LualgX
Reference

beta 0.88.0

LualgX
Reference
Manual

copyright : LuaTgX development team
more info : www.luatex.org
version : January 16, 2016

Contents

Introduction

1 Basic TEX enhancements
1.1 Introduction

1.2 Version information

1.3 UNICODE text support
1.4 Extended tables

1.5 Attributes

1.5.1 Attribute registers
1.5.2 Box attributes

1.6 LUA related primitives
1.6.1 \directlua

1.6.2 \latelua

1.6.3 \luaescapestring
1.6.4 \luafunction

1.7 \clearmarks

1.8 \noligs and \nokerns

1.9 \formatname

—_

.10 \scantextokens

.11 Alignments

.11.1 \alignmark

.11.2 \aligntab

.12 Catcode tables

.12.1 \catcodetable

.12.2 \initcatcodetable
.12.3 \savecatcodetable

.13 Suppressing errors

.13.1 \suppressfontnotfounderror
.13.2 \suppresslongerror
.13.3 \suppressifcsnameerror

.13.4 \suppressoutererror

e e = ==Y

.13.5 \suppressmathparerror

15

17
17
17
18
18
19
19
19
20
20
21
22
22
23
23
23
23
23
23
23
24
24
24
24
25
25
25
25
25
25

1.14 \mathegnogapstep

1.15 \outputbox

1.16 \fontid and \setfontid
1.17 \gleaders

1.18 \nohrule and \novrule
1.19 \Uchar

1.20 \hyphenationmin

1.21 \boundary and \noboundary
1.22 Debugging

1.23 Images and Forms

1.24 \outputmode and \draftmode
1.25 File syntax

1.26 Font syntax

1.27 Writing to file

1.28 \nospaces

1.29 \letcharcode

2 LUA general

2.1 Initialization

2.1.1 LUATEX as a LUA interpreter
2.1.2 LUATgX as a LUA byte compiler
2.1.3 Other commandline processing
2.2 LUA behaviour

2.3 LUA modules

3 Languages and characters, fonts and glyphs

3.1 Characters and glyphs

3.2 The main control loop

3.3 Loading patterns and exceptions
3.4 Applying hyphenation

3.5 Applying ligatures and kerning

3.6 Breaking paragraphs into lines

4 Font structure

4.1 Real fonts

4.2 Virtual fonts

4.2.1 Artificial fonts

4.2.2 Example virtual font

26
26
26
26
26
27
27
27
27
27
28
28
28
28
28
29

31
31
31
31
31
34
37

39
39
41
42
43
44
46

49
54
56
58
58

5 Math

5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

The current math style
\mathstyle
\Ustack
Unicode math characters
Cramped math styles
Math parameter settings
Skips around display math
Font-based Math Parameters
Math spacing setting
Math accent handling
Math root extension
Math kerning in super- and subscripts
Scripts on horizontally extensible items like arrows
Extracting values
fractions

Other Math changes

5.14.1 Verbose versions of single-character math commands

5.14.2 Allowed math commands in non-math modes

5.15

Math surrounding skips

5.15.1 Delimiters: \Uleft, \Uniddle and \Uright

5.15.2 Fixed scripts
5.15.3 Tracing
5.15.4 Math options

5.15.4.1 \mathoption noitaliccompensation

5.15.4.2 \mathoption nocharitalic

5.15.4.3 \mathoption useoldfractionscaling

6 Nodes

6.1
6.1.1

LUA node representation

Auxiliary items

6.1.1.1 attribute list and attribute items

6.1.2

Main text nodes

6.1.2.1 hlist nodes
6.1.2.2 vlist nodes

61
61
61
61
61
63
64
66
66
68
69
70
70
71
72
72
73
73
73
73
74
74
75
75
75
75
76

77
77
77
77
78
78
79

6.1.2.3
6.1.2.3.1
6.1.2.4
6.1.2.5
6.1.2.6
6.1.2.7
6.1.2.8
6.1.2.9
6.1.2.10
6.1.2.11
6.1.2.12
6.1.2.13
6.1.3
6.1.3.1
6.1.3.1.1
6.1.3.1.2
6.1.3.2
6.1.3.2.1
6.1.3.3
6.1.3.3.1
6.1.3.3.2
6.1.3.3.3
6.1.3.3.4
6.1.3.3.5
6.1.3.3.6
6.1.3.3.7

rule nodes
normal rules
ins nodes
mark nodes
adjust nodes
disc nodes
math nodes
glue nodes
kern nodes
penalty nodes

glyph nodes

margin kern nodes
Math nodes
Math kernel subnodes
math char and math _text char subnodes
sub box and sub mlist subnodes
Math delimiter subnode
delim subnodes

Math core nodes

simple nodes
accent nodes
style nodes

choice nodes

radical nodes

fraction nodes

fence nodes

6.1.4 whatsit nodes

6.1.4.1
6.1.4.2
6.1.4.3
6.1.4.4
6.1.4.5
6.1.4.6
6.1.4.7

open nodes
write nodes
close nodes
special nodes
boundary nodes
language nodes

local par nodes

79
79
79
80
80
80
81
81
83
83
83
84
84
84
85
85
85
85
86
86
86
87
87
87
88
88
88
88
89
89
89
89
89
90

6.1.4.8 dir nodes

6.1.4.9 pdf literal nodes
6.1.4.10 pdf refobj nodes
6.1.4.11 pdf annot nodes
6.1.4.12 pdf start link nodes
6.1.4.13 pdf end link nodes
6.1.4.14 pdf dest nodes
6.1.4.15 pdf action nodes
6.1.4.16 pdf thread nodes
6.1.4.17 pdf start thread nodes
6.1.4.18 pdf end thread nodes
6.1.4.19 save pos nodes
6.1.4.20 late lua nodes
6.1.4.21 pdf colorstack nodes
6.1.4.22 pdf setmatrix nodes
6.1.4.23 pdf save nodes
6.1.4.24 pdf restore nodes
6.1.4.25 user defined nodes

6.2 Two access models

7 LUATEX LUA Libraries

7.1 The callback library

7.1.1 File discovery callbacks

7.1.1.1 find read file and find write file
7.1.1.2 find font_ file

7.1.1.3 find output file

7.1.1.4 find format file

7.1.1.5 find vf file

7.1.1.6 find map file

7.1.1.7 find enc file

7.1.1.8 find sfd file

7.1.1.9 find pk file

7.1.1.10 find data file

7.1.1.11 find opentype file

7.1.1.12 find truetype file and find typel file

90
90
91
91
91
92
92
92
92
93
93
93
93
94
94
94
94
94
95

99

99
100
100
100
100
101
101
101
101
101
101
101
101
102

7.1.1.13 find image file

7.1.2 File reading callbacks
7.1.2.1 open_read file
7.1.2.1.1 reader

7.1.2.1.2 close

7.1.2.2 General file readers
7.1.3 Data processing callbacks
7.1.3.1 process input buffer
7.1.3.2 process output buffer
7.1.3.3 process_jobname

7.1.4 Node list processing callbacks
7.1.4.1 buildpage filter
7.1.4.2 pre_linebreak filter
7.1.4.3 linebreak filter
7.1.4.4 append to vlist filter
7.1.4.5 post linebreak filter
7.1.4.6 hpack filter

7.1.4.7 vpack filter

7.1.4.8 hpack quality

7.1.4.9 vpack quality

7.1.4.10 process rule

7.1.4.11 pre output filter
7.1.4.12 hyphenate

7.1.4.13 ligaturing

7.1.4.14 kerning

7.1.4.15 mlist to hlist

7.1.5 Information reporting callbacks
7.1.5.1 pre_dump

7.1.5.2 start _run

7.1.5.3 stop_run

7.1.5.4 start page number
7.1.5.5 stop _page number
7.1.5.6 show error_hook

7.1.5.7 show error_message

102
102
102
103
103
103
104
104
104
104
105
105
105
106
106
107
107
107
107
108
108
108
108
109
109
109
109
109
110
110
110
110
110
111

7.1.5.8 show _lua error_hook
7.1.5.9 start file

7.1.5.10 stop file

7.1.6 PDF-related callbacks
7.1.6.1 finish pdffile
7.1.6.2 finish pdfpage
7.1.7 Font-related callbacks
7.1.7.1 define_font

7.2 The epdf library

7.3 The font library

7.3.1 Loading a TFM file
7.3.2 Loading a VF file

7.3.3 The fonts array

7.3.4 Checking a font’s status
7.3.5 Defining a font directly
7.3.6 Projected next font id
7.3.7 Fontid

7.3.8 Currently active font
7.3.9 Maximum font id

7.3.10 Iterating over all fonts
7.4 The fontloader library
7.4.1 Getting quick information on a font
7.4.2 Loading an OPENTYPE or TRUETYPE file
7.4.3 Applying a ‘feature file’
7.4.4 Applying an ‘AFM file’
7.4.5 TFontloader font tables
7.4.5.1 Table types

7.4.5.1.1 Top-level

7.4.5.1.2 Glyph items
7.4.5.1.3 map table

7.4.5.1.4 private table
7.4.5.1.5 cidinfo table
7.4.5.1.6 pfminfo table
7.4.5.1.7 names table

111
111
111
111
111
112
112
112
112
121
121
121
122
122
122
122
122
123
123
123
123
123
124
125
125
126
127
127
128
131
132
132
132
134

7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1

7.4.5.1.

7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1
7.4.5.1

.8

9

.10
11
12
.13
14
.15
.16
17
.18
.19
.20
.21
.22
.23

anchor classes table

gpos table

gsub table

ttf tables and ttf tab saved tables
mm table

mark classes table

math table

validation state table

horiz_base and vert base table

altuni table

vert variants and horiz_variants table

mathkern table
kerns table
vkerns table
texdata table

lookups table

7.5 The img library

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9

img.
img.
img.

img.

img

img.
img.

img.

img

new
keys

scan

copy

.write
immediatewrite
node

types

.boxes

7.6 The kpse library

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7

kpse.set program name and kpse.new

find file

lookup

init prog

readable file

expand path

expand var

134
134
136
136
136
136
136
138
138
139
139
139
139
139
140
140
141
141
142
143
143
144
144
144
145
145
145
145
146
147
147
147
148
148

7.6.8 expand braces
7.6.9 show path
7.6.10 var_value
7.6.11 version

7.7 The lang library
7.8 The lua library

7.8.1 LUA bytecode registers
7.8.2 LUA chunk name registers

7.9 The mplib library
7.9.1 mplib.new
7.9.2 mp:statistics
7.9.3 mp:execute
7.9.4 mp:finish
7.9.5 Result table
7.9.5.1 fill

7.9.5.2 outline
7.9.5.3 text

7.9.5.4 special

7.9.5.5 start bounds, start clip
7.9.5.6 stop bounds, stop clip

7.9.6 Subsidiary table formats

7.9.6.1 Paths and pens

7.9.6.2 Colors
7.9.6.3 Transforms

7.9.6.4 Dashes

7.9.7 Character size information

7.9.7.1 mp:char width
7.9.7.2 mp:char _height
7.9.7.3 mp:char _depth

7.10 The node library

7.10.1 Node handling functions

7.10.1.1 node.is node

7.10.1.2 node.types

7.10.1.3 node.whatsits

148
148
148
148
148
150
150
151
151
151
152
152
153
153
154
154
155
155
155
155
155
155
156
156
156
156
156
157
157
157
158
158
158
158

7.10.1.4 node.
7.10.1.5 node.

7.10.1.6 node

7.10.1.7 node.
7.10.1.8 node.
7.10.1.9 node.
7.10.1.10 node.
7.10.1.11 node.
7.10.1.12 node.
7.10.1.13 node.
7.10.1.14 node.
7.10.1.15 node.
7.10.1.16 node.
7.10.1.17 node.
7.10.1.18 node.
7.10.1.19 node.
7.10.1.20 node.
7.10.1.21 node.
7.10.1.22 node.

7.10.1.23 node

7.10.1.24 node.
7.10.1.25 node.

7.10.1.26 node

7.10.1.27 node.
7.10.1.28 node.

7.10.1.29 node

7.10.1.30 node.
7.10.1.31 node.
7.10.1.32 node.
7.10.1.33 node.
7.10.1.34 node.
7.10.1.35 node.
7.10.1.36 node.

7.10.1.37 node

id
subtype

.type

fields

has field
new

free

flush list
copy

copy list
next

prev

current attr
hpack

vpack
dimensions
mlist to hlist
slide

tail

.length

count

traverse

.traverse id

end of math

remove

.insert before

insert after
first glyph
ligaturing
kerning
unprotect glyphs
protect glyphs

last node

.write

158
158
158
158
159
159
159
159
159
160
160
160
160
161
161
161
162
162
162
163
163
163
164
164
164
165
165
165
165
165
165
166
166
166

7.10.1.38 node.protrusion skippable
7.10.2 Attribute handling

7.10.2.1 node.has attribute

7.10.2.2 node.set attribute

7.10.2.3 node.unset attribute
7.11 The pdf library

7.11.1
7.11.2
7.11.3

7.11.4
7.11.5
7.11.6
7.11.7
7.11.8
7.11.9

pdf

pdf.

pdf.
pdf.

pdf.
pdf.
pdf.
pdf.
pdf.

pdf.
pdf.
pdf.

7.11.10 pdf
7.11.11 pdf
7.11.12 pdf
7.11.13 pdf
7.11.14 pdf

7.11.15 pdf .

