
LuaTEX

Reference

Pre-release

April 2016

Version 0.95.0

LuaTEX

Reference

Manual

copyright : LuaTEX development team

more info : www.luatex.org

version : April 6, 2016

1

Contents

Introduction 7

1 Basic TEX enhancements 9

1.1 Introduction 9

1.2 Version information 9

1.3 UNICODE text support 10

1.4 Extended tables 10

1.5 Attributes 11

1.5.1 Attribute registers 11

1.5.2 Box attributes 11

1.6 LUA related primitives 12

1.6.1 \directlua 12

1.6.2 \latelua 13

1.6.3 \luaescapestring 14

1.6.4 \luafunction 14

1.7 \clearmarks 14

1.8 \noligs and \nokerns 15

1.9 \formatname 15

1.10 \scantextokens 15

1.11 Alignments 15

1.11.1 \alignmark 15

1.11.2 \aligntab 15

1.12 Catcode tables 15

1.12.1 \catcodetable 16

1.12.2 \initcatcodetable 16

1.12.3 \savecatcodetable 16

1.13 Suppressing errors 16

1.13.1 \suppressfontnotfounderror 16

1.13.2 \suppresslongerror 17

1.13.3 \suppressifcsnameerror 17

1.13.4 \suppressoutererror 17

1.13.5 \suppressmathparerror 17

1.14 \matheqnogapstep 17

1.15 \outputbox 18

1.16 \fontid and \setfontid 18

1.17 \gleaders 18

1.18 \nohrule and \novrule 18

1.19 \Uchar 18

1.20 \hyphenationmin 18

1.21 \boundary and \noboundary 19

1.22 \vpack, \hpack and \tpack 19

1.23 \csstring, \begincsname and \lastnamedcs 19

1.24 \toksapp, \tokspre, \etoksapp and \etokspre 19

2

1.25 Debugging 20

1.26 Images and Forms 20

1.27 \outputmode and \draftmode 20

1.28 File syntax 21

1.29 Font syntax 21

1.30 Writing to file 21

1.31 \nospaces 21

1.32 \letcharcode 21

2 LUA general 23

2.1 Initialization 23

2.1.1 LUATEX as a LUA interpreter 23

2.1.2 LUATEX as a LUA byte compiler 23

2.1.3 Other commandline processing 23

2.2 LUA behaviour 26

2.3 LUA modules 29

3 Languages, characters, fonts and glyphs 31

3.1 Characters and glyphs 31

3.2 The main control loop 33

3.3 Loading patterns and exceptions 34

3.4 Applying hyphenation 35

3.5 Applying ligatures and kerning 36

3.6 Breaking paragraphs into lines 39

4 Font structure 41

4.1 Real fonts 46

4.2 Virtual fonts 47

4.2.1 Artificial fonts 49

4.2.2 Example virtual font 49

5 Math 51

5.1 The current math style 51

5.1.1 \mathstyle 51

5.1.2 \Ustack 51

5.2 Unicode math characters 51

5.3 Cramped math styles 53

5.4 Math parameter settings 54

5.5 Skips around display math 56

5.6 Font-based Math Parameters 56

5.7 Math spacing setting 58

5.8 Math accent handling 59

5.9 Math root extension 60

5.10 Math kerning in super- and subscripts 60

5.11 Scripts on horizontally extensible items like arrows 61

5.12 Extracting values 62

5.13 fractions 62

5.14 Other Math changes 63

3

5.14.1 Verbose versions of single-character math commands 63

5.14.2 Allowed math commands in non-math modes 63

5.15 Math surrounding skips 63

5.15.1 Delimiters: \Uleft, \Umiddle and \Uright 64

5.15.2 Fixed scripts 64

5.15.3 Tracing 65

5.15.4 Math options 65

6 Nodes 67

6.1 LUA node representation 67

6.1.1 Auxiliary items 67

6.1.2 Main text nodes 68

6.1.3 Math nodes 75

6.1.4 whatsit nodes 79

6.2 Two access models 85

7 LUATEX LUA Libraries 91

7.1 The callback library 91

7.1.1 File discovery callbacks 92

7.1.2 File reading callbacks 94

7.1.3 Data processing callbacks 96

7.1.4 Node list processing callbacks 97

7.1.5 Information reporting callbacks 102

7.1.6 PDF-related callbacks 104

7.1.7 Font-related callbacks 105

7.2 The epdf library 105

7.3 The font library 114

7.3.1 Loading a TFM file 114

7.3.2 Loading a VF file 114

7.3.3 The fonts array 114

7.3.4 Checking a font’s status 115

7.3.5 Defining a font directly 115

7.3.6 Projected next font id 115

7.3.7 Font id 115

7.3.8 Currently active font 115

7.3.9 Maximum font id 116

7.3.10 Iterating over all fonts 116

7.4 The fontloader library 116

7.4.1 Getting quick information on a font 116

7.4.2 Loading an OPENTYPE or TRUETYPE file 116

7.4.3 Applying a ‘feature file’ 118

7.4.4 Applying an ‘AFM file’ 118

7.4.5 Fontloader font tables 118

7.5 The img library 133

7.5.1 img.new 134

7.5.2 img.keys 134

7.5.3 img.scan 136

4

7.5.4 img.copy 136

7.5.5 img.write 136

7.5.6 img.immediatewrite 137

7.5.7 img.node 137

7.5.8 img.types 137

7.5.9 img.boxes 138

7.6 The kpse library 138

7.6.1 kpse.set_program_name and kpse.new 138

7.6.2 find_file 138

7.6.3 lookup 140

7.6.4 init_prog 140

7.6.5 readable_file 140

7.6.6 expand_path 140

7.6.7 expand_var 140

7.6.8 expand_braces 141

7.6.9 show_path 141

7.6.10 var_value 141

7.6.11 version 141

7.7 The lang library 141

7.8 The lua library 143

7.8.1 LUA bytecode registers 143

7.8.2 LUA chunk name registers 144

7.9 The mplib library 144

7.9.1 mplib.new 144

7.9.2 mp:statistics 145

7.9.3 mp:execute 145

7.9.4 mp:finish 145

7.9.5 Result table 146

7.9.6 Subsidiary table formats 148

7.9.7 Character size information 149

7.10 The node library 149

7.10.1 Node handling functions 150

7.10.2 Glue handling 159

7.10.3 Attribute handling 159

7.11 The pdf library 160

7.11.1 pdf.mapfile, pdf.mapline 160

7.11.2 pdf.catalog, pdf.info,pdf.names, pdf.trailer 160

7.11.3 pdf.<set/get>pageattributes, pdf.<set/get>pageresources,

pdf.<set/get>pagesattributes 161

7.11.4 pdf.<set/get>xformattributes, pdf.<set/get>xformresources 161

7.11.5 pdf.setcompresslevel and pdf.setobjcompresslevel 161

7.11.6 pdf.setdecimaldigits and pdf.getdecimaldigits 161

7.11.7 pdf.setpkresolution and pdf.getpkresolution 161

7.11.8 pdf.lastobj, pdf.lastlink, pdf.lastannot, and pdf.retval 161

7.11.9 pdf.setorigin, pdf.getorigin 161

5

7.11.10 pdf.setlinkmargin, pdf.getlinkmargin pdf.setdestmargin,

pdf.getdestmargin pdf.setthreadmargin, pdf.getthreadmargin

pdf.setxformmargin, pdf.getxformmargin 162

7.11.11 pdf.h, pdf.v 162

7.11.12 pdf.getpos, pdf.gethpos, pdf.getvpos 162

7.11.13 pdf.hasmatrix, pdf.getmatrix 162

7.11.14 pdf.print 162

7.11.15 pdf.immediateobj 163

7.11.16 pdf.obj 163

7.11.17 pdf.refobj 164

7.11.18 pdf.reserveobj 164

7.11.19 pdf.registerannot 165

7.11.20 pdf.newcolorstack 165

7.12 The pdfscanner library 165

7.13 The status library 168

7.14 The tex library 169

7.14.1 Internal parameter values 170

7.14.2 Convert commands 173

7.14.3 Last item commands 173

7.14.4 Attribute, count, dimension, skip and token registers 174

7.14.5 Character code registers 175

7.14.6 Box registers 176

7.14.7 Math parameters 177

7.14.8 Special list heads 178

7.14.9 Semantic nest levels 179

7.14.10 Print functions 180

7.14.11 Helper functions 181

7.14.12 Functions for dealing with primitives 183

7.14.13 Core functionality interfaces 187

7.15 The texconfig table 189

7.16 The texio library 190

7.16.1 Printing functions 190

7.16.2 The token libray 191

8 Modifications 195

8.1 The merged engines 195

8.1.1 The need for change 195

8.1.2 Changes from TEX 3.1415926 195

8.1.3 Changes from 𝜀-TEX 2.2 195

8.1.4 Changes from PDFTEX 1.40 196

8.1.5 Changes from ALEPH RC4 198

8.1.6 Changes from standard WEB2C 199

8.1.7 The backend primitives \pdf * 199

8.2 Implementation notes 204

8.2.1 Memory allocation 204

8.2.2 Sparse arrays 205

8.2.3 Simple single-character csnames 205

6

8.2.4 Compressed format 205

8.2.5 Binary file reading 205

7Introduction

Introduction

This is the reference manual of LuaTEX. We don’t claim it is complete and we assume that the

reader knows about TEX as described in “The TEX Book”, the “𝜀-TEX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTEXt

related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions

brought new functionality, more control, some cleanup of internals and experimental features

evolved into stable ones or were dropped. Already quite early LuaTEX could be used for produc-

tion and it was used on a daily basis by the authors. Successive versions sometimes demanded

a adaption to the Lua interfacing, but the concepts were unchanged. The current version can

be considered stable in functionality and there will be no fundamental changes. Of course we

then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTEX to behave the same as pdfTEX! Although the core functionality of that 8 bit

engine was starting point, it has been combined with the directional support of Omega (Aleph).

But, LuaTEX can behave different due to its wide (32 bit) characters, many registers and large

memory support. There is native utf input, support for large (more that 8 bit) fonts, and the math

machinery is tuned for OpenType math. There is support for directional typesetting too. The

log output can differ from other engines and will likely differ more as we move forward. When

you run plain TEX for sure LuaTEX runs slower than pdfTEX but when you run for instance Con-

TEXt MkIV in many cases it runs faster, especially when you have a bit more complex documents

or input. Anyway, 32 bit all--over combined with more features has a price, but on a modern

machine this is no real problem.

Testing is done with ConTEXt, but LuaTEX should work fine with other macro packages too. For

that purpose we provide generic font handlers that are mostly the same as used in ConTEXt.

Discussing specific implementations is beyond this manual. Even when we keep LuaTEX lean

and mean, we already have enough to discuss here.

LuaTEX consists of a number of interrelated but (still) distinguishable parts. The organization

of the source code is adapted so that it can glue all these components together. We continue

cleaning up side effects of the accumulated code in TEX engines (especially code that is not

needed any longer).

• Most of pdfTEX version 1.40.9, converted to C. Some experimental features have been re-

moved and some utility macros are not inherited as their functionality can be done in Lua.

The number of backend interface commands has been reduced to a few. The extensions are

separated from the core (which we keep close to the original TEX core). Some mechanisms

like expansion and protrusion can behave different from the original due to some cleanup and

optimization. Some whatsit based functionality (image support and reusable content) is now

core functionality.

• The direction model and some other bits from Aleph RC4 (derived from Omega) is included.

The related primitives are part of core LuaTEX but at the node level directional support is no

longer based on so called whatsits but on real nodes. In fact, whatsits are now only used for

backend specific extensions.

Introduction8

• Neither Aleph’s I/O translation processes, nor tcx files, nor encTEX can be used, these encod-

ing-related functions are superseded by a Lua-based solution (reader callbacks). In a similar

fashion all file io can be intercepted.

• We currently use Lua 5.2.*. At some point we might decide to move to 5.3.* but that is yet to

be decided. There are few Lua libraries that we consider part of the core Lua machinery, for

instance lpeg. There are additional Lua libraries that interface to the internals of TEX.

• There are various TEX extensions but only those that cannot be done using the Lua interfaces.

The math machinery often has two code paths: one traditional and the other more suitable

for wide OpenType fonts.

• The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for

usage in a TEX engine. We try to minimize specific font support to what TEX needs: character

references and dimensions and delegate everything else to Lua. That way we keep TEX open

for extensions without touching the core.

• The MetaPost library is integral part of LuaTEX. This gives TEX some graphical capabilities

using a relative high speed graphical subsystem. Again Lua is used as glue between the

frontend and backend. Further development of MetaPost is closely related to LuaTEX.

The TEXLive version is to be considered the current stable version. Any version between the

yearly TEXLive releases are to be considered beta. The beta releases are normally available via

the ConTEXt distribution channels (the garden and so called minimals).

Hans Hagen, Harmut Henkel,

Taco Hoekwater & Luigi Scarso

Version : April 6, 2016

LuaTEX : Snapshot 95.0

ConTEXt : 2016.04.04 13:06

9Basic TEX enhancements

1 Basic TEX enhancements

1.1 Introduction

From day one, LuaTEX has offered extra features compared to the superset of pdfTEX and Aleph.

This has not been limited to the possibility to execute Lua code via \directlua, but LuaTEX also

adds functionality via new TEX-side primitives or extensions to existing ones.

When LuaTEX starts up in ‘iniluatex’ mode (luatex -ini), it defines only the primitive commands

known by TEX82 and the one extra command \directlua. As is fitting, a Lua function has to be

called to add the extra primitives to the user environment. The simplest method to get access

to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this

early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before

the above line:

\catcode `\{=1

\catcode `\}=2

More fine-grained primitives control is possible and you can look up the details in section 7.14.12.

For simplicity’s sake, this manual assumes that you have executed the \directlua command as

given above.

The startup behaviour documented above is considered stable in the sense that there will not

be backward-incompatible changes any more. We have promoted some rather generic pdfTEX

primitives to core LuaTEX ones, and the ones inherited frome Aleph (Omega) are also promoted.

Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 8 we discuss several primitives that are derived from pdfTEX and Aleph (Omega).

Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new

ones.

1.2 Version information

There are three new primitives to test the version of LuaTEX:

primitive explanation value

\luatexbanner the banner reported on the com- This is LuajitTeX, Version beta-

mand line 0.95.0 (TeX Live 2016)

\luatexversion a combination of major and minor 95

number

\luatexrevision the revision number, the current 0

value is

The official LuaTEX version is defined as follows:

Basic TEX enhancements10

• The major version is the integer result of \luatexversion divided by 100. The primitive is

an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

• The minor version is the two-digit result of \luatexversion modulo 100.

• The revision is the given by \luatexrevision. This primitive expands to a positive integer.

• The full version number consists of the major version, minor version and revision, separated

by dots.

1.3 UNICODE text support

Text input and output is now considered to be Unicode text, so input characters can use the

full range of Unicode (220 + 216 − 1 = 0x10FFFF). Later chapters will talk of characters and

glyphs. Although these are not interchangeable, they are closely related. During typesetting, a

character is always converted to a suitable graphic representation of that character in a specific

font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a

character. Inside LuaTEX there is no clear separation between the two concepts. Because the

subtype of a glyph node can be changed in Lua it is up to the user: subtypes larger than 255

indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate

for a larger range of acceptable numbers. For instance, \char now accepts values between 0 and

1,114,111. This should not be a problem for well-behaved input files, but it could create incom-

patibilities for input that would have generated an error when processed by older TEX-based

engines. The affected commands with an altered initial (left of the equals sign) or secondary

(right of the equals sign) value are: \char, \lccode, \uccode, \catcode, \sfcode, \efcode,

\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input

files can be pre-processed using the reader callback. This will be explained in a later chapter.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode

range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
𝑐 ≥ 1,114,112, LuaTEX will actually print the single byte corresponding to 𝑐 minus 1,114,112.

Output to the terminal uses ^^ notation for the lower control range (𝑐 < 32), with the exception
of ^^I, ^^J and ^^M. These are considered ‘safe’ and therefore printed as-is. You can disable

escaping with texio.setescape(false) in which case you get the normal characters on the

console.

Normalization of the Unicode input can be handled by a macro package during callback pro-

cessing (this will be explained in section 7.1.2).

1.4 Extended tables

All traditional TEX and 𝜀-TEX registers can be 16-bit numbers. The affected commands are:

\count

\dimen

\skip

\muskip

\marks

\toks

\countdef

\dimendef

\skipdef

\muskipdef

\toksdef

\insert

\box

\unhbox

\unvbox

\copy

11Basic TEX enhancements

\unhcopy

\unvcopy

\wd

\ht

\dp

\setbox

\vsplit

Because font memory management has been rewritten, character properties in fonts are no

longer shared among fonts instances that originate from the same metric file.

1.5 Attributes

1.5.1 Attribute registers

Attributes are a completely new concept in LuaTEX. Syntactically, they behave a lot like counters:

attributes obey TEX’s nesting stack and can be used after \the etc. just like the normal \count

registers.

\attribute ⟨16-bit number⟩ ⟨optional equals⟩ ⟨32-bit number⟩
\attributedef ⟨csname⟩ ⟨optional equals⟩ ⟨16-bit number⟩

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value

to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,

a.k.a. −2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in

this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact

that the numbers and values of all ‘set’ attributes are attached to all nodes created in their

scope. These can then be queried from any Lua code that deals with node processing. Further

information about how to use attributes for node list processing from Lua is given in chapter 6.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits

efficient testing and updating.

1.5.2 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment

can be quite asynchronous. For example: in paragraph building, the individual line boxes are

created after the \par command has been processed, so they will receive the list of attributes

that is in effect then, not the attributes that were in effect in, say, the first or third line of the

paragraph.

Similar situations happen in LuaTEX regularly. A few of the more obvious problematic cases are

dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-

ing borrow their attributes from their surrounding glyphs, and it is possible to influence box

attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are

unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

same as characters that have been converted to references to glyphs in fonts. For instance,

when you use attributes to implement color support, each node carries information about its

Basic TEX enhancements12

eventual color. In that case, unless you implement mechanisms that deal with it, applying a color

to already boxed material will have no effect. Keep in mind that this incompatibility is mostly

due to the fact that separate specials and literals are a more unnatural approach to colors than

attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the use

of the keyword attr. An example:

\attribute2=5

\setbox0=\hbox {Hello}

\setbox2=\hbox attr1=12 attr2=-"7FFFFFFF{Hello}

This will set the attribute list of box 2 to 1 = 12, and the attributes of box 0 will be 2 = 5. As you
can see, assigning the maximum negative value causes an attribute to be ignored.

The attr keyword(s) should come before a to or spread, if that is also specified.

1.6 LUA related primitives

1.6.1 \directlua

In order to merge Lua code with TEX input, a few new primitives are needed. The primitive

\directlua is used to execute Lua code immediately. The syntax is

\directlua ⟨general text⟩
\directlua ⟨16-bit number⟩ ⟨general text⟩

The ⟨general text⟩ is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the ⟨general text⟩, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a

separate chunk. In such a chunk you can use the local directive to keep your variables from

interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments

(starting with --) within the argument. As there typically will be only one ‘line’ the first line com-

ment will run on until the end of the input. You will either need to use TEX-style line comments

(starting with %), or change the TEX category codes locally. Another possibility is to say:

\begingroup

\endlinechar=10

\directlua ...

\endgroup

Then Lua line comments can be used, since TEX does not replace line endings with spaces.

Likewise, the ⟨16-bit number⟩ designates a name of a Lua chunk and is taken from the lua.name
array (see the documentation of the lua table further in this manual). When a chunk name starts

with a @ it will be displayed as a file name. This is a side effect of the way Lua implements error

handling.

13Basic TEX enhancements

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its

expansion from the TEX viewpoint is usually empty. However, there are some Lua functions that

produce material to be read by TEX, the so called print functions. The most simple use of these

is tex.print(<string> s). The characters of the string s will be placed on the TEX input buffer,

that is, ‘before TEX’s eyes’ to be read by TEX immediately. For example:

\count10=20

a\directlua{tex.print(tex.count[10]+5)}b

expands to

a25b

Here is another example:

$\pi = \directlua{tex.print(math.pi)}$

will result in

𝜋 = 3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all

TEX commands. So formally speaking its expansion is null, but it places material on a pseudo-file

to be immediately read by TEX, as 𝜀-TEX’s \scantokens. For a description of print functions look
at section 7.14.10.

Because the ⟨general text⟩ is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-

tual information is still pretty bad. Often, you will only see the line number of the right brace at

the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up

LuaTEX pretty bad. If you are not careful while working with the node list interface, you may

even end up with assertion errors from within the TEX portion of the executable.

The behaviour documented in the above subsection is considered stable in the sense that there

will not be backward-incompatible changes any more.

1.6.2 \latelua

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time

of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)

and the traditional TEX extension \write. Within the Lua code you can print pdf statements

directly to the pdf file via pdf.print, or you can write to other output streams via texio.write

or simply using Lua io routines.

\latelua ⟨general text⟩
\latelua ⟨16-bit number⟩ ⟨general text⟩

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-

cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.

The name ⟨general text⟩ and ⟨16-bit number⟩ behave in the same way as they do for \directlua

Basic TEX enhancements14

1.6.3 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a

Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns

are escaped. This is done by prepending an extra token consisting of a backslash with category

code 12, and for the line endings, converting them to n and r respectively. The token sequence

is fully expanded.

\luaescapestring ⟨general text⟩

Most often, this command is not actually the best way to deal with the differences between the

TEX and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of

Lua code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

1.6.4 \luafunction

The \directlua commands involves tokenization of its argument (after picking up an optional

name or number specification). The tokenlist is then converted into a string and given to Lua to

turn into a function that is called. The overhead is rather small but when you use this primitive

hundreds of thousands of times, it can become noticeable. For this reason there is a variant call

available: \luafunction. This command is used as follows:

\directlua {

local t = lua.get_functions_table()

t[1] = function() tex.print("!") end

t[2] = function() tex.print("?") end

}

\luafunction1

\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of

functions apart from normal Lua limitations. Of course there is the limitation of no arguments

but that would involve parsing and thereby give no gain. The function, when called in fact gets

one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get_functions_table()

t[8] = function(slot) tex.print(slot) end

}

1.7 \clearmarks

This primitive complements the 𝜀-TEX mark primitives and clears a mark class completely, reset-
ting all three connected mark texts to empty. It is an immediate command.

\clearmarks ⟨16-bit number⟩

15Basic TEX enhancements

1.8 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is

built by LuaTEX’s main control loop. You can enable these primitives when you want to do node

list processing of ‘characters’, where TEX’s normal processing would get in the way.

\noligs ⟨integer⟩
\nokerns ⟨integer⟩

These primitives can also be implemented by overloading the ligature building and kerning func-

tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when

you define a font (using Lua) you can also omit the kern and ligature tables, which has the same

effect as the above.

1.9 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,

the expansion is the value that \jobname had during the iniTEX run that dumped the currently

loaded format.

1.10 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted

version of 𝜀-TEX’s \scantokens. The differences are:

• The last (and usually only) line does not have a \endlinechar appended.

• \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

• There are no ‘. . . while end of file . . .’ error tests executed. This allows the expansion to end

on a different grouping level or while a conditional is still incomplete.

1.11 Alignments

1.11.1 \alignmark

This primitive duplicates the functionality of # inside alignment preambles.

1.11.2 \aligntab

This primitive duplicates the functionality of & inside alignments and preambles.

1.12 Catcode tables

Catcode tables are a new feature that allows you to switch to a predefined catcode regime

in a single statement. You can have a practically unlimited number of different tables. This

subsystem is backward compatible: if you never use the following commands, your document

Basic TEX enhancements16

will not notice any difference in behaviour compared to traditional TEX. The contents of each

catcode table is independent from any other catcode tables, and their contents is stored and

retrieved from the format file.

1.12.1 \catcodetable

\catcodetable ⟨15-bit number⟩

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-

ously created using one of the two primitives below, or it has to be zero. Table zero is initialized

by iniTEX.

1.12.2 \initcatcodetable

\initcatcodetable ⟨15-bit number⟩

The primitive \initcatcodetable creates a new table with catcodes identical to those defined

by iniTEX:

0 \ escape

5 ^^M return car_ret

9 ^^@ null ignore

10 <space> space spacer

11 a – z letter

11 A – Z letter

12 everything else other

14 % comment

15 ^^? delete invalid_char

The new catcode table is allocated globally: it will not go away after the current group has

ended. If the supplied number is identical to the currently active table, an error is raised.

1.12.3 \savecatcodetable

\savecatcodetable ⟨15-bit number⟩

\savecatcodetable copies the current set of catcodes to a new table with the requested number.

The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the

supplied number is the currently active table, an error is raised.

1.13 Suppressing errors

1.13.1 \suppressfontnotfounderror

\suppressfontnotfounderror = 1

17Basic TEX enhancements

If this integer parameter is non-zero, then LuaTEX will not complain about font metrics that are

not found. Instead it will silently skip the font assignment, making the requested csname for the

font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

1.13.2 \suppresslongerror

\suppresslongerror = 1

If this integer parameter is non-zero, then LuaTEX will not complain about \par commands en-

countered in contexts where that is normally prohibited (most prominently in the arguments of

non-long macros).

1.13.3 \suppressifcsnameerror

\suppressifcsnameerror = 1

If this integer parameter is non-zero, then LuaTEX will not complain about non-expandable com-

mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded

tokens from the input until it encounters an \endcsname command. If the input expansion is un-

balanced with respect to \csname …\endcsname pairs, the LuaTEX process may hang indefinitely.

1.13.4 \suppressoutererror

\suppressoutererror = 1

If this new integer parameter is non-zero, then LuaTEXwill not complain about \outer commands

encountered in contexts where that is normally prohibited.

1.13.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:

\suppressmathparerror = 1

So, the next code is valid then:

$ x + 1 =

a $

1.14 \matheqnogapstep

By default TEX will add one quad between the equation and the number. This is hard coded. A

new primitive can control this:

\matheqnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to

control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the

usual way to mimmick floating point factors in TEX.

Basic TEX enhancements18

1.15 \outputbox

\outputbox = 65535

This new integer parameter allows you to alter the number of the box that will be used to store

the page sent to the output routine. Its default value is 255, and the acceptable range is from 0

to 65535.

1.16 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with

\number (and using \the gives an error). The currently used font id is 5. Here are some more:

\bf 14

\it 18

\bi 21

These numbers depend on the macro package used because each one has its own way of dealing

with fonts. They can also differ per run, as they can depend on the order of loading fonts. For

instance, when in ConTEXt virtual math Unicode fonts are used, we can easily get over a hundred

ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id (which of course needs

to be a valid one).

1.17 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal

\leaders in that they align nicely, except that the alignment is based on the largest enclosing

box instead of the smallest. The g stresses this global nature.

1.18 \nohrule and \novrule

Because internally box resources and image resources are now stored as a special kind of rule,

we also introduced an empty rule variant. Because introducing a new keyword can cause incom-

patibilities, two new primitives were introduced: \nohrule and \novrule. These can be used to

reserve space. This is often more efficient than creating an empty box with fake dimensions).

1.19 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

1.20 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of

19Basic TEX enhancements

the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive

accepts a number and stores the value with the language.

1.21 \boundary and \noboundary

The \noboundary commands used to inject a whatsit node but now injects a normal node with

type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-

ature builder still sees this as a cancel boundary directive but at the Lua end you can implement

different behaviour. The added benefit of passing this value is a side effect of the generalization.

The values 1, 3 and 3 are used in protrusion edge detection (discussed later).

1.22 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

1.23 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading

escape character. This can be somewhat more efficient that stripping it of afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname

\csname foo\endcsname

\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that

it avoids using the \if.

The \lastnamedcs is one that should be used with care. The above example could be written as:

\ifcsname foo\endcsname

\lastnamedcs

\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTEX this also

involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can

make code a bit more more readable.

1.24 \toksapp, \tokspre, \etoksapp and \etokspre

Instead of:

Basic TEX enhancements20

\toks0\expandafter{\the\toks0 foo}

you can use:

\etoksapp0{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

1.25 Debugging

If \tracingonline is larger than 2, the node list display will also print the node number of the

nodes.

1.26 Images and Forms

These two concepts are now core concepts and no longer whatsits. They are in fact now im-

plemented as rules with special properties. Normal rules have subtype 0, saved boxes have

subtype 1 and images have subtype 2. This has the positive side effect that whenever we need

to take content with dimensions into account, when we look at rule nodes, we automatically also

deal with these two types.

The syntax of the \save...resource is the same as in pdfTEX but you should consider them to

be backend specific. This means that a macro package should treat them as such and check for

the current output mode if applicable. Here are the equivalents:

\saveboxresource : \pdfxform

\saveimageresource : \pdfximage

\useboxresource : \pdfrefxform

\useimageresource : \pdfrefximage

\lastsavedboxresourceindex : \pdflastxform

\lastsavedimageresourceindex : \pdflastximage

\lastsavedimageresourcepages : \pdflastximagepages

LuaTEX accepts optional dimension parameters for \use...resource in the same format as for

rules. With images, these dimensions are then used instead of the ones given to \useimagere-

source but the original dimensions are not overwritten, so that a \useimageresource without

dimensions still provides the image with dimensions defined by \saveimageresource. These

optional parameters are not implemented for \saveboxresource.

\pdfrefximage width 20mm height 10mm depth 5mm \pdflastximage

\pdfrefxform width 20mm height 10mm depth 5mm \pdflastxform

1.27 \outputmode and \draftmode

The \outputmode variable tells LuaTEX what it has to produce:

0 dvi code

1 pdf code

21Basic TEX enhancements

The value of the \draftmode counter signals the backend if it should output less. The pdf back-

end accepts a value of 1, while the dvi backend ignores the value.

1.28 File syntax

LuaTEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

1.29 Font syntax

LuaTEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

1.30 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console

and log. As a consequence a system command is no longer possible but one can use os.execute

to do the same.

1.31 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a

zero skip. Below we see the results for four characters separated by a space.

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

1.32 \letcharcode

This primitive is still experimental but can be used to assign a meaning to an active character,

as in:

Basic TEX enhancements22

\def\foo{bar} \letcharcode123\foo

This can be a bit nicer that using the uppercase tricks (using the property of \uppercase that it

treats active characters special).

23Lua general

2 LUA general

2.1 Initialization

2.1.1 LUATEX as a LUA interpreter

There are some situations that make LuaTEX behave like a standalone Lua interpreter:

• if a --luaonly option is given on the commandline, or

• if the executable is named texlua or luatexlua, or

• if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in

negative values and the rest of the command line in the positive values, just like the Lua inter-

preter.

LuaTEXwill exit immediately after executing the specified Lua script and is, in effect, a somewhat

bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

2.1.2 LUATEX as a LUA byte compiler

There are two situations that make LuaTEX behave like the Lua byte compiler:

• if a --luaconly option is given on the command line, or

• if the executable is named texluac

In this mode, LuaTEX is exactly like luac from the stand alone Lua distribution, except that it

does not have the -l switch, and that it accepts (but ignores) the --luaconly switch.

2.1.3 Other commandline processing

When the LuaTEX executable starts, it looks for the --lua command line option. If there is no

--lua option, the command line is interpreted in a similar fashion as the other TEX engines.

Some options are accepted but have no consequence. The following command-line options are

understood:

--fmt=FORMAT load the format file FORMAT

--lua=FILE load and execute a Lua initialization script

--safer disable easily exploitable Lua commands

--nosocket disable the Lua socket library

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode, scrollmode

or errorstopmode

--halt-on-error stop processing at the first error

Lua general24

--kpathsea-debug=NUMBER set path searching debugging flags according to the bits of

NUMBER

--progname=STRING set the program name to STRING

--version display version and exit

--credits display credits and exit

--recorder enable filename recorder

--output-comment=STRING use STRING for dvi file comment instead of date (no effect for

pdf)

--output-directory=DIR use DIR as the directory to write files to

--draftmode switch on draft mode i.e. generate no output in pdf mode

--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf

--[no-]shell-escape disable/enable system calls

--enable-write18 enable system calls

--disable-write18 disable system calls

--shell-restricted restrict system calls to a list of commands given in texmf.cnf

--debug-format enable format debugging

--[no-]file-line-error disable/enable file:line:error style messages

--[no-]file-line-error-style aliases of --[no-]file-line-error

--jobname=STRING set the job name to STRING

--[no-]mktex=FMT disable/enable mktexFMT generation with FMT is tex or tfm

--synctex=NUMBER enable synctex

Some of the traditional flags are just ignored: --etex, --translate-file, --8bit.

--[no-]parse-first-line, --default-translate-file. Also, we no longer support write18

because os.execute can do the same.

The value to use for \jobname is decided as follows:

• If --jobname is given on the command line, its argument will be the value for \jobname,

without any changes. The argument will not be used for actual input so it need not exist. The

--jobname switch only controls the \jobname setting.

• Otherwise, \jobname will be the name of the first file that is read from the file system, with

any path components and the last extension (the part following the last .) stripped off.

• An exception to the previous point: if the command line goes into interactivemode (by starting

with a command) and there are no files input via \everyjob either, then the \jobname is set

to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the

proper extension (log, pdf, etc.) to the found \jobname. These files are created in the directory

pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the --lua option, command line processing works like it does in any other web2c-based

typesetting engine, except that LuaTEX has a few extra switches.

If the --lua option is present, LuaTEX will enter an alternative mode of command line processing

in comparison to the standard web2c programs.

In this mode, a small series of actions is taken in order. First, it will parse the command line as

usual, but it will only interpret a small subset of the options immediately: --safer, --nosocket,

25Lua general

--[no-]shell-escape, --enable-write18, --disable-write18, --shell-restricted, --help,

--version, and --credits.

Next LuaTEX searches for the requested Lua initialization script. If it cannot be found using the

actual name given on the command line, a second attempt is made by prepending the value of

the environment variable LUATEXDIR, if that variable is defined in the environment.

Then it checks the various safety switches. You can use those to disable some Lua commands

that can easily be abused by a malicious document. At the moment, --safer nils the following

functions:

library functions

os execute exec spawn setenv rename remove tmpdir

io popen output tmpfile

lfs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on files

that are opened for anything besides reading.

When LuaTEX starts it set the locale to a neutral value. If for some reason you use os.locale,

you need to make sure you nil it afterwards because otherwise it can interfere with code that

for instance generates dates. You can nil the locale with

os.setlocale(nil.nil)

The --nosocket option makes the socket library unavailable, so that Lua cannot use networking.

The switches --[no-]shell-escape, --[enable|disable]-write18, and --shell-restricted

have the same effects as in pdfTEX, and additionally make io.popen(), os.execute, os.exec

and os.spawn adhere to the requested option.

Next the initialization script is loaded and executed. From within the script, the entire com-

mand line is available in the Lua table arg, beginning with arg[0], containing the name of the

executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX’s initial-

izations have taken place yet. For that reason, the tables that deal with typesetting, like tex,

token, node and pdf, are off-limits during the execution of the startup file (they are nil’d). Spe-

cial care is taken that texio.write and texio.write_nl function properly, so that you can at

least report your actions to the log file when (and if) it eventually becomes opened (note that TEX

does not even know its \jobname yet at this point). See chapter 7 for more information about

the LuaTEX-specific Lua extension tables.

Everything you do in the Lua initialization script will remain visible during the rest of the run,

with the exception of the TEX specific libraries like tex, token, node and pdf tables. These will

be initialized to their documented state after the execution of the script. You should not store

anything in variables or within tables with these four global names, as they will be overwritten

completely.

We recommend you use the startup file only for your own TEX-independent initializations (if

you need any), to parse the command line, set values in the texconfig table, and register the

callbacks you need.

Lua general26

LuaTEX allows some of the command line options to be overridden by reading values from the

texconfig table at the end of script execution (see the description of the texconfig table later

on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTEX not to initialize kpathsea at all (set texcon-

fig.kpse_init to false for that), LuaTEX acts on some more command line options after the

initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTEX

needs to know the correct program name to use, and for that it needs to check --progname, or

--ini and --fmt, if --progname is missing.

2.2 LUA behaviour

Luas tostring function (and string.format may return values in scientific notation, thereby

confusing the TEX end of things when it is used as the right-hand side of an assignment to a

\dimen or \count.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time

(which will typically happen on win32, because there is one Lua 5.2 inside LuaTEX, and another

will likely be linked to the dll file of the module itself).

LuaTEX is able to use the kpathsea library to find require()d modules. For this purpose, pack-

age.searchers[2] is replaced by a different loader function, that decides at runtime whether to

use kpathsea or the built-in core Lua function. It uses kpathsea when that is already initialized

at that point in time, otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTEX starts up and the startup

script has not set texconfig.kpse_init to false), or explicitly by calling the Lua function

kpse.set_program_name().

LuaTEX is able to use dynamically loadable Lua libraries, unless --safer was given as an option

on the command line. For this purpose, package.searchers[3] is replaced by a different loader

function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It

uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using

the normal package.cpath loader.

This functionality required an extension to kpathsea:

There is a new kpathsea file format: kpse_clua_format that searches for files with exten-

sion .dll and .so. The texmf.cnf setting for this variable is CLUAINPUTS, and by default

it has this value:

CLUAINPUTS=.:$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the

architecture has to be in the path somewhere, and the currently simplest way to do that is

to search below the binaries directory only. Of course it no big deal to write an alternative

loader and use that in a macro package.

One level up (a lib directory parallel to bin) would have been nicer, but that is not doable

because TEXLive uses a bin/<arch> structure.

In keeping with the other TEX-like programs in TEXLive, the two Lua functions os.execute and

io.popen, as well as the two new functions os.exec and os.spawn that are explained below,

27Lua general

take the value of shell_escape and/or shell_escape_commands in account. Whenever LuaTEX

is run with the assumed intention to typeset a document (and by that we mean that it is called as

luatex, as opposed to texlua, and that the command line option --luaonly was not given), it

will only run the four functions above if the matching texmf.cnf variable(s) or their texconfig

(see section 7.15) counterparts allow execution of the requested system command. In ‘script

interpreter’ runs of LuaTEX, these settings have no effect, and all four functions function as

normal.

The f:read("*line") and f:lines() functions from the io library have been adjusted so that

they are line-ending neutral: any of LF, CR or CR+LF are acceptable line endings.

luafilesystem has been extended: there are two extra boolean functions (lfs.isdir(file-

name) and lfs.isfile(filename)) and one extra string field in its attributes table (permis-

sions). There is an additional function lfs.shortname() which takes a file name and returns

its short name on win32 platforms. On other platforms, it just returns the given argument. The

file name is not tested for existence. Finally, for non-win32 platforms only, there is the new func-

tion lfs.readlink() hat takes an existing symbolic link as argument and returns its content. It

returns an error on win32.

The string library has an extra function: string.explode(s[,m]). This function returns an

array containing the string argument s split into sub-strings based on the value of the string

argument m. The second argument is a string that is either empty (this splits the string into

characters), a single character (this splits on each occurrence of that character, possibly intro-

ducing empty strings), or a single character followed by the plus sign + (this special version does

not create empty sub-strings). The default value for m is ‘ +’ (multiple spaces). Note: m is not

hidden by surrounding braces as it would be if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal:

• string.utfvalues(s): an integer value in the Unicode range

• string.utfcharacters(s): a string with a single utf-8 token in it

• string.characters(s) a string containing one byte

• string.characterpairs(s) two strings each containing one byte or an empty second string

if the string length was odd

• string.bytes(s) a single byte value

• string.bytepairs(s) two byte values or nil instead of a number as its second return value

if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the

conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,

if true, strips the symbols from the dumped data. This matches an extension made in luajit.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the

utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-

tions from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8.lower

etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and

unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture

Lua general28

() but other captures work as expected. For the interpretation of character classes in uni-

code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln. Version 5.3

of Lua will provide some native utf8 support.

The os library has a few extra functions and variables:

• os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

• os.exec(commandline) is a variation on os.execute. Here commandline can be either a

single string or a single table.

If the argument is a table LuaTEX first checks if there is a value at integer index zero. If there

is, this is the command to be executed. Otherwise, it will use the value at integer index one.

If neither are present, nothing at all happens.

The set of consecutive values starting at integer 1 in the table are the arguments that are

passed on to the command (the value at index 1 becomes arg[0]). The command is searched

for in the execution path, so there is normally no need to pass on a fully qualified path name.

If the argument is a string, then it is automatically converted into a table by splitting on

whitespace. In this case, it is impossible for the command and first argument to differ from

each other.

In the string argument format, whitespace can be protected by putting (part of) an argument

inside single or double quotes. One layer of quotes is interpreted by LuaTEX, and all occur-

rences of \", \' or \\ within the quoted text are unescaped. In the table format, there is no

string handling taking place.

This function normally does not return control back to the Lua script: the command will

replace the current process. However, it will return the two values nil and error if there

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of

the command has finished. This prevents crashes in situations where TEXLua scripts are run

inside integrated TEX environments.

The original reason for this command is that it cleans out the current process before starting

the new one, making it especially useful for use in TEXLua.

• os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling

conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,

it will return the two values nil and error.

• os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

• os.env is a hash table containing a dump of the variables and values in the process envi-

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

• os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-

able on the SunOS platforms, so do not use this function for portable documents.

• os.times()returns the current process times according to the Unix C library function ‘times’.

This function is not available on the MS Windows and SunOS platforms, so do not use this

function for portable documents.

• os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX

where the X-es are replaced by a unique string. The function also returns this string, so you

29Lua general

can lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for

cleaning up at the end of the run, it does not happen automatically.

• os.type is a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

• os.name is a string that gives a more precise indication of the operating system. These pos-

sible values are not yet fixed, and for os.type values windows and msdos, the os.name values

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv

(unknown, but sysv-like), generic (unknown).

• os.uname() returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string valued, and their names are: sysname, machine,

release, version, and nodename.

In stock Lua, many things depend on the current locale. In LuaTEX, we can’t do that, because it

makes documents unportable. While LuaTEX is running if forces the following locale settings:

LC_CTYPE=C

LC_COLLATE=C

LC_NUMERIC=C

2.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTEX, because

they offer useful functionality:

• slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has

been slightly extended so that the unicode.utf8.* functions also accept the first 256 values

of plane 18. This is the range LuaTEX uses for raw binary output, as explained above.

• luazip, from the kepler project, http://www.keplerproject.org/luazip/.

• luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.

• lpeg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This

library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly

means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and

thus lpeg.S will look for one of those two bytes when matching, not the combination of the

two. The same is true for lpeg.R, although the latter will display an error message if used

with multibyte characters. Therefore lpeg.R('aä') results in the message bad argument #1

to 'R' (range must have two characters), since to lpeg, ä is two ’characters’ (bytes), so

aä totals three. In practice this is no real issue.

• lzlib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

• md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

• luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The .lua support

modules from luasocket are also preloaded inside the executable, there are no external file

dependencies.

At some point (this also depends on distributions) LuaTEX might have these libraries loaded on

demand. For this reason you can best use require to make sure they are loaded.

Lua general30

31Languages, characters, fonts and glyphs

3 Languages, characters, fonts and

glyphs

LuaTEX’s internal handling of the characters and glyphs that eventually become typeset is quite

different from the way TEX82 handles those same objects. The easiest way to explain the dif-

ference is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first.

Later on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char_node records when they are encoun-

tered by the main control loop. TEX attaches and processes the font information while creating

those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-

plicit kerning. This packaging is needed because we may want to get the effective width of for

instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)

the char_node records into a string by replacing ligatures with their components and ignoring

the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated

result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.

Keep in mind that the paragraph may contain unboxed horizontal material, which then already

contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char_node records are somewhat misnamed, as they are glyph positions in specific fonts,

and therefore not really ‘characters’ in the linguistic sense. There is no language information in-

side the char_node records at all. Instead, language information is passed along using language

whatsit records inside the horizontal list.

In LuaTEX, the situation is quite different. The characters you type are always converted into

glyph_node records with a special subtype to identify them as being intended as linguistic char-

acters. LuaTEX stores the needed language information in those records, but does not do any

font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points

right into thewhole node list. Next, it processes all the font information in thewhole list (creating

ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the

records are ‘glyph nodes’ from now on.

3.1 Characters and glyphs

TEX82 (including pdfTEX) differentiates between char_nodes and lig_nodes. The former are

simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the

same memory as tokens did. The latter also contained a list of components, and a subtype

indicating whether this ligature was the result of a word boundary, and it was stored in the

same place as other nodes like boxes and kerns and glues.

In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph_node.

Besides having the old character, font, and component fields, and the new special fields like ‘attr’

(see section 6.1.2.12), these nodes also contain:

Languages, characters, fonts and glyphs32

• A subtype, split into four main types:

− character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

− glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

− ligature, for ligatures (bit 1 is set)

− ghost, for ‘ghost objects’ (bit 2 is set)

The latter two make further use of two extra fields (bits 3 and 4):

− left, for ligatures created from a left word boundary and for ghosts created from \left-

ghost

− right, for ligatures created from a right word boundary and for ghosts created from

\rightghost

For ligatures, both bits can be set at the same time (in case of a single-glyph word).

• glyph_nodes of type ‘character’ also contain language data, split into four items that were

current when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits),

\righthyphenmin (8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 16383 separate languages, and words can be 256 characters long.

The language is stored with each character. You can set \firstvalidlanguage to for instance 1

and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This

value stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from

TEX82: changes to \uchyph become effective immediately, not at the end of the current partial

paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,

so there is no longer a possible dependency on the surrounding language settings. In TEX82, a

mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-

guage unless there was a \setlanguage issued inside the box. In LuaTEX, all language variables

are already frozen.

In traditional TEX the process of hyphenation is driven by lccodes. In LuaTEX we made this de-

pendency less strong. There are several strategies possible. When you do nothing, the currently

used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value larger than zero the current set of lccodes will be

saved with the language. In that case changing a lccode afterwards has no effect. However,

you can adapt the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation

happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-

phcodes was zero when the language got initialized you start out with nothing, otherwise you

already have a set.

Carrying all this information with each glyph would give too much overhead and also make the

process of setting up thee codes more complex. A solution with hjcode sets was considered but

rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

33Languages, characters, fonts and glyphs

Beware: the values are always saved in the format, independent of the setting of \savinghyph-

codes at the moment the format is dumped.

3.2 The main control loop

In LuaTEX’s main loop, almost all input characters that are to be typeset are converted into glyph

node records with subtype ‘character’, but there are a few exceptions.

First, the \accent primitives creates nodes with subtype ‘glyph’ instead of ‘character’: one for

the actual accent and one for the accentee. The primary reason for this is that \accent in TEX82

is explicitly dependent on the current font encoding, so it would not make much sense to attach

a new meaning to the primitive’s name, as that would invalidate many old documents and macro

packages.1 A secondary reason is that in TEX82, \accent prohibits hyphenation of the current

word. Since in LuaTEX hyphenation only takes place on ‘character’ nodes, it is possible to achieve

the same effect.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a charac-

ter subtype. In traditional TEX there was a strong relationship between the 8-bit input encoding,

hyphenation and glyphs taken from a font. In LuaTEX we have utf input, and in most cases this

maps directly to a character in a font, apart from glyph replacement in the font engine. If you

want to access arbitrary glyphs in a font directly you can always use Lua to do so, because fonts

are available as Lua table.

Second, all the results of processing in math mode eventually become nodes with ‘glyph’ sub-

types.

Third, the Aleph-derived commands \leftghost and \rightghost create nodes of a third sub-

type: ‘ghost’. These nodes are ignored completely by all further processing until the stage where

inter-glyph kerning is added.

Fourth, automatic discretionaries are handled differently. TEX82 inserts an empty discretionary

after sensing an input character that matches the \hyphenchar in the current font. This test is

wrong in our opinion: whether or not hyphenation takes place should not depend on the current

font, it is a language property.2

In LuaTEX, it works like this: if LuaTEX senses a string of input characters that matches the

value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary after

that series of nodes. Initex sets the \exhyphenchar=`\-. Incidentally, this is a global parameter

instead of a language-specific one because it may be useful to change the value depending on

the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same time

as the other hyphenation processing, not inside the main control loop.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be considered

for hyphenation at all. If the \hyphenchar of the font attached to the first character node in a

word is negative, then hyphenation of that word is abandoned immediately. This behaviour is

1 Of course, modern packages will not use the \accent primitive at all but try to map directly on composed characters.
2 When TEX showed up we didn’t have Unicode yet and being limited to eight bits meant that one sometimes had to

compromise between supporting character input, glyph rendering, hyphenation.

Languages, characters, fonts and glyphs34

added for backward compatibility only, and the use of \hyphenchar=-1 as a means of preventing

hyphenation should not be used in new LuaTEX documents.

Fifth, \setlanguage no longer creates whatsits. The meaning of \setlanguage is changed so

that it is now an integer parameter like all others. That integer parameter is used in \glyph_node

creation to add language information to the glyph nodes. In conjunction, the \language primitive

is extended so that it always also updates the value of \setlanguage.

Sixth, the \noboundary command (that prohibits word boundary processing where that would

normally take place) now does create nodes. These nodes are needed because the exact place

of the \noboundary command in the input stream has to be retained until after the ligature and

font processing stages.

Finally, there is no longer a main_loop label in the code. Remember that TEX82 did quite a lot

of processing while adding char_nodes to the horizontal list? For speed reasons, it handled that

processing code outside of the ‘main control’ loop, and only the first character of any ‘word’ was

handled by that ‘main control’ loop. In LuaTEX, there is no longer a need for that (all hard work

is done later), and the (now very small) bits of character-handling code have been moved back

inline. When \tracingcommands is on, this is visible because the full word is reported, instead

of just the initial character.

3.3 Loading patterns and exceptions

The hyphenation algorithm in LuaTEX is quite different from the one in TEX82, although it uses

essentially the same user input.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-

arated by spaces, no \char or \chardefd commands are allowed. The current implementation

quite strict and will reject all non-Unicode characters.

Likewise, the expanded argument for \hyphenation also has to be proper utf8, but here a bit of

extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicates a desired complex discretionary,

with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal

document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,

but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the

internal command names. This string is then converted into a dictionary by a routine that creates

key-value pairs by converting the other listed items. It is important to note that the keys in an

exception dictionary can always be generated from the values. Here are a few examples:

value implied key (input) effect

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

35Languages, characters, fonts and glyphs

The resultant patterns and exception dictionary will be stored under the language code that is

the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the

command is optional in the TEX-based input syntax. The underlying reason for that is that it is

conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTEX

using one of the functions in the Lua lang library. This loading method is quite a bit faster than

going through the TEX language primitives, but some (most?) of that speed gain would be lost if

it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the

explicit hyphen character (replace - by the actual explicit hyphen character if needed). For

example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween

‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is

basically ignored. Because we now have hjcode, the case relate codes can be used exclusively

for \uppercase and \lowercase.

3.4 Applying hyphenation

The internal structures LuaTEX uses for the insertion of discretionaries in words is very different

from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still

reads patgen-generated pattern files, but LuaTEX uses a finite state hash to match the patterns

against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TEX.

There are a few differences between LuaTEX and TEX82 that are a direct result of the implemen-

tation:

• LuaTEX happily hyphenates the full Unicode character range.

• Pattern and exception dictionary size is limited by the available memory only, all allocations

are done dynamically. The trie-related settings in texmf.cnf are ignored.

• Because there is no ‘trie preparation’ stage, language patterns never become frozen. This

means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at

any time, not only in iniTEX.

• Only the string representation of \patterns and \hyphenation is stored in the format file.

At format load time, they are simply re-evaluated. It follows that there is no real reason to

preload languages in the format file. In fact, it is usually not a good idea to do so. It is much

smarter to load patterns no sooner than the first time they are actually needed.

• LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the

creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the

Languages, characters, fonts and glyphs36

language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-

tionaries (instead of TEX82’s empty discretionary).

• The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-

penalty, are now stored in the discretionary nodes. This permits a local overload for explicit

\discretionary commands. The value current when the hyphenation pass is applied is used.

When no callbacks are used this is compatible with traditional TEX. When you apply the Lua

lang.hyphenate function the current values are used.

Because we store penalties in the disc node the \discretionary command has been extended

to accept an optional penalty specification, so you can do the following:

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-

ally the preceding one, but the following one for the items inserted at the left-hand side of a

word).

Word boundaries are no longer implied by font switches, but by language switches. One word

can have two separate fonts and still be hyphenated correctly (but it can not have two different

languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0

and \postexhyphenchar=0. When you assign the values of one of these four parameters, you

are actually changing the settings for the current \language, this behaviour is compatible with

\patterns and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph. Words can be up to 256 characters

long (up from 64 in TEX82). Longer words generate an error right now, but eventually either

the limitation will be removed or perhaps it will become possible to silently ignore the excess

characters (this is what happens in TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function lang.hyphenate, you should be aware that this function expects

to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,

‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic,

so the hyph_size setting is not used either.

3.5 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list

to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

37Languages, characters, fonts and glyphs

stages: first all ligatures are processed, then all kerning information is applied to the result list.

But those two stages are somewhat dependent on each other: If the used font makes it possible

to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.

While doing so, it removes and interprets noboundary nodes. The kerning stage deletes those

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,

at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This work separation is worth mentioning because, if you overrule from Lua only one of the two

callbacks related to font handling, then you have to make sure you perform the tasks normally

done by LuaTEX itself in order to make sure that the other, non-overruled, routine continues to

function properly.

Work in this area is not yet complete, but most of the possible cases are handled by our rewritten

ligaturing engine. At some point all of the possible inputs will become supported.3

For example, take the word office, hyphenated of-fice, using a ‘normal’ font with all the f-f

and f-i type ligatures:

Initial: {o}{f}{f}{i}{c}{e}

After hyphenation: {o}{f}{{-},{},{}}{f}{i}{c}{e}

First ligature stage: {o}{{f-},{f},{<ff>}}{i}{c}{e}

Final result: {o}{{f-},{<fi>},{<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and

the i, to create of-f-ice. Then the final result should be:

{o}{{f-},

{{f-},

{i},

{<fi>}},

{{<ff>-},

{i},

{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level

discretionary that resulted from the first hyphenation point.

Here is that nested solution again, in a different representation:

pre post replace

topdisc f-1 sub1 sub2

sub1 f-2 i3 <fi>4

sub2 <ff>-5 i6 <ffi>7

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f-1

f-2

3 Not all of this makes sense because we nowadays have OpenType fonts and ligature building can happen in ,any different

ways there.

Languages, characters, fonts and glyphs38

i3

of-fice f-1

<fi>4

off-ice <ff>-5

i6

office <ffi>7

The current solution in LuaTEX is not able to handle nested discretionaries, but it is in fact

smart enough to handle this fictional of-f-ice example. It does so by combining two sequential

discretionary nodes as if they were a single object (where the second discretionary node is

treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-

placement list (i), and that this would be the case even if that i was the first item of a potential

following ligature like ic. This allows LuaTEX to do away with one of the fields, and thus make

the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

field description

disc1.pre f-1

disc1.post <fi>4

disc1.replace <ffi>7

disc2.pre f-2

disc2.post i3,6

disc2.replace <ff>-5

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},

{<fi>},

{<ffi>}}

{{f-},

{i},

{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the

first has subtype 4, and the second has subtype 5. The need for these special subtypes stems

from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary

especially looks odd, with things like the <ff>- appearing in disc2.replace. The fact that some

of the fields have different meanings (and different processing code internally) is what makes it

necessary to have different subtypes: this enables LuaTEX to distinguish this sequence of two

joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a

sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means

that the above examples are just representing the traditional approach.

39Languages, characters, fonts and glyphs

3.6 Breaking paragraphs into lines

This code is still almost unchanged, but because of the above-mentioned changes with respect

to discretionaries and ligatures, line breaking will potentially be different from traditional TEX.

The actual line breaking code is still based on the TEX82 algorithms, and it does not expect there

to be discretionaries inside of discretionaries.

But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mech-

anism. And also, the LuaTEX discretionary nodes are implemented slightly different from the

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these

nodes kept their place in the horizontal list. In traditional TEX the discretionary node contains

a counter indicating how many nodes to skip, but in LuaTEX we store the pre, post and replace

text in the discretionary node.

The combined effect of these two differences is that LuaTEX does not always use all of the poten-

tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course

kerning also complicates matters here.

Languages, characters, fonts and glyphs40

41Font structure

4 Font structure

All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in

the table below are saved in the internal font structure if they are present in the table returned

by the define_font callback, or if they result from the normal tfm/vf reading routines if there

is no define_font callback defined.

The column ‘vf’ means that this key will be created by the font.read_vf() routine, ‘tfm’ means

that the key will be created by the font.read_tfm() routine, and ‘used’ means whether or not

the LuaTEX engine itself will do something with the key.

The top-level keys in the table are as follows:

key vf tfm used value type description

name yes yes yes string metric (file) name

area no yes yes string (directory) location, typically empty

used no yes yes boolean indicates usage (initial: false)

characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)

direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format

encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’s used as font-

name identifier in the pdf output.

fullname no no yes string output font name, used as a fallback in the

pdf output if the psname is not set

header yes no no string header comments, if any

hyphenchar no no yes number default: TEX’s \hyphenchar

parameters no yes yes hash default: 7 parameters, all zero

size no yes yes number loaded (at) size. (default: same as design-

size)

skewchar no no yes number default: TEX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

tounicode no yes yes number When this is set to 1 LuaTEX assumes per-

glyph tounicode entries are present in the

font.

stretch no no yes number the ‘stretch’ value from \expandglyphsin-

font

shrink no no yes number the ‘shrink’ value from \expandglyphsin-

font

step no no yes number the ‘step’ value from \expandglyphsinfont

Font structure42

auto_expand no no yes boolean the ‘autoexpand’ keyword from

\expandglyphsinfont

expansion_factor no no no number the actual expansion factor of an expanded

font

attributes no no yes string the \pdffontattr

cache no no yes string This key controls caching of the Lua table

on the TEX end where yesmeans: use a ref-

erence to the table that is passed to LuaTEX

(this is the default), and no nomeans: don’t

store the table reference, don’t cache any

Lua data for this font while renew means:

don’t store the table reference, but save a

reference to the table that is created at the

first access to one of its fields in font. Note:

the saved reference is thread-local, so be

careful when you are using coroutines: an

error will be thrown if the table has been

cached in one thread, but you reference it

from another thread.

nomath no no yes boolean This key allows a minor speedup for text

fonts. If it is present and true, then LuaTEX

will not check the character entries formath-

specific keys.

slant no no yes number This has the same semantics as the Slant-

Font operator in font map files.

extent no no yes number This has the same semantics as the Extend-

Font operator in font map files.

The key name is always required. The keys stretch, shrink, step and optionally auto_expand

only have meaning when used together: they can be used to replace a post-loading \expandg-

lyphsinfont command. The expansion_factor is value that can be present inside a font in

font.fonts. It is the actual expansion factor (a value between -shrink and stretch, with step

step) of a font that was automatically generated by the font expansion algorithm. The key at-

tributes can be used to set font attributes in the pdf file. The key used is set by the engine when

a font is actively in use, this makes sure that the font’s definition is written to the output file

(dvi or pdf). The tfm reader sets it to false. The direction is a number signalling the ‘normal’

direction for this font. There are sixteen possibilities:

number meaning number meaning

0 LT 8 TT

1 LL 9 TL

2 LB 10 TB

3 LR 11 TR

4 RT 12 BT

5 RL 13 BL

6 RB 14 BB

7 RR 15 BR

43Font structure

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of

the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’

side. Keep in mind that LuaTEX has a bit different directional model so these values are not used

for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as

a number of integer indices (these start from 8 up). The seven strings are actually used instead

of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

name remapping

slant 1

space 2

space_stretch 3

space_shrink 4

x_height 5

quad 6

extra_space 7

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts

in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The number

is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left_boundary is a virtual character whose

ligatures and kerns are used to handle word boundary processing. right_boundary is similar

but not actually used for anything (yet).

Other index keys are ignored.

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the

font cmr10 at 10pt:

[102] = {

['width'] = 200250,

['height'] = 455111,

['depth'] = 0,

['italic'] = 50973,

['kerns'] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

},

['ligatures'] = {

[102] = {

['char'] = 11,

['type'] = 0

Font structure44

},

[108] = {

['char'] = 13,

['type'] = 0

},

[105] = {

['char'] = 12,

['type'] = 0

}

}

}

The following top-level keys can be present inside a character hash:

key vf tfm used type description

width yes yes yes number character’s width, in sp (default 0)

height no yes yes number character’s height, in sp (default 0)

depth no yes yes number character’s depth, in sp (default 0)

italic no yes yes number character’s italic correction, in sp (default zero)

top_accent no no maybe number character’s top accent alignment place, in sp

(default zero)

bot_accent no no maybe number character’s bottom accent alignment place,

in sp (default zero)

left_protruding no no maybe number character’s \lpcode

right_protruding no no maybe number character’s \rpcode

expansion_factor no no maybe number character’s \efcode

tounicode no no maybe string character’s Unicode equivalent(s), in utf-16BE

hexadecimal format

next no yes yes number the ‘next larger’ character index

extensible no yes yes table the constituent parts of an extensible recipe

vert_variants no no yes table constituent parts of a vertical variant set

horiz_variants no no yes table constituent parts of a horizontal variant set

kerns no yes yes table kerning information

ligatures no yes yes table ligaturing information

commands yes no yes array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font glyph index

used no yes yes boolean typeset already (default: false)?

mathkern no no yes table math cut-in specifications

The values of top_accent, bot_accent and mathkern are used only for math accent and super-

script placement, see the math chapter 51 in this manual for details.

The values of left_protruding and right_protruding are used only when \protrudechars is

non-zero.

Whether or not expansion_factor is used depends on the font’s global expansion settings, as

well as on the value of \adjustspacing.

45Font structure

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTEX

will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level

tounicode strings, where they are available. If a character does not have a sensible Unicode

equivalent, do not provide a string either (no empty strings).

If the font level tounicode is not set, then LuaTEX will build up /ToUnicode based on the TEX

code points you used, and any character-level tounicodes will be ignored. The string format

is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding),

minus the enclosing angle brackets. For instance the tounicode for a fi ligature would be

00660069. When you pass a number the conversion will be done for you.

The presence of extensible will overrule next, if that is also present. It in in turn can be

overruled by vert_variants.

The extensible table is very simple:

key type description

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

The horiz_variants and vert_variants are arrays of components. Each of those components

is itself a hash of up to five keys:

key type explanation

glyph number The character index. Note that this is an encoding number, not a name.

extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the

natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either

a non-negative integer or the string value right_boundary), with the values the kerning to be

applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as

either a non-negative integer or the string value right_boundary), with the values being yet

another small hash, with two fields:

key type description

type number the type of this ligature command, default 0

char number the character index of the resultant ligature

The char field in a ligature is required.

The type field inside a ligature is the numerical or string value of one of the eight possible

ligature types supported by TEX. When TEX inserts a new ligature, it puts the new glyph in the

middle of the left and right glyphs. The original left and right glyphs can optionally be retained,

and when at least one of them is kept, it is also possible to move the new ‘insertion point’ forward

Font structure46

one or two places. The glyph that ends up to the right of the insertion point will become the

next ‘left’.

textual (Knuth) number string result

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature

replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

4.1 Real fonts

Whether or not a TEX font is a ‘real’ font that should be written to the pdf document is decided

by the type value in the top-level font structure. If the value is real, then this is a proper font,

and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.

Values for type:

value description

real this is a base font

virtual this is a virtual font

The actions to be taken depend on a number of different variables:

• Whether the used font fits in an 8-bit encoding scheme or not.

• The type of the disk font file.

• The level of embedding requested.

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in a

different way.

The rule is: if the font table has encodingbytes set to 2, then this is a wide font, in all other cases

it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua. For Type1

fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font encoding is

not supported at all.

If no special care is needed, LuaTEX currently falls back to the mapfile-based solution used by

pdfTEX and dvips. This behaviour might silently be removed in the future, in which case the

related primitives and Lua functions will become no-ops.

If a ‘wide’ font is used, the new subsystem kicks in, and some extra fields have to be present in

the font structure. In this case, LuaTEX does not use a map file at all.

47Font structure

The extra fields are: format, embedding, fullname, cidinfo (as explained above), filename,

and the index key in the separate characters.

Values for format are:

value description

type1 this is a PostScript Type1 font

type3 this is a bitmapped (pk) font

truetype this is a TrueType or TrueType-based OpenType font

opentype this is a PostScript-based OpenType font

type3 fonts are provided for backward compatibility only, and do not support the new wide

encoding options.

Values for embedding are:

value description

no don’t embed the font at all

subset include and atttempt to subset the font

full include this font in its entirety

The other fields are used as follows: The fullname will be the PostScript/pdf font name. The

cidinfo will be used as the character set (the CID /Ordering and /Registry keys). The file-

name points to the actual font file. If you include the full path in the filename or if the file is in

the local directory, LuaTEX will run a little bit more efficient because it will not have to re-run

the find_xxx_file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript

name clashes that can result in printing errors. When this happens, you have to change the

fullname of the font.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key

in the character information as value. The overall effect is like having an encoding based on

numbers instead of traditional (PostScript) name-based reencoding. The way to get the correct

index numbers for Type1 fonts is by loading the font via fontloader.open and use the table

indices as index fields.

In order to make sure that cut and paste of the final document works okay you can best make

sure that there is a tounicode vector enforced.

4.2 Virtual fonts

You have to take the following steps if you want LuaTEX to treat the returned table from de-

fine_font as a virtual font:

• Set the top-level key type to virtual.

• Make sure there is at least one valid entry in fonts (see below).

• Give a commands array to every character (see below).

The presence of the toplevel type key with the specific value virtual will trigger handling of

the rest of the special virtual font fields in the table, but the mere existence of ’type’ is enough

to prevent LuaTEX from looking for a virtual font on its own.

Font structure48

Therefore, this also works ‘in reverse’: if you are absolutely certain that a font is not a virtual

font, assigning the value base or real to type will inhibit LuaTEX from looking for a virtual font

file, thereby saving you a disk search.

The fonts is another Lua array. The values are one- or two-key hashes themselves, each entry

indicating one of the base fonts in a virtual font. In case your font is referring to itself, you can

use the font.nextid() function which returns the index of the next to be defined font which is

probably the currently defined one.

An example makes this easy to understand

fonts = {

{ name = 'ptmr8a', size = 655360 },

{ name = 'psyr', size = 600000 },

{ id = 38 }

}

says that the first referenced font (index 1) in this virtual font is ptrmr8a loaded at 10pt, and the

second is psyr loaded at a little over 9pt. The third one is previously defined font that is known

to LuaTEX as font id ‘38’.

The array index numbers are used by the character command definitions that are part of each

character.

The commands array is a hash where each item is another small array, with the first entry rep-

resenting a command and the extra items being the parameters to that command. The allowed

commands and their arguments are:

command name arguments type description

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,

and move right by the character’s width

node 1 node output this node (list), and move right by the width

of this list

slot 2 number a shortcut for the combination of a font and char com-

mand

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗ 𝑤𝑑, and move right.
down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

lua 1 string execute a Lua script (at \latelua time)

image 1 image output an image (the argument can be either an <im-

age> variable or an image_spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This pre-

vents the need for hackery with future id’s (normally one could use font.nextid but when more

complex fonts are built in the meantime other instances could have been loaded.

49Font structure

Here is a rather elaborate glyph commands example:

...

commands = {

{ 'push' }, -- remember where we are

{ 'right', 5000 }, -- move right about 0.08pt

{ 'font', 3 }, -- select the fonts[3] entry

{ 'char', 97 }, -- place character 97 (ASCII 'a')

{ 'pop' }, -- go all the way back

{ 'down', -200000 }, -- move upwards by about 3pt

{ 'special', 'pdf: 1 0 0 rg' } -- switch to red color

{ 'rule', 500000, 20000 } -- draw a bar

{ 'special','pdf: 0 g' } -- back to black

}

...

The default value for font is always 1 at the start of the commands array. Therefore, if the

virtual font is essentially only a re-encoding, then you do usually not have create an explicit

‘font’ command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.

For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will

always move by exactly the width that was given in the width key of the character hash. Any

movements that take place inside the commands array are ignored on the upper level.

4.2.1 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTEX encounters a commands field

inside a character when it becomes time to typeset the character, it will interpret the commands,

just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then the

default (and only) ‘base’ font is taken to be the current font itself. In practice, this means that

you can create virtual duplicates of existing characters which is useful if you want to create

composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a

virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual

font for that (because characters that are already present cannot be altered).

4.2.2 Example virtual font

Finally, here is a plain TEX input file with a virtual font demonstration:

\directlua {

callback.register('define_font',

function (name,size)

if name == 'cmr10-red' then

f = font.read_tfm('cmr10',size)

Font structure50

f.name = 'cmr10-red'

f.type = 'virtual'

f.fonts = {{ name = 'cmr10', size = size }}

for i,v in pairs(f.characters) do

if (string.char(i)):find('[tacohanshartmut]') then

v.commands = {

{'special','pdf: 1 0 0 rg'},

{'char',i},

{'special','pdf: 0 g'},

}

else

v.commands = {{'char',i}}

end

end

else

f = font.read_tfm(name,size)

end

return f

end

)

}

\font\myfont = cmr10-red at 10pt \myfont This is a line of text \par

\font\myfontx= cmr10 at 10pt \myfontx Here is another line of text \par

51Math

5 Math

The handling of mathematics in LuaTEX differs quite a bit from how TEX82 (and therefore pdfTEX)

handles math. First, LuaTEX adds primitives and extends some others so that Unicode input can

be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)

have been made accessible and changeable via control sequences. Third, there are extensions

that make it easier to use OpenType math fonts. And finally, there are some extensions that have

been proposed in the past that are now added to the engine.

5.1 The current math style

It is possible to discover the math style that will be used for a formula in an expandable fashion

(while the math list is still being read). To make this possible, LuaTEX adds the new primitive:

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,

not set.

5.1.1 \mathstyle

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing,
the eight math style commands have been altered so that the can be used as numeric values, so

you can write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

5.1.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight

from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would

therefore normally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct

(numerator) math style.

5.2 Unicode math characters

Character handling is now extended up to the full Unicode range (the \U prefix), which is com-

patible with XƎTEX.

Math52

The math primitives from TEX are kept as they are, except for the ones that convert from input to

math commands: mathcode, and delcode. These two now allow for a 21-bit character argument

on the left hand side of the equals sign.

Some of the new LuaTEX primitives read more than one separate value. This is shown in the

tables below by a plus sign in the second column.

The input for such primitives would look like this:

\def\overbrace{\Umathaccent 0 1 "23DE }

Altered TEX82 primitives:

primitive value range (in hex)

\mathcode 0–10FFFF = 0–8000

\delcode 0–10FFFF = 0–FFFFFF

Unaltered:

primitive value range (in hex)

\mathchardef 0–8000

\mathchar 0–7FFF

\mathaccent 0–7FFF

\delimiter 0–7FFFFFF

\radical 0–7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret

it as \Umathcharnumdef. This is needed to satisfy older macro packages.

New primitives that are compatible with XƎTEX:

primitive value range (in hex)

\Umathchardef 0+0+0–7+FF+10FFFF1

\Umathcharnumdef5 -80000000–7FFFFFFF3

\Umathcode 0–10FFFF = 0+0+0–7+FF+10FFFF1

\Udelcode 0–10FFFF = 0+0–FF+10FFFF2

\Umathchar 0+0+0–7+FF+10FFFF

\Umathaccent 0+0+0–7+FF+10FFFF2,4

\Udelimiter 0+0+0–7+FF+10FFFF2

\Uradical 0+0–FF+10FFFF2

\Umathcharnum -80000000–7FFFFFFF3

\Umathcodenum 0–10FFFF = -80000000–7FFFFFFF3

\Udelcodenum 0–10FFFF = -80000000–7FFFFFFF3

Specifications typically look like:

\Umathchardef\xx="1"0"456

\Umathcode 123="1"0"789

Note 1: The new primitives that deal with delimiter-style objects do not set up a ‘large family’.

Selecting a suitable size for display purposes is expected to be dealt with by the font via the

\Umathoperatorsize parameter (more information can be found in a following section).

53Math

Note 2: For these three primitives, all information is packed into a single signed integer. For

the first two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code,

the 3 bits above that represent the math class, and the family data is kept in the topmost bits

(This means that the values for math families 128–255 are actually negative). For \Udelcodenum

there is no math class; the math family information is stored in the bits directly on top of the

character code. Using these three commands is not as natural as using the two- and three-value

commands, so unless you know exactly what you are doing and absolutely require the speedup

resulting from the faster input scanning, it is better to use the verbose commands instead.

Note 3: The \Umathaccent command accepts optional keywords to control various details re-

garding math accents. See section 5.8 below for details.

New primitives that exist in LuaTEX only (all of these will be explained in following sections):

primitive value range (in hex)

\Uroot 0+0–FF+10FFFF2

\Uoverdelimiter 0+0–FF+10FFFF2

\Uunderdelimiter 0+0–FF+10FFFF2

\Udelimiterover 0+0–FF+10FFFF2

\Udelimiterunder 0+0–FF+10FFFF2

5.3 Cramped math styles

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

• In any style superscripts and subscripts are taken from the next smaller style. Exception: in

display style they are taken in script style.

• Subscripts are always in the cramped variant of the style; superscripts are only cramped if

the original style was cramped.

• In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

• The denominator is always in cramped style; the numerator is only in cramped style if the

original style was cramped.

• Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX one can set the styles in more detail which means that you sometimes have to set

both normal and cramped styles to get the effect you want. If we force styles in the script using

\scriptstyle and \crampedscriptstyle we get this:

Math54

default 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives:

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

5.4 Math parameter settings

In LuaTEX, the font dimension parameters that TEX used in math typesetting are now accessible

via primitive commands. In fact, refactoring of the math engine has resulted in many more

parameters than were accessible before.

primitive name description

\Umathquad the width of 18 mu’s

\Umathaxis height of the vertical center axis of the math formula above the

baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

55Math

\Umathradicaldegreebefore the forward kern that takes place before placement of the radical

degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the radi-

cal degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical

sign that the degree is raised by. It is expressed in percents, so

60% is expressed as the integer 60.
\Umathstackvgap vertical clearance between the two elements in a \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

\Umathsubtopmax the top of standalone subscripts cannot be higher than this above

the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this

above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript

be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

Math56

5.5 Skips around display math

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one

is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-

cially the later mkes it sometimes hard to fully control spacing. Therefore LuaTEX comes with a

new directive: \mathdisplayskipmode. The following values apply:

0 normal TEX behaviour: always above, only below when larger than zero

1 always

2 only when not zero

3 never, not even when not zero

5.6 Font-based Math Parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have

to set each of them by hand. For this reason, LuaTEX initializes a bunch of these parameters

whenever you assign a font identifier to a math family based on either the traditional math font

dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy

and cmex), or based on the named values in a potential MathConstants table when the font is

loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,

and in that case no attention is paid to which family is being assigned to: the MathConstants

tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names

match those using in the TEXbook. Assignments to \textfont set the values for the cramped and

uncramped display and text styles. Use \scriptfont for the script styles, and \scriptscript-

font for the scriptscript styles (totalling eight parameters for three font sizes). In the tfm case,

assignments only happen in family 2 and family 3 (and of course only for the parameters for

which there are font dimensions).

Besides the parameters below, LuaTEX also looks at the ‘space’ font dimension parameter. For

math fonts, this should be set to zero.

variable style default value opentype default value tfm

\Umathaxis – AxisHeight axis_height

\Umathoperatorsize D, D’ DisplayOperatorMinHeight 6

\Umathfractiondelsize D, D’ FractionDelimiterDisplayStyleSize9 delim1

T, T’, S, S’, SS, SS’ FractionDelimiterSize9 delim2

\Umathfractiondenomdown D, D’ FractionDenominatorDisplayStyleShiftDown denom1

T, T’, S, S’, SS, SS’ FractionDenominatorShiftDown denom2

\Umathfractiondenomvgap D, D’ FractionDenominatorDisplayStyleGapMin 3*default_rule_thick-

ness

T, T’, S, S’, SS, SS’ FractionDenominatorGapMin default_rule_thickness

\Umathfractionnumup D, D’ FractionNumeratorDisplayStyleShiftUp num1

T, T’, S, S’, SS, SS’ FractionNumeratorShiftUp num2

\Umathfractionnumvgap D, D’ FractionNumeratorDisplayStyleGapMin 3*default_rule_thick-

ness

T, T’, S, S’, SS, SS’ FractionNumeratorGapMin default_rule_thickness

\Umathfractionrule – FractionRuleThickness default_rule_thickness

\Umathskewedfractionhgap – SkewedFractionHorizontalGap math_quad/2

\Umathskewedfractionvgap – SkewedFractionVerticalGap math_x_height

57Math

\Umathlimitabovebgap – UpperLimitBaselineRiseMin big_op_spacing3

\Umathlimitabovekern – 01 big_op_spacing5

\Umathlimitabovevgap – UpperLimitGapMin big_op_spacing1

\Umathlimitbelowbgap – LowerLimitBaselineDropMin big_op_spacing4

\Umathlimitbelowkern – 01 big_op_spacing5

\Umathlimitbelowvgap – LowerLimitGapMin big_op_spacing2

\Umathoverdelimitervgap – StretchStackGapBelowMin big_op_spacing1

\Umathoverdelimiterbgap – StretchStackTopShiftUp big_op_spacing3

\Umathunderdelimitervgap – StretchStackGapAboveMin big_op_spacing2

\Umathunderdelimiterbgap – StretchStackBottomShiftDown big_op_spacing4

\Umathoverbarkern – OverbarExtraAscender default_rule_thickness

\Umathoverbarrule – OverbarRuleThickness default_rule_thickness

\Umathoverbarvgap – OverbarVerticalGap 3*default_rule_thick-

ness

\Umathquad – <font_size(f)>1 math_quad

\Umathradicalkern – RadicalExtraAscender default_rule_thickness

\Umathradicalrule – RadicalRuleThickness <not set>2

\Umathradicalvgap D, D’ RadicalDisplayStyleVerticalGap (default_rule_thickness+

(abs(math_x_height)/4))3

T, T’, S, S’, SS, SS’ RadicalVerticalGap (default_rule_thickness+

(abs(default_rule_thickness)/4))3

\Umathradicaldegreebefore – RadicalKernBeforeDegree <not set>2

\Umathradicaldegreeafter – RadicalKernAfterDegree <not set>2

\Umathradicaldegreeraise – RadicalDegreeBottomRaisePercent <not set>2,7

\Umathspaceafterscript – SpaceAfterScript script_space4

\Umathstackdenomdown D, D’ StackBottomDisplayStyleShiftDown denom1

T, T’, S, S’, SS, SS’ StackBottomShiftDown denom2

\Umathstacknumup D, D’ StackTopDisplayStyleShiftUp num1

T, T’, S, S’, SS, SS’ StackTopShiftUp num3

\Umathstackvgap D, D’ StackDisplayStyleGapMin 7*default_rule_thick-

ness

T, T’, S, S’, SS, SS’ StackGapMin 3*default_rule_thick-

ness

\Umathsubshiftdown – SubscriptShiftDown sub1

\Umathsubshiftdrop – SubscriptBaselineDropMin sub_drop

\Umathsubsupshiftdown – SubscriptShiftDownWithSuperscript8

or SubscriptShiftDown sub2

\Umathsubtopmax – SubscriptTopMax (abs(math_x_height *

4) / 5)

\Umathsubsupvgap – SubSuperscriptGapMin 4*default_rule_thick-

ness

\Umathsupbottommin – SuperscriptBottomMin (abs(math_x_height) /

4)

\Umathsupshiftdrop – SuperscriptBaselineDropMax sup_drop

\Umathsupshiftup D SuperscriptShiftUp sup1

T, S, SS, SuperscriptShiftUp sup2

D’, T’, S’, SS’ SuperscriptShiftUpCramped sup3

\Umathsupsubbottommax – SuperscriptBottomMaxWithSubscript (abs(math_x_height *

4) / 5)

\Umathunderbarkern – UnderbarExtraDescender default_rule_thickness

\Umathunderbarrule – UnderbarRuleThickness default_rule_thickness

\Umathunderbarvgap – UnderbarVerticalGap 3*default_rule_thick-

ness

\Umathconnectoroverlapmin – MinConnectorOverlap 05

Math58

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set

\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: tfm fonts do not set \Umathradicalrule because TEX82 uses the height of the radical

instead. When this parameter is indeed not set when LuaTEX has to typeset a radical, a back-

ward compatibility mode will kick in that assumes that an oldstyle TEX font is used. Also, they

do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umathradicalde-

greeraise. These are then automatically initialized to 5/18quad, −10/18quad, and 60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX

has to typeset a formula because this needs parameters from both family 2 and family 3. This

provides a partial backward compatibility with TEX82, but that compatibility is only partial: once

the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter-

script: it is not set until the first time LuaTEX has to typeset a formula. This provides some

backward compatibility with TEX82. But once the \Umathspaceafterscript is set, \script-

space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always

stacks extensibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType

fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s

size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that

is expressed in a percentage instead of as a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open-

Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-

ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

5.7 Math spacing setting

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to

control the math spacing table (as explained in Chapter 18 of the TEXbook). The primitive names

are a simple matter of combining two math atom types, but for completeness’ sake, here is the

whole list:

\Umathordordspacing

\Umathordopspacing

\Umathordbinspacing

\Umathordrelspacing

\Umathordopenspacing

\Umathordclosespacing

\Umathordpunctspacing

\Umathordinnerspacing

\Umathopordspacing

\Umathopopspacing

\Umathopbinspacing

\Umathoprelspacing

\Umathopopenspacing

\Umathopclosespacing

\Umathoppunctspacing

\Umathopinnerspacing

\Umathbinordspacing

\Umathbinopspacing

59Math

\Umathbinbinspacing

\Umathbinrelspacing

\Umathbinopenspacing

\Umathbinclosespacing

\Umathbinpunctspacing

\Umathbininnerspacing

\Umathrelordspacing

\Umathrelopspacing

\Umathrelbinspacing

\Umathrelrelspacing

\Umathrelopenspacing

\Umathrelclosespacing

\Umathrelpunctspacing

\Umathrelinnerspacing

\Umathopenordspacing

\Umathopenopspacing

\Umathopenbinspacing

\Umathopenrelspacing

\Umathopenopenspacing

\Umathopenclosespacing

\Umathopenpunctspacing

\Umathopeninnerspacing

\Umathcloseordspacing

\Umathcloseopspacing

\Umathclosebinspacing

\Umathcloserelspacing

\Umathcloseopenspacing

\Umathcloseclosespacing

\Umathclosepunctspacing

\Umathcloseinnerspacing

\Umathpunctordspacing

\Umathpunctopspacing

\Umathpunctbinspacing

\Umathpunctrelspacing

\Umathpunctopenspacing

\Umathpunctclosespacing

\Umathpunctpunctspacing

\Umathpunctinnerspacing

\Umathinnerordspacing

\Umathinneropspacing

\Umathinnerbinspacing

\Umathinnerrelspacing

\Umathinneropenspacing

\Umathinnerclosespacing

\Umathinnerpunctspacing

\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:

\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the

TEXbook.

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and

\thickmuskip are treated especially. In their case a pointer to the corresponding internal para-

meter is saved, not the actual \muskip value. This means that any later changes to one of these

three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the

TEXbook. These will not actually be used as those combinations of atoms cannot actually happen,

but it seemed better not to break orthogonality. They are initialized to zero.

5.8 Math accent handling

LuaTEX supports both top accents and bottom accents in math mode, and math accents stretch

automatically (if this is supported by the font the accent comes from, of course). Bottom and

combined accents as well as fixed-width math accents are controlled by optional keywords fol-

lowing \Umathaccent.

Math60

The keyword bottom after \Umathaccent signals that a bottom accent is needed, and the keyword

both signals that both a top and a bottom accent are needed (in this case two accents need to

be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by

the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,

this step is repeated).

A simple example:

\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top_ac-

cent value, then this value will be used to place the accent instead of the \skewchar kern used

by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be

shifted horizontally such that its own top_accent line coincides with the one from the accentee.

If the top_accent value of the accent is zero, then half the width of the accent followed by its

italic correction is used instead.

The vertical placement of a top accent depends on the x_height of the font of the accentee (as

explained in the TEXbook), but if value that turns out to be zero and the font had a MathConstants

table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes

place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.

An additional parameter fraction can be specified followed by a number; a value of for instance

1200 means that the criterium is 1.2 times the width of the nuclues. The fraction only applies

to the stepwise selected shapes and is mostly meant for the overlay location. It also works for

the other locations but then it concerns the width.

5.9 Math root extension

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its

syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>

\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by themath parameters \Umathradicaldegreebefore,

\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in

\scriptscriptstyle.

5.10 Math kerning in super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The

format of this table is the same as the ‘mathkern’ table that is returned by the fontloader

library, except that all height and kern values have to be specified in actual scaled points.

61Math

When a super- or subscript has to be placed next to a math item, LuaTEX checks whether the

super- or subscript and the nucleus are both simple character items. If they are, and if the

fonts of both character items are OpenType fonts (as opposed to legacy TEX fonts), then LuaTEX

will use the OpenType math algorithm for deciding on the horizontal placement of the super- or

subscript.

This works as follows:

• The vertical position of the script is calculated.

• The default horizontal position is flat next to the base character.

• For superscripts, the italic correction of the base character is added.

• For a superscript, two vertical values are calculated: the bottom of the script (after shifting

up), and the top of the base. For a subscript, the two values are the top of the (shifted down)

script, and the bottom of the base.

• For each of these two locations:

− find the math kern value at this height for the base (for a subscript placement, this is the

bottom_right corner, for a superscript placement the top_right corner)

− find the math kern value at this height for the script (for a subscript placement, this is the

top_left corner, for a superscript placement the bottom_left corner)

− add the found values together to get a preliminary result.

• The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher

height and kern pair, or the highest one in the character (if there is no value high enough in the

character), or simply zero (if the character has no math kern pairs at all).

5.11 Scripts on horizontally extensible items like arrows

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or

superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover

allow the placement of an automatically extensible item as a subscript or superscript on a nu-

cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$

$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$

$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$

$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter
↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

underdelimiter

↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔
delimiterover delimiterunder↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-

itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit

placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable

scripted style, the subscript in \Uunderdelimiter is cramped as well.

Math62

These primitives accepts an option width specification. When used the also optional keywords

left, middle and rightwill determine what happens when a requested size can’t be met (which

can happen when we step to successive larger variants).

An extra primitive \Uhextensible is available that can be used like this:

$\Uhextensible width 10cm 0 "2194$

This will render this:

↔↔↔

Here you can also pass options, like:

$\Uhextensible width 1pt middle 0 "2194$

This gives:

↔

LuaTEX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten-

sible recipes’.

5.12 Extracting values

You can extract the components of a math character. Say that we have defined:

\Umathcode 1 2 3 4

then

[\Umathcharclass1] [\Umathcharfam1] [\Umathcharslot1]

will return:

[2] [3] [4]

These commands are provides as convenience. before they came available you could do the

following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan_int())[1])}}

\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan_int())[2])}}

\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan_int())[3])}}

5.13 fractions

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-

tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-

mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

63Math

The math parameter table contains some parameters that specify a horizontal and vertical gap

for skewed fractions. Of course some guessing is needed in order to implement something that

uses then. And so we now provide a primitive similar to the other fraction related ones but with

a few options so that one can influence the rendering. Of course a user can mess around a bit

with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by

default we zero the width of the middle character. For Latin Modern The result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

5.14 Other Math changes

5.14.1 Verbose versions of single-character math commands

LuaTEX defines six new primitives that have the same function as ^, _, $, and $$.

primitive explanation

\Usuperscript Duplicates the functionality of ^

\Usubscript Duplicates the functionality of _

\Ustartmath Duplicates the functionality of $, when used in non-math mode.

\Ustopmath Duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath Duplicates the functionality of $$, when used in non-math mode.

\Ustopdisplaymath Duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-

rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands

with explicit dollar sign(s).

5.14.2 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-

chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those

cases, the \textfont from the requested math family is used.

5.15 Math surrounding skips

Inline math is surrounded by (optional) \mathsurround spacing but that is fixed dimension.

There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or

Math64

zero with some stretch or shrink) this parameter will replace \mathsurround. By using an addi-

tional parameter instead of changing the nature of \mathsurround, we can remain compatible.

5.15.1 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it. The

resulting delimiter will either be a character from the stepwise size range or an extensible. The

latter can be quite differently positioned that the characters as it depends on the fit as well as

the fact if the used characters in the font have depth or height. Commands like (plain TEXs) \big

need use this feature. In LuaTEX we provide a bit more control by three variants that supporting

optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

⎛⎜⎜⎜⎜
⎝

𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥
⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝ 𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥

⎞⎟⎟⎟⎟
⎠

The keyword exact can be used as directive that the real dimensions should be applied when

the criteria can’t be met which can happen when we’re still stepping through the successively

larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing.

5.15.2 Fixed scripts

We have three parameters that are used for this fixed anchoring:

𝑑 \Umathsubshiftdown

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed

positions. This is something that is needed for instance for chemistry. You can manipulate the

mentioned variables to achive different effects.

65Math

mode down up

0 dynamic dynamic CH2 + CH+
2 + CH2

2
1 𝑑 𝑢 CH2 + CH+

2 + CH2
2

2 𝑠 𝑢 CH2 + CH+
2 + CH2

2
3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 + CH+

2 + CH2
2

4 𝑑 + (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 + CH+
2 + CH2

2
5 𝑑 𝑢 + 𝑠 − 𝑑 CH2 + CH+

2 + CH2
2

The value of this parameter obeys grouping but applies to the whole current formula.

5.15.3 Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.

Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

5.15.4 Math options

The logic in the math engine is rather complex and there are often no universal solutions (read:

what works out well for one font, fails for another). Therefore some variations in the implemen-

tation will be driven by options for which a new primitive \mathoption has been introduced (so

that we don’t end up with many new commands). The approach of options also permits us to see

what effect a specific solution has.

5.15.4.1 \mathoption noitaliccompensation

This option compensates placement for characters with a built-in italic correction.

{\showboxes\int}\quad

{\showboxes\int_{|}^{|}}\quad

{\showboxes\int\limits_{|}^{|}}

Gives (with computer modern that has such italics):

∫H__ ∫H__
|H__

|H____V

|H__

∫H__H__

|H____V

∫H__ ∫H__
|H__

|H____V

|H__

∫H__H__

|H____V

0:inline 0:display

∫H__ ∫H__
|H__

|H____V

|H__

∫H__H__

|H____V

∫H__ ∫H__
|H__

|H____V

|H__

∫H__H__

|H____V

1:inline 1:display

5.15.4.2 \mathoption nocharitalic

When two characters follow each other italic correction can interfere. The following example

shows what this option does:

\catcode"1D443=11

Math66

\catcode"1D444=11

\catcode"1D445=11

P(PP PQR

Gives (with computer modern that has such italics):

𝑃(𝑃𝑃𝑃𝑄𝑅 𝑃(𝑃𝑃𝑃𝑄𝑅
0:inline 0:display

𝑃(𝑃𝑃𝑃𝑄𝑅 𝑃(𝑃𝑃𝑃𝑄𝑅
1:inline 1:display

5.15.4.3 \mathoption useoldfractionscaling

This option has been introduced as solution for tracker item 604 for fuzzy cases around either

or not present fraction related settings for new fonts.

67Nodes

6 Nodes

6.1 LUA node representation

TEX’s nodes are represented in Lua as userdata object with a variable set of fields. In the fol-

lowing syntax tables, such the type of such a userdata object is represented as ⟨node⟩.

The current return value of node.types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4), ad-

just (5), boundary (6), disc (7), whatsit (8), local_par (9), dir (10), math (11), glue (12), kern

(13), penalty (14), unset (15), style (16), choice (17), noad (18), radical (19), fraction (20),

accent (21), fence (22), math_char (23), sub_box (24), sub_mlist (25), math_text_char (26),

delim (27), margin_kern (28), glyph (29), align_record (30), pseudo_file (31), pseudo_line

(32), page_insert (33), split_insert (34), expr_stack (35), nested_list (36), span (37),

attribute (38), glue_spec (39), attribute_list (40), temp (41), align_stack (42), move-

ment_stack (43), if_stack (44), unhyphenated (45), hyphenated (46), delta (47), passive (48),

shape (49).

The \lastnodetype primitive is 𝜀-TEX compliant. The valid range is still [−1, 15] and glyph nodes
(formerly known as char nodes) have number 0 while ligature nodes are mapped to 7. That way

macro packages can use the same symbolic names as in traditional 𝜀-TEX. Keep in mind that these
𝜀-TEX node numbers are different from the real internal ones and that there are more 𝜀-TEX node
types than 15.

You can ask for a list of fields with the node.fields (which takes an id) and for valid subtypes

with node.subtypes (which takes a string because eventually we might support more used enu-

merations) .

6.1.1 Auxiliary items

A few node-typed userdata objects do not occur in the ‘normal’ list of nodes, but can be pointed

to from within that list. They are not quite the same as regular nodes, but it is easier for the

library routines to treat them as if they were.

6.1.1.1 attribute_list and attribute items

The newly introduced attribute registers are non-trivial, because the value that is attached to a

node is essentially a sparse array of key-value pairs.

It is generally easiest to deal with attribute lists and attributes by using the dedicated functions

in the node library, but for completeness, here is the low-level interface.

An attribute_list item is used as a head pointer for a list of attribute items. It has only one

user-visible field:

field type explanation

next <node> pointer to the first attribute

Nodes68

A normal node’s attribute field will point to an item of type attribute_list, and the next field

in that item will point to the first defined ‘attribute’ item, whose next will point to the second

‘attribute’ item, etc.

Valid fields in attribute items:

field type explanation

next <node> pointer to the next attribute

number number the attribute type id

value number the attribute value

As mentioned it’s better to use the official helpers rather than edit these fields directly. For

instance the prev field is used for other purposes and there is no double linked list.

6.1.2 Main text nodes

These are the nodes that comprise actual typesetting commands.

A few fields are present in all nodes regardless of their type, these are:

field type explanation

next <node> the next node in a list, or nil

id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a stub entry. Not all nodes actually use the subtype, but this way

you can be sure that all nodes accept it as a valid field name, and that is often handy in node list

traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field

called prev. That last field is always present, but only initialized on explicit request: when the

function node.slide() is called, it will set up the prev fields to be a backwards pointer in the

argument node list.

6.1.2.1 hlist nodes

Valid fields: attr, width, depth, height, dir, shift, glue_order, glue_sign, glue_set, head

Id: 0

field type explanation

subtype number 0 = unknown origin, 1 = created by linebreaking, 2 = explicit box com-

mand, 3 = paragraph indentation box, 4 = alignment column or row, 5

= alignment cell 6 = equation 7 = equation number

attr <node> The head of the associated attribute list

width number

height number

depth number

shift number a displacement perpendicular to the character progression direction

glue_order number a number in the range [0, 4], indicating the glue order

69Nodes

glue_set number the calculated glue ratio

glue_sign number 0 = normal, 1 = stretching, 2 = shrinking

head <node> the first node of the body of this list

dir string the direction of this box, see 6.1.4.8

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to

a list by head, sometimes list makes more sense.

6.1.2.2 vlist nodes

Valid fields: As for hlist, except that ‘shift’ is a displacement perpendicular to the line progression

direction, and ‘subtype’ only has subtypes 0, 4, and 5.

6.1.2.3 rule nodes

6.1.2.3.1 normal rules

Valid fields: attr, width, depth, height, dir, index

Id: 2

We have three subtypes. Subtype 0 is just a normal rule, a rectangle filled with ink. Subtype 1

is a reusable box, while subtype_2 is an image.

field type explanation

subtype number 0 upto 3

attr <node>

width number the width of the rule; the special value −1073741824 is used for ‘running’
glue dimensions

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

dir string the direction of this rule, see 6.1.4.8

index number an optional index that can be referred to (only for subtypes 1 and 2 and

backend specific).

The subtypes 1 and 2 replace the xform and ximage whatsits and in node lists they behave like

rules of subtype_0 when it comes to dimensions. Subtype 3 only has dimensions.

6.1.2.4 ins nodes

Valid fields: attr, cost, depth, height, spec, head

Id: 3

field type explanation

subtype number the insertion class

attr <node>

Nodes70

cost number the penalty associated with this insert

height number

depth number

head/list <node> the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be result. You can use list instead (often in functions you

want to use local variable swith similar names and both names are equally sensible).

6.1.2.5 mark nodes

Valid fields: attr, class, mark

Id: 4

field type explanation

subtype number unused

attr <node>

class number the mark class

mark table a table representing a token list

6.1.2.6 adjust nodes

Valid fields: attr, head

Id: 5

field type explanation

subtype number 0 = normal, 1 = ‘pre’

attr <node>

head/list <node> adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be result.

6.1.2.7 disc nodes

Valid fields: attr, pre, post, replace, penalty

Id: 7

field type explanation

subtype number indicates the source of a discretionary: 0= the \discretionary command, 1

= the \- command, 2 = added automatically following a -, 3 = added by the

hyphenation algorithm (simple), 4 = added by the hyphenation algorithm

(hard, first item), 5 = added by the hyphenation algorithm (hard, second

item)

attr <node>

71Nodes

pre <node> pointer to the pre-break text

post <node> pointer to the post-break text

replace <node> pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \exhy-

phenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere.

Warning: never assign a node list to the pre, post or replace field unless you are sure its internal

link structure is correct, otherwise an error may be result. This limnitation will disappear in the

future,

6.1.2.8 math nodes

Valid fields: attr, surround, width, stretch, shrink, stretch_order, shrink_order

Id: 11

field type explanation

subtype number 0 = on, 1 = off

attr <node>

surround number width of the \mathsurround kern

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

6.1.2.9 glue nodes

Skips are about the only type of data objects in traditional TEX that are not a simple value. The

structure that represents the glue components of a skip is called a glue_spec, and it has the

following accessible fields:

key type explanation

width number

stretch number

stretch_order number

shrink number

shrink_order number

The effective width of some glue subtypes depends on the stretch or shrink needed to make

the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue

representing spaces and these stretch of shrink to make the content fit in the available space.

The effective_glue function that takes a glue node and a parent (hlist or vlist) returns the

effective width of that glue item.

A gluespec node is a special kind of node that is used for storing a set of glue values in registers.

Originally they were also used to store properties of glue nodes (using a system of reference

counts) but we now keep these properties in the glue nodes themselves, which gives a cleaner

interface to Lua.

Nodes72

The indirect spec approach was in fact an optimization in the original TEX code. First of all it can

save quite some memory because all these spaces that become glue now share the same spec-

ification (only the reference count is incremented), and zero testing is also a bit faster because

only the pointer has to be checked (this is no longer true for engines that implement for instance

protrusion where we really need to ensure that zero is zero when we test for bounds). Another

side effect is that glue specifications are read-only, so in the end copies need to be made when

they are used from Lua (each assignment to a field can result in a new copy). So in the end the

advantages of sharing are not that high (and nowadays memory is less an issue, also given that

a glue node is only a few memory words larger than a spec).

Valid fields: attr, leader, width, stretch, shrink, stretch_order, shrink_order

Id: 12

field type explanation

subtype number 0 = \skip, 1-18 = internal glue parameters, 98-99 = ‘math glue’

subtypes 100-103 = ‘leader’ subtypes

attr <node>

leader <node> pointer to a box or rule for leaders

width number

stretch number

stretch_order number

shrink number

shrink_order number

Note that we use the key width in both horizontal and vertical glue. This suits the TEX internals

well so we decided to stick to that naming.

The exact meanings of the subtypes are as follows:

1 \lineskip

2 \baselineskip

3 \parskip

4 \abovedisplayskip

5 \belowdisplayskip

6 \abovedisplayshortskip

7 \belowdisplayshortskip

8 \leftskip

9 \rightskip

10 \topskip

11 \splittopskip

12 \tabskip

13 \spaceskip

14 \xspaceskip

15 \parfillskip

16 \mathsurroundskip

17 \thinmuskip

18 \medmuskip

19 \thickmuskip

98 conditional math skip

73Nodes

99 muglue

100 \leaders

101 \cleaders

102 \xleaders

103 \gleaders

A regular word space also results in a spaceskip subtype (this used to be a userskip with

subtype zero).

For convenience we provide access to the spec fields directly so that you can avoid the spec

lookup. So, the following fields can also be queried or set. When you set a field and no spec is

set, a spec will automatically be created.

key type explanation

width number

stretch number

stretch_order number

shrink number

shrink_order number

When you assign the properties to a spec using the above keys the advantage is that when needed

a new spec is allocated. if you access the spec node directly you can get an error message with

respect to a non-writable spec node.

By using the accessors in the glue node you are more future proof as we might decide at some

point to carry all information in the glue nodes themselves. Of course we can then also decide

to make the spec field kind of virtual to keep compatibility (for a while).

6.1.2.10 kern nodes

Valid fields: attr, kern, expansion_factor

Id: 13

field type explanation

subtype number 0 = from font, 1 = from \kern, 2 = from \accent, 3 = from \/

attr <node>

kern number

6.1.2.11 penalty nodes

Valid fields: attr, penalty

Id: 14

field type explanation

subtype number not used

attr <node>

penalty number

Nodes74

6.1.2.12 glyph nodes

Valid fields: attr, char, font, lang, left, right, uchyph, components, xoffset, yoffset, width,

height, depth, expansion_factor

Id: 29

field type explanation

subtype number bitfield

attr <node>

char number

font number

lang number

left number

right number

uchyph boolean

components <node> pointer to ligature components

xoffset number

yoffset number

width number

height number

depth number

expansion_factor number

A warning: never assign a node list to the components field unless you are sure its internal link

structure is correct, otherwise an error may be result. Valid bits for the subtype field are:

bit meaning

0 character

1 ligature

2 ghost

3 left

4 right

See section 3.1 for a detailed description of the subtype field.

The expansion_factor has been introduced as part of the separation between font- and back-

end. It is the result of extensive experiments with a more efficient implementation of expansion.

Early versions of LuaTEX already replaced multiple instances of fonts in the backend by scaling

but contrary to pdfTEX in LuaTEX we now also got rid of font copies in the frontend and replaced

them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is

also a step towards a better separation between front- and backend.

The is_char function checks if a node is a glyph node with a subtype still less than 256. This

function can be used to determine if applying font logic to a glyph node makes sense. The value

nil gets returned when the node is not a glyph, a character number is returned if the node is

still tagged as character and false gets returned otherwise. When nil is returned, the id is also

returned. The is_glyph variant doesn’t check for a subtype being less than 256, so it returns

either the character value or nil plus the id. These helpers are not always faster than separate

calls but they sometimes permit making more readable tests.

75Nodes

6.1.2.13 margin_kern nodes

Valid fields: attr, width, glyph

Id: 28

field type explanation

subtype number 0 = left side, 1 = right side

attr <node>

width number

glyph <node>

6.1.3 Math nodes

These are the so--called ‘noad’s and the nodes that are specifically associated with math pro-

cessing. Most of these nodes contain subnodes so that the list of possible fields is actually quite

small. First, the subnodes:

6.1.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists

or node lists. There are four associated subnodes that represent these cases (in the following

node descriptions these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

6.1.3.1.1 math_char and math_text_char subnodes

Valid fields: attr, fam, char

Id: 23

field type explanation

attr <node>

char number

fam number

The math_char is the simplest subnode field, it contains the character and family for a single

glyph object. The math_text_char is a special case that you will not normally encounter, it

arises temporarily during math list conversion (its sole function is to suppress a following italic

correction).

6.1.3.1.2 sub_box and sub_mlist subnodes

Valid fields: attr, head

Id: 24

field type explanation

attr <node>

head <node>

Nodes76

These two subnode types are used for subsidiary list items. For sub_box, the head points to a

‘normal’ vbox or hbox. For sub_mlist, the head points to a math list that is yet to be converted.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be result.

6.1.3.2 Math delimiter subnode

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and

prev fields are unused.

6.1.3.2.1 delim subnodes

Valid fields: attr, small_fam, small_char, large_fam, large_char

Id: 27

field type explanation

attr <node>

small_char number

small_fam number

large_char number

large_fam number

The fields large_char and large_fam can be zero, in that case the font that is sed for the

small_fam is expected to provide the large version as an extension to the small_char.

6.1.3.3 Math core nodes

First, there are the objects (the TEXbook calls then ‘atoms’) that are associated with the simple

math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcent. These all have

the same fields, and they are combined into a single node type with separate subtypes for dif-

ferentiation.

6.1.3.3.1 simple nodes

Valid fields: attr, nucleus, sub, sup

Id: 18

field type explanation

subtype number see below

attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

Operators are a bit special because they occupy three subtypes. subtype.

77Nodes

number node subtype

0 Ord

1 Op: \displaylimits

2 Op: \limits

3 Op: \nolimits

4 Bin

5 Rel

6 Open

7 Close

8 Punct

9 Inner

10 Under

11 Over

12 Vcent

6.1.3.3.2 accent nodes

Valid fields: attr, nucleus, sub, sup, accent, bot_accent, top_accent, overlay_accent

Id: 21

field type explanation

subtype number the first bit is used for a fixed top accent flag (if the accent field is

present), the second bit for a fixed bottom accent flag (if the bot_ac-

cent field is present); example: the actual value 3 means: do not

stretch either accent

attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

accent <kernel>

bot_accent <kernel>

6.1.3.3.3 style nodes

Valid fields: attr, style

Id: 16

field type explanation

style string contains the style

There are eight possibilities for the string value: one of ‘display’, ‘text’, ‘script’, or ‘scriptscript’.

Each of these can have a trailing ' to signify ‘cramped’ styles.

6.1.3.3.4 choice nodes

Valid fields: attr, display, text, script, scriptscript

Id: 17

Nodes78

field type explanation

attr <node>

display <node>

text <node>

script <node>

scriptscript <node>

A warning: never assign a node list to the display, text, script, or scriptscript field unless you

are sure its internal link structure is correct, otherwise an error may be result.

6.1.3.3.5 radical nodes

Valid fields: attr, nucleus, sub, sup, left, degree

Id: 19

field type explanation

attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

left <delim>

degree <kernel> Only set by \Uroot

A warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are

sure its internal link structure is correct, otherwise an error may be result.

The radical noad is also used for under- and overdelimiters, which is indicated by the subtypes:

0 \radical

1 \Uradical

2 \Uroot

3 \Uunderdelimiter

4 \Uoverdelimiter

5 \Udelimiterunder

6 \Udelimiterover

6.1.3.3.6 fraction nodes

Valid fields: attr, width, num, denom, left, right

Id: 20

field type explanation

attr <node>

width number

num <kernel>

denom <kernel>

left <delim>

right <delim>

79Nodes

A warning: never assign a node list to the num, or denom field unless you are sure its internal

link structure is correct, otherwise an error may be result.

6.1.3.3.7 fence nodes

Valid fields: attr, delim

Id: 22

field type explanation

subtype number 1 = \left, 2 = \middle, 3 = \right

attr <node>

delim <delim>

6.1.4 whatsit nodes

Whatsit nodes come in many subtypes that you can ask for by running node.whatsits():

open (0), write (1), close (2), special (3), save_pos (6), late_lua (7), user_defined (8),

pdf_literal (16), pdf_refobj (17), pdf_annot (18), pdf_start_link (19), pdf_end_link (20),

pdf_dest (21), pdf_action (22), pdf_thread (23), pdf_start_thread (24), pdf_end_thread

(25), pdf_thread_data (26), pdf_link_data (27), pdf_colorstack (28), pdf_setmatrix (29),

pdf_save (30), pdf_restore (31), fake (100).

6.1.4.1 open nodes

Valid fields: attr, stream, name, area, ext

Id: 8, 0

field type explanation

attr <node>

stream number TEX’s stream id number

name string file name

ext string file extension

area string file area (this may become obsolete)

6.1.4.2 write nodes

Valid fields: attr, stream, data

Id: 8, 1

field type explanation

attr <node>

stream number TEX’s stream id number

data table a table representing the token list to be written

6.1.4.3 close nodes

Valid fields: attr, stream

Id: 8, 2

Nodes80

field type explanation

attr <node>

stream number TEX’s stream id number

6.1.4.4 special nodes

Valid fields: attr, data

Id: 8, 3

field type explanation

attr <node>

data string the \special information

6.1.4.5 boundary nodes

Valid fields: attr, value

Id: 6

This node relates to the \noboundary primitive but you can use it for your own purpose too, in

which case \boundary can come in handy.

6.1.4.6 language nodes

LuaTEX does not have language whatsits any more. All language information is already present

inside the glyph nodes themselves. This whatsit subtype will be removed in the next release.

6.1.4.7 local_par nodes

Valid fields: attr, pen_inter, pen_broken, dir, box_left, box_left_width, box_right,

box_right_width

Id: 9

field type explanation

attr <node>

pen_inter number local interline penalty (from \localinterlinepenalty)

pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 6.1.4.8

box_left <node> the \localleftbox

box_left_width number width of the \localleftbox

box_right <node> the \localrightbox

box_right_width number width of the \localrightbox

A warning: never assign a node list to the box_left or box_right field unless you are sure its

internal link structure is correct, otherwise an error may be result.

6.1.4.8 dir nodes

Valid fields: attr, dir, level

Id: 10

81Nodes

field type explanation

attr <node>

dir string the direction (but see below)

level number nesting level of this direction whatsit

dvi_ptr number a saved dvi buffer byte offset

dir_h number a saved dvi position

A note on dir strings. Direction specifiers are three-letter combinations of T, B, R, and L.

These are built up out of three separate items:

• the first is the direction of the ‘top’ of paragraphs.

• the second is the direction of the ‘start’ of lines.

• the third is the direction of the ‘top’ of glyphs.

However, only four combinations are accepted: TLT, TRT, RTT, and LTL.

Inside actual dir whatsit nodes, the representation of dir is not a three-letter but a four-letter

combination. The first character in this case is always either + or -, indicating whether the value

is pushed or popped from the direction stack.

6.1.4.9 pdf_literal nodes

Valid fields: attr, mode, data

Id: 8, 16

field type explanation

attr <node>

mode number the ‘mode’ setting of this literal

data string the \pdfliteral information

Mode values:

value corresponding \pdftex keyword

0 setorigin

1 page

2 direct

6.1.4.10 pdf_refobj nodes

Valid fields: attr, objnum

Id: 8, 17

field type explanation

attr <node>

objnum number the referenced pdf object number

6.1.4.11 pdf_annot nodes

Valid fields: attr, width, depth, height, objnum, data

Id: 8, 18

Nodes82

field type explanation

attr <node>

width number

height number

depth number

objnum number the referenced pdf object number

data string the annotation data

6.1.4.12 pdf_start_link nodes

Valid fields: attr, width, depth, height, objnum, link_attr, action

Id: 8, 19

field type explanation

attr <node>

width number

height number

depth number

objnum number the referenced pdf object number

link_attr table the link attribute token list

action <node> the action to perform

6.1.4.13 pdf_end_link nodes

Valid fields: attr

Id: 8, 20

field type explanation

attr <node>

6.1.4.14 pdf_dest nodes

Valid fields: attr, width, depth, height, named_id, dest_id, dest_type, xyz_zoom, objnum

Id: 8, 21

field type explanation

attr <node>

width number

height number

depth number

named_id number is the dest_id a string value?

dest_id number the destination id

string the destination name

dest_type number type of destination

xyz_zoom number

objnum number the pdf object number

83Nodes

6.1.4.15 pdf_action nodes

Valid fields: action_type, named_id, action_id, file, new_window, data, ref_count

Id: 8, 22

These are a special kind of item that only appears inside pdf start link objects.

field type explanation

action_type number

action_id number or string

named_id number

file string

new_window number

data string

ref_count number read-only

6.1.4.16 pdf_thread nodes

Valid fields: attr, width, depth, height, named_id, thread_id, thread_attr

Id: 8, 23

field type explanation

attr <node>

width number

height number

depth number

named_id number is tread_id a string value?

tread_id number the thread id

string the thread name

thread_attr number extra thread information

6.1.4.17 pdf_start_thread nodes

Valid fields: attr, width, depth, height, named_id, thread_id, thread_attr

Id: 8, 24

field type explanation

attr <node>

width number

height number

depth number

named_id number is tread_id a string value?

tread_id number the thread id

string the thread name

thread_attr number extra thread information

6.1.4.18 pdf_end_thread nodes

Valid fields: attr

Id: 8, 25

Nodes84

field type explanation

attr <node>

6.1.4.19 save_pos nodes

Valid fields: attr

Id: 8, 6

field type explanation

attr <node>

6.1.4.20 late_lua nodes

Valid fields: attr, reg, data, name, string

Id: 8, 7

field type explanation

attr <node>

data string data to execute

string string data to execute

name string the name to use for Lua error reporting

The difference between data and string is that on assignment, the data field is converted to a

token list, cf. use as \latelua. The string version is treated as a literal string.

6.1.4.21 pdf_colorstack nodes

Valid fields: attr, stack, cmd, data

Id: 8, 28

field type explanation

attr <node>

stack number colorstack id number

command number command to execute

data string data

6.1.4.22 pdf_setmatrix nodes

Valid fields: attr, data

Id: 8, 29

field type explanation

attr <node>

data string data

6.1.4.23 pdf_save nodes

Valid fields: attr

Id: 8, 30

85Nodes

field type explanation

attr <node>

6.1.4.24 pdf_restore nodes

Valid fields: attr

Id: 8, 31

field type explanation

attr <node>

6.1.4.25 user_defined nodes

User-defined whatsit nodes can only be created and handled from Lua code. In effect, they are

an extension to the extension mechanism. The LuaTEX engine will simply step over such whatsits

without ever looking at the contents.

Valid fields: attr, user_id, type, value

Id: 8, 8

field type explanation

attr <node>

user_id number id number

type number type of the value

value number

string

<node>

table

The type can have one of five distinct values:

value explanation

97 the value is an attribute node list

100 the value is a number

110 the value is a node list

115 the value is a string

116 the value is a token list in Lua table form

6.2 Two access models

Deep down in TEX a node has a number which is an numeric entry in a memory table. In fact,

this model, where TEX manages memory is real fast and one of the reasons why plugging in

callbacks that operate on nodes is quite fast. So, if you use the direct model, even if you know

that you deal with numbers, you should not depend on that property but treat it an abstraction

just like traditional nodes. In fact, the fact that we use a simple basic datatype has the penalty

that less checking can be done, but less checking is also the reason why it’s somewhat faster.

An important aspect is that one cannot mix both methods, but you can cast both models.

Nodes86

So our advice is: use the indexed (table) approach when possible and investigate the direct one

when speed might be an issue. For that reason we also provide the get* and set* functions

in the top level node namespace. There is a limited set of getters. When implementing this

direct approach the regular index by key variant was also optimized, so direct access only makes

sense when we’re accessing nodes millions of times (which happens in some font processing for

instance).

We’re talking mostly of getters because setters are less important. Documents have not that

many content related nodes and setting many thousands of properties is hardly a burden con-

trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being

called. In practice it boils down to looking up the node type and based on the node type checking

for the field name. In a worst case you have a node type that sits at the end of the lookup list and

a field that is last in the lookup chain. However, in successive versions of LuaTEX these lookups

have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.

The next code does the same and performs a tiny bit faster (but not that much because it is still

a function call but one that knows what to look up).

local next = node.next(current)

if next then

-- do something

end

If performance matters you can use an function instead:

getnext parsing nodelist always involves this one

getprev used less but is logical companion to getnext

getboth returns the next and prev pointer of a node

getid consulted a lot

getsubtype consulted less but also a topper

getfont used a lot in OpenType handling (glyph nodes are consulted a lot)

getchar idem and also in other places

getdisc returns the pre, post and replace fields and optionally when true is passed also

the tail fields.

getlist we often parse nested lists so this is a convenient one too (only works for hlist and

vlist!)

getleader comparable to list, seldom used in TEX (but needs frequent consulting like lists;

leaders could have been made a dedicated node type)

getfield generic getter, sufficient for the rest (other field names are often shared so a spe-

cific getter makes no sense then)

87Nodes

The direct variants also have setters, where the discretionary setter takes three (optional) ar-

guments plus an optional fourth indicating the subtype.

It doesn’t make sense to add more. Profiling demonstrated that these fields can get accesses

way more times than other fields. Even in complex documents, many node and fields types never

get seen, or seen only a few times. Most functions in the node namespace have a companion in

node.direct, but of course not the ones that don’t deal with nodes themselves. The following

table summarized this:

function node direct

copy_list + +
copy + +
count + +
current_attr + +
dimensions + +
do_ligature_n + +
effective_glue + +
end_of_math + +
family_font + −
fields + −
first_character + −
first_glyph + +
flush_list + +
flush_node + +
free + +
getboth + +
getbox − +
getchar + +
getdisc + +
getfield + +
getfont + +
getid + +
getleader + +
getlist + +
getnext + +
getprev + +
getsubtype + +
has_attribute + +
has_field + +
has_glyph + +
hpack + +
id + −
insert_after + +
insert_before + +
is_char + +
is_glyph + +
is_direct − +

Nodes88

is_node + +
kerning + +
last_node + +
length + +
ligaturing + +
mlist_to_hlist + −
new + +
next + −
prev + −
protect_glyph + +
protect_glyphs + +
protrusion_skippable + +
remove + +
set_attribute + +
setboth + +
setbox + +
setchar + +
setdisc + +
setfield + +
setlink + +
setnext + +
setprev + +
slide + +
subtype + −
subtypes + −
tail + +
todirect + +
tonode + +
tostring + +
traverse_id + +
traverse_char + +
traverse + +
types + −
type + −
unprotect_glyphs + +
unset_attribute + +
usedlist + +
vpack + +
whatsits + −
whatsitsubtypes + −
write + +
setglue + +
getglue + +
glue_is_zero + +

The node.next and node.prev functions will stay but for consistency there are variants called

getnext and getprev. We had to use get because node.id and node.subtype are already taken

89Nodes

for providing meta information about nodes. Note: The getters do only basic checking for valid

keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some nodes have indirect references. For instance a math character refers to a family instead

of a font. In that case we provide a virtual font field as accessor. So, getfont and .font can be

used on them. The same is true for the width, height and depth of glue nodes. These actually

access the spec node properties, and here we can set as well as get the values.

Nodes90

91LuaTEX Lua Libraries

7 LUATEX LUA Libraries

The implied use of the built-in Lua modules epdf, fontloader, mplib, and pdfscanner is depre-

cated. If you want to use these, please start your source file with a proper require line. In the

future, LuaTEX will switch to loading these modules on demand.

The interfacing between TEX and Lua is facilitated by a set of library modules. The Lua libraries

in this chapter are all defined and initialized by the LuaTEX executable. Together, they allow

Lua scripts to query and change a number of TEX’s internal variables, run various internal TEX

functions, and set up LuaTEX’s hooks to execute Lua code.

The following sections are in alphabetical order. For any callback (and manipulation of nodes)

the following is true: you have a lot of freedom which also means that you can mess up the

node lists and nodes themselves. So, a bit of defensive programming doesn’t hurt. A crash can

happen when you spoil things or when LuaTEX can recognize the issue, a panic exit will happen.

Don’t bother the team with such issues.

7.1 The callback library

This library has functions that register, find and list callbacks. Callbacks are Lua functions

that are called in well defined places. There are two kind of callbacks: those that mix with

existing functionality, and those that (when enabled) replace functionality. In mosty cases the

second category is expected to behave similar to the built in functionality because in a next step

specific data is expected. For instance, you can replace the hyphenation routine. The function

gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used

for constructing a paragraph. Another function can replace the ligature builder and/or kerner.

Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id, error = callback.register (<string> callback_name, <function> func)

id, error = callback.register (<string> callback_name, nil)

id, error = callback.register (<string> callback_name, false)

Here the callback_name is a predefined callback name, see below. The function returns the

internal id of the callback or nil, if the callback could not be registered. In the latter case,

error contains an error message, otherwise it is nil.

LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a

function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function

for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,

doing so will prevent LuaTEX from executing whatever it would execute by default (when no

callback function is registered at all). Be warned: this may cause all sorts of grief unless you

know exactly what you are doing!

<table> info = callback.list()

LuaTEX Lua Libraries92

The keys in the table are the known callback names, the value is a boolean where true means

that the callback is currently set (active).

<function> f = callback.find (callback_name)

If the callback is not set, callback.find returns nil.

7.1.1 File discovery callbacks

The behaviour documented in this subsection is considered stable in the sense that there will

not be backward-incompatible changes any more.

7.1.1.1 find_read_file and find_write_file

Your callback function should have the following conventions:

<string> actual_name = function (<number> id_number, <string> asked_name)

Arguments:

id_number

This number is zero for the log or \input files. For TEX’s \read or \write the number is

incremented by one, so \read0 becomes 1.

asked_name

This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual_name

This is the filename used. For the very first file that is read in by TEX, you have to make sure

you return an actual_name that has an extension and that is suitable for use as jobname. If

you don’t, you will have to manually fix the name of the log file and output file after LuaTEX

is finished, and an eventual format filename will become mangled. That is because these file

names depend on the jobname.

You have to return nil if the file cannot be found.

7.1.1.2 find_font_file

Your callback function should have the following conventions:

<string> actual_name = function (<string> asked_name)

The asked_name is an otf or tfm font metrics file.

Return nil if the file cannot be found.

7.1.1.3 find_output_file

Your callback function should have the following conventions:

93LuaTEX Lua Libraries

<string> actual_name = function (<string> asked_name)

The asked_name is the pdf or dvi file for writing.

7.1.1.4 find_format_file

Your callback function should have the following conventions:

<string> actual_name = function (<string> asked_name)

The asked_name is a format file for reading (the format file for writing is always opened in the

current directory).

7.1.1.5 find_vf_file

Like find_font_file, but for virtual fonts. This applies to both Aleph’s ovf files and traditional

Knuthian vf files.

7.1.1.6 find_map_file

Like find_font_file, but for map files.

7.1.1.7 find_enc_file

Like find_font_file, but for enc files.

7.1.1.8 find_sfd_file

Like find_font_file, but for subfont definition files.

7.1.1.9 find_pk_file

Like find_font_file, but for pk bitmap files. This callback takes two arguments: name and dpi.

In your callback you can decide to look for:

<base res>dpi/<fontname>.<actual res>pk

but other strategies are possible. It is up to you to find a ‘reasonable’ bitmap file to go with that

specification.

7.1.1.10 find_data_file

Like find_font_file, but for embedded files (\pdfobj file '...').

7.1.1.11 find_opentype_file

Like find_font_file, but for OpenType font files.

LuaTEX Lua Libraries94

7.1.1.12 find_truetype_file and find_type1_file

Your callback function should have the following conventions:

<string> actual_name = function (<string> asked_name)

The asked_name is a font file. This callback is called while LuaTEX is building its internal list of

needed font files, so the actual timing may surprise you. Your return value is later fed back into

the matching read_file callback.

Strangely enough, find_type1_file is also used for OpenType (otf) fonts.

7.1.1.13 find_image_file

Your callback function should have the following conventions:

<string> actual_name = function (<string> asked_name)

The asked_name is an image file. Your return value is used to open a file from the hard disk, so

make sure you return something that is considered the name of a valid file by your operating

system.

7.1.2 File reading callbacks

The behavior documented in this subsection is considered stable in the sense that there will not

be backward-incompatible changes any more.

7.1.2.1 open_read_file

Your callback function should have the following conventions:

<table> env = function (<string> file_name)

Argument:

file_name

The filename returned by a previous find_read_file or the return value of

kpse.find_file() if there was no such callback defined.

Return value:

env

This is a table containing at least one required and one optional callback function for this file.

The required field is reader and the associated function will be called once for each new line

to be read, the optional one is close that will be called once when LuaTEX is done with the

file.

LuaTEX never looks at the rest of the table, so you can use it to store your private per-file

data. Both the callback functions will receive the table as their only argument.

95LuaTEX Lua Libraries

7.1.2.1.1 reader

LuaTEX will run this function whenever it needs a new input line from the file.

function(<table> env)

return <string> line

end

Your function should return either a string or nil. The value nil signals that the end of file has

occurred, and will make TEX call the optional close function next.

7.1.2.1.2 close

LuaTEX will run this optional function when it decides to close the file.

function(<table> env)

end

Your function should not return any value.

7.1.2.2 General file readers

There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(<string> name)

return <boolean> success, <string> data, <number> data_size

end

The name will normally be a full path name as it is returned by either one of the file discovery

callbacks or the internal version of kpse.find_file().

success

Return false when a fatal error occurred (e.g. when the file cannot be found, after all).

data

The bytes comprising the file.

data_size

The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.

The list of functions is as follows:

read_font_file ofm or tfm files

read_vf_file virtual fonts

read_map_file map files

read_enc_file encoding files

read_sfd_file subfont definition files

read_pk_file pk bitmap files

read_data_file embedded files (\pdfobj file ...)

LuaTEX Lua Libraries96

read_truetype_file TrueType font files

read_type1_file Type1 font files

read_opentype_file OpenType font files

7.1.3 Data processing callbacks

7.1.3.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTEX actu-

ally starts looking at it.

function(<string> buffer)

return <string> adjusted_buffer

end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small

amount of processing time from that. This callback does not replace any internal code.

7.1.3.2 process_output_buffer

This callback allows you to change the contents of the line output buffer just before LuaTEX

actually starts writing it to a file as the result of a \write command. It is only called for output

to an actual file (that is, excluding the log, the terminal, and \write18 calls).

function(<string> buffer)

return <string> adjusted_buffer

end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small

amount of processing time from that. This callback does not replace any internal code.

7.1.3.3 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in

Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)

return <string> adjusted_jobname

end

The only argument is the actual job name; you should not use tex.jobname inside this function

or infinite recursion may occur. If you return nil, LuaTEX will pretend your callback never

happened. This callback does not replace any internal code.

97LuaTEX Lua Libraries

7.1.4 Node list processing callbacks

The description of nodes and node lists is in chapter 6.

7.1.4.1 contribute_filter

This callback is called when LuaTEX adds contents to list:

function(<string> extrainfo)

end

The string reports the group code. From this you can deduce from what list you can give a treat.

group codes pointer

pre_box contrib_head

pre_adjust_tail pre_adjust_head

just just_box

adjust_tail adjust_head

7.1.4.2 buildpage_filter and contribute_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or

column balancing.

function(<string> extrainfo)

end

The string extrainfo gives some additional information about what TEX’s state is with respect

to the ‘current page’. The possible values for the buildpage_filter callback are:

value explanation

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts

after_display a display is finished

end LuaTEX is terminating (it’s all over)

And for the contribute_filter called in the post line break handler we have four cases (three

are only called when there is a need for it).

value explanation

pre_box interline material is being added

LuaTEX Lua Libraries98

pre_adjust \vadjust material is being added

box a typeset box is being added (always called)

adjust \vadjust material is being added

Just before the box related call we have a callout to the append_to_vlist_filter.

These callbacks do not replace any internal code.

7.1.4.3 pre_linebreak_filter

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes,

after the addition of \parfillskip.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

The string called groupcode identifies the nodelist’s context within TEX’s processing. The range

of possibilities is given in the table below, but not all of those can actually appear in pre_line-

break_filter, some are for the hpack_filter and vpack_filter callbacks that will be ex-

plained in the next two paragraphs.

value explanation

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

• boolean true signals successful processing

• <node> signals that the ‘head’ node should be replaced by the returned node

• boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

7.1.4.4 linebreak_filter

This callback replaces LuaTEX’s line breaking algorithm.

99LuaTEX Lua Libraries

function(<node> head, <boolean> is_display)

return <node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTEX will apply the internal linebreak algorithm

on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head

of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent

a hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up

in an unfixable ‘deadcycles loop’.

7.1.4.5 append_to_vlist_filter

This callback is called whenever LuaTEX adds a box to a vertical list:

function(<node> box, <string> locationcode, <number prevdepth>,

<boolean> mirrored)

return list, prevdepth

end

It is ok to return nothing in which case you also need to flush the box or deal with it yourself.

The prevdepth is also optional. Locations are box, alignment, equation, equation_number and

post_linebreak.

7.1.4.6 post_linebreak_filter

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

This callback does not replace any internal code.

7.1.4.7 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math

items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,

<string> packtype [, <string> direction] [, <node> attributelist])

return true | false | <node> newhead

end

LuaTEX Lua Libraries100

The packtype is either additional or exactly. If additional, then the size is a \hbox spread

... argument. If exactly, then the size is a \hbox to In both cases, the number is in

scaled points.

The direction is either one of the three-letter direction specifier strings, or nil.

This callback does not replace any internal code.

7.1.4.8 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math

displays are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different

moments, there is an extra variable that matches TEX’s \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction] [, <node> attributelist]))

return true | false | <node> newhead

end

This callback does not replace any internal code.

7.1.4.9 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

return <node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed

(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return

a node, for instance an overfull rule indicator. That node will be appended to the list (just like

TEX’s own rule would).

7.1.4.10 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

101LuaTEX Lua Libraries

7.1.4.11 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets

three arguments: the node, the width and the height. The callback can use pdf.print to write

code to the pdf file but beware of not messing up the final result. No checking is done.

7.1.4.12 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction])

return true | false | <node> newhead

end

This callback does not replace any internal code.

7.1.4.13 hyphenate

function(<node> head, <node> tail)

end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

7.1.4.14 ligaturing

function(<node> head, <node> tail)

end

No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the

callback is guaranteed not to be a glyph_node (if need be, a temporary node will be prepended),

and therefore it cannot be affected by the mutations that take place. After the callback, the

internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often

be ignored. It is provided for orthogonality, and because it can sometimes be handy when special

processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

7.1.4.15 kerning

function(<node> head, <node> tail)

LuaTEX Lua Libraries102

end

No return values. This callback has to apply kerning between the nodes in the node list it

receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

7.1.4.16 insert_local_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You

can hook a callback into the creator:

function(<node> local_par, <string> location)

end

There is no return value and you should make sure that the node stays valid as otherwise TEX

can get confused.

7.1.4.17 mlist_to_hlist

This callback replaces LuaTEX’s math list to node list conversion algorithm.

function(<node> head, <string> display_type, <boolean> need_penalties)

return <node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the

string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean

argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

7.1.5 Information reporting callbacks

7.1.5.1 pre_dump

function()

end

This function is called just before dumping to a format file starts. It does not replace any code

and there are neither arguments nor return values.

7.1.5.2 start_run

function()

end

103LuaTEX Lua Libraries

This callback replaces the code that prints LuaTEX’s banner. Note that for successful use, this

callback has to be set in the Lua initialization script, otherwise it will be seen only after the run

has already started.

7.1.5.3 stop_run

function()

end

This callback replaces the code that prints LuaTEX’s statistics and ‘output written to’ messages.

7.1.5.4 start_page_number

function()

end

Replaces the code that prints the [and the page number at the begin of \shipout. This callback

will also override the printing of box information that normally takes place when \tracingout-

put is positive.

7.1.5.5 stop_page_number

function()

end

Replaces the code that prints the] at the end of \shipout.

7.1.5.6 show_error_hook

function()

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some

extra reporting on top of what TEX already does (none of the normal actions are removed). You

may find some of the values in the status table useful. This callback does not replace any

internal code.

7.1.5.7 show_error_message

function()

end

This callback replaces the code that prints the error message. The usual interaction after the

message is not affected.

7.1.5.8 show_lua_error_hook

function()

LuaTEX Lua Libraries104

end

This callback replaces the code that prints the extra Lua error message.

7.1.5.9 start_file

function(category,filename)

end

This callback replaces the code that prints LuaTEX’s when a file is opened like (filename for

regular files. The category is a number:

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

7.1.5.10 stop_file

function(category)

end

This callback replaces the code that prints LuaTEX’s when a file is closed like the) for regular

files.

7.1.6 PDF-related callbacks

7.1.6.1 finish_pdffile

function()

end

This callback is called when all document pages are already written to the pdf file and LuaTEX

is about to finalize the output document structure. Its intended use is final update of pdf dictio-

naries such as /Catalog or /Info. The callback does not replace any code. There are neither

arguments nor return values.

7.1.6.2 finish_pdfpage

function(shippingout)

end

This callback is called after the pdf page stream has been assembled and before the page object

gets finalized.

105LuaTEX Lua Libraries

7.1.7 Font-related callbacks

7.1.7.1 define_font

function(<string> name, <number> size, <number> id)

return <table> font | <number> id

end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

• If it is positive, it specifies an ‘at size’ in scaled points.

• If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of

the font.

The id is the internal number assigned to the font.

The internal structure of the font table that is to be returned is explained in chapter 4. That

table is saved internally, so you can put extra fields in the table for your later Lua code to use.

In alternative, retval can be a previously defined fontid. This is useful if a previous definition

can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will

nevertheless generate errors.

7.2 The epdf library

The epdf library provides Lua bindings to many pdf access functions that are defined by the

poppler pdf viewer library (written in C++ by Kristian Høgsberg, based on xpdf by Derek Noon-
burg). Within LuaTEX (and pdfTEX), xpdf functionality is being used since long time to embed

pdf files. The epdf library shall allow to scrutinize an external pdf file. It gives access to its

document structure: catalog, cross-reference table, individual pages, objects, annotations, info,

and metadata. The LuaTEX team is evaluating the possibility of reducing the binding to a basic

low level pdf primitives and delegate the complete set of functions to an external shared object

module.

The epdf library is still in alpha state: pdf access is currently read-only. Iit’s not yet possible

to alter a pdf file or to assemble it from scratch, and many function bindings are still missing,

and it is unlikely that we to support that at all. At some point we might also decide to limit the

interface to a reasonable subset.

For a start, a pdf file is opened by epdf.open() with file name, e.g.:

doc = epdf.open("foo.pdf")

This normally returns a PDFDoc userdata variable; but if the file could not be opened successfully,

instead of a fatal error just the value nil is returned.

All Lua functions in the epdf library are named after the poppler functions listed in the poppler

header files for the various classes, e.g., files PDFDoc.h, Dict.h, and Array.h. These files can

LuaTEX Lua Libraries106

be found in the poppler subdirectory within the LuaTEX sources. Which functions are already

implemented in the epdf library can be found in the LuaTEX source file lepdflib.cc. For using

the epdf library, knowledge of the pdf file architecture is indispensable.

There are many different userdata types defined by the epdf library, currently these are An-

notBorderStyle, AnnotBorder, Annots, Annot, Array, Attribute, Catalog, Dict, EmbFile,

GString, LinkDest, Links, Link, ObjectStream, Object, PDFDoc, PDFRectangle, Page, Ref,

Stream, StructElement, StructTreeRoot TextSpan, XRefEntry and XRef.

All these userdata names and the Lua access functions closely resemble the classes naming

from the poppler header files, including the choice of mixed upper and lower case letters. The

Lua function calls use object-oriented syntax, e.g., the following calls return the Page object for

page 1:

pageref = doc:getCatalog():getPageRef(1)

pageobj = doc:getXRef():fetch(pageref.num, pageref.gen)

But writing such chained calls is risky, as an intermediate function may return nil on error;

therefore between function calls there should be Lua type checks (e.g., against nil) done. If

a non-object item is requested (e.g., a Dict item by calling page:getPieceInfo(), cf. Page.h)

but not available, the Lua functions return nil (without error). If a function should return an

Object, but it’s not existing, a Null object is returned instead (also without error; this is in-line

with poppler behavior).

All library objects have a __gcmetamethod for garbage collection. The __tostringmetamethod

gives the type name for each object.

All object constructors:

<PDFDoc> = epdf.open(<string> PDF filename)

<Annot> = epdf.Annot(<XRef>, <Dict>, <Catalog>, <Ref>)

<Annots> = epdf.Annots(<XRef>, <Catalog>, <Object>)

<Array> = epdf.Array(<XRef>)

<Attribute> = epdf.Attribute(<Type>,<Object>)| epdf.Attribute(<string>, <int>,

<Object>)

<Dict> = epdf.Dict(<XRef>)

<Object> = epdf.Object()

<PDFRectangle> = epdf.PDFRectangle()

The functions StructElement_Type, Attribute_Type and AttributeOwner_Type return a hash

table {<string>,<integer>}.

Annot methods:

<boolean> = <Annot>:isOK()

<Object> = <Annot>:getAppearance()

<AnnotBorder> = <Annot>:getBorder()

<boolean> = <Annot>:match(<Ref>)

AnnotBorderStyle methods:

<number> = <AnnotBorderStyle>:getWidth()

107LuaTEX Lua Libraries

Annots methods:

<integer> = <Annots>:getNumAnnots()

<Annot> = <Annots>:getAnnot(<integer>)

Array methods:

<Array>:incRef()

<Array>:decRef()

<integer> = <Array>:getLength()

<Array>:add(<Object>)

<Object> = <Array>:get(<integer>)

<Object> = <Array>:getNF(<integer>)

<string> = <Array>:getString(<integer>)

Attribute methods:

<boolean> = <Attribute>:isOk()

<integer> = <Attribute>:getType()

<integer> = <Attribute>:getOwner()

<string> = <Attribute>:getTypeName()

<string> = <Attribute>:getOwnerName()

<Object> = <Attribute>:getValue()

<Object> = <Attribute>:getDefaultValue

<string> = <Attribute>:getName()

<integer> = <Attribute>:getRevision()

<Attribute>:setRevision(<unsigned integer>)

<boolean> = <Attribute>:istHidden()

<Attribute>:setHidden(<boolean>)

<string> = <Attribute>:getFormattedValue()

<string> = <Attribute>:setFormattedValue(<string>)

Catalog methods:

<boolean> = <Catalog>:isOK()

<integer> = <Catalog>:getNumPages()

<Page> = <Catalog>:getPage(<integer>)

<Ref> = <Catalog>:getPageRef(<integer>)

<string> = <Catalog>:getBaseURI()

<string> = <Catalog>:readMetadata()

<Object> = <Catalog>:getStructTreeRoot()

<integer> = <Catalog>:findPage(<integer> object number, <integer> object gener-

ation)

<LinkDest> = <Catalog>:findDest(<string> name)

<Object> = <Catalog>:getDests()

<integer> = <Catalog>:numEmbeddedFiles()

<EmbFile> = <Catalog>:embeddedFile(<integer>)

<integer> = <Catalog>:numJS()

LuaTEX Lua Libraries108

<string> = <Catalog>:getJS(<integer>)

<Object> = <Catalog>:getOutline()

<Object> = <Catalog>:getAcroForm()

EmbFile methods:

<string> = <EmbFile>:name()

<string> = <EmbFile>:description()

<integer> = <EmbFile>:size()

<string> = <EmbFile>:modDate()

<string> = <EmbFile>:createDate()

<string> = <EmbFile>:checksum()

<string> = <EmbFile>:mimeType()

<Object> = <EmbFile>:streamObject()

<boolean> = <EmbFile>:isOk()

Dict methods:

<Dict>:incRef()

<Dict>:decRef()

<integer> = <Dict>:getLength()

<Dict>:add(<string>, <Object>)

<Dict>:set(<string>, <Object>)

<Dict>:remove(<string>)

<boolean> = <Dict>:is(<string>)

<Object> = <Dict>:lookup(<string>)

<Object> = <Dict>:lookupNF(<string>)

<integer> = <Dict>:lookupInt(<string>, <string>)

<string> = <Dict>:getKey(<integer>)

<Object> = <Dict>:getVal(<integer>)

<Object> = <Dict>:getValNF(<integer>)

<boolean> = <Dict>:hasKey(<string>)

Link methods:

<boolean> = <Link>:isOK()

<boolean> = <Link>:inRect(<number>, <number>)

LinkDest methods:

<boolean> = <LinkDest>:isOK()

<integer> = <LinkDest>:getKind()

<string> = <LinkDest>:getKindName()

<boolean> = <LinkDest>:isPageRef()

<integer> = <LinkDest>:getPageNum()

<Ref> = <LinkDest>:getPageRef()

<number> = <LinkDest>:getLeft()

<number> = <LinkDest>:getBottom()

<number> = <LinkDest>:getRight()

109LuaTEX Lua Libraries

<number> = <LinkDest>:getTop()

<number> = <LinkDest>:getZoom()

<boolean> = <LinkDest>:getChangeLeft()

<boolean> = <LinkDest>:getChangeTop()

<boolean> = <LinkDest>:getChangeZoom()

Links methods:

<integer> = <Links>:getNumLinks()

<Link> = <Links>:getLink(<integer>)

Object methods:

<Object>:initBool(<boolean>)

<Object>:initInt(<integer>)

<Object>:initReal(<number>)

<Object>:initString(<string>)

<Object>:initName(<string>)

<Object>:initNull()

<Object>:initArray(<XRef>)

<Object>:initDict(<XRef>)

<Object>:initStream(<Stream>)

<Object>:initRef(<integer> object number, <integer> object genera-

tion)

<Object>:initCmd(<string>)

<Object>:initError()

<Object>:initEOF()

<Object> = <Object>:fetch(<XRef>)

<integer> = <Object>:getType()

<string> = <Object>:getTypeName()

<boolean> = <Object>:isBool()

<boolean> = <Object>:isInt()

<boolean> = <Object>:isReal()

<boolean> = <Object>:isNum()

<boolean> = <Object>:isString()

<boolean> = <Object>:isName()

<boolean> = <Object>:isNull()

<boolean> = <Object>:isArray()

<boolean> = <Object>:isDict()

<boolean> = <Object>:isStream()

<boolean> = <Object>:isRef()

<boolean> = <Object>:isCmd()

<boolean> = <Object>:isError()

<boolean> = <Object>:isEOF()

<boolean> = <Object>:isNone()

<boolean> = <Object>:getBool()

<integer> = <Object>:getInt()

<number> = <Object>:getReal()

LuaTEX Lua Libraries110

<number> = <Object>:getNum()

<string> = <Object>:getString()

<string> = <Object>:getName()

<Array> = <Object>:getArray()

<Dict> = <Object>:getDict()

<Stream> = <Object>:getStream()

<Ref> = <Object>:getRef()

<integer> = <Object>:getRefNum()

<integer> = <Object>:getRefGen()

<string> = <Object>:getCmd()

<integer> = <Object>:arrayGetLength()

= <Object>:arrayAdd(<Object>)

<Object> = <Object>:arrayGet(<integer>)

<Object> = <Object>:arrayGetNF(<integer>)

<integer> = <Object>:dictGetLength(<integer>)

= <Object>:dictAdd(<string>, <Object>)

= <Object>:dictSet(<string>, <Object>)

<Object> = <Object>:dictLookup(<string>)

<Object> = <Object>:dictLookupNF(<string>)

<string> = <Object>:dictgetKey(<integer>)

<Object> = <Object>:dictgetVal(<integer>)

<Object> = <Object>:dictgetValNF(<integer>)

<boolean> = <Object>:streamIs(<string>)

= <Object>:streamReset()

<integer> = <Object>:streamGetChar()

<integer> = <Object>:streamLookChar()

<integer> = <Object>:streamGetPos()

= <Object>:streamSetPos(<integer>)

<Dict> = <Object>:streamGetDict()

Page methods:

<boolean> = <Page>:isOk()

<integer> = <Page>:getNum()

<PDFRectangle> = <Page>:getMediaBox()

<PDFRectangle> = <Page>:getCropBox()

<boolean> = <Page>:isCropped()

<number> = <Page>:getMediaWidth()

<number> = <Page>:getMediaHeight()

<number> = <Page>:getCropWidth()

<number> = <Page>:getCropHeight()

<PDFRectangle> = <Page>:getBleedBox()

<PDFRectangle> = <Page>:getTrimBox()

<PDFRectangle> = <Page>:getArtBox()

<integer> = <Page>:getRotate()

<string> = <Page>:getLastModified()

<Dict> = <Page>:getBoxColorInfo()

111LuaTEX Lua Libraries

<Dict> = <Page>:getGroup()

<Stream> = <Page>:getMetadata()

<Dict> = <Page>:getPieceInfo()

<Dict> = <Page>:getSeparationInfo()

<Dict> = <Page>:getResourceDict()

<Object> = <Page>:getAnnots()

<Links> = <Page>:getLinks(<Catalog>)

<Object> = <Page>:getContents()

PDFDoc methods:

<boolean> = <PDFDoc>:isOk()

<integer> = <PDFDoc>:getErrorCode()

<string> = <PDFDoc>:getErrorCodeName()

<string> = <PDFDoc>:getFileName()

<XRef> = <PDFDoc>:getXRef()

<Catalog> = <PDFDoc>:getCatalog()

<number> = <PDFDoc>:getPageMediaWidth()

<number> = <PDFDoc>:getPageMediaHeight()

<number> = <PDFDoc>:getPageCropWidth()

<number> = <PDFDoc>:getPageCropHeight()

<integer> = <PDFDoc>:getNumPages()

<string> = <PDFDoc>:readMetadata()

<Object> = <PDFDoc>:getStructTreeRoot()

<integer> = <PDFDoc>:findPage(<integer> object number, <integer> object genera-

tion)

<Links> = <PDFDoc>:getLinks(<integer>)

<LinkDest> = <PDFDoc>:findDest(<string>)

<boolean> = <PDFDoc>:isEncrypted()

<boolean> = <PDFDoc>:okToPrint()

<boolean> = <PDFDoc>:okToChange()

<boolean> = <PDFDoc>:okToCopy()

<boolean> = <PDFDoc>:okToAddNotes()

<boolean> = <PDFDoc>:isLinearized()

<Object> = <PDFDoc>:getDocInfo()

<Object> = <PDFDoc>:getDocInfoNF()

<integer> = <PDFDoc>:getPDFMajorVersion()

<integer> = <PDFDoc>:getPDFMinorVersion()

PDFRectangle methods:

<boolean> = <PDFRectangle>:isValid()

Stream methods:

<integer> = <Stream>:getKind()

<string> = <Stream>:getKindName()

= <Stream>:reset()

LuaTEX Lua Libraries112

= <Stream>:close()

<integer> = <Stream>:getChar()

<integer> = <Stream>:lookChar()

<integer> = <Stream>:getRawChar()

<integer> = <Stream>:getUnfilteredChar()

= <Stream>:unfilteredReset()

<integer> = <Stream>:getPos()

<boolean> = <Stream>:isBinary()

<Stream> = <Stream>:getUndecodedStream()

<Dict> = <Stream>:getDict()

StructElement methods:

<string> = <StructElement>:getTypeName()

<integer> = <StructElement>:getType()

<boolean> = <StructElement>:isOk()

<boolean> = <StructElement>:isBlock()

<boolean> = <StructElement>:isInline()

<boolean> = <StructElement>:isGrouping()

<boolean> = <StructElement>:isContent()

<boolean> = <StructElement>:isObjectRef()

<integer> = <StructElement>:getMCID()

<Ref> = <StructElement>:getObjectRef()

<Ref> = <StructElement>:getParentRef()

<boolean> = <StructElement>:hasPageRef()

<Ref> = <StructElement>:getPageRef()

<StructTreeRoot> = <StructElement>:getStructTreeRoot()

<string> = <StructElement>:getID()

<string> = <StructElement>:getLanguage()

<integer> = <StructElement>:getRevision()

<StructElement>:setRevision(<unsigned integer>)

<string> = <StructElement>:getTitle()

<string> = <StructElement>:getExpandedAbbr()

<integer> = <StructElement>:getNumChildren()

<StructElement> = <StructElement>:getChild()

= <StructElement>:appendChild<StructElement>)

<integer> = <StructElement>:getNumAttributes()

<Attribute> = <StructElement>:geAttribute(<integer>)

<string> = <StructElement>:appendAttribute(<Attribute>)

<Attribute> = <StructElement>:findAttribute(<Attribute::Type>,boolean,At-

tribute::Owner)

<string> = <StructElement>:getAltText()

<string> = <StructElement>:getActualText()

<string> = <StructElement>:getText(<boolean>)

<table> = <StructElement>:getTextSpans()

StructTreeRoot methods:

113LuaTEX Lua Libraries

<StructElement> = <StructTreeRoot>:findParentElement

<PDFDoc> = <StructTreeRoot>:getDoc

<Dict> = <StructTreeRoot>:getRoleMap

<Dict> = <StructTreeRoot>:getClassMap

<integer> = <StructTreeRoot>:getNumChildren

<StructElement> = <StructTreeRoot>:getChild

<StructTreeRoot>:appendChild

<StructElement> = <StructTreeRoot>:findParentElement

TextSpan han only one method:

<string> = <TestSpan>:getText()

XRef methods:

<boolean> = <XRef>:isOk()

<integer> = <XRef>:getErrorCode()

<boolean> = <XRef>:isEncrypted()

<boolean> = <XRef>:okToPrint()

<boolean> = <XRef>:okToPrintHighRes()

<boolean> = <XRef>:okToChange()

<boolean> = <XRef>:okToCopy()

<boolean> = <XRef>:okToAddNotes()

<boolean> = <XRef>:okToFillForm()

<boolean> = <XRef>:okToAccessibility()

<boolean> = <XRef>:okToAssemble()

<Object> = <XRef>:getCatalog()

<Object> = <XRef>:fetch(<integer> object number, <integer> object generation)

<Object> = <XRef>:getDocInfo()

<Object> = <XRef>:getDocInfoNF()

<integer> = <XRef>:getNumObjects()

<integer> = <XRef>:getRootNum()

<integer> = <XRef>:getRootGen()

<integer> = <XRef>:getSize()

<Object> = <XRef>:getTrailerDict()

There is an experimental function epdf.openMemStream that takes three arguments:

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of

bytes

length this is the length of the stream in bytes

name this is a unique identifier that us used for hashing the stream, so that mulltiple doesn’t

use more memory

Instead of a light userdata stream you can also pass a Lua string, in which case the given length

is (at most) the string length.

The returned object can be used in the img library instead of a filename. Both the memory

stream and it’s use in the image library is experimental and can change. In case you wonder

LuaTEX Lua Libraries114

where this can be used: when you use the swiglib library for graphicmagick, it can return such

a userdata object. This permits conversion in memory and passing the result directly to the

backend. This might save some runtime in one-pass workflows. This feature is currently not

meant for production.

7.3 The font library

The font library provides the interface into the internals of the font system, and also it contains

helper functions to load traditional TEX font metrics formats. Other font loading functionality is

provided by the fontloader library that will be discussed in the next section.

7.3.1 Loading a TFM file

The behavior documented in this subsection is considered stable in the sense that there will not

be backward-incompatible changes any more.

<table> fnt = font.read_tfm(<string> name, <number> s)

The number is a bit special:

• If it is positive, it specifies an ‘at size’ in scaled points.

• If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of

the font.

The internal structure of the metrics font table that is returned is explained in chapter 4.

7.3.2 Loading a VF file

The behavior documented in this subsection is considered stable in the sense that there will not

be backward-incompatible changes any more.

<table> vf_fnt = font.read_vf(<string> name, <number> s)

The meaning of the number s and the format of the returned table are similar to the ones in the

read_tfm() function.

7.3.3 The fonts array

The whole table of TEX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }

<table> f = font.fonts[n]

See chapter 4 for the structure of the tables. Because this is a virtual array, you cannot call

pairs on it, but see below for the font.each iterator.

The two metatable functions implementing the virtual array are:

<table> f = font.getfont(<number> n)

115LuaTEX Lua Libraries

font.setfont(<number> n, <table> f)

Note that at the moment, each access to the font.fonts or call to font.getfont creates a Lua

table for the whole font. This process can be quite slow. In a later version of LuaTEX, this

interface will change (it will start using userdata objects instead of actual tables).

Also note the following: assignments can only be made to fonts that have already been defined

in TEX, but have not been accessed at all since that definition. This limits the usability of the

write access to font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

7.3.4 Checking a font’s status

You can test for the status of a font by calling this function:

<boolean> f = font.frozen(<number> n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font

at all).

7.3.5 Defining a font directly

You can define your own font into font.fonts by calling this function:

<number> i = font.define(<table> f)

The return value is the internal id number of the defined font (the index into font.fonts). If the

font creation fails, an error is raised. The table is a font structure, as explained in chapter 4.

7.3.6 Projected next font id

<number> i = font.nextid()

This returns the font id number that would be returned by a font.define call if it was executed

at this spot in the code flow. This is useful for virtual fonts that need to reference themselves.

7.3.7 Font id

<number> i = font.id(<string> csname)

This returns the font id associated with csname string, or −1 if csname is not defined.

7.3.8 Currently active font

<number> i = font.current()

font.current(<number> i)

This gets or sets the currently used font number.

LuaTEX Lua Libraries116

7.3.9 Maximum font id

<number> i = font.max()

This is the largest used index in font.fonts.

7.3.10 Iterating over all fonts

for i,v in font.each() do

...

end

This is an iterator over each of the defined TEX fonts. The first returned value is the index in

font.fonts, the second the font itself, as a Lua table. The indices are listed incrementally, but

they do not always form an array of consecutive numbers: in some cases there can be holes in

the sequence.

7.4 The fontloader library

7.4.1 Getting quick information on a font

<table> info = fontloader.info(<string> filename)

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType

collection). The returned table(s) will contain some fairly interesting information items from the

font(s) defined by the file:

key type explanation

fontname string the PostScript name of the font

fullname string the formal name of the font

familyname string the family name this font belongs to

weight string a string indicating the color value of the font

version string the internal font version

italicangle float the slant angle

units_per_em number 1000 for PostScript-based fonts, usually 2048 for TrueType

pfminfo table (see section 7.4.5.1.6)

Getting information through this function is (sometimes much) more efficient than loading the

font properly, and is therefore handy when you want to create a dictionary of available fonts

based on a directory contents.

7.4.2 Loading an OPENTYPE or TRUETYPE file

If you want to use an OpenType font, you have to get the metric information from somewhere.

Using the fontloader library, the simplest way to get that information is thus:

117LuaTEX Lua Libraries

function load_font (filename)

local metrics = nil

local font = fontloader.open(filename)

if font then

metrics = fontloader.to_table(font)

fontloader.close(font)

end

return metrics

end

myfont = load_font('/opt/tex/texmf/fonts/data/arial.ttf')

The main function call is

<userdata> f, <table> w = fontloader.open(<string> filename)

<userdata> f, <table> w = fontloader.open(<string> filename, <string> fontname)

The first return value is a userdata representation of the font. The second return value is a table

containing any warnings and errors reported by fontloader while opening the font. In normal

typesetting, you would probably ignore the second argument, but it can be useful for debugging

purposes.

For TrueType collections (when filename ends in ’ttc’) and dfont collections, you have to use a

second string argument to specify which font you want from the collection. Use the fontname

strings that are returned by fontloader.info for that.

To turn the font into a table, fontloader.to_table is used on the font returned by font-

loader.open.

<table> f = fontloader.to_table(<userdata> font)

This table cannot be used directly by LuaTEX and should be turned into another one as described

in chapter 4. Do not forget to store the fontname value in the psname field of the metrics table to

be returned to LuaTEX, otherwise the font inclusion backend will not be able to find the correct

font in the collection.

See section 7.4.5 for details on the userdata object returned by fontloader.open() and the

layout of the metrics table returned by fontloader.to_table().

The font file is parsed and partially interpreted by the font loading routines from FontForge. The

file format can be OpenType, TrueType, TrueType Collection, cff, or Type1.

There are a few advantages to this approach compared to reading the actual font file ourselves:

• The font is automatically re-encoded, so that the metrics table for TrueType and OpenType

fonts is using Unicode for the character indices.

• Many features are pre-processed into a format that is easier to handle than just the bare

tables would be.

• PostScript-based OpenType fonts do not store the character height and depth in the font file,

so the character boundingbox has to be calculated in some way.

• In the future, it may be interesting to allow Lua scripts access to the font program itself,

perhaps even creating or changing the font.

LuaTEX Lua Libraries118

A loaded font is discarded with:

fontloader.close(<userdata> font)

7.4.3 Applying a ‘feature file’

You can apply a ‘feature file’ to a loaded font:

<table> errors = fontloader.apply_featurefile(<userdata> font, <string> file-

name)

A ‘feature file’ is a textual representation of the features in an OpenType font. See

http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

and

http://fontforge.sourceforge.net/featurefile.html

for a more detailed description of feature files.

If the function fails, the return value is a table containing any errors reported by fontloader while

applying the feature file. On success, nil is returned.

7.4.4 Applying an ‘AFM file’

You can apply an ‘afm file’ to a loaded font:

<table> errors = fontloader.apply_afmfile(<userdata> font, <string> filename)

An afm file is a textual representation of (some of) the meta information in a Type1 font. See

ftp://ftp.math.utah.edu/u/ma/hohn/linux/postscript/5004.AFM_Spec.pdf

for more information about afm files.

Note: If you fontloader.open() a Type1 file named font.pfb, the library will automatically

search for and apply font.afm if it exists in the same directory as the file font.pfb. In that

case, there is no need for an explicit call to apply_afmfile().

If the function fails, the return value is a table containing any errors reported by fontloader while

applying the AFM file. On success, nil is returned.

7.4.5 Fontloader font tables

As mentioned earlier, the return value of fontloader.open() is a userdata object. One way to

have access to the actual metrics is to call fontloader.to_table() on this object, returning the

table structure that is explained in the following subsections.

However, it turns out that the result from fontloader.to_table() sometimes needs very large

amounts of memory (depending on the font’s complexity and size) so it is possible to access the

userdata object directly.

119LuaTEX Lua Libraries

• All top-level keys that would be returned by to_table() can also be accessed directly.

•
• The top-level key ‘glyphs’ returns a virtual array that allows indices from f.glyphmin to

(f.glyphmax).

• The items in that virtual array (the actual glyphs) are themselves also userdata objects, and

each has accessors for all of the keys explained in the section ‘Glyph items’ below.

The top-level key ‘subfonts’ returns an actual array of userdata objects, one for each of the

subfonts (or nil, if there are no subfonts).

A short example may be helpful. This code generates a printout of all the glyph names in the

font PunkNova.kern.otf:

local f = fontloader.open('PunkNova.kern.otf')

print (f.fontname)

local i = 0

if f.glyphcnt > 0 then

for i=f.glyphmin,f.glyphmax do

local g = f.glyphs[i]

if g then

print(g.name)

end

i = i + 1

end

end

fontloader.close(f)

In this case, the LuaTEX memory requirement stays below 100MB on the test computer, while

the internal structure generated by to_table() needs more than 2GB of memory (the font itself

is 6.9MB in disk size).

Only the top-level font, the subfont table entries, and the glyphs are virtual objects, everything

else still produces normal Lua values and tables.

If you want to know the valid fields in a font or glyph structure, call the fields function on an

object of a particular type (either glyph or font):

<table> fields = fontloader.fields(<userdata> font)

<table> fields = fontloader.fields(<userdata> font_glyph)

For instance:

local fields = fontloader.fields(f)

local fields = fontloader.fields(f.glyphs[0])

7.4.5.1 Table types

7.4.5.1.1 Top-level

The top-level keys in the returned table are (the explanations in this part of the documentation

are not yet finished):

LuaTEX Lua Libraries120

key type explanation

table_version number indicates the metrics version (currently 0.3)

fontname string PostScript font name

fullname string official (human-oriented) font name

familyname string family name

weight string weight indicator

copyright string copyright information

filename string the file name

version string font version

italicangle float slant angle

units_per_em number 1000 for PostScript-based fonts, usually 2048 for

TrueType

ascent number height of ascender in units_per_em

descent number depth of descender in units_per_em

upos float

uwidth float

uniqueid number

glyphs array

glyphcnt number number of included glyphs

glyphmax number maximum used index the glyphs array

glyphmin number minimum used index the glyphs array

notdef_loc number location of the .notdef glyph or -1when not present

hasvmetrics number

onlybitmaps number

serifcheck number

isserif number

issans number

encodingchanged number

strokedfont number

use_typo_metrics number

weight_width_slope_only number

head_optimized_for_cleartype number

uni_interp enum unset, none, adobe, greek, japanese, trad_chi-

nese, simp_chinese, korean, ams

origname string the file name, as supplied by the user

map table

private table

xuid string

pfminfo table

names table

cidinfo table

subfonts array

commments string

fontlog string

cvt_names string

anchor_classes table

121LuaTEX Lua Libraries

ttf_tables table

ttf_tab_saved table

kerns table

vkerns table

texdata table

lookups table

gpos table

gsub table

mm table

chosenname string

macstyle number

fondname string

fontstyle_id number

fontstyle_name table

strokewidth float

mark_classes table

creationtime number

modificationtime number

os2_version number

sfd_version number

math table

validation_state table

horiz_base table

vert_base table

extrema_bound number

truetype boolean signals a TrueType font

7.4.5.1.2 Glyph items

The glyphs is an array containing the per-character information (quite a few of these are only

present if nonzero).

key type explanation

name string the glyph name

unicode number unicode code point, or -1

boundingbox array array of four numbers, see note below

width number only for horizontal fonts

vwidth number only for vertical fonts

tsidebearing number only for vertical ttf/otf fonts, and only if nonzero

lsidebearing number only if nonzero and not equal to boundingbox[1]

class string one of "none", "base", "ligature", "mark", "component" (if not

present, the glyph class is ‘automatic’)

kerns array only for horizontal fonts, if set

vkerns array only for vertical fonts, if set

dependents array linear array of glyph name strings, only if nonempty

lookups table only if nonempty

ligatures table only if nonempty

LuaTEX Lua Libraries122

anchors table only if set

comment string only if set

tex_height number only if set

tex_depth number only if set

italic_correction number only if set

top_accent number only if set

is_extended_shape number only if this character is part of a math extension list

altuni table alternate Unicode items

vert_variants table

horiz_variants table

mathkern table

On boundingbox: The boundingbox information for TrueType fonts and TrueType-based otf

fonts is read directly from the font file. PostScript-based fonts do not have this information,

so the boundingbox of traditional PostScript fonts is generated by interpreting the actual bezier

curves to find the exact boundingbox. This can be a slow process, so the boundingboxes of

PostScript-based otf fonts (and raw cff fonts) are calculated using an approximation of the glyph

shape based on the actual glyph points only, instead of taking the whole curve into account. This

means that glyphs that have missing points at extrema will have a too-tight boundingbox, but

the processing is so much faster that in our opinion the tradeoff is worth it.

The kerns and vkerns are linear arrays of small hashes:

key type explanation

char string

off number

lookup string

The lookups is a hash, based on lookup subtable names, with the value of each key inside that

a linear array of small hashes:

key type explanation

type enum position, pair, substitution, alternate, multiple, ligature, lcaret,

kerning, vkerning, anchors, contextpos, contextsub, chainpos, chain-

sub, reversesub, max, kernback, vkernback

specification table extra data

For the first seven values of type, there can be additional sub-information, stored in the sub-table

specification:

value type explanation

position table a table of the offset_specs type

pair table one string: paired, and an array of one or two offset_specs tables:

offsets

substitution table one string: variant

alternate table one string: components

multiple table one string: components

ligature table two strings: components, char

lcaret array linear array of numbers

123LuaTEX Lua Libraries

Tables for offset_specs contain up to four number-valued fields: x (a horizontal offset), y (a

vertical offset), h (an advance width correction) and v (an advance height correction).

The ligatures is a linear array of small hashes:

key type explanation

lig table uses the same substructure as a single item in the lookups table ex-

plained above

char string

components array linear array of named components

ccnt number

The anchor table is indexed by a string signifying the anchor type, which is one of

key type explanation

mark table placement mark

basechar table mark for attaching combining items to a base char

baselig table mark for attaching combining items to a ligature

basemark table generic mark for attaching combining items to connect to

centry table cursive entry point

cexit table cursive exit point

The content of these is a short array of defined anchors, with the entry keys being the anchor

names. For all except baselig, the value is a single table with this definition:

key type explanation

x number x location

y number y location

ttf_pt_index number truetype point index, only if given

For baselig, the value is a small array of such anchor sets sets, one for each constituent item

of the ligature.

For clarification, an anchor table could for example look like this :

['anchor'] = {

['basemark'] = {

['Anchor-7'] = { ['x']=170, ['y']=1080 }

},

['mark'] ={

['Anchor-1'] = { ['x']=160, ['y']=810 },

['Anchor-4'] = { ['x']=160, ['y']=800 }

},

['baselig'] = {

[1] = { ['Anchor-2'] = { ['x']=160, ['y']=650 } },

[2] = { ['Anchor-2'] = { ['x']=460, ['y']=640 } }

}

}

Note: The baselig table can be sparse!

LuaTEX Lua Libraries124

7.4.5.1.3 map table

The top-level map is a list of encoding mappings. Each of those is a table itself.

key type explanation

enccount number

encmax number

backmax number

remap table

map array non-linear array of mappings

backmap array non-linear array of backward mappings

enc table

The remap table is very small:

key type explanation

firstenc number

lastenc number

infont number

The enc table is a bit more verbose:

key type explanation

enc_name string

char_cnt number

char_max number

unicode array of Unicode position numbers

psnames array of PostScript glyph names

builtin number

hidden number

only_1byte number

has_1byte number

has_2byte number

is_unicodebmp number only if nonzero

is_unicodefull number only if nonzero

is_custom number only if nonzero

is_original number only if nonzero

is_compact number only if nonzero

is_japanese number only if nonzero

is_korean number only if nonzero

is_tradchinese number only if nonzero [name?]

is_simplechinese number only if nonzero

low_page number

high_page number

iconv_name string

iso_2022_escape string

125LuaTEX Lua Libraries

7.4.5.1.4 private table

This is the font’s private PostScript dictionary, if any. Keys and values are both strings.

7.4.5.1.5 cidinfo table

key type explanation

registry string

ordering string

supplement number

version number

7.4.5.1.6 pfminfo table

The pfminfo table contains most of the OS/2 information:

key type explanation

pfmset number

winascent_add number

windescent_add number

hheadascent_add number

hheaddescent_add number

typoascent_add number

typodescent_add number

subsuper_set number

panose_set number

hheadset number

vheadset number

pfmfamily number

weight number

width number

avgwidth number

firstchar number

lastchar number

fstype number

linegap number

vlinegap number

hhead_ascent number

hhead_descent number

os2_typoascent number

os2_typodescent number

os2_typolinegap number

os2_winascent number

os2_windescent number

os2_subxsize number

os2_subysize number

os2_subxoff number

LuaTEX Lua Libraries126

os2_subyoff number

os2_supxsize number

os2_supysize number

os2_supxoff number

os2_supyoff number

os2_strikeysize number

os2_strikeypos number

os2_family_class number

os2_xheight number

os2_capheight number

os2_defaultchar number

os2_breakchar number

os2_vendor string

codepages table A two-number array of encoded code pages

unicoderages table A four-number array of encoded unicode ranges

panose table

The panose subtable has exactly 10 string keys:

key type explanation

familytype string Values as in the OpenType font specification: Any, No Fit, Text and

Display, Script, Decorative, Pictorial

serifstyle string See the OpenType font specification for values

weight string id.

proportion string id.

contrast string id.

strokevariation string id.

armstyle string id.

letterform string id.

midline string id.

xheight string id.

7.4.5.1.7 names table

Each item has two top-level keys:

key type explanation

lang string language for this entry

names table

The names keys are the actual TrueType name strings. The possible keys are:

key explanation

copyright

family

subfamily

uniqueid

fullname

127LuaTEX Lua Libraries

version

postscriptname

trademark

manufacturer

designer

descriptor

venderurl

designerurl

license

licenseurl

idontknow

preffamilyname

prefmodifiers

compatfull

sampletext

cidfindfontname

wwsfamily

wwssubfamily

7.4.5.1.8 anchor_classes table

The anchor_classes classes:

key type explanation

name string a descriptive id of this anchor class

lookup string

type string one of mark, mkmk, curs, mklg

7.4.5.1.9 gpos table

The gpos table has one array entry for each lookup. (The gpos_ prefix is somewhat redundant.)

key type explanation

type string one of gpos_single, gpos_pair, gpos_cursive, gpos_mark2base,

gpos_mark2ligature, gpos_mark2mark, gpos_context,

gpos_contextchain

flags table

name string

features array

subtables array

The flags table has a true value for each of the lookup flags that is actually set:

key type explanation

r2l boolean

ignorebaseglyphs boolean

ignoreligatures boolean

LuaTEX Lua Libraries128

ignorecombiningmarks boolean

mark_class string

The features subtable items of gpos have:

key type explanation

tag string

scripts table

The scripts table within features has:

key type explanation

script string

langs array of strings

The subtables table has:

key type explanation

name string

suffix string (only if used)

anchor_classes number (only if used)

vertical_kerning number (only if used)

kernclass table (only if used)

The kernclass with subtables table has:

key type explanation

firsts array of strings

seconds array of strings

lookup string or array associated lookup(s)

offsets array of numbers

Note: the kernclass (as far as we can see) always has one entry so it could be one level deep

instead. Also the seconds start at [2] which is close to the fontforge internals so we keep that

too.

7.4.5.1.10 gsub table

This has identical layout to the gpos table, except for the type:

key type explanation

type string one of gsub_single, gsub_multiple, gsub_alternate, gsub_ligature,

gsub_context, gsub_contextchain, gsub_reversecontextchain

7.4.5.1.11 ttf_tables and ttf_tab_saved tables

key type explanation

tag string

len number

129LuaTEX Lua Libraries

maxlen number

data number

7.4.5.1.12 mm table

key type explanation

axes table array of axis names

instance_count number

positions table array of instance positions (#axes * instances)

defweights table array of default weights for instances

cdv string

ndv string

axismaps table

The axismaps:

key type explanation

blends table an array of blend points

designs table an array of design values

min number

def number

max number

7.4.5.1.13 mark_classes table

The keys in this table are mark class names, and the values are a space-separated string of glyph

names in this class.

7.4.5.1.14 math table

ScriptPercentScaleDown

ScriptScriptPercentScaleDown

DelimitedSubFormulaMinHeight

DisplayOperatorMinHeight

MathLeading

AxisHeight

AccentBaseHeight

FlattenedAccentBaseHeight

SubscriptShiftDown

SubscriptTopMax

SubscriptBaselineDropMin

SuperscriptShiftUp

SuperscriptShiftUpCramped

SuperscriptBottomMin

SuperscriptBaselineDropMax

SubSuperscriptGapMin

LuaTEX Lua Libraries130

SuperscriptBottomMaxWithSubscript

SpaceAfterScript

UpperLimitGapMin

UpperLimitBaselineRiseMin

LowerLimitGapMin

LowerLimitBaselineDropMin

StackTopShiftUp

StackTopDisplayStyleShiftUp

StackBottomShiftDown

StackBottomDisplayStyleShiftDown

StackGapMin

StackDisplayStyleGapMin

StretchStackTopShiftUp

StretchStackBottomShiftDown

StretchStackGapAboveMin

StretchStackGapBelowMin

FractionNumeratorShiftUp

FractionNumeratorDisplayStyleShiftUp

FractionDenominatorShiftDown

FractionDenominatorDisplayStyleShiftDown

FractionNumeratorGapMin

FractionNumeratorDisplayStyleGapMin

FractionRuleThickness

FractionDenominatorGapMin

FractionDenominatorDisplayStyleGapMin

SkewedFractionHorizontalGap

SkewedFractionVerticalGap

OverbarVerticalGap

OverbarRuleThickness

OverbarExtraAscender

UnderbarVerticalGap

UnderbarRuleThickness

UnderbarExtraDescender

RadicalVerticalGap

RadicalDisplayStyleVerticalGap

RadicalRuleThickness

RadicalExtraAscender

RadicalKernBeforeDegree

RadicalKernAfterDegree

RadicalDegreeBottomRaisePercent

MinConnectorOverlap

FractionDelimiterSize

FractionDelimiterDisplayStyleSize

131LuaTEX Lua Libraries

7.4.5.1.15 validation_state table

key explanation

bad_ps_fontname

bad_glyph_table

bad_cff_table

bad_metrics_table

bad_cmap_table

bad_bitmaps_table

bad_gx_table

bad_ot_table

bad_os2_version

bad_sfnt_header

7.4.5.1.16 horiz_base and vert_base table

key type explanation

tags table an array of script list tags

scripts table

The scripts subtable:

key type explanation

baseline table

default_baseline number

lang table

The lang subtable:

key type explanation

tag string a script tag

ascent number

descent number

features table

The features points to an array of tables with the same layout except that in those nested tables,

the tag represents a language.

7.4.5.1.17 altuni table

An array of alternate Unicode values. Inside that array are hashes with:

key type explanation

unicode number this glyph is also used for this unicode

variant number the alternative is driven by this unicode selector

7.4.5.1.18 vert_variants and horiz_variants table

key type explanation

variants string

LuaTEX Lua Libraries132

italic_correction number

parts table

The parts table is an array of smaller tables:

key type explanation

component string

extender number

start number

end number

advance number

7.4.5.1.19 mathkern table

key type explanation

top_right table

bottom_right table

top_left table

bottom_left table

Each of the subtables is an array of small hashes with two keys:

key type explanation

height number

kern number

7.4.5.1.20 kerns table

Substructure is identical to the per-glyph subtable.

7.4.5.1.21 vkerns table

Substructure is identical to the per-glyph subtable.

7.4.5.1.22 texdata table

key type explanation

type string unset, text, math, mathext

params array 22 font numeric parameters

7.4.5.1.23 lookups table

Top-level lookups is quite different from the ones at character level. The keys in this hash are

strings, the values the actual lookups, represented as dictionary tables.

key type explanation

type string

133LuaTEX Lua Libraries

format enum one of glyphs, class, coverage, reversecoverage

tag string

current_class array

before_class array

after_class array

rules array an array of rule items

Rule items have one common item and one specialized item:

key type explanation

lookups array a linear array of lookup names

glyphs array only if the parent’s format is glyphs

class array only if the parent’s format is class

coverage array only if the parent’s format is coverage

reversecoverage array only if the parent’s format is reversecoverage

A glyph table is:

key type explanation

names string

back string

fore string

A class table is:

key type explanation

current array of numbers

before array of numbers

after array of numbers

coverage:

key type explanation

current array of strings

before array of strings

after array of strings

reversecoverage:

key type explanation

current array of strings

before array of strings

after array of strings

replacements string

7.5 The img library

The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the asso-

ciated ‘satellite’ commands like \pdfximagebbox. Image objects can also be used within virtual

fonts via the image command listed in section 4.2.

LuaTEX Lua Libraries134

7.5.1 img.new

<image> var = img.new()

<image> var = img.new(<table> image_spec)

This function creates a userdata object of type ‘image’. The image_spec argument is optional.

If it is given, it must be a table, and that table must contain a filename key. A number of other

keys can also be useful, these are explained below.

You can either say

a = img.new()

followed by

a.filename = "foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:

a = img.new({filename='foo.pdf', page=1})

The generated <image> userdata object allows access to a set of user-specified values as well as

a set of values that are normally filled in and updated automatically by LuaTEX itself. Some of

those are derived from the actual image file, others are updated to reflect the pdf output status

of the object.

There is one required user-specified field: the file name (filename). It can optionally be aug-

mented by the requested image dimensions (width, depth, height), user-specified image attrib-

utes (attr), the requested pdf page identifier (page), the requested boundingbox (pagebox) for

pdf inclusion, the requested color space object (colorspace).

The function img.new does not access the actual image file, it just creates the <image> userdata

object and initializes some memory structures. The <image> object and its internal structures

are automatically garbage collected.

Once the image is scanned, all the values in the <image> except width, height and depth, be-

come frozen, and you cannot change them any more.

You can use pdf.setignoreunknownimages(1) (or at the TEX end the \pdfvariable ignore-

unknownimages) to get around a quit when no known image type is found (based on name or

preamble). Beware: this will not catch invalid images and we cannot guarantee side effects.

A zero dimension image is still included when requested. No special flags are set. A proper

workflow will not rely in such a catch but make sure that images are valid.

7.5.2 img.keys

<table> keys = img.keys()

This function returns a list of all the possible image_spec keys, both user-supplied and automatic

ones.

field name type description

attr string the image attributes for LuaTEX

135LuaTEX Lua Libraries

bbox table table with 4 boundingbox dimensions llx, lly, urx, and ury overruling

the pagebox entry

colordepth number the number of bits used by the color space

colorspace number the color space object number

depth number the image depth for LuaTEX (in scaled points)

filename string the image file name

filepath string the full (expanded) file name of the image

height number the image height for LuaTEX (in scaled points)

imagetype string one of pdf, png, jpg, jp2, jbig2, or nil

index number the pdf image name suffix

objnum number the pdf image object number

page ?? the identifier for the requested image page (type is number or string,

default is the number 1)

pagebox string the requested bounding box, one of none, media, crop, bleed, trim,

art

pages number the total number of available pages

rotation number the image rotation from included pdf file, in multiples of 90 deg.

stream string the raw stream data for an /Xobject /Form object

transform number the image transform, integer number 0..7

width number the image width for LuaTEX (in scaled points)

xres number the horizontal natural image resolution (in dpi)

xsize number the natural image width

yres number the vertical natural image resolution (in dpi)

ysize number the natural image height

visiblefileame string when set, this namewill find its way in the pdf file as PTEX specification;

when an empty string is assigned nothing is written to file, otherwise

the natural filename is taken

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so

if you want to load an image at its ‘natural’ size, you do not have to specify any of those three

fields.

The stream parameter allows to fabricate an /XObject /Form object from a string giving the

stream contents, e.g., for a filled rectangle:

a.stream = "0 0 20 10 re f"

When writing the image, an /Xobject /Form object is created, like with embedded pdf file writ-

ing. The object is written out only once. The stream key requires that also the bbox table is

given. The stream key conflicts with the filename key. The transform key works as usual also

with stream.

The bbox key needs a table with four boundingbox values, e.g.:

a.bbox = {"30bp", 0, "225bp", "200bp"}

This replaces and overrules any given pagebox value; with given bbox the box dimensions coming

with an embedded pdf file are ignored. The xsize and ysize dimensions are set accordingly,

when the image is scaled. The bbox parameter is ignored for non-pdf images.

LuaTEX Lua Libraries136

The transform allows to mirror and rotate the image in steps of 90 deg. The default value 0
gives an unmirrored, unrotated image. Values 1 − 3 give counterclockwise rotation by 90, 180,
or 270 degrees, whereas with values 4 − 7 the image is first mirrored and then rotated coun-
terclockwise by 90, 180, or 270 degrees. The transform operation gives the same visual result
as if you would externally preprocess the image by a graphics tool and then use it by LuaTEX.

If a pdf file to be embedded already contains a /Rotate specification, the rotation result is the

combination of the /Rotate rotation followed by the transform operation.

7.5.3 img.scan

<image> var = img.scan(<image> var)

<image> var = img.scan(<table> image_spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize,

ysize, image type, number of pages, and the resolution are extracted. Each of the width,

height, depth fields are set up according to the image dimensions, if they were not given an

explicit value already. An image file will never be scanned more than once for a given image

variable. With all subsequent img.scan(a) calls only the dimensions are again set up (if they

have been changed by the user in the meantime).

For ease of use, you can do right-away a

<image> a = img.scan ({ filename = "foo.png" })

without a prior img.new.

Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like

image width and height, and then throw away a again by saying a=nil. In that case no image

object will be reserved in the PDF, and the used memory will be cleaned up automatically.

7.5.4 img.copy

<image> var = img.copy(<image> var)

<image> var = img.copy(<table> image_spec)

If you say a = b, then both variables point to the same <image> object. if you want to write out

an image with different sizes, you can do a b=img.copy(a).

Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b

can now be changed from their initial values that were just copies from a.

7.5.5 img.write

<image> var = img.write(<image> var)

<image> var = img.write(<table> image_spec)

By img.write(a) a pdf object number is allocated, and a whatsit node of subtype pdf_refximage

is generated and put into the output list. By this the image a is placed into the page stream, and

137LuaTEX Lua Libraries

the image file is written out into an image stream object after the shipping of the current page

is finished.

Again you can do a terse call like

img.write ({ filename = "foo.png" })

The <image> variable is returned in case you want it for later processing.

7.5.6 img.immediatewrite

<image> var = img.immediatewrite(<image> var)

<image> var = img.immediatewrite(<table> image_spec)

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is

written out immediately into the pdf file as an image stream object (like with \immediate\pdfx-

image). The object number of the image stream dictionary is then available by the objnum key.

No pdf_refximage whatsit node is generated. You will need an img.write(a) or img.node(a)

call to let the image appear on the page, or reference it by another trick; else you will have a

dangling image object in the pdf file.

Also here you can do a terse call like

a = img.immediatewrite ({ filename = "foo.png" })

The <image> variable is returned and you will most likely need it.

7.5.7 img.node

<node> n = img.node(<image> var)

<node> n = img.node(<table> image_spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf_refxim-

age, filled with the image parameters width, height, depth, and objnum. Also here you can do

a terse call like:

n = img.node ({ filename = "foo.png" })

This example outputs an image:

node.write(img.node{filename="foo.png"})

7.5.8 img.types

<table> types = img.types()

This function returns a list with the supported image file type names, currently these are pdf,

png, jpg, jp2 (JPEG 2000), and jbig2.

LuaTEX Lua Libraries138

7.5.9 img.boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are media,

crop, bleed, trim, and art (all in lowercase letters).

7.6 The kpse library

This library provides two separate, but nearly identical interfaces to the kpathsea file search

functionality: there is a ‘normal’ procedural interface that shares its kpathsea instance with

LuaTEX itself, and an object oriented interface that is completely on its own.

7.6.1 kpse.set_program_name and kpse.new

Before the search library can be used at all, its database has to be initialized. There are three

possibilities, two of which belong to the procedural interface.

First, when LuaTEX is used to typeset documents, this initialization happens automatically and

the kpathsea executable and program names are set to luatex (that is, unless explicitly prohib-

ited by the user’s startup script. See section 2.1 for more details).

Second, in TEXLua mode, the initialization has to be done explicitly via the kpse.set_pro-

gram_name function, which sets the kpathsea executable (and optionally program) name.

kpse.set_program_name(<string> name)

kpse.set_program_name(<string> name, <string> progname)

The second argument controls the use of the ‘dotted’ values in the texmf.cnf configuration file,

and defaults to the first argument.

Third, if you prefer the object oriented interface, you have to call a different function. It has the

same arguments, but it returns a userdata variable.

local kpathsea = kpse.new(<string> name)

local kpathsea = kpse.new(<string> name, <string> progname)

Apart from these two functions, the calling conventions of the interfaces are identical. Depend-

ing on the chosen interface, you either call kpse.find_file() or kpathsea:find_file(), with

identical arguments and return vales.

7.6.2 find_file

The most often used function in the library is find_file:

<string> f = kpse.find_file(<string> filename)

<string> f = kpse.find_file(<string> filename, <string> ftype)

<string> f = kpse.find_file(<string> filename, <boolean> mustexist)

139LuaTEX Lua Libraries

<string> f = kpse.find_file(<string> filename, <string> ftype, <boolean> mustex-

ist)

<string> f = kpse.find_file(<string> filename, <string> ftype, <number> dpi)

Arguments:

filename

the name of the file you want to find, with or without extension.

ftype

maps to the -format argument of kpsewhich. The supported ftype values are the same as

the ones supported by the standalone kpsewhich program:

gf

pk

bitmap font

tfm

afm

base

bib

bst

cnf

ls-R

fmt

map

mem

mf

mfpool

mft

mp

mppool

MetaPost support

ocp

ofm

opl

otp

ovf

ovp

graphic/figure

tex

TeX system documentation

texpool

TeX system sources

PostScript header

Troff fonts

type1 fonts

vf

dvips config

ist

truetype fonts

type42 fonts

web2c files

other text files

other binary files

misc fonts

web

cweb

enc files

cmap files

subfont definition files

opentype fonts

pdftex config

lig files

texmfscripts

lua

font feature files

cid maps

mlbib

mlbst

clua

The default type is tex. Note: this is different from kpsewhich, which tries to deduce the file

type itself from looking at the supplied extension.

mustexist

is similar to kpsewhich’s -must-exist, and the default is false. If you specify true (or a non-

zero integer), then the kpse library will search the disk as well as the ls-R databases.

dpi

This is used for the size argument of the formats pk, gf, and bitmap font.

LuaTEX Lua Libraries140

7.6.3 lookup

Amore powerful (but slower) generic method for finding files is also available. It returns a string

for each found file.

<string> f, ... = kpse.lookup(<string> filename, <table> options)

The options match commandline arguments from kpsewhich:

key type description

debug number set debugging flags for this lookup

format string use specific file type (see list above)

dpi number use this resolution for this lookup; default 600

path string search in the given path

all boolean output all matches, not just the first

mustexist boolean search the disk as well as ls-R if necessary

mktexpk boolean disable/enable mktexpk generation for this lookup

mktextex boolean disable/enable mktextex generation for this lookup

mktexmf boolean disable/enable mktexmf generation for this lookup

mktextfm boolean disable/enable mktextfm generation for this lookup

subdir string or table only outputmatches whose directory part endswith the given string(s)

7.6.4 init_prog

Extra initialization for programs that need to generate bitmap fonts.

kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode)

kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode, <string>

fallback)

7.6.5 readable_file

Test if an (absolute) file name is a readable file.

<string> f = kpse.readable_file(<string> name)

The return value is the actual absolute filename you should use, because the disk name is not

always the same as the requested name, due to aliases and system-specific handling under e.g.

msdos. Returns nil if the file does not exist or is not readable.

7.6.6 expand_path

Like kpsewhich’s -expand-path:

<string> r = kpse.expand_path(<string> s)

7.6.7 expand_var

Like kpsewhich’s -expand-var:

141LuaTEX Lua Libraries

<string> r = kpse.expand_var(<string> s)

7.6.8 expand_braces

Like kpsewhich’s -expand-braces:

<string> r = kpse.expand_braces(<string> s)

7.6.9 show_path

Like kpsewhich’s -show-path:

<string> r = kpse.show_path(<string> ftype)

7.6.10 var_value

Like kpsewhich’s -var-value:

<string> r = kpse.var_value(<string> s)

7.6.11 version

Returns the kpathsea version string.

<string> r = kpse.version()

7.7 The lang library

This library provides the interface to LuaTEX’s structure representing a language, and the asso-

ciated functions.

<language> l = lang.new()

<language> l = lang.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument

to most of the other functions in the lang library. These functions can also be used as if they

were object methods, using the colon syntax.

Without an argument, the next available internal id number will be assigned to this object. With

argument, an object will be created that links to the internal language with that id number.

<number> n = lang.id(<language> l)

returns the internal \language id number this object refers to.

<string> n = lang.hyphenation(<language> l)

lang.hyphenation(<language> l, <string> n)

LuaTEX Lua Libraries142

Either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 3.3.

lang.clear_hyphenation(<language> l)

Clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> l, <string> o)

<string> n = lang.clean(<string> o)

Creates a hyphenation key from the supplied hyphenation value. The syntax of the argument

string is explained in section 3.3. This function is useful if you want to do something else based

on the words in a dictionary file, like spell-checking.

<string> n = lang.patterns(<language> l)

lang.patterns(<language> l, <string> n)

Adds additional patterns for this language object, or returns the current set. The syntax of this

string is explained in section 3.3.

lang.clear_patterns(<language> l)

Clears the pattern dictionary for this language.

<number> n = lang.prehyphenchar(<language> l)

lang.prehyphenchar(<language> l, <number> n)

Gets or sets the ‘pre-break’ hyphen character for implicit hyphenation in this language (initially

the hyphen, decimal 45).

<number> n = lang.posthyphenchar(<language> l)

lang.posthyphenchar(<language> l, <number> n)

Gets or sets the ‘post-break’ hyphen character for implicit hyphenation in this language (initially

null, decimal 0, indicating emptiness).

<number> n = lang.preexhyphenchar(<language> l)

lang.preexhyphenchar(<language> l, <number> n)

Gets or sets the ‘pre-break’ hyphen character for explicit hyphