Otherwise the object will be aated
never a@in. There are tavexceptions, where delta may be zero:

» During the early slot phase, it is possible @ister for actration in the late phase of
the same slot (alarml(..., 0)).

* When no simulation is running, e.g. during initialisation or when perfoming a com-
mand(), delta may be zero. This then means that the object will batadtduring
the first time slot of the mé simulation run.

8.2 Time Triggered Activation

voi d eache(event *); // call every early slot phase
voi d eachl (event *); // late slot phase

The netvork object is actiated during each time slot.

8.3 Deleting Event Triggered Activations

An event r@istered with alarme() / alarml() can be deleted as long as¢né leas not
yet been actated. Since deleting the@ent requires some search operations in the
event lists, these routines are reltiexpensve.

void unal arne(event *); // when registered with alarne()
void unalarm (event *); // when registered with alarm ()

9.0 Parser Utility Routines

For an easywaluation of netwrk object parameters, a set of routines iviplexd.

These routinesxpect a certain inputxéand automatically generate error messages, if

the desired t& can not be found. Upon successful completion, the input file reading

pointer is shifted appropriately

The current input symbol type (i.e. 8K alvays is stored in the globahrable

int token;

The tolen types are defined in “defs.h”. Theeaalkattritutes (name,alue ...) are stored

in

tok_typ tval;

voi d skip(int tok);
The gven tolen type is gpected in the input x&. It is skipped if found there. Other-
wise, a syntax error message is generatedsifgle characters k&'’ or ‘,’, the
token type equals the charactafue. Do not use skip() to skip strings or identifiers,
since dynamic copies created by the scanner are possibly not freed.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 21

char *read_id(char *keyw);
An identifier is read from the inputde In case kyw != NULL, it has to be intro-
duced by the égyword and a ‘=". The identifier may contain indices ythaee
included into the string returned by the routine. It is cedckhat the identifier is
not yet used for a netwk object, a griable, or a macro. The string returned is a
dynamic copg which can be used directly for storing into the object membee.

char *read_suc(char *keyw);
Like read_id(), bt the identifier can be used alreadgditionally, the identifier
may contain anx¢ension with *->’.

int read_int(char *keyw);
An (arbitrarily compl&) integer expression ispected. Its &lue is returned. &w:
see read_id().

doubl e read_doubl e(char *keyw);
An (arbitrarily compl&) double &pression isxpected. Its &lue is returned. &w:
see read_id().

char *read_string(char *keyw);
A string expression ispected. The returnalue points to a dynamic cppvhich
may be stored for internal use and should be deleted when not longer nessled. K
see read_id().

char *read_word(char *keyw);
A raw word (identifier ...) is xpected. The returnalue points to a dynamic cppf
the word read. It should be deleted when not needgdoager Keyw: see read_id()

int test_word(char *txt);
It is tested whether thevgin word is ne&t to read. The wrd is expected rav, not as
string. If the vord is found, TRIE is returned, otherwiséAESE. The input tet
reading pointer is not shifted. The routinedils in case of input languageykwords
like if, else, macro ...

voi d ski p_word(char *txt);
Like test_word(), ut the word is skipped when found (reading pointer is shifted). A
syntax error message is generated if tbedws not found.

int scan(void);
Scan() reads the reinput tolken from the input td. Like skip(), it should be
applied carefully (see there).

10.0 Symbol Manager

Since rgistering a n& object is done automatically by the parsely the search rou-
tine is needed.
root *find_obj(char *nam;

The object nam is searched. Nam may contain nateagons (appended with ‘-
>’), e.g. input name specifications. Thegteasions are ignored by the routine. The
return \alue points to the wished object, it is NULL in case the object is wrkno

11.0 Queues

In the header file “queue.h”, data item queues with limited and unlimited capacity are
defined and implemented (all methods are defined inline). The queues are virtually as

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 22

fast as programmed “by hand” for FIFO access. Although the classes alsie pro

methods for time-sorted queueing and random access, these functions probably are not
as optimal with respect to speed. The class name for the limited queue (which also may
be switched into an unlimited state)jiseue, the unlimited ersion is called

uqueue. In the follawing, the class methods are described.

11.1 Initialisation

Class ugueue
uqueue: : uqueue(void);
ConstructorSets current length to zero.
Class queue
gueue: : queue(int nx = 0);
Constructor Sets current length to zero, limit to mx. Belt mx: 0.Mx < 0 is cor-
rected to O (use unlimit() afteasds).
i nt queue::setmax(int nx);
Changes the queue limit to mx.
Returns TRIE: o.k.
FALSE: current queue length is tger than mx, limit not changed.
void queue::unlimt(void);
Deletes the capacity limitation of a queue. If possible, the class uqueue should be
used instead.

11.2 Enqueueing

Class ugueue
voi d uqueue: : enqueue(data *pd);
Enqueues the gen item at the tail of the queue.
voi d uqueue: : enqHead(data *pd);
Enqueues the gén item at the head of the queue.
voi d uqueue: : enqTi ne(data *pd);
Enques the item in front of the first item with a time member not smaller than pd-
>time (creates a sorted queue with increasing time stampsi->ifime is lager
than all other times, pd is added at the tail.
i nt uqueue::enqPrec(data *pd, data *ref);
Looks for ref and enqueues pd in front of ref.
Returns TRIE: 0.k.
FALSE: ref not found in the queue
i nt uqueue: :enqSuc(data *pd, data *ref);
Looks for ref and enqueues *pd behind *ref.
Returns TRIE: o.k.
FALSE: ref not found in the queue
Class queue
All uqueue methods are alseadlable for queue. Thefirst check on eerflowv and then
call uqueues method. All methods return int:
FALSE on werflow or unsuccesssfull uqueue method,
TRUE otherwise.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 23

11.3 Dequeueing

Classes ugueue and queue
data *(u)queue: : dequeue(void);
Dequeues and returns the item at the front. An empty queue returns NULL.
data *(u)queue::deqgTail (void);
Dequeues and returns the item at the tail. An empty queue returns NULL.
data *(u)queue::deqTine(timtyp tinm;
Dequeues and returns the first item with a time member not smaller than tim.
Returns NULL if no appropriate item found.
data *(u)queue::deqThi s(data *pd);
Dequeues the specified item. Returns pd if found in the queue, otherwise NULL.

11.4 Information

Classes ugueue and queue

int (u)queue::isEnmpty(void);
Returns TRIE if queue is emptyFALSE otherwise.

int (u)queue::isQueued(data *pd);
Returns TRIE if *pd is queued, ALSE otherwise.

int (u)queue::getlen(void);
Returns the current queue length.

data *(u)queue::first(void);
Returns the item whicheuld be returned by (u)queue::deq@t does not actually
dequeue it. Returns NULL in case the queas empty

data *(u)queue:: | ast(void);
Returns the last item of the queue. It is not dequeued. Returns NULL if the queue
was empty

data *(u)queue::sucO (data *pd);
Returns the item behind the specified one. Returns NULL if ptboat or pd is
the last item of the queue.

data *(u)queue::precO (data *pd);
Returns the item in front of the specified one. Returns NULL if pd not found or pd is
the first item of the queue.

Class queue

i nt queue::isFull(void);
Returns TRIE if queue is full, ALSE otherwise.

i nt queue:: get max(void);
Returns the current queue limit. In case unlimit@swalled in adance, -1 is
returned.

11.5 Walk through a Queue

int (u)queue::resCursor();
Initializes the internal cursor for subsequent calls of gdiiNeReturns TRIE on
success, ALSE otherwise (queue empty).

data *(u)queue::get Next();

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 24

Each call returns the pointer to thexhéata object queued. Returns NULL, if end of
queue reached. The first call returns the front of the queue.
Prior to the first call of getN&(), resCursor() has to be called. If resCursog$mt
successful, getN#&() must not be called. Between resCursor() and all subsequent
calls of getN&t(), no enqueueing or dequeueing actions arevatio
Example
if (g.resCursor())
{ dat a* p;
while ((p = g.getNext()) !'= NULL)
{ /[l do sth with p
}
}
el se // queue enpty.

12.0 Random Numbers

The random nuber generator has beergmated into the system to be independent of
different implementations on tkfent platforms. The implemented generator isy-ho
ever, the simplest one which is kwa to be not g@ry good. ¥u can choose the ran-
dom() routine from Berkle by editing the header file “defs.h”. Uncomment the line
defining the preprocessoanvable USE_MY_RAND. Apway, it is recommended to
use alvays the name my_rand() when asking for a random numberoutine actu-
ally used then can be determined by an inline function in “defs.h”.

For the generation of random numbers disiiglol non-uniformlya table-basedevsion

has been chosen. Besides the oétwobject class Distriltion (see Uses’ manual)

which can generate transformation tables for arbitrary distois, a modul pnading
transformation tables for geometrical distitions has been implemented. A user need-
ing r.n.s rgisters with

i nt get_geol handl er (doubl e expectation);
The returned & value is used lateron to obtain.a.r

int geol rand(key);
It is also possible to ask for the transformation table (length: RAND_MODULO)
itself:

timtyp *get _geol table(int key);
Key agin is the alue returned by get_geol handler{r &pplications see e.g. the
object class GMDPquelle.

13.0 Error Messages

There are tw families of error message routines. Both paderdifiit numbers of string
and intgeer aguments to an embedded fprintf(stder) call. © obtain an wervien
which error messages anedable, talke a look at srcirnel/all.c.

Svyntax error messages (with relation to the inpxt):te
void syntax_XX(...);

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 25

According to the current position of the inputtteeading pointerthe current input
text line, the line numbethe file name and a sign pointing to the current inprtok

are written to stderiThe embedded error message is printédd,Sis left with eit
status 1.

Plain error messages (without inputtteelation)
void errm XX(...);
Like syntax_XX(), bt no information related to the inpuktes given.

YATS - Yet Another Thy Simulator: Programmes’Manual for érsion 0.3 26