7.11.16 pdf
7.11.17 pdf
7.11.18 pdf
7.11.19 pdf

.mapfile, pdf.mapline
catalog, pdf.info,pdf.names, pdf.trailer

<set/get>pageattributes, pdf.<set/get>pageresources,
<set/get>pagesattributes

<set/get>xformattributes, pdf.<set/get>xformresources
setcompresslevel and pdf.setobjcompresslevel
setdecimaldigits and pdf.getdecimaldigits

lastobj, pdf.lastlink, pdf.lastannot, and pdf.retval
setorigin, pdf.getorigin

setlinkmargin, pdf.getlinkmargin pdf.setdestmargin,
getdestmargin pdf.setthreadmargin, pdf.getthreadmargin
setxformmargin, pdf.getxformmargin

.h, pdf.v

.getpos, pdf.gethpos, pdf.getvpos
.hasmatrix, pdf.getmatrix

.print

.immediateobj

obj

.refobj

.reserveobj

.registerannot

.newcolorstack

7.12 The pdfscanner library

7.13 The status library
7.14 The tex library

7.14.1 Internal parameter values

7.14.1.1 Integer parameters

7.14.1.2 Dimension parameters

7.14.1.3 Direction parameters

166
166
166
167
167
167
167
167

167
168
168
168
168
168

168
169
169
169
169
169
170
171
171
171
171
172
174
176
176
177
178
179

7.14.1.4 Glue parameters
7.14.1.5 Muglue parameters
7.14.1.6 Tokenlist parameters
7.14.2 Convert commands

7.14.3 Last item commands

7.14.4 Attribute, count, dimension, skip and token registers

7.14.5 Character code registers
7.14.6 Box registers

7.14.7 Math parameters

7.14.8 Special list heads

7.14.9 Semantic nest levels

7.14.10 Print functions

7.14.10.1 tex.print

7.14.10.2 tex.sprint

7.14.10.3 tex.tprint

7.14.10.4 tex.write

7.14.11 Helper functions

7.14.11.1 tex. round

7.14.11.2 tex.scale

7.14.11.3 tex.sp

7.14.11.4 tex.definefont

7.14.11.5 tex.getlinenumber and tex.setlinenumber
7.14.11.6 tex.error

7.14.11.7 tex.hashtokens

7.14.12 Functions for dealing with primitives
7.14.12.1 tex.enableprimitives
7.14.12.2 tex.extraprimitives
7.14.12.3 tex.primitives

7.14.13 Core functionality interfaces
7.14.13.1 tex.badness

7.14.13.2 tex.linebreak

7.14.13.3 tex.shipout

7.15 The texconfig table

7.16 The texio library

12

179
179
179
180
180
181
182
183
184
185
185
186
186
186
187
187
187
187
188
188
188
188
189
189
189
189
190
193
193
193
193
195
195
196

7.16.1 Printing functions
7.16.1.1 texio.write

7.16.1.2 texio.write nl
7.16.1.3 texio.setescape

7.16.2 The token libray

8 Modifications

8.1 The merged engines

8.1.1 The need for change

8.1.2 Changes from TgX 3.1415926
8.1.3 Changes from &-TgX 2.2

8.1.4 Changes from PDFTEX 1.40
8.1.5 Changes from ALEPH RC4
8.1.6 Changes from standard WEB2C
8.1.7 The backend primitives \pdf *
8.2 Implementation notes

8.2.1 Memory allocation

8.2.2 Sparse arrays

8.2.3 Simple single-character csnames
8.2.4 Compressed format

8.2.5 Binary file reading

196
196
196
196
196

201
201
201
201
201
202
203
204
205
209
209
209
210
210
210

Introduction

This book will eventually become the reference manual of LuaTgX. At the moment, it simply
reports the behavior of the executable matching the snapshot or beta release date in the title
page. We don’t claim it is complete and we assume that the reader knows about TgX as described
in “The TgX Book”, the “e-TgX manual”, the “pdfTEX manual”, etc. Additional reference material
is published in journals of user groups and ConTgXt related documentation.

Features may come and go. The current version of LuaTgX can be used for production (in fact
it is used in production by the authors) but users cannot depend on complete stability, nor on
functionality staying the same. This means that when you update your binary, you also need
to check if something fundamental has changed. Normally this is communicated in articles or
messages to a mailing list. We’re still not at version 1 but when we reach that state the interface
will be stable. Of course we then can decide to move towards version 2 with different properties.

This means that occasionally you can encounter functionality not described here. Just consider
that experimental then. They are either a playground or are being tested in real situations first
before being finalized. And we can equally well kick them out again. When they stay we will
descibe them in the manual or more extensively in articles.

Don’t expect LuaTgX to behave the same as pdfTgX! Although the core functionality of that 8
bit engine is present, LuaTgX can behave different due to its wide (32 bit) characters, many
registers and large memory support. There is native utf input, support for large (more that 8
bit) fonts, and the math machinery is tuned for OpenType math. Ther ei ssupport for directional
typesetting too. The log output can differ from other engines and will likely differ more as we
move forward. When you run plain TgX for sure LuaTgX runs slower than pdfIgX but when you
run for instance ConTgXt it might be faster. But in any case: 32 bit all-over combined with more
features has a price.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organization
of the source code is adapted so that it cna glue all these components together. We continue
cleaning up side effects of the accumulated code in TgX engines (especially code that is not
needed any longer).

» Most of pdfTEX version 1.40.9, converted to C (with patches from later releases). Some ex-
perimental features have been removed and some utility macros are not inherited as their
functionality can be done in Lua. We still use the \pdf* primitive namespace.

« The direction model and some other bits from Aleph RC4 (derived from Omega) is included.
The related primitives are part of core LuaTgX.

« We currently use Lua 5.2.*. At some point we might decide to move to 5.3.* but that is yet to
be decided.

o There are few Lua libraries that we consider part of the core Lua machinery.

« There are additional Lua libraries that interface to the internals of TgX.

o There are various TgX extensions but only those that cannot be done using the Lua interfaces.

o The fontloader uses parts of FontForge 2008.11.17 combined with additional. code specific
for usage in a TgX engine.

« the MetaPost library

Introduction 15 '0

Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX can be used, these encoding-
related functions are superseded by a Lua-based solution (reader callbacks). Most of the pdfTEX
backend is available but via a bit different interface.

The yearly TgXLive version is the stable version, any version between them is considered beta.
Keep in mind that new (or changed) features also need to be reflected in the macro package that
you use.

LuaTgX : Version 88.0
ConTgXt : 2016.01.12 16:24
timestamp : January 16, 2016

\0/‘, 16 Introduction

1 Basic TgX enhancements

1.1 Introduction

From day one, LuaTgX has offered extra features compared to the superset of pdfTgX and Aleph.
That has not been limited to the possibility to execute Lua code via \directlua, but LuaTgX also
adds functionality via new TgX-side primitives.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -1ini), it defines only the primitive commands
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to be
called to add the extra primitives to the user environment. The simplest method to get access
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before
the above line:

\catcode "\{=1
\catcode "\}=2

More fine-grained primitives control is possible, you can look up the details in section 7.14.12.
For simplicity’s sake, this manual assumes that you have executed the \directlua command as
given above.

The startup behavior documented above is considered stable in the sense that there will not be
backward-incompatible changes any more. However, we can decide to promite some primitives
to the LuaTgX namespace. For instance, after version 0.80.1 we promoted some rather generic
pdfTEX primitives to core LuaTgX ones, and the ones inherited frome Aleph (Omega) are also
promoted. Effectively this means that we now have the tex, etex, luatex and pdftex (sub)sets
left.

1.2 Version information

There are three new primitives to test the version of LuaTgX:

primitive explanation value
\luatexbanner the banner reported on the command This is LuaTeX, Version beta-0.88.0
line (TeX Live 2016/dev)
\luatexversion acombination of major and minor num- 88
ber

\luatexrevision the revision number, the currentvalue 0
is

The official LuaTgX version is defined as follows:

Basic TgX enhancements 17 |

« The major version is the integer result of \luatexversion divided by 100. The primitive is
an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

« The minor version is the two-digit result of \luatexversion modulo 100.

« The revision is the given by \luatexrevision. This primitive expands to a positive integer.

o The full version number consists of the major version, minor version and revision, separated
by dots.

1.3 UNICODE text support

Text input and output is now considered to be Unicode text, so input characters can use the
full range of Unicode (220 4+ 216 _ 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a
character is always converted to a suitable graphic representation of that character in a specific
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a
character. Inside LuaTgX there is no clear separation between the two concepts. Because the
subtype of a glyph node can be changed in Lua it is 1so up to the user.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate
for a larger range of acceptable numbers. For instance, \char now accepts values between 0 and
1,114,111. This should not be a problem for well-behaved input files, but it could create incom-
patibilities for input that would have generated an error when processed by older TgX-based
engines. The affected commands with an altered initial (left of the equals sign) or secondary
(right of the equals sign) value are: \char, \lccode, \uccode, \catcode, \sfcode, \efcode,
\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input
files can be pre-processed using the reader callback. This will be explained in a later chapter.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode
range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
c=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,112.

Output to the terminal uses ~" notation for the lower control range (¢ < 32), with the exception
of ~I, ~~J and ~"M. These are considered ‘safe’ and therefore printed as-is.

Normalization of the Unicode input can be handled by a macro package during callback pro-
cessing (this will be explained in section 7.1.2).

1.4 Extended tables

All traditional TEX and &-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

\0‘, 18 Basic TgX enhancements

The glyph properties \efcode, \1pcode and \rpcode, introduced in pdfIgX that deal with font
expansion (hz) and character protruding, are also 16-bit. Because font memory management
has been rewritten, these character properties are no longer shared among fonts instances that
originate from the same metric file.

1.5 Attributes

1.5.1 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counters:
attributes obey TgX’s nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in
this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact
that the numbers and values of all ‘set’ attributes are attached to all nodes created in their
scope. These can then be queried from any Lua code that deals with node processing. Further
information about how to use attributes for node list processing from Lua is given in chapter 6.

1.5.2 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment
can be quite asynchronous. For example: in paragraph building, the individual line boxes are
created after the \par command has been processed, so they will receive the list of attributes
that is in effect then, not the attributes that were in effect in, say, the first or third line of the
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases are
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-
ing borrow their attributes from their surrounding glyphs, and it is possible to influence box
attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the
same as characters that have been converted to references to glyphs in fonts. For instance,
when you use attributes to implement color support, each node carries information about its
eventual color. In that case, unless you implement mechanisms that deal with it, applying a color
to already boxed material will have no effect. Keep in mind that this incompatibility is mostly
due to the fact that separate specials and literals are a more unnatural approach to colors than
attributes.

Basic TgX enhancements 19 | 0

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the use
of the keyword attr. An example:

\attribute2=5
\setbox0=\hbox {Hello}
\setbox2=\hbox attrl=12 attr2=-"7FFFFFFF{Hello}

This will set the attribute list of box 2 to 1 = 12, and the attributes of box 0 will be 2 = 5. As you
can see, assigning the maximum negative value causes an attribute to be ignored.

The attr keyword(s) should come before a to or spread, if that is also specified.

1.6 LUA related primitives

1.6.1 \directlua

In order to merge Lua code with TgX input, a few new primitives are needed. The primitive
\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua name (general text) (general text)
\directlua (16-bit number) (general text)

The last (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the local directive to keep your variables from
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line com-
ment will run on until the end of the input. You will either need to use TgX-style line comments
(starting with %), or change the TgX category codes locally. Another possibility is to say:

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces.

The name (general text) specifies the name of the Lua chunk, mainly shown in the stack back-
trace of error messages created by Lua code. The (general text) is expanded fully, thus macros
can be used to generate the chunk name, i.e.

\directlua name{\jobname:\the\inputlineno}

to include the name of the input file as well as the input line into the chunk name.

Likewise, the (16-bit number) designates a name of a Lua chunk, but in this case the name
will be taken from the lua.name array (see the documentation of the lua table further in this
manual).

\0‘, 20 Basic TgX enhancements

The chunk name should not start with a @, or it will be displayed as a file name (this is a quirk
in the current Lua implementation).

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions that
produce material to be read by TgX, the so called print functions. The most simple use of these
istex.print(<string> s). The characters of the string s will be placed on the TgX input buffer,
that is, ‘before TEX’s eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+45)}b

expands to
a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
T =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all
TEX commands. So formally speaking its expansion is null, but it places material on a pseudo-file
to be immediately read by TgX, as e-TgX’s \scantokens. For a description of print functions look
at section 7.14.10.

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-
tual information is still pretty bad. Often, you will only see the line number of the right brace at
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up
LuaTgX pretty bad. If you are not careful while working with the node list interface, you may
even end up with assertion errors from within the TgX portion of the executable.

The behavior documented in the above subsection is considered stable in the sense that there
will not be backward-incompatible changes any more.

1.6.2 \latelua

\latelua stores Lua code in a whatsit that will be processed at the time of shipping out. Its
intended use is a cross between \pdfliteral and \write. Within the Lua code you can print
pdf statements directly to the pdf file via pdf.print, or you can write to other output streams
via texio.write or simply using Lua I/O routines.

\latelua (general text)
\latelua name (general text) (general text)
\latelua (16-bit number) (general text)

Basic TgX enhancements 21 | 0

Expansion of macros etcetera in the final <general text> is delayed until just before the whatsit
is executed (like in \write). With regard to pdf output stream \latelua behaves as \pdflit-
eral page. The name (general text) and (16-bit number) behave in the same way as they do for
\directlua

1.6.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents of a
Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns
are escaped. This is done by prepending an extra token consisting of a backslash with category
code 12, and for the line endings, converting them to n and r respectively. The token sequence
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between the
TeX and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of
Lua code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

1.6.4 \luafunction

The \directlua commands involves tokenization of its argument (after picking up an optional
name or number specification). The tokenlist is then converted into a string and given to Lua to
turn into a function that is called. The overhead is rather small but when you use this primitive
hundreds or thousands of times, it can become noticeable. For this reason there is a variant call
available: \luafunction. This command is used as follows:

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl
\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of
functions apart from normal Lua limitations. Of course there is the limitation of no arguments
but that would involve parsing and thereby give no gain. The function, when called in fact gets
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {
local t = lua.get functions table()
t[8] = function(slot) tex.print(slot) end

O} 22 Basic TgX enhancements

1.7 \clearmarks

This primitive complements the e-TgX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks (16-bit number)

1.8 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is
built by LuaTgX'’s main control loop. They are part of a temporary trick and will be removed in
the near future. For now, you need to enable these primitives when you want to do node list
processing of ‘characters’, where TgX'’s normal processing would get in the way.

\noligs (integer)
\nokerns (integer)

These primitives can now be implemented by overloading the ligature building and kerning
functions, i.e. by assigning dummy functions to their associated callbacks.

1.9 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,
the expansion is the value that \jobname had during the iniTgX run that dumped the currently
loaded format.

1.10 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TEX’s \scantokens. The differences are:

o The last (and usually only) line does not have a \endlinechar appended.

« \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

« The ‘... while end of file ...’ error tests are not executed, allowing the expansion to end on
a different grouping level or while a conditional is still incomplete.

1.11 Alignments

1.11.1 \alignmark

This primitive duplicates the functionality of # inside alignment preambles.

1.11.2 \aligntab

This primitive duplicates the functionality of & inside alignments and preambles.

Basic TgX enhancements 23 |

1.12 Catcode tables

Catcode tables are a new feature that allows you to switch to a predefined catcode regime
in a single statement. You can have a practically unlimited number of different tables. This
subsystem is backward compatible: if you never use the following commands, your document
will not notice any difference in behavior compared to traditional TgX. The contents of each
catcode table is independent from any other catcode tables, and their contents is stored and
retrieved from the format file.

1.12.1 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-
ously created using one of the two primitives below, or it has to be zero. Table zero is initialized
by iniTgX.

1.12.2 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defined
by iniTEX:

0 \letterbackslash escape
5 \letterhat \letterhat M return car ret (this name may change)
9 \letterhat \letterhat @ null ignore

10 <space> space Sspacer

11 a-z letter

11 A-Z letter

12 everything else other

14 \letterpercent comment

15 \letterhat \letterhat ? delete invalid char

The new catcode table is allocated globally: it will not go away after the current group has
ended. If the supplied number is identical to the currently active table, an error is raised.

1.12.3 \savecatcodetable

\savecatcodetable (15-bit number)

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the
supplied number is the currently active table, an error is raised.

\0‘, 24 Basic TgX enhancements

1.13 Suppressing errors

1.13.1 \suppressfontnotfounderror

\suppressfontnotfounderror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about font metrics that
are not found. Instead it will silently skip the font assignment, making the requested csname
for the font \ifx equal to \nullfont, so that it can be tested against that without bothering the
user.

1.13.2 \suppresslongerror

\suppresslongerror = 1

If this new integer parameter is non-zero, then LuaTgX will not complain about \par commands
encountered in contexts where that is normally prohibited (most prominently in the arguments
of non-long macros).

1.13.3 \suppressifcsnameerror

\suppressifcsnameerror = 1

If this new integer parameter is non-zero, then LuaTgX will not complain about non-expandable
commands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting
expanded tokens from the input until it encounters an \endcsname command. Use with care!
This command is experimental: if the input expansion is unbalanced wrt. \csname ...\endcsname
pairs, the LuaTgX process may hang indefinitely.

1.13.4 \suppressoutererror

\suppressoutererror =1

If this new integer parameter is non-zero, then LuaTgX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

1.13.5 \suppressmathparerror

The following setting will permit
tokens in a math formula:
\suppressmathparerror =1

So, the next code is valid then:

$x+1-=

as

Basic TgX enhancements 25 |

1.14 \matheqnogapstep
By default TgX will add one quad between the equation and the number. This is hardcoded. A
new primitive can control this:

\matheqgnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to
control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the
usual way to mimmick floating point factors in TgX.

1.15 \outputbox

\outputbox = 65535

This new integer parameter allows you to alter the number of the box that will be used to store
the page sent to the output routine. Its default value is 255, and the acceptable range is from 0
to 65535.

1.16 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with
\number (and using \the gives an error). The currently used font id is 5. Here are some more:

\bf 14
\it 18
\bi 21

These numbers depend on the macro package used because each one has its own way of dealing
with fonts. They can also differ per run, as they can depend on the order of loading fonts. For
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hundred
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id (which of course needs
to be a valid one).

1.17 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal
\leaders in that they align nicely, except that the alignment is based on the largest enclosing
box instead of the smallest. The g stresses this global nature.

1.18 \nohrule and \novrule

Because internally box resources and image resources are now stored as a special kind of rule,
we also introduced an empty rule variant. Because introducing a new keyword can cause incom-
patibilities, two new primitives were introduced: \nohrule and \novrule. These can be used to
reserve space. This is often more efficient than creating an empty box with fake dimensions).

. 26 Basic TgX enhancements

1.19 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

1.20 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive
accepts a number and stores the value with the language.

1.21 \boundary and \noboundary

The \noboundary commands used to inject a whatsit node but now injects a normal node with
type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-
ature builder still sees this as a cancel boundary directive but at the Lua end you can implement
different behaviour. The added benefit of passing this value is a side effect of the generalization.

1.22 Debugging

If \tracingonline is larger than 2, the node list display will also print the node number of the
nodes.

1.23 Images and Forms

These two concepts are now core concepts and no longer whatsits. They are in fact now im-
plemented as rules with special properties. Normal rules have subtype 0, saved boxes have
subtype 1 and images have subtype 2. This has the positive side effect that whenever we need
to take content with dimensions into account, when we look at rule nodes, we automatically also
deal with these two types.

The syntax of the \save...resource is the same as in pdfTEX but you should consider them to
be backend specific. This means that a macro package should treat them as such and check for
the current output mode if applicable. Here are the equivalents:

\saveboxresource : \pdfxform
\saveimageresource : \pdfximage
\useboxresource : \pdfrefxform
\useimageresource : \pdfrefximage
\lastsavedboxresourceindex : \pdflastxform

\lastsavedimageresourceindex : \pdflastximage
\lastsavedimageresourcepages : \pdflastximagepages

Basic TgX enhancements 27 |

LuaTgX accepts optional dimension parameters for \use. ..resource in the same format as for
rules. With images, these dimensions are then used instead of the ones given to \useimagere-
source but the original dimensions are not overwritten, so that a \useimageresource without
dimensions still provides the image with dimensions defined by \saveimageresource. These
optional parameters are not implemented for \saveboxresource.

\pdfrefximage width 20mm height 10mm depth 5mm \pdflastximage
\pdfrefxform width 20mm height 10mm depth 5mm \pdflastxform

1.24 \outputmode and \draftmode

The \outputmode variable tells LuaTgX what it has to produce:

0 dvicode
1 pdfcode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-
end accepts a value of 1, while the dvi backend ignores the value.

1.25 File syntax

LuaTgX will accept a braced argument as a file name:

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

1.26 Font syntax
LuaTgX will accept a braced argument as a font name:
\font\myfont = {cmrle}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

1.27 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console
and log. As a consequence a system command is no longer possible but one can use os.execute
to do the same.

1.28 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a
zero skip. Below we see the results for four characters separated by a space.

\0‘, 28 Basic TgX enhancements

XXXX

XXXX

XXXX

0 / hsize 10mm

1 / hsize 10mm

2 / hsize 10mm

XXXX

O / hsize 1mm

1.29 \letcharcode

1 / hsize 1mm

KX XX

2 / hsize 1mm

This primitive is still experimental but can be used to assign a meaning to an active character,

as in:

\def\foo{bar} \letcharcodel23\foo

This can be a bit nicer that using the uppercase tricks (using the property of \uppercase that it
treats active characters special).

Basic TgX enhancements 29 |

Basic TgX enhancements

2 LUA general

2.1 Initialization

2.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

« ifa --luaonly option is given on the commandline, or
« if the executable is named texlua or luatexlua, or
« if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in
negative values and the rest of the commandline in the positive values, just like the Lua inter-
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somewhat
bulky standalone Lua interpreter with a bunch of extra preloaded libraries.

2.1.2 LUATgX as a LUA byte compiler

There are two situations that make LuaTgX behave like the Lua byte compiler:

« ifa --luaconly option is given on the commandline, or
» if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the standalone Lua distribution, except that it
does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch.

2.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the --lua commandline option. If there is no
- - lua option, the commandline is interpreted in a similar fashion as in traditional pdfTgX and
Aleph. Some options are accepted but have no consequence. The following command-line op-
tions are understood:

- - fmt=FORMAT load the format file FORMAT

--lua=FILE load and execute a Lua initialization script

--safer disable easily exploitable Lua commands

--nosocket disable the Lua socket library

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode scrollmode
or errorstopmode

--halt-on-error stop processing at the first error

// \\
Lua general 31 | 0)
\ /

- -kpathsea-debug=NUMBER set path searching debugging flags according to the bits of

NUMBER
--progname=STRING set the program name to STRING
--version display version and exit
--credits display credits and exit
--recorder enable filename recorder
--etex ignored
--output-comment=STRING use STRING for dvi file comment instead of date (no effect for
pdf)
--output-directory=DIR use DIR as the directory to write files to
--draftmode switch on draft mode i.e. generate no output in pdf mode
--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf
--[no-]shell-escape disable/enable \write 18{SHELL COMMAND}
--enable-writel8 enable \write 18{SHELL COMMAND}
--disable-writel8 disable \write 18{SHELL COMMAND}
--shell-restricted restrict \write 18 to a list of commands given in texmf.cnf
--debug-format enable format debugging
--[no-]file-line-error disable/enable file:line:error style messages
--[no-]file-line-error-style aliases of --[no-]file-line-error
- -jobname=STRING set the job name to STRING
--[no-]parse-first-line ignored
--translate-file= ignored
--default-translate-file= ignored
--8bit ignored
--[no-Imktex=FMT disable/enable mktexFMT generation with FMT is tex or tfm
- -synctex=NUMBER enable synctex

A note on the creation of the various temporary files and the \jobname. The value to use for
\jobname is decided as follows:

o If --jobname is given on the command line, its argument will be the value for \jobname,
without any changes. The argument will not be used for actual input so it need not exist. The
- - jobname switch only controls the \ jobname setting.

+ Otherwise, \jobname will be the name of the first file that is read from the file system, with
any path components and the last extension (the part following the last .) stripped off.

« An exception to the previous point: if the command line goes into interactive mode (by starting
with a command) and there are no files input via \everyjob either, then the \jobname is set
to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the
proper extension (.log, .pdf, etc.) to the found \ jobname. These files are created in the direc-
tory pointed to by - -output-directory, or in the current directory, if that switch is not present.

Without the - - lua option, command line processing works like it does in any other web2c-based
typesetting engine, except that LuaTgX has a few extra switches.

If the - -lua option is present, LuaTgX will enter an alternative mode of commandline processing
in comparison to the standard web2c programs.

0 , 32 Lua general
\ /

In this mode, a small series of actions is taken in order. First, it will parse the commandline as
usual, but it will only interpret a small subset of the options immediately: --safer, --nosocket,
--[no-]shell-escape, --enable-writel8, --disable-writel8, --shell-restricted, --help,
--version, and --credits.

Now it searches for the requested Lua initialization script. If it cannot be found using the actual
name given on the commandline, a second attempt is made by prepending the value of the
environment variable LUATEXDIR, if that variable is defined in the environment.

Then it checks the various safety switches. You can use those to disable some Lua commands
that can easily be abused by a malicious document. At the moment, - -safer nils the following
functions:

library functions

0s execute exec setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on files
that are opened for anything besides reading.

When LuaTgX starts it set the locale to a neutral value. If for some reason you use os.locale,
you need to make sire you nil it afterwards because otherise it can interfere with code that for
instance generates dates. You can nil the locale with

os.setlocale(nil.nil)

--nosocket makes the socket library unavailable, so that Lua cannot use networking.

The switches --[no-]shell-escape, --[enable|disable]-writel8, and --shell-restricted
have the same effects as in pdfTgX, and additionally make io.popen(), os.execute, os.exec
and os.spawn adhere to the requested option.

Next the initialization script is loaded and executed. From within the script, the entire com-
mandline is available in the Lua table arg, beginning with arg[0], containing the name of the
executable. As consequence, the warning about unrecognized option is suppressed.

Commandline processing happens very early on. So early, in fact, that none of TgX’s initializa-
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,
node and pdf, are off-limits during the execution of the startup file (they are nilled). Special care
is taken that texio.write and texio.write nl function properly, so that you can at least re-
port your actions to the log file when (and if) it eventually becomes opened (note that TgX does
not even know its \jobname yet at this point). See chapter 7 for more information about the
LuaTgX-specific Lua extension tables.

Everything you do in the Lua initialization script will remain visible during the rest of the run,
with the exception of the aforementioned tex, token, node and pdf tables: those will be initial-
ized to their documented state after the execution of the script. You should not store anything in
variables or within tables with these four global names, as they will be overwritten completely.

We recommend you use the startup file only for your own TgX-independent initializations (if
you need any), to parse the commandline, set values in the texconfig table, and register the
callbacks you need.

Lua general 33 | 0

LuaTgX allows some of the commandline options to be overridden by reading values from the
texconfig table at the end of script execution (see the description of the texconfig table later
on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texcon-
fig.kpse init to false for that), LuaTgX acts on some more commandline options after the
initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTgX
needs to know the correct program name to use, and for that it needs to check - -progname, or
--ini and - -fmt, if - -progname is missing.

2.2 LUA behaviour

Luas tonumber function may return values in scientific notation, thereby confusing the TgX end
of things when it is used as the right-hand side of an assignment to a \dimen or \count.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time
(which will typically happen on win32, because there is one Lua 5.2 inside LuaTgX, and another
will likely be linked to the dll file of the module itself). We plan to fix that later by switching
LuaTgX itself to using de dll version of Lua 5.2 inside LuaTgX instead of including a static version
in the binary.

LuaTgX is able to use the kpathsea library to find require()d modules. For this purpose, pack-
age.searchers[2] is replaced by a different loader function, that decides at runtime whether to
use kpathsea or the built-in core Lua function. It uses kpathsea when that is already initialized
at that point in time, otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the startup
script has not set texconfig.kpse init to false), or explicitly by calling the Lua function
kpse.set program name().

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an option
on the command line. For this purpose, package.searchers[3] is replaced by a different loader
function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using
the normal package.cpath loader.

This functionality required an extension to kpathsea:

There is a new kpathsea file format: kpse clua format that searches for files with exten-
sion .dll and .so. The texmf.cnf setting for this variable is CLUAINPUTS, and by default
it has this value:

CLUAINPUTS=. : $SELFAUTOLOC/lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the
architecture has to be in the path somewhere, and the currently simplest way to do that is
to search below the binaries directory only. Of course it no big deal to write an alternative
loader and use that in a macro package.

One level up (a lib directory parallel to bin) would have been nicer, but that is not doable
because TgXLive uses a bin/<arch> structure.

0 , 34 Lua general
\ /

In keeping with the other TgX-like programs in TgXLive, the two Lua functions os.execute and
io.popen, as well as the two new functions 0s.exec and 0s.spawn that are explained below,
take the value of shell escape and/or shell escape commands in account. Whenever LuaTgX
is run with the assumed intention to typeset a document (and by that we mean that it is called
as luatex, as opposed to texlua, and that the commandline option - - luaonly was not given), it
will only run the four functions above if the matching texmf. cnf variable(s) or their texconfig
(see section 7.15) counterparts allow execution of the requested system command. In ‘script
interpreter’ runs of LuaTgX, these settings have no effect, and all four functions function as
normal.

The f:read("*1line") and f:lines() functions from the io library have been adjusted so that
they are line-ending neutral: any of LF, CR or CR+LF are acceptable line endings.

luafilesystem has been extended: there are two extra boolean functions (1fs.isdir(file-
name) and lfs.isfile(filename)) and one extra string field in its attributes table (permis-
sions). There is an additional function 1fs.shortname() which takes a file name and returns
its short name on win32 platforms. On other platforms, it just returns the given argument. The
file name is not tested for existence. Finally, for non-win32 platforms only, there is the new func-
tion 1fs.readlink() hat takes an existing symbolic link as argument and returns its content. It
returns an error on win32.

The string library has an extra function: string.explode(s[,m]). This function returns an
array containing the string argument s split into sub-strings based on the value of the string
argument m. The second argument is a string that is either empty (this splits the string into
characters), a single character (this splits on each occurrence of that character, possibly intro-
ducing empty strings), or a single character followed by the plus sign + (this special version does
not create empty sub-strings). The default value for mis * +' (multiple spaces). Note: m is not
hidden by surrounding braces as it would be if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal:

« string.utfvalues(s): an integer value in the Unicode range

« string.utfcharacters(s): a string with a single utf-8 token in it

« string.characters(s) a string containing one byte

« string.characterpairs(s) two strings each containing one byte or an empty second string
if the string length was odd

« string.bytes(s) a single byte value

o string.bytepairs(s) two byte values or nil instead of a number as its second return value
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the
conversion of utf-16 encoded data into utf-8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,
if true, strips the symbols from the dumped data. This matches an extension made in luajit.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the
utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-
tions from the slnunicode library can be used, e.g., unicode.utf8.1len, unicode.utf8.lower
etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and
unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Lua general 35 | 0

Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture
() but other captures work as expected. For the interpretation of character classes in uni-
code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln. Version 5.3
of Lua will provide some native utf8 support.

The os library has a few extra functions and variables:

0s.selfdir is a variable that holds the directory path of the actual executable. For example:
\directlua{tex.sprint(os.selfdir)}.

os.exec(commandline) is a variation on os.execute. Here commandline can be either a
single string or a single table.

If the argument is a table: LuaTgX first checks if there is a value at integer index zero. If
there is, this is the command to be executed. Otherwise, it will use the value at integer index
one. (if neither are present, nothing at all happens).

The set of consecutive values starting at integer 1 in the table are the arguments that are
passed on to the command (the value at index 1 becomes arg[0]). The command is searched
for in the execution path, so there is normally no need to pass on a fully qualified pathname.
If the argument is a string, then it is automatically converted into a table by splitting on
whitespace. In this case, it is impossible for the command and first argument to differ from
each other.

In the string argument format, whitespace can be protected by putting (part of) an argument
inside single or double quotes. One layer of quotes is interpreted by LuaTgX, and all occur-
rences of \", \'' or \\ within the quoted text are unescaped. In the table format, there is no
string handling taking place.

This function normally does not return control back to the Lua script: the command will
replace the current process. However, it will return the two values nil and 'error' if there
was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of
the command has finished. This prevents crashes in situations where TgXLua scripts are run
inside integrated TgX environments.

The original reason for this command is that it cleans out the current process before starting
the new one, making it especially useful for use in TgXLua.

0s.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,
it will return the two values nil and 'error'.

os.setenv('key', 'value') sets a variable in the environment. Passing nil instead of a
value string will remove the variable.

0s.env is a hash table containing a dump of the variables and values in the process envi-
ronment at the start of the run. It is writeable, but the actual environment is not updated
automatically.

os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-
able on the SunOS platforms, so do not use this function for portable documents.

0s.times ()returns the current process times according to the Unix C library function ‘times’.
This function is not available on the MS Windows and SunOS platforms, so do not use this
function for portable documents.

os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX

36 Lua general

where the X-es are replaced by a unique string. The function also returns this string, so you
can Lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for
cleaning up at the end of the run, it does not happen automatically.

« o0s.typeisastring that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

« 0s.name is a string that gives a more precise indication of the operating system. These pos-
sible values are not yet fixed, and for os.type values windows and msdos, the os.name values
are simply windows and msdos
The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-
laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv
(unknown, but sysv-like), generic (unknown).

e« o0sS.version is planned as a future extension.

« o0s.uname() returns a table with specific operating system information acquired at runtime.
The keys in the returned table are all string valued, and their names are: sysname, machine,
release, version, and nodename.

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it
makes documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

2.3 LUA modules

The implied use of the built-in Lua modules in this section is deprecated. If you want to use one
of these libraries, please start your source file with a proper require line. At some point LuaTgX
will switch to loading these modules on demand.

Some modules that are normally external to Lua are statically linked in with LuaTgX, because
they offer useful functionality:

« slnunicode, from the Selene libraries, http://luaforge.net/projects/sln. (version 1.1) This
library has been slightly extended so that the unicode.utf8.* functions also accept the first
256 values of plane 18. This is the range LuaTgX uses for raw binary output, as explained
above.

o luazip, from the kepler project, http://www.keplerproject.org/luazip/. (version 1.2.1, but
patched for compilation with Lua 5.2)

« luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.
(version 1.5.0)

« 1lpeg, by Roberto lerusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html.
(version 0.10.2) This library is not Unicode-aware, but interprets strings on a byte-per-byte
basis. This mainly means that 1peg.S cannot be used with utf characters encoded in more
than two bytes, and thus lpeg.S will look for one of those two bytes when matching, not the
combination of the two. The same is true for 1peg.R, although the latter will display an error
message if used with multibyte characters. Therefore lpeg.R('aa') results in the message
bad argument #1 to 'R' (range must have two characters), sinceto lpeg, aistwo
‘characters’ (bytes), so aa totals three. In practice this is no real issue.

Lua general 37 | 0

1z1lib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/. (version 0.2)

md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.
luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/ (version 2.0.2).
The .1lua support modules from luasocket are also preloaded inside the executable, there
are no external file dependencies.

38 Lua general

3 Languages and characters, fonts and glyphs

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is quite
different from the way TgX82 handles those same objects. The easiest way to explain the dif-
ference is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char _node records when they are encoun-
tered by the main control loop. TgX attaches and processes the font information while creating
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-
plicit kerning. This packaging is needed because we may want to get the effective width of for
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TgX converts (one word at time)
the char node records into a string array by replacing ligatures with their components and ig-
noring the kerning. Then it runs the hyphenation algorithm on this string, and converts the hy-
phenated result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph
stream. Keep in mind that the paragraph may contain unboxed horizontal material, which then
already contains ligatures and kerns and the words therein are part of the hyphenation process.

The char node records are somewhat misnamed, as they are glyph positions in specific fonts,
and therefore not really ‘characters’ in the linguistic sense. There is no language information
inside the char node records. Instead, language information is passed along using language
whatsit records inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any
font-related processing at the time of node creation. It only stores the index of the current font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation points
right into the whole node list. Next, it processes all the font information in the whole list (creating
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the
records are ‘glyph nodes’ from now on.

That was the broad overview. The rest of this chapter will deal with the minutiae of the new
process.

3.1 Characters and glyphs

TEX82 (including pdfIEX) differentiates between char nodes and lig nodes. The former are
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the
same memory as tokens did. The latter also contained a list of components, and a subtype
indicating whether this ligature was the result of a word boundary, and it was stored in the
same place as other nodes like boxes and kerns and glues.

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph_node.
Besides having the old character, font, and component fields, and the new special fields like ‘attr’
(see section 6.1.2.12), these nodes also contain:

Languages and characters, fonts and glyphs 39 (0\1

« A subtype, split into four main types:
— character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.
— glyph, for specific font glyphs: the lowest bit (bit 0) is not set.
— ligature, for ligatures (bit 1 is set)
— ghost, for ‘ghost objects’ (bit 2 is set)
The latter two make further use of two extra fields (bits 3 and 4):
— left, for ligatures created from a left word boundary and for ghosts created from \left-
ghost
— right, for ligatures created from a right word boundary and for ghosts created from
\rightghost
For ligatures, both bits can be set at the same time (in case of a single-glyph word).
« glyph nodes of type ‘character’ also contain language data, split into four items that were
current when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits),
\righthyphenmin (8 bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters long.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This
value stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from
TEX82: changes to \uchyph become effective immediately, not at the end of the current partial
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,
so there is no longer a possible dependency on the surrounding language settings. In TgX82, a
mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variables
are already frozen.

In traditional TgX the process of hyphenation is driven by so called lccodes. In LuaTgX we made
this dependency less strong. There are several strategies possible. When you do nothing, the
currently used lccodes are used, when loading patterns, setting exceptions or hyphenating a
list.

When you set \savinghyphcodes to a value larger than zero the current set of lccodes will be
saved with the language. In that case changing a lccode afterwards has no effect. However, you
can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenation
happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-
phcodes was zero when the language got initialized you start out with nothing, otherwise you
already have a set.

Carrying all this information with each glyph would give too much overhead and also make the
definition more complex. A solution with hj codesets was considered but rejected because in
practice the current approach is sufficient and it would not be compatible anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-
codes at the mnoment the format is dumped.

\0\‘, 40 Languages and characters, fonts and glyphs

3.2 The main control loop

In LuaTgX’s main loop, almost all input characters that are to be typeset are converted into glyph
node records with subtype ‘character’, but there are a few exceptions.

First, the \accent primitives creates nodes with subtype ‘glyph’ instead of ‘character’: one for
the actual accent and one for the accentee. The primary reason for this is that \accent in TgX82
is explicitly dependent on the current font encoding, so it would not make much sense to attach
a new meaning to the primitive’s name, as that would invalidate many old documents and macro
packages. A secondary reason is that in TEX82, \accent prohibits hyphenation of the current
word. Since in LuaTgX hyphenation only takes place on ‘character’ nodes, it is possible to achieve
the same effect.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a charac-
ter subtype. In traditional TgX there was a strong relationship betwene the 8-bit input encoding,
hyphenation and glyph staken from a font. In LuaTgX we have utf input, and in most cases this
maps directly to a character in a font, apart from glyph replacement in the font engine. If you
want to access arbitrary glyphs in a font directly you can alwasy use Lua to do so, because fonts
are available as Lua table.

Second, all the results of processing in math mode eventually become nodes with ‘glyph’ sub-
types.

Third, the Aleph-derived commands \leftghost and \rightghost create nodes of a third sub-
type: ‘ghost’. These nodes are ignored completely by all further processing until the stage where
inter-glyph kerning is added.

Fourth, automatic discretionaries are handled differently. TEX82 inserts an empty discretionary
after sensing an input character that matches the \hyphenchar in the current font. This test is
wrong, in our opinion: whether or not hyphenation takes place should not depend on the current
font, it is a language property.

In LuaTgX, it works like this: if LuaTgX senses a string of input characters that matches the
value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary after
that series of nodes. Initex sets the \exhyphenchar="\-. Incidentally, this is a global parameter
instead of a language-specific one because it may be useful to change the value depending on
the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same time
as the other hyphenation processing, not inside the main control loop.

The only use LuaTgX has for \hyphenchar is at the check whether a word should be considered
for hyphenation at all. If the \hyphenchar of the font attached to the first character node in
a word is negative, then hyphenation of that word is abandoned immediately. This behavior
is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of
preventing hyphenation should not be used in new LuaTgX documents.

Fifth, \setlanguage no longer creates whatsits. The meaning of \setlanguage is changed so
that it is now an integer parameter like all others. That integer parameteris used in \glyph node
creation to add language information to the glyph nodes. In conjunction, the \language primitive
is extended so that it always also updates the value of \setlanguage.

Sixth, the \noboundary command (this command prohibits word boundary processing where
that would normally take place) now does create whatsits. These whatsits are needed because

Languages and characters, fonts and glyphs 41 (\ 0

the exact place of the \noboundary command in the input stream has to be retained until after
the ligature and font processing stages.

Finally, there is no longer a main_loop label in the code. Remember that TEX82 did quite a lot
of processing while adding char_nodes to the horizontal list? For speed reasons, it handled that
processing code outside of the ‘main control’ loop, and only the first character of any ‘word’ was
handled by that ‘main control’ loop. In LuaTgX, there is no longer a need for that (all hard work
is done later), and the (now very small) bits of character-handling code have been moved back
inline. When \tracingcommands is on, this is visible because the full word is reported, instead
of just the initial character.

3.3 Loading patterns and exceptions

The hyphenation algorithm in LuaTgX is quite different from the one in TgX82, although it uses
essentially the same user input.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-
arated by spaces, no \char or \chardefd commands are allowed. The current implementation
is even more strict, and will reject all non-Unicode characters, but that will be changed in the
future. For now, the generated errors are a valuable tool in discovering font-encoding specific
pattern files.

Likewise, the expanded argument for \hyphenation also has to be proper utf8, but here a tiny
little bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicates a desired complex discretionary,
with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal
document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,
but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the
internal command names. This string is then converted into a dictionary by a routine that creates
key-value pairs by converting the other listed items. It is important to note that the keys in an
exception dictionary can always be generated from the values. Here are a few examples:

value implied key (input) effect
ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)
ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is
the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the
command is optional in the TgX-based input syntax. The underlying reason for that is that it is
conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTgX
using one of the functions in the Lua lang library. This loading method is quite a bit faster than

\0\‘, 42 Languages and characters, fonts and glyphs

going through the TgX language primitives, but some (most?) of that speed gain would be lost if
it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the
explicit hyphen character (replace - by the actual explicit hyphen character if needed). For
example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetweem
‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the &-TgX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTgX, and the corresponding primitive is
ignored pending complete removal. The future semantics of \uppercase and \lowercase are
still under consideration, no changes have taken place yet.

3.4 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very different
from the ones in TEX82, and that means there are some noticeable differences in handling as
well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still
reads patgen-generated pattern files, but LuaTgX uses a finite state hash to match the patterns
against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by
OpenOffice, which in turn is inspired by TgX. The memory allocation for this new implemen-
tation is completely dynamic, so the web2c setting for trie size is ignored.

Differences between LuaTgX and TgX82 that are a direct result of that:

» LuaTgX happily hyphenates the full Unicode character range.

» Pattern and exception dictionary size is limited by the available memory only, all allocations
are done dynamically. The trie-related settings in texmf.cnf are ignored.

« Because there is no ‘trie preparation’ stage, language patterns never become frozen. This
means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at
any time, not only in iniTgX.

« Only the string representation of \patterns and \hyphenation is stored in the format file.
At format load time, they are simply re-evaluated. It follows that there is no real reason to
preload languages in the format file. In fact, it is usually not a good idea to do so. It is much
smarter to load patterns no sooner than the first time they are actually needed.

« LuaTgX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of implicit discretionaries, instead of TgX82’s \hyphenchar, and the values of the
language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-
tionaries (instead of TEX82’s empty discretionary).

« The value of the two counters related to hyphenation, hyphenpenalty and exhyphenpenalty,
are now stored in the discretionary nodes. This permits a local overload for explicit \dis-
cretionary commands. The value current when the hyphenation pass is applied is used.
When no callbacks are used this is compatible with traditional TgX. When you apply the Lua
lang.hyphenate function the current values are used.

Languages and characters, fonts and glyphs 43 (\ 0

Because we store penalties in the disc node the \discretionary command has been extended
to accept an optional penalty specification, so you can do the following:

\hsizelmm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par
2:foo\discretionary penalty 10000 {}{}{}bar\par
3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar
2:foobar

3:foo
bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-
ally the preceding one, but the following one for the items inserted at the left-hand side of a
word).

Word boundaries are no longer implied by font switches, but by language switches. One word
can have two separate fonts and still be hyphenated correctly (but it can not have two different
languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphenchar=0
and \postexhyphenchar=0. When you assign the values of one of these four parameters, you
are actually changing the settings for the current \language, this behavior is compatible with
\patterns and \hyphenation.

LuaTgX also hyphenates the first word in a paragraph. Words can be up to 256 characters
long (up from 64 in TgX82). Longer words generate an error right now, but eventually either
the limitation will be removed or perhaps it will become possible to silently ignore the excess
characters (this is what happens in TEX82, but there the behavior cannot be controlled).

If you are using the Lua function lang.hyphenate, you should be aware that this function expects
to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,
‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning. In the near future, it will
be able to skip over ‘ghost’ nodes, and we may add a less fuzzy function you can call as well.

The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic,
so the hyph size setting is not used either.

3.5 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTgX will process the list
to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two
stages: first all ligatures are processed, then all kerning information is applied to the result list.
But those two stages are somewhat dependent on each other: If the used font makes it possible
to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.
While doing so, it removes and interprets noboundary nodes. The kerning stage deletes those

\0\‘, 44 Languages and characters, fonts and glyphs

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,
at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This work separation is worth mentioning because, if you overrule from Lua only one of the two
callbacks related to font handling, then you have to make sure you perform the tasks normally
done by LuaTgX itself in order to make sure that the other, non-overruled, routine continues to
function properly.

Work in this area is not yet complete, but most of the possible cases are handled by our rewritten
ligaturing engine. We are working hard to make sure all of the possible inputs will become
supported soon.

For example, take the word office, hyphenated of-fice, using a ‘normal’ font with all the f-f
and f-i type ligatures:

Initial: {o}{fH{f}{i}{c}{e}

After hyphenation: {o}{f}{{-},{}, {}H{fI{i}{c}{e}
First ligature stage: {o}{{f-},{f}, {<ff>}}{i}{c}{e}
Final result: {o}{{f-}, {<fi>}, {<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and
the i, to create of-f-ice. Then the final result should be:

{o}{{f-},
{{f-},
{1},
{<fi>}},
{{<ff>-},
{1},
{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level
discretionary that resulted from the first hyphenation point.

Here is that nested solution again, in a different representation:

pre post replace
topdisc f-1 subl sub2
sub1 f-2 i3 <fi>%

sub2 <ff>-5 i6 <ffi>7
When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f-1

of-fice f-1
off-ice <ff>-°

office <ffis’

Languages and characters, fonts and glyphs 45 (0\1

The current solution in LuaTgX is not able to handle nested discretionaries, but it is in fact
smart enough to handle this fictional of - f-ice example. It does so by combining two sequential
discretionary nodes as if they were a single object (where the second discretionary node is
treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-
placement list (i), and that this would be the case even if that i was the first item of a potential
following ligature like ic. This allows LuaTgX to do away with one of the fields, and thus make
the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

field description
discl.pre f-1
discl.post <fi>*
discl.replace <ffi>”
disc2.pre f-2
disc2.post i3.6

disc2.replace <ff>-5
What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},
{<fi>},
{<ffi>}}
{{f-},
{1},
{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the
first has subtype 4, and the second has subtype 5. The need for these special subtypes stems
from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary
especially looks odd, with things like the <ff>- appearing in disc2. replace. The fact that some
of the fields have different meanings (and different processing code internally) is what makes it
necessary to have different subtypes: this enables LuaTgX to distinguish this sequence of two
joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a
sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means
that the above examples are just representing the traditional approach.

3.6 Breaking paragraphs into lines

This code is still almost unchanged, but because of the above-mentioned changes with respect
to discretionaries and ligatures, line breaking will potentially be different from traditional TgX.
The actual line breaking code is still based on the TEX82 algorithms, and it does not expect there
to be discretionaries inside of discretionaries.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing mech-
anism. And also, the LuaTgX discretionary nodes are implemented slightly different from the

\0\‘, 46 Languages and characters, fonts and glyphs

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these
nodes kept their place in the horizontal list (the discretionary node contained a counter indicat-
ing how many nodes to skip).

The combined effect of these two differences is that LuaTgX does not always use all of the po-
tential breakpoints in a paragraph, especially when fonts with many ligatures are used.

Languages and characters, fonts and glyphs 47

48 Languages and characters, fonts and glyphs

4 Font structure

All TgX fonts are represented to Lua code as tables, and internally as C structures. All keys in
the table below are saved in the internal font structure if they are present in the table returned
by the define font callback, or if they result from the normal tfm/vf reading routines if there
isno define font callback defined.

The column ‘from vf’ means that this key will be created by the font.read vf() routine, ‘from
tfm’ means that the key will be created by the font.read tfm() routine, and ‘used’ means
whether or not the LuaTgX engine itself will do something with the key.

The top-level keys in the table are as follows:

key from vf from tfm wused value type description

name yes yes yes string metric (file) name

area no yes yes string (directory) location, typically empty

used no yes yes boolean used already? (initial: false)

characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360
== 10pt)

direction no yes yes number default: 0 (TLT)

encodingbytes no no yes number default: depends on format

encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string actual (PostScript) name (this is

the PS fontname in the incoming
font source, also used as fontname
identifier in the pdf output, new

in 0.43)

fullname no no yes string output font name, used as a fall-
back in the pdf output if the psname
is not set

header yes no no string header comments, if any

hyphenchar no no yes number default: TeX’s \hyphenchar

parameters no yes yes hash default: 7 parameters, all zero

size no yes yes number loaded (at) size. (default: same
as designsize)

skewchar no no yes number default: TeX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string disk file name

tounicode no yes yes number if 1, LuaTgX assumes per-glyph
tounicode entries are present in
the font

L N
Font structure 49 '\0/‘[

stretch no

shrink no
step no
auto_expand no

expansion factor no

attributes no
cache no
nomath no
slant no
extent no

no

no

no

no

no

no
no

no

no

no

yes

yes

yes

yes

no

yes
yes

yes

yes

yes

number

number

number

boolean

number

string
string

boolean

number

number

the ‘stretch’ value from \expandg-
lyphsinfont

the ‘shrink’ value from \expandg-
lyphsinfont

the ‘step’ value from \expandg-
lyphsinfont

the ‘autoexpand’ keyword from
\expandglyphsinfont

the actual expansion factor of an
expanded font

the \pdffontattr

this key controls caching of the
lua table on the tex end. yes:
use a reference to the table that
is passed to LuaTgX (this is the
default). no: don't store the table
reference, don’t cache any lua data
for this font. renew: don’t store
the table reference, but save a
reference to the table that is cre-
ated at the first access to one of
its fields in font.fonts. (new in
0.40.0, before that caching was
always yes). Note: the saved ref-
erence is thread-local, so be care-
ful when you are using coroutines:
an error will be thrown if the table
has been cached in one thread,
but you reference it from another
thread (= coroutine)

this key allows a minor speedup
for text fonts. if it is present and
true, then LuaTgX will not check

the character enties for math-specific

keys.

This has the same semantics as
the SlantFont operator in font
map files.

This has the same semantics as
the ExtendFont operator in font
map files.

The key name is always required. The keys stretch, shrink, step and optionally auto expand
only have meaning when used together: they can be used to replace a post-loading \expandg-
lyphsinfont command. The expansion factor is value that can be present inside a font in
font.fonts. It is the actual expansion factor (a value between -shrink and stretch, with step
step) of a font that was automatically generated by the font expansion algorithm. The key at-

LN
\0/‘, 50 Font structure

tributes can be used to replace \pdffontattr. The key used is set by the engine when a font is
actively in use, this makes sure that the font’s definition is written to the output file (dvi or pdf).
The tfm reader sets it to false. The direction is a number signalling the ‘normal’ direction for
this font. There are sixteen possibilities:

number meaning number meaning

0 LT 8 TT
1 LL 9 TL
2 LB 10 TB
3 LR 11 TR
4 RT 12 BT
5 RL 13 BL
6 RB 14 BB
7 RR 15 BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of
the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’
side.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as
a number of integer indices (these start from 8 up). The seven strings are actually used instead
of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

name internal remapped number
slant 1

space
space_stretch
space_shrink
x_height

quad

extra space

N O Ok N

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts
in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The number
is the ‘internal code’ TgX knows this character by.

Two very special string indexes can be used also: left boundary is a virtual character whose
ligatures and kerns are used to handle word boundary processing. right boundary is similar
but not actually used for anything (yet!).

Other index keys are ignored.
Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the

font cmr10 at 10 points:

[102] = {
['width'] = 200250,
['height'] = 455111,

[P
Font structure 51 ! 0/‘[

['depth'] = 0,

['italic'] = 50973,

['kerns'] = {

[63] = 50973,

[93]
[39]
[33]
[41]

}
['ligatures'] =
[102] = {

['char']
["type']

H
[108] = {

['char']
['type']

b
[105] = {

['char']
['type']

50973,
50973,
50973,
50973

{

11,

13,

12,

The following top-level keys can be present inside a character hash:

key

from vf from tfm wused

width

height

depth

italic

top_accent

bot accent

left protruding

right protruding

expansion factor
tounicode

52 Font structure

yes

no

no

no

no

no

no

no

no
no

yes

yes

yes

yes

no

no

no

no

no
no

yes
yes
yes
yes
maybe
maybe
maybe
maybe

maybe
maybe

value type description

number
number
number
number
number
number
number
number

number
string

character’s width, in sp (default
0)

character’s height, in sp (default
0)

character’s depth, in sp (default
0)

character’s italic correction, in
sp (default zero)

character’s top accent alignment
place, in sp (default zero)
character’s bottom accent align-
ment place, in sp (default zero)
character’s \lpcode

character’s \rpcode
character’s \efcode
character’s Unicode equivalent(s),
in UTF-16BE hexadecimal for-
mat

next no yes yes number the ‘next larger’ character in-

dex

extensible no yes yes table the constituent parts of an ex-
tensible recipe

vert variants no no yes table constituent parts of a vertical
variant set

horiz variants no no yes table constituent parts of a horizon-
tal variant set

kerns no yes yes table kerning information

ligatures no yes yes table ligaturing information

commands yes no yes array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font
glyph index

used no yes yes boolean typeset already (default: false)?

mathkern no no yes table math cut-in specifications

The values of top_accent, bot accent and mathkern are used only for math accent and super-
script placement, see the math chapter 61 in this manual for details.

The values of left protruding and right protruding are used only when \protrudechars is
non-zero.

Whether or not expansion factor is used depends on the font’s global expansion settings, as
well as on the value of \adjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTgX
will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level
tounicode strings, where they are available. If a character does not have a sensible Unicode
equivalent, do not provide a string either (no empty strings).

If the font-level tounicode is not set, then LuaTgX will build up /ToUnicode based on the TgX
code points you used, and any character-level tounicodes will be ignored. At the moment, the
string format is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal
encoding), minus the enclosing angle brackets. This may change in the future. Small example:
the tounicode for a fi ligature would be 00660069.

The presence of extensible will overrule next, if that is also present. It in in turn can be
overruled by vert variants.

The extensible table is very simple:

key type description

top number ‘top’ character index

mid number ‘middle’ character index
bot number ‘bottom’ character index
rep number ‘repeatable’ character index

The horiz variants and vert variants are arrays of components. Each of those components
is itself a hash of up to five keys:

.’ N
Font structure 53 | 0

key type explanation

glyph number The character index (note that this is an encoding number, not a name).
extender number One (1) if this part is repeatable, zero (0) otherwise.

start number Maximum overlap at the starting side (in scaled points).

end number Maximum overlap at the ending side (in scaled points).

advance number Total advance width of this item (can be zero or missing, then the natural
size of the glyph for character component is used).

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either
a non-negative integer or the string value right boundary), with the values the kerning to be
applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as
either a non-negative integer or the string value right boundary), with the values being yet
another small hash, with two fields:

key type description
type number the type of this ligature command, default O
char number the character index of the resultant ligature

The char field in a ligature is required.

The type field inside a ligature is the numerical or string value of one of the eight possible
ligature types supported by TgX. When TgX inserts a new ligature, it puts the new glyph in the
middle of the left and right glyphs. The original left and right glyphs can optionally be retained,
and when at least one of them is kept, it is also possible to move the new ‘insertion point’ forward
one or two places. The glyph that ends up to the right of the insertion point will become the
next ‘left’.

textual (Knuth) number string result

l+r=:n 0 =: |n

l+r=:n 1 =1 |nr
l+r|=:n 2 |=: [In
l+r|=n 3 EH |Inr
l+r=:>n 5 =:|> n|r
l+r|=:>n 6 |=:> lln
l+r|=:>n 7 |=:]> lnr
l+r|=:>>n 11 |=:]>> In|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature
replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

4.1 Real fonts

Whether or not a TgX font is a ‘real’ font that should be written to the pdf document is decided
by the type value in the top-level font structure. If the value is real, then this is a proper font,
and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.

\0/‘, 54 Font structure

Values for type:

value description
real this is a base font
virtual this is a virtual font

The actions to be taken depend on a number of different variables:

« Whether the used font fits in an 8-bit encoding scheme or not.
» The type of the disk font file.
« The level of embedding requested.

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in a
different way.

The rule is: if the font table has encodingbytes set to 2, then this is a wide font, in all other cases
it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua. For Typel
fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font encoding is
not supported at all.

If no special care is needed, LuaTgX currently falls back to the mapfile-based solution used by
pdfTEX and dvips. This behavior will be removed in the future, when the existing code becomes
integrated in the new subsystem.

But if this is a ‘wide’ font, then the new subsystem kicks in, and some extra fields have to be
present in the font structure. In this case, LuaTEX does not use a map file at all.

The extra fields are: format, embedding, fullname, cidinfo (as explained above), filename,
and the index key in the separate characters.

Values for format are:

value description

typel this is a PostScript Typel font
type3 this is a bitmapped (pk) font

truetype thisis a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

type3 fonts are provided for backward compatibility only, and do not support the new wide
encoding options.

Values for embedding are:

value description

no don’t embed the font at all
subset include and atttempt to subset the font
full include this font in its entirety

It is not possible to artificially modify the transformation matrix for the font at the moment.

The other fields are used as follows: The fullname will be the PostScript/pdf font name. The
cidinfo will be used as the character set (the CID /0rdering and /Registry keys). The file-
name points to the actual font file. If you include the full path in the filename or if the file is in

@, N\
Font structure 55 ! 0/‘[

the local directory, LuaTgX will run a little bit more efficient because it will not have to re-run
the find xxx_file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript
name clashes that can result in printing errors. When this happens, you have to change the
fullname of the font.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key
in the character information as value. The overall effect is like having an encoding based on
numbers instead of traditional (PostScript) name-based reencoding. The way to get the correct
index numbers for Typel fonts is by loading the font via fontloader.open; use the table indices
as index fields.

This type of reencoding means that there is no longer a clear connection between the text in
your input file and the strings in the output pdf file. Dealing with this is high on the agenda.

4.2 Virtual fonts

You have to take the following steps if you want LuaTgX to treat the returned table from de-
fine font as a virtual font:

« Set the top-level key type to virtual.
« Make sure there is at least one valid entry in fonts (see below).
« Give a commands array to every character (see below).

The presence of the toplevel type key with the specific value virtual will trigger handling of
the rest of the special virtual font fields in the table, but the mere existence of 'type’ is enough
to prevent LuaTgX from looking for a virtual font on its own.

Therefore, this also works ‘in reverse’: if you are absolutely certain that a font is not a virtual
font, assigning the value base or real to type will inhibit LuaTgX from looking for a virtual font
file, thereby saving you a disk search.

The fonts is another Lua array. The values are one- or two-key hashes themselves, each entry
indicating one of the base fonts in a virtual font. In case your font is referring to itself, you can
use the font.nextid () function which returns the index of the next to be defined font which is
probably the currently defined one.

An example makes this easy to understand

fonts = {
{ name 'ptmr8a', size = 655360 },
{ name = 'psyr', size = 600000 },
{ id = 38 }

}

says that the first referenced font (index 1) in this virtual font is ptrmr8a loaded at 10pt, and the
second is psyr loaded at a little over 9pt. The third one is previously defined font that is known
to LuaTgX as fontid ‘38’.

The array index numbers are used by the character command definitions that are part of each
character.

\0/‘, 56 Font structure

The commands array is a hash where each item is another small array, with the first entry rep-
resenting a command and the extra items being the parameters to that command. The allowed
commands and their arguments are:

command name arguments arg type description

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current
font, and move right by the character’s width

node 1 node output this node (list), and move right by the width
of this list

slot 2 number a shortcut for the combination of a font and char
command

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ht x wd, and move right.

down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

lua 1 string execute a Lua script (at \latelua time)

image 1 image output an image (the argument can be either an
<image> variable or an image spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This pre-
vents the need for hackery with future id’s (normally one could use font.nextid but when more
complex fonts are built in the meantime other instances could have been loaded.

Here is a rather elaborate glyph commands example:

commands = {

{ 'push' }, -- remember where we are

{ 'right', 5000 }, -- move right about 0.08pt

{ 'font', 3 }, -- select the fonts[3] entry

{ 'char', 97 }, -- place character 97 (ASCII 'a')
{ 'pop' }, -- go all the way back

{ 'down', -200000 }, -- move upwards by about 3pt

{ 'special', 'pdf: 1 0 0 rg' } -- switch to red color

{ 'rule', 500000, 20000 } -- draw a bar

{ 'special','pdf: 0 g' } -- back to black

The default value for font is always 1 at the start of the commands array. Therefore, if the
virtual font is essentially only a re-encoding, then you do usually not have create an explicit
‘font’ command in the array.

[¥ S\
Font structure 57 ! ;

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.
For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will
always move by exactly the width that was given in the width key of the character hash. Any
movements that take place inside the commands array are ignored on the upper level.

4.2.1 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTgX encounters a commands field
inside a character when it becomes time to typeset the character, it will interpret the commands,
just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then the
default (and only) ‘base’ font is taken to be the current font itself. In practice, this means that
you can create virtual duplicates of existing characters which is useful if you want to create
composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a
virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual
font for that (because characters that are already present cannot be altered).

4.2.2 Example virtual font

Finally, here is a plain TgX input file with a virtual font demonstration:

\directlua {
callback.register('define font',
function (name,size)

if name == 'cmrlO-red' then
f = font.read tfm('cmrl0',size)
f.name = 'cmrlO-red'
f.type = 'virtual'
f.fonts = {{ name = 'cmrl0', size = size }}

for i,v in pairs(f.characters) do
if (string.char(i)):find('[tacohanshartmut]') then
v.commands = {
{'special','pdf: 1 0 0 rg'},
{'char',i},
{'special', 'pdf: 0 g'},
}
else
v.commands = {{'char',i}}
end
end
else
f = font.read tfm(name,size)
end
return f

O/‘[58 Font structure

end

\font\myfont = cmrl0-red at 10pt \myfont This is a line of text \par
\font\myfontx= cmrl@ at 10pt \myfontx Here is another line of text \par

Font structure 59

60 Font structure

5 Math

The handling of mathematics in LuaTgX differs quite a bit from how TEX82 (and therefore pdfTEX)
handles math. First, LuaTgX adds primitives and extends some others so that Unicode input can
be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)
have been made accessible and changeable via control sequences. Third, there are extensions
that make it easier to use OpenType math fonts. And finally, there are some extensions that have
been proposed in the past that are now added to the engine.

5.1 The current math style

It is possible to discover the math style that will be used for a formula in an expandable fashion
(while the math list is still being read). To make this possible, LuaTgX adds the new primitive:
\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,
not set.

5.1.1 \mathstyle

The returned value is between 0 and 7 (in math mode), or —1 (all other modes). For easy testing,
the eight math style commands have been altered so that the can be used as numeric values, so
you can write code like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle
\message{cramped text style}

\fi \fi

5.1.2 \Ustack

There are a few math commands in TgX where the style that will be used is not known straight
from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would
therefore normally return wrong values for \mathstyle. To fix this, LuaTgX introduces a special
prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct
(numerator) math style.

5.2 Unicode math characters

Character handling is now extended up to the full Unicode range (the \U prefix), which is com-
patible with XqTEX.

Math 61 ’0

The math primitives from TgX are kept as they are, except for the ones that convert from input to
math commands: mathcode, and delcode. These two now allow for a 21-bit character argument
on the left hand side of the equals sign.

Some of the new LuaTgX primitives read more than one separate value. This is shown in the
tables below by a plus sign in the second column.

The input for such primitives would look like this:
\def\overbrace{\Umathaccent 0 1 "23DE }
Altered TgX82 primitives:

primitive value range (in hex)
\mathcode 0-10FFFF = 0-8000
\delcode O0-10FFFF = O0-FFFFFF

Unaltered:

primitive value range (in hex)
\mathchardef 0-8000

\mathchar 0-7FFF

\mathaccent 0-7FFF

\delimiter 0-7FFFFFF

\radical 0-7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret
it as \Umathcharnumdef. This is needed to satisfy older macro packages.

New primitives that are compatible with XqTEX:

primitive value range (in hex)
\Umathchardef 04+0+0-7+FF+10FFFF!
\Umathcharnumdef® -80000000-7FFFFFFF3
\Umathcode 0-10FFFF = 04+0+40-7+FF+10FFFF!
\Udelcode 0-10FFFF = 0+0-FF+10FFFF2
\Umathchar 040+0-7+FF+10FFFF
\Umathaccent 040+0-7+FF+10FFFF24
\Udelimiter 040+0-7+FF+10FFFF2

\Uradical 0+40-FF+10FFFF?2

\Umathcharnum -80000000-7FFFFFFF3
\Umathcodenum 0-10FFFF = -80000000-7FFFFFFF3
\Udelcodenum 0-10FFFF = -80000000-7FFFFFFF3

Specifications typically look like:

\Umathchardef\xx="1"0"456
\Umathcode 123="1"0"789

Note 1: The new primitives that deal with delimiter-style objects do not set up a ‘large family’.
Selecting a suitable size for display purposes is expected to be dealt with by the font via the
\Umathoperatorsize parameter (more information can be found in a following section).

‘0 ,\' 62 Math

Note 2: For these three primitives, all information is packed into a single signed integer. For
the first two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code,
the 3 bits above that represent the math class, and the family data is kept in the topmost bits
(This means that the values for math families 128-255 are actually negative). For \Udelcodenum
there is no math class; the math family information is stored in the bits directly on top of the
character code. Using these three commands is not as natural as using the two- and three-value
commands, so unless you know exactly what you are doing and absolutely require the speedup
resulting from the faster input scanning, it is better to use the verbose commands instead.

Note 3: The \Umathaccent command accepts optional keywords to control various details re-
garding math accents. See section 5.8 below for details.

New primitives that exist in LuaTgX only (all of these will be explained in following sections):

primitive value range (in hex)
\Uroot 0+0-FF+10FFFF?
\Uoverdelimiter 0+0-FF+10FFFF?
\Uunderdelimiter 0+0-FF+10FFFF2
\Udelimiterover 0+0-FF+10FFFF2
\Udelimiterunder 0+0-FF+10FFFF?

5.3 Cramped math styles
LuaTgX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle
\crampedtextstyle
\crampedscriptstyle
\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as
arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TgX by Topic” the rules for handling styles in scripts are described as follows:

« In any style superscripts and subscripts are taken from the next smaller style. Exception: in
display style they are taken in script style.

« Subscripts are always in the cramped variant of the style; superscripts are only cramped if
the original style was cramped.

« Inan..\over.. formula in any style the numerator and denominator are taken from the next
smaller style.

« The denominator is always in cramped style; the numerator is only in cramped style if the
original style was cramped.

« Formulas under a \sqrt or \overline are in cramped style.

In LuaTgX one can set the styles in more detail which means that you sometimes have to set
both normal and cramped styles to get the effect you want. If we force styles in the scriptr using
\scriptstyle and \crampedscriptstyle we get this:

Math 63 '0

default pX=xx

X=XX

3 X=XX
script bX=3%
i X=XX
crampedscript b} =77

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu

This gives:

default bX_... X
script by X
crampedscript bI=XX

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu
\Umathordrelspacing\crampedscriptstyle=30mu
\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default by X
script by X
crampedscript b} X

X XX XX X

5.4 Math parameter settings

In LuaTgX, the font dimension parameters that TEX used in math typesetting are now accessible
via primitive commands. In fact, refactoring of the math engine has resulted in many more
parameters than were accessible before.

primitive name
\Umathquad
\Umathaxis

\Umathoperatorsize
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap
\Umathunderbarkern
\Umathunderbarrule
\Umathunderbarvgap
\Umathradicalkern
\Umathradicalrule
\Umathradicalvgap

0/‘, 64 Math

description

the width of 18mu’s

height of the vertical center axis of the math formula above the
baseline

minimum size of large operators in display mode
vertical clearance above the rule

the width of the rule

vertical clearance below the rule

vertical clearance below the rule

the width of the rule

vertical clearance above the rule

vertical clearance above the rule

the width of the rule

vertical clearance below the rule

\Umathradicaldegreebefore

\Umathradicaldegreeafter

\Umathradicaldegreeraise

\Umathstackvgap
\Umathstacknumup
\Umathstackdenomdown
\Umathfractionrule
\Umathfractionnumvgap
\Umathfractionnumup
\Umathfractiondenomvgap
\Umathfractiondenomdown
\Umathfractiondelsize
\Umathlimitabovevgap
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitbelowvgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap
\Umathsubshiftdrop
\Umathsubshiftdown
\Umathsupshiftdrop
\Umathsupshiftup
\Umathsubsupshiftdown
\Umathsubtopmax

\Umathsupbottommin
\Umathsupsubbottommax

\Umathsubsupvgap
\Umathspaceafterscript

\Umathconnectoroverlapmin

the forward kern that takes place before placement of the radical
degree

the backward kern that takes place after placement of the radi-
cal degree

this is the percentage of the total height and depth of the radical
sign that the degree is raised by. It is expressed in percents, so
60% is expressed as the integer 60.

vertical clearance between the two elements in a \atop stack
numerator shift upward in \atop stack

denominator shift downward in \atop stack

the width of the rule in a \over

vertical clearance between the numerator and the rule
numerator shift upward in \over

vertical clearance between the denominator and the rule
denominator shift downward in \over

minimum delimiter size for \...withdelims

vertical clearance for limits above operators

vertical baseline clearance for limits above operators

space reserved at the top of the limit

vertical clearance for limits below operators

vertical baseline clearance for limits below operators

space reserved at the bottom of the limit

vertical clearance for limits above delimiters

vertical baseline clearance for limits above delimiters

vertical clearance for limits below delimiters

vertical baseline clearance for limits below delimiters
subscript drop for boxes and subformulas

subscript drop for characters

superscript drop (raise, actually) for boxes and subformulas
superscript raise for characters

subscript drop in the presence of a superscript

the top of standalone subscripts cannot be higher than this above
the baseline

the bottom of standalone superscripts cannot be less than this
above the baseline

the bottom of the superscript of a combined super- and subscript
be at least as high as this above the baseline

vertical clearance between super- and subscript

additional space added after a super- or subscript

minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1lem

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

Math 65 ‘0

5.5 Skips around display math

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one
is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-
cially the later mkes it sometimes hard to fully control spacing. Therefore LuaTgX comes with a
new directive: \mathdisplayskipmode. The following values apply:

normal tex behaviour: always above, only below when larger than zero
always

only when not zero

never, not even when not zero

W N - O

5.6 Font-based Math Parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have
to set each of them by hand. For this reason, LuaTgX initializes a bunch of these parameters
whenever you assign a font identifier to a math family based on either the traditional math font
dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy
and cmex), or based on the named values in a potential MathConstants table when the font is
loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,
and in that case no attention is paid to which family is being assigned to: the MathConstants
tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names
match those using in the TgXbook. Assignments to \textfont set the values for the cramped and
uncramped display and text styles. Use \scriptfont for the script styles, and \scriptscript-
font for the scriptscript styles (totalling eight parameters for three font sizes). In the tfm case,
assignments only happen in family 2 and family 3 (and of course only for the parameters for
which there are font dimensions).

Besides the parameters below, LuaTgX also looks at the ‘space’ font dimension parameter. For
math fonts, this should be set to zero.

variable style default value opentype default value tfm
\Umathaxis - AxisHeight axis height
\Umathoperatorsize D, D’ DisplayOperatorMinHeight 6
\Umathfractiondelsize D, D’ FractionDelimiterDisplayStyleSize? deliml
TT,S,S’, SS, SS’ FractionDelimiterSize? delim?2
\Umathfractiondenomdown D, D’ FractionDenominatorDisplayStyleShiftDown denom1
T, T,S,S’, SS, SS’ FractionDenominatorShiftDown denom?2
\Umathfractiondenomvgap D, D’ FractionDenominatorDisplayStyleGapMin 3*default rule thick-
ness
T,T,S,S’, SS, SS’ FractionDenominatorGapMin default rule thickness
\Umathfractionnumup D, D’ FractionNumeratorDisplayStyleShiftUp numl
T, T,S,S’, SS, SS’ FractionNumeratorShiftUp num?2
\Umathfractionnumvgap D, D’ FractionNumeratorDisplayStyleGapMin 3*default _rule thick-
ness
T, T,S,S’, SS, SS’” FractionNumeratorGapMin default rule thickness
\Umathfractionrule - FractionRuleThickness default rule thickness
\Umathskewedfractionhgap - SkewedFractionHorizontalGap math quad/2
\Umathskewedfractionvgap - SkewedFractionVerticalGap math x height

‘0 66 Math

- -

\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap

\Umathquad
\Umathradicalkern

\Umathradicalrule
\Umathradicalvgap

\Umathradicaldegreebefore
\Umathradicaldegreeafter
\Umathradicaldegreeraise
\Umathspaceafterscript
\Umathstackdenomdown
\Umathstacknumup

\Umathstackvgap

\Umathsubshiftdown
\Umathsubshiftdrop
\Umathsubsupshiftdown
\Umathsubtopmax
\Umathsubsupvgap
\Umathsupbottommin
\Umathsupshiftdrop
\Umathsupshiftup
\Umathsupsubbottommax
\Umathunderbarkern
\Umathunderbarrule

\Umathunderbarvgap

\Umathconnectoroverlapmin

D, D’
T,T,S,S’, SS, SS’

D, D’
TT,S,5S’, SS, SS’
D, D’
TT,S,S’,SS, SS
D, D’

TT,S,S’, SS, SS

D
T, S, SS,
D, T,S’, SS

UpperLimitBaselineRiseMin
0 1

UpperLimitGapMin
LowerLimitBaselineDropMin
0 1

LowerLimitGapMin
StretchStackGapBelowMin
StretchStackTopShiftUp
StretchStackGapAboveMin
StretchStackBottomShiftDown
OverbarExtraAscender
OverbarRuleThickness
OverbarVerticalGap

<font_size(f)>1
RadicalExtraAscender
RadicalRuleThickness
RadicalDisplayStyleVerticalGap

RadicalVerticalGap

RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent
SpaceAfterScript
StackBottomDisplayStyleShiftDown
StackBottomShiftDown
StackTopDisplayStyleShiftUp
StackTopShiftUp
StackDisplayStyleGapMin

StackGapMin

SubscriptShiftDown
SubscriptBaselineDropMin
SubscriptShiftDownWithSuperscript®

or SubscriptShiftDown
SubscriptTopMax

SubSuperscriptGapMin
SuperscriptBottomMin

SuperscriptBaselineDropMax
SuperscriptShiftUp
SuperscriptShiftUp
SuperscriptShiftUpCramped
SuperscriptBottomMaxWithSubscript

UnderbarExtraDescender
UnderbarRuleThickness
UnderbarVerticalGap

MinConnectorOverlap

big op spacing3

big op spacingb

big op spacingl

big op spacing4

big op spacingb

big op spacing2

big op spacingl

big op spacing3

big op spacing?2

big op spacing4
default rule thickness
default rule thickness
3*default_rule_thick-
ness

math _quad
default rule thickness
<not set>2
(default rule thickness+

(abs(math_x_height)/4))3
(default rule thickness+

(abs(default_rule thickness)/4))3

<not set>2

<not set>2

<not set>27
script_space4
denom1

denom?2

numl

num3
7*default_rule_thick-
ness

3*default_rule thick-
ness

subl

sub _drop

sub2

(abs(math_x height*
4)/5)
4*default rule thick-
ness
(abs(math x height)/
4)

sup drop

supl

sup2

sup3
(abs(math x height*
4) / 5)
default rule thickness
default rule thickness
3*default rule thick-
ness

05

Math 67 '0

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set
\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: tfm fonts do not set \Umathradicalrule because TgX82 uses the height of the radical
instead. When this parameter is indeed not set when LuaTgX has to typeset a radical, a back-
ward compatibility mode will kick in that assumes that an oldstyle TgX font is used. Also, they
do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umathradicalde-
greeraise. These are then automatically initialized to 5/18quad, —10/18quad, and 60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTgX
has to typeset a formula because this needs parameters from both family2 and family3. This
provides a partial backward compatibility with TEX82, but that compatibility is only partial: once
the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: (also if tfm fonts are used) A similar situation arises wrt. \Umathspaceafterscript: itis
not set until the first time LuaTgX has to typeset a formula. This provides some backward com-
patibility with TEX82. But once the \Umathspaceafterscript is set, \scriptspace will never be
looked at again.

Note 5: Tfm fonts set \Umathconnectoroverlapmin to zero because TgX82 always stacks exten-
sibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType
fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s
size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that
is expressed in a percentage instead of as a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open-
type Math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-
ist in the ‘standard’ Opentype Math font Cambria, but were useful enough to be added.

5.7 Math spacing setting

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to
control the math spacing table (as explained in Chapter 18 of the TgXbook). The primitive names
are a simple matter of combining two math atom types, but for completeness’ sake, here is the

whole list:

\Umathordordspacing \Umathopopspacing
\Umathordopspacing \Umathopbinspacing
\Umathordbinspacing \Umathoprelspacing
\Umathordrelspacing \Umathopopenspacing
\Umathordopenspacing \Umathopclosespacing
\Umathordclosespacing \Umathoppunctspacing
\Umathordpunctspacing \Umathopinnerspacing
\Umathordinnerspacing \Umathbinordspacing
\Umathopordspacing \Umathbinopspacing

'0 68 Math

- -

\Umathbinbinspacing
\Umathbinrelspacing
\Umathbinopenspacing
\Umathbinclosespacing
\Umathbinpunctspacing
\Umathbininnerspacing
\Umathrelordspacing
\Umathrelopspacing
\Umathrelbinspacing
\Umathrelrelspacing
\Umathrelopenspacing
\Umathrelclosespacing
\Umathrelpunctspacing
\Umathrelinnerspacing
\Umathopenordspacing
\Umathopenopspacing
\Umathopenbinspacing
\Umathopenrelspacing
\Umathopenopenspacing
\Umathopenclosespacing
\Umathopenpunctspacing
\Umathopeninnerspacing
\Umathcloseordspacing

\Umathcloseopspacing
\Umathclosebinspacing
\Umathcloserelspacing
\Umathcloseopenspacing
\Umathcloseclosespacing
\Umathclosepunctspacing
\Umathcloseinnerspacing
\Umathpunctordspacing
\Umathpunctopspacing
\Umathpunctbinspacing
\Umathpunctrelspacing
\Umathpunctopenspacing
\Umathpunctclosespacing
\Umathpunctpunctspacing
\Umathpunctinnerspacing
\Umathinnerordspacing
\Umathinneropspacing
\Umathinnerbinspacing
\Umathinnerrelspacing
\Umathinneropenspacing
\Umathinnerclosespacing
\Umathinnerpunctspacing
\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:
\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the TgXbook.

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and
\thickmuskip are treated especially. In their case a pointer to the corresponding internal para-
meter is saved, not the actual \muskip value. This means that any later changes to one of these
three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the
TgXbook. These will not actually be used as those combinations of atoms cannot actually happen,
but it seemed better not to break orthogonality. They are initialized to zero.

5.8 Math accent handling

LuaTgX supports both top accents and bottom accents in math mode, and math accents stretch
automatically (if this is supported by the font the accent comes from, of course). Bottom and
combined accents as well as fixed-width math accents are controlled by optional keywords fol-
lowing \Umathaccent.

The keyword bottomafter \Umathaccent signals that a bottom accent is needed, and the keyword
both signals that both a top and a bottom accent are needed (in this case two accents need to
be specified, of course).

Math 69 90

Then the set of three integers defining the accent is read. This set of integers can be prefixed by
the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,
this step is repeated).

A simple example:
\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top ac-
cent value, then this value will be used to place the accent instead of the \skewchar kern used
by TgX82.

The top accent value represents a vertical line somewhere in the accentee. The accent will be
shifted horizontally such that its own top accent line coincides with the one from the accentee.
If the top accent value of the accent is zero, then half the width of the accent followed by its
italic correction is used instead.

The vertical placement of a top accent depends on the x height of the font of the accentee (as
explained in the TEXbook), but if value that turns out to be zero and the font had a MathConstants
table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes
place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.
An additional parameter fraction can be specified followed by a number; a value of for instance
1200 means that the criterium is 1.2 times the width of the nuclues. The fraction only aplies to
the stepwise selected shapes and is mostly meant for the overlay location. It also works for the
other locations but then it concerns the width.

5.9 Math root extension

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its
syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>
\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by the math parameters \Umathradicaldegreebefore,
\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in
\scriptscriptstyle.

5.10 Math kerning in super- and subscripts

The character fields in a lua-loaded OpenType math font can have a ‘mathkern’ table. The format
of this table is the same as the ‘mathkern’ table that is returned by the fontloader library, except
that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTgX checks whether the
super- or subscript and the nucleus are both simple character items. If they are, and if the fonts

9\0/‘, 70 Math

of both character imtes are OpenType fonts (as opposed to legacy TgX fonts), then LuaTgX will
use the OpenType MATH algorithm for deciding on the horizontal placement of the super- or
subscript.

This works as follows:

« The vertical position of the script is calculated.

« The default horizontal position is flat next to the base character.

« For superscripts, the italic correction of the base character is added.

« For a superscript, two vertical values are calculated: the bottom of the script (after shifting
up), and the top of the base. For a subscript, the two values are the top of the (shifted down)
script, and the bottom of the base.

« For each of these two locations:

— find the mathkern value at this height for the base (for a subscript placement, this is the
bottom right corner, for a superscript placement the top right corner)
— find the mathkern value at this height for the script (for a subscript placement, this is the
top left corner, for a superscript placement the bottom left corner)
— add the found values together to get a preliminary result.
o The horizontal kern to be applied is the smallest of the two results from previous step.

The mathkern value at a specific height is the kern value that is specified by the next higher
height and kern pair, or the highest one in the character (if there is no value high enough in the
character), or simply zero (if the character has no mathkern pairs at all).

5.11 Scripts on horizontally extensible items like arrows

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or
superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover
allow the placement of an automatically extensible item as a subscript or superscript on a nu-
cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$
$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$
$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$
$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter -
delimiterover delimiterunder

underdelimiter

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-
itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit
placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable
scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an option width specification. When used the also optional keywords
left, middle and right will determine what happens when a requested size can’t be met (which

can happen when we step to successive larger variants).
Math 71 9\0

An extra primitive \Uhextensible is available that can be used like this:
$\Uhextensible width 10cm 0 "2194%

This will render this:

Here you can also pass options, like:
$\Uhextensible width 1pt middle 0 "2194%
This gives:

o

LuaTgX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten-
sible recipes’.

5.12 Extracting values

You can extract the components of a math character. Say that we have defined:
\Umathcode 1 2 3 4

then

[\Umathcharclassl] [\Umathcharfaml] [\Umathcharslotl]

will return:

[2] [3] [4]

These commands are provides as convenience. before they came available you could do the
following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan int())[1])}}
\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan int())[2])}}
\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan int())I[3])}}

5.13 fractions

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-
tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-
mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap
for skewed fractions. Of course some guessing is needed in order to implement something that

0/‘, 72 Math

uses then. And so we now provide a primitive similar to the other fraction related ones but with
a few options so that one can influence the rendering. Of course a user can mess around a bit
with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }
{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by
default we zero the width of the middle character. For Latin Modern The result looks as follows:

r+ay+z s+t z+(e))+x x4+ (Y)+a
exact r+Y+a z+ Yotz z+(Y)+x z+ () +x
noaxis z4+ah+x xz+ 12+ x+(afp) 2 x4+ (12) + 2
exact noaxis x+ah+x x+le4+z z+(sh)+z x+ (L) +z

5.14 Other Math changes

5.14.1 Verbose versions of single-character math commands

LuaTgX defines six new primitives that have the same function as ~, , $, and $$.

primitive explanation

\Usuperscript Duplicates the functionality of ©

\Usubscript Duplicates the functionality of

\Ustartmath Duplicates the functionality of $, when used in non-math mode.
\Ustopmath Duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath Duplicates the functionality of $$, when used in non-math mode.
\Ustopdisplaymath Duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-
rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands
with explicit dollar sign(s).

5.14.2 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-
chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those
cases, the \textfont from the requested math family is used.

5.15 Math surrounding skips

Inline math is surrounded by (optional) \mathsurround spacing but that is fixed dimension.
There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or
zero with some stretch or shrink) this parameter will replace \mathsurround. By using an addi-
tional parameter instead of changing the nature of \mathsurround, we can remain compatible.

Math 73 0\0/‘,

Ny -

5.15.1 Delimiters: \Uleft, \Uniddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it. The
resulting delimiter will either be a character from the stepwise size range or an extensible. The
latter can be quite differently positioned that the characters as it depends on the fit aas well as
the fact if the used characters in the font have depth or height. Commands like (plain TgXs) \big
need use this feature. In LuaTgX we provide a bit more control by three variants that supporting
optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028
\quad x\quad
\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016
\quad x\quad
\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028
\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016
\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

)]

A /o0 d

The keyword exact can be used as directive that the real dimensions should be applied when
the criteria can’t be met which can happen when we’re still stepping through the succesively
larger variants. When no dimensions are given the noaxis command can be used to prevent
shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing.

5.15.2 Fixed scripts
We have three parameters that are used for this fixed anchoring:

d \Umathsubshiftdown
u \Umathsupshiftup
s \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed
positions. This is something that is needed for instance for chemistry. You can manipulate the
mentioned variables to achive different effects.

mode down up
0 dynamic dynamic ~ CH, + CH} + CH%
1 d u CH, + CH3 + CH3
2 s u CH, + CHJ + CH3

0/‘, 74 Math

3 s u+s-d CH,+CHJ +CH}
4 d+(s—d)/2 u+(s—d)/2 CH,+CHJ + CH3
5 d u+s—d CH,+ CHJ + CH3

The value of this parameter obeys grouping but applies to the whole current formula.

5.15.3 Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.
Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

5.15.4 Math options

The logic in the math engine is rather complex and there are often no universal solutions (read:
what works out well for one font, fails for another). Therefore some variations in the implemen-
tation will be driven by options for which a new primitive \mathoption has been introduced (so
that we don’t end up with many new commands). The approach of options also permits us to see
what effect a specific solution has.

5.15.4.1 \mathoption noitaliccompensation

This option compensates placement for characters with a built-in italic correction.

{\showboxes\int}\quad
{\showboxes\int {|}"{]}}\quad
{\showboxes\int\limits {|}~{|}}

Gives (with computer modern that has such italics):

o +H

1@ N NI rg H@ N_I
-l Sl
O:inline’ O0:display

g 0

=il Sl
1:inline 1:display

5.15.4.2 \mathoption nocharitalic

When two characters follow each other italic correction can interfere. The following example
shows what this option does:

\catcode"1D443=11
\catcode"1D444=11
\catcode"1D445=11
P(PP PQR

Math 75 @

Gives (with computer modern that has such italics):

P(PPPQR P(PPPQR
O:inline 0:display
P(PPPQR P(PPPQR

1:inline 1:display

5.15.4.3 \mathoption useoldfractionscaling

This option has been introduced as solution for tracker item 604 for fuzzy cases around either

or not present fraction related settings for new fonts.

\0/‘, 76 Math

6 Nodes

6.1 LUA node representation

TEX’s nodes are represented in Lua as userdata object with a variable set of fields. In the fol-
lowing syntax tables, such the type of such a userdata object is represented as (node).

The current return value of node. types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4), ad-
just (5), boundary (6), disc (7), whatsit (8), Llocal par(9),dir (10), math (11), glue (12), kern
(13), penalty (14), unset (15), style (16), choice (17), noad (18), radical (19), fraction (20),
accent (21), fence (22), math char (23), sub_box (24), sub mlist (25), math text char (26),
delim (27), margin_kern (28), glyph (29), align record (30), pseudo file (31), pseudo line
(32), page insert (33), split insert (34), expr_stack (35), nested list (36), span (37),
attribute (38), glue spec (39), attribute list (40), temp (41), align stack (42), move-
ment stack (43), if stack (44), unhyphenated (45), hyphenated (46), delta (47), passive (48),
shape (49).

The \lastnodetype primitive is e-TgX compliant. The valid range is still [-1, 15] and glyph nodes
(formerly known as char nodes) have number 0 while ligature nodes are mapped to 7. That way
macro packages can use the same symbolic names as in traditional e-TEX. Keep in mind that
these e-TEX node numbers are different from the real internal ones and that there are more
e-TgX node types than 15.

You can ask for a list of fields with the node.fields (which takes an id) and for valid subtypes
with node.subtypes (which takes a string because eventually we might support more used enu-
merations) .

6.1.1 Auxiliary items

A few node-typed userdata objects do not occur in the ‘normal’ list of nodes, but can be pointed
to from within that list. They are not quite the same as regular nodes, but it is easier for the
library routines to treat them as if they were.

6.1.1.1 attribute_list and attribute items

The newly introduced attribute registers are non-trivial, because the value that is attached to a
node is essentially a sparse array of key-value pairs.

It is generally easiest to deal with attribute lists and attributes by using the dedicated functions
in the node library, but for completeness, here is the low-level interface.

An attribute list item is used as a head pointer for a list of attribute items. It has only one
user-visible field:

field type explanation
next <node> pointer to the first attribute

// \\
/
Nodes 77 0\0/‘[

Ny -

A normal node’s attribute field will point to an item of type attribute 1list, and the next field
in that item will point to the first defined ‘attribute’ item, whose next will point to the second
‘attribute’ item, etc.

Valid fields in attribute items:
field type explanation
next <node> pointer to the next attribute

number number the attribute type id
value number the attribute value

As mentioned it’s better to use the official helpers rather than edit these fields directly. For
instance the prev field is used for other purposes and there is no double linked list.
6.1.2 Main text nodes

These are the nodes that comprise actual typesetting commands.

A few fields are present in all nodes regardless of their type, these are:

field type explanation
next <node> the next node in a list, or nil
id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a stub entry. Not all nodes actually use the subtype, but this way
you can be sure that all nodes accept it as a valid field name, and that is often handy in node list
traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field
called prev. That last field is always present, but only initialized on explicit request: when the
function node.slide() is called, it will set up the prev fields to be a backwards pointer in the
argument node list.

6.1.2.1 hlist nodes

Valid fields: attr, width, depth, height, dir, shift, glue order, glue sign, glue set, head
Id: 0

field type explanation

subtype number 0 = unknown origin, 1 = created by linebreaking, 2 = explicit box com-
mand, 3 = paragraph indentation box, 4 = alignment column or row, 5
= alignment cell 6 = equation 7 = equation number

attr <node> The head of the associated attribute list

width number

height number

depth number

shift number a displacement perpendicular to the character progression direction

glue order number a number in the range [0, 4], indicating the glue order

0/‘[78 Nodes

glue set number the calculated glue ratio

glue sign number 0 = normal, 1 = stretching, 2 = shrinking
head <node> the first node of the body of this list

dir string the direction of this box, see 6.1.4.8

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may result.

Note: the new field name head was introduced in 0.65 to replace the old name list. Use of the
name list is now deprecated, but it will stay available until at least version 0.80.

6.1.2.2 vlist nodes
Valid fields: As for hlist, except that ‘shift’ is a displacement perpendicular to the line progression
direction, and ‘subtype’ only has subtypes 0, 4, and 5.

6.1.2.3 rule nodes

6.1.2.3.1 normal rules
Valid fields: attr, width, depth, height, dir, index
Id: 2

We have three subtypes. Subtype 0 is just a normal rule, a rectangle filled with ink. Subtype 1
is a reusable box, while subtype 2 is an image.

field type explanation
subtype number 0 upto 3
attr <node>

width number the width of the rule; the special value —1073741824 is used for ‘running’
glue dimensions

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

dir string the direction of this rule, see 6.1.4.8

index number an optional index that can be referred to (only for subtypes 1 and 2 and
backend specific).

The subtypes 1 and 2 replace the xform and ximage whatsits and in nodelists they behave like
rules of subtype 0 when it comes to dimensions. Subtype 3 only has dimensions.
6.1.2.4 ins nodes

Valid fields: attr, cost, depth, height, spec, head

Id: 3

field type explanation
subtype number the insertion class
attr <node>

Nodes 79 q"/‘,

cost number the penalty associated with this insert

height number

depth number

head/list <node> the first node of the body of this insert
spec <node> a pointer to the \splittopskip glue spec

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result. You can use list instead (often in functions you
want to use local variable swith similar names and both names are equally sensible).

6.1.2.5 mark nodes

Valid fields: attr, class, mark

Id: 4

field type explanation

subtype number unused

attr <node>

class number the mark class

mark table a table representing a token list

6.1.2.6 adjust nodes

Valid fields: attr, head

Id: 5

field type explanation
subtype number 0 = normal, 1 = ‘pre’
attr <node>

head/list <node> adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result.

6.1.2.7 disc nodes

Valid fields: attr, pre, post, replace, penalty
Id: 7

field type explanation

subtype number indicatesthe source ofadiscretionary: 0 =the \discretionary command, 1
= the \- command, 2 = added automatically following a -, 3 = added by the
hyphenation algorithm (simple), 4 = added by the hyphenation algorithm
(hard, first item), 5 = added by the hyphenation algorithm (hard, second
item)

attr <node>

pre <node> pointer to the pre-break text

Q’O/‘, 80 Nodes

post <node> pointer to the post-break text

replace <node> pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \exhy-
phenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere.

Warning: never assign a node list to the pre, post or replace field unless you are sure its internal
link structure is correct, otherwise an error may be result. This limnitation will disappear in the
future,

6.1.2.8 math nodes

Valid fields: attr, surround

Id: 11

field type explanation
subtype number 0 =on, 1 = off
attr <node>

surround number width of the \mathsurround kern

6.1.2.9 glue nodes

Skips are about the only type of data objects in traditional TgX that are not a simple value. The
structure that represents the glue components of a skip is called a glue spec, and it has the
following accessible fields:

key type explanation

width number

stretch number

stretch order number

shrink number

shrink order number

writable boolean If this is true, you can’t assign to this glue spec because it is one of

the preallocated special cases.

The effective width of some glue subtypes depends on the stretch or shrink needed to make
the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue
representing spaces and these stretch of shrink to make the content fit in the available space.
The effective glue function that takes a glue node and a parent (hlist or vlist) returns the
effective width of that glue item.

A spec node is normally references to from a glue node:
Valid fields: attr, spec, leader
Id: 12

field type explanation
subtype number 0 = \skip, 1-18 = internal glue parameters, 100-103 = ‘leader’ subtypes

Nodes 81 Q’O/‘,

attr <node>
spec <node> pointer to a glue spec item
leader <node> pointer to a box or rule for leaders

The indirect spec approach is an optimization in the original TgX code. First of all it saves quite
some memory because all these spaces that become glue now share the same specification, and
zero testing is also faster because only the pointer has to be checked.

The exact meanings of the subtypes are as follows:

\lineskip
\baselineskip
\parskip
\abovedisplayskip
\belowdisplayskip
\abovedisplayshortskip
\belowdisplayshortskip
\leftskip
\rightskip
\topskip
\splittopskip
\tabskip
\spaceskip
\xspaceskip
\parfillskip
\thinmuskip
\medmuskip
\thickmuskip

100 \leaders

101 \cleaders

102 \xleaders

103 \gleaders

O oo O Ul WN B

I
0o NO UL A WNERERO

For convenience we provide access to the spec fields directly so that you can avoid the spec
lookup. So, the following fields can also be queried or set. When you set a field and no spec is
set, a spec will automatically be created.

key type explanation
width number
stretch number
stretch order number
shrink number

shrink order number

When you assign the properties to a spec using the above keys the advantage is that when needed
a new spec is allocated. if you access the spec node directly you can get an error message with
respect to a non-writable spec node.

O/‘[82 Nodes

By using the accessors in the glue node you are more future proof as we might decide at some
point to carry all information in the glue nodes themselves. Of course we can then also decide
to make the spec field kind of virtual to keep compatibility (for a while).

6.1.2.10 kern nodes

Valid fields: attr, kern, expansion factor
Id: 13

field type explanation

subtype number 0 = from font, 1 = from \kern or \/, 2 = from \accent
attr <node>

kern number

6.1.2.11 penalty nodes

Valid fields: attr, penalty

Id: 14

field type explanation
subtype number not used
attr <node>

penalty number

6.1.2.12 glyph nodes

Valid fields: attr, char, font, lang, left, right, uchyph, components, xoffset, yoffset, width,
height, depth, expansion factor

Id: 29

field type explanation
subtype number Dbitfield

attr <node>

char number

font number

lang number

left number

right number

uchyph boolean

components <node> pointer to ligature components
xoffset number

yoffset number

width number

height number

depth number

expansion factor number

// \\
1
Nodes 83 ‘0/‘,

-

A warning: never assign a node list to the components field unless you are sure its internal link
structure is correct, otherwise an error may be result. Valid bits for the subtype field are:

bit meaning
0 character

ligature

ghost

left

right

B W N -

See section 3.1 for a detailed description of the subtype field.

The expansion factor has been introduced as part of the separation between font- and back-
end. It is the result of extensive experiments with a more efficient implementation of expansion.
Early versions of LuaTgX already replaced multiple instances of fonts in the backend by scaling
but contrary to pdfIgX in LuaTEX we now also got rid of font copies in the frontend and replaced
them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is
also a step towards a better separation between front- and backend.

The is char function checks if a node is a glyphnode with a subtype still less than 256. This
function can be used to determine if applying font logic to a glyph node makes sense.

6.1.2.13 margin_kern nodes

Valid fields: attr, width, glyph

Id: 28

field type explanation

subtype number 0 = left side, 1 = right side
attr <node>

width number
glyph <node>

6.1.3 Math nodes

These are the so-called ‘noad’s and the nodes that are specifically associated with math pro-
cessing. Most of these nodes contain subnodes so that the list of possible fields is actually quite
small. First, the subnodes:

6.1.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists
or node lists. There are four associated subnodes that represent these cases (in the following
node descriptions these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

0/‘[84 Nodes

6.1.3.1.1 math_char and math_text_char subnodes

Valid fields: attr, fam, char
Id: 23

field type explanation
attr <node>

char number

fam number

The math_char is the simplest subnode field, it contains the character and family for a single
glyph object. The math text char is a special case that you will not normally encounter, it
arises temporarily during math list conversion (its sole function is to suppress a following italic
correction).

6.1.3.1.2 sub_box and sub_mlist subnodes

Valid fields: attr, head
Id: 24

field type explanation
attr <node>
head <node>

These two subnode types are used for subsidiary list items. For sub box, the head points to a
‘normal’ vbox or hbox. For sub _mlist, the head points to a math list that is yet to be converted.

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result.

6.1.3.2 Math delimiter subnode

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and
prev fields are unused.

6.1.3.2.1 delim subnodes

Valid fields: attr, small fam, small char, large fam, large char

Id: 27
field type explanation
attr <node>

small char number
small fam number
large char number
large fam number

The fields large char and large fam can be zero, in that case the font that is sed for the
small fam is expected to provide the large version as an extension to the small char.

Nodes 85 "0/}

6.1.3.3 Math core nodes

First, there are the objects (the TgXbook calls then ‘atoms’) that are associated with the simple
math objects: Ord, Op, Bin, Rel, Open, Close, Punct, Inner, Over, Under, Vcent. These all have
the same fields, and they are combined into a single node type with separate subtypes for dif-
ferentiation.

6.1.3.3.1 simple nodes

Valid fields: attr, nucleus, sub, sup

Id: 18

field type explanation
subtype number see below
attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

Operators are a bit special because they occupy three subtypes. subtype.

number node subtype
Ord

Op: \displaylimits
Op: \limits
Op: \nolimits
Bin

Rel

Open

Close

Punct

Inner

Under

Over

Vcent

O oo O Ul WNBEO

[
N = ©

6.1.3.3.2 accent nodes

Valid fields: attr, nucleus, sub, sup, accent, bot accent, top _accent, overlay accent
Id: 21

field type explanation

subtype number the first bit is used for a fixed top accent flag (if the accent field is pre-
sent), the second bit for a fixed bottom accent flag (if the bot accent
field is present); example: the actual value 3 means: do not stretch
either accent

attr <node>

0/‘[86 Nodes

nucleus <kernel>

sub <kernel>
sup <kernel>
accent <kernel>

bot accent <kernel>

6.1.3.3.3 style nodes

Valid fields: attr, style
Id: 16

field type explanation
style string contains the style

There are eight possibilities for the string value: one of ‘display’, ‘text’, ‘script’, or ‘scriptscript’.
Each of these can have a trailing ' to signify ‘cramped’ styles.

6.1.3.3.4 choice nodes

Valid fields: attr, display, text, script, scriptscript

Id: 17

field type explanation
attr <node>

display <node>

text <node>

script <node>

scriptscript <node>

A warning: never assign a node list to the display, text, script, or scriptscript field unless you
are sure its internal link structure is correct, otherwise an error may be result.

6.1.3.3.5 radical nodes

Valid fields: attr, nucleus, sub, sup, left, degree

Id: 19

field type explanation
attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

left <delim>

degree <kernel> Only set by \Uroot

A warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are
sure its internal link structure is correct, otherwise an error may be result.
/// \\
\
Nodes 87 o |

The radical noad is also used for under- and overdelimiters, which is indicated by the subtypes:

\radical
\Uradical

\Uroot
\Uunderdelimiter
\Uoverdelimiter
\Udelimiterunder
\Udelimiterover

SO Uk, WN EFPR O

6.1.3.3.6 fraction nodes

Valid fields: attr, width, num, denom, left, right
Id: 20

field type explanation
attr <node>

width number

num <kernel>

denom <kernel>

left <delim>

right <delim>

A warning: never assign a node list to the num, or denom field unless you are sure its internal
link structure is correct, otherwise an error may be result.

6.1.3.3.7 fence nodes

Valid fields: attr, delim

Id: 22

field type explanation

subtype number 1= \left, 2 =\middle, 3 =\right
attr <node>

delim <delim>

6.1.4 whatsit nodes

Whatsit nodes come in many subtypes that you can ask for by running node.whatsits():
open (0), write (1), close (2), special (3), save pos (6), late lua (7), user defined (8),
pdf literal (16), pdf refobj (17), pdf annot (18), pdf start link (19), pdf end link (20),
pdf dest (21), pdf action (22), pdf thread (23), pdf start thread (24), pdf _end thread
(25), pdf thread data (26), pdf link data (27), pdf colorstack (28), pdf setmatrix (29),
pdf save (30), pdf restore (31), fake (100).

6.1.4.1 open nodes

Valid fields: attr, stream, name, area, ext
Id: 8, 0

0/‘[88 Nodes

field type explanation
attr <node>
stream number TgX'’s stream id number

name string file name
ext string file extension
area string file area (this may become obsolete)

6.1.4.2 write nodes

Valid fields: attr, stream, data
Id: 8,1

field type explanation

attr <node>

stream number TgX's stream id number

data table a table representing the token list to be written

6.1.4.3 close nodes

Valid fields: attr, stream
Id: 8, 2

field type explanation
attr <node>
stream number TgX’s stream id number

6.1.4.4 special nodes

Valid fields: attr, data
Id: 8, 3

field type explanation
attr <node>
data string the \special information

6.1.4.5 boundary nodes

Valid fields: attr, value
Id: 6

This node relates to the \noboundary primitive but you can use it for your own purpose too, in
which case \boundary can come in handy.

6.1.4.6 language nodes

LuaTgX does not have language whatsits any more. All language information is already present
inside the glyph nodes themselves. This whatsit subtype will be removed in the next release.

Nodes 89 |
[) /

6.1.4.7 local_par nodes

Valid fields: attr, pen_inter, pen_broken, dir, box left, box left width, box_ right,
box right width

Id: 9

field type explanation

attr <node>

pen inter number local interline penalty (from \localinterlinepenalty)
pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 6.1.4.8

box left <node> the \localleftbox

box left width number width of the \localleftbox

box right <node> the \localrightbox

box right width number width of the \localrightbox

A warning: never assign a node list to the box left or box right field unless you are sure its
internal link structure is correct, otherwise an error may be result.

6.1.4.8 dir nodes

Valid fields: attr, dir, level, dvi_ptr, dvi h

Id: 10

field type explanation

attr <node>

dir string the direction (but see below)

level number nesting level of this direction whatsit

dvi ptr number a saved dvibuffer byte offset

dir_h number a saved dvi position

A note on dir strings. Direction specifiers are three-letter combinations of T, B, R, and L.
These are built up out of three separate items:

« the first is the direction of the ‘top’ of paragraphs.

« the second is the direction of the ‘start’ of lines.

« the third is the direction of the ‘top’ of glyphs.

However, only four combinations are accepted: TLT, TRT, RTT, and LTL.

Inside actual dir whatsit nodes, the representation of dir is not a three-letter but a four-letter
combination. The first character in this case is always either + or -, indicating whether the value
is pushed or popped from the direction stack.

6.1.4.9 pdf literal nodes

Valid field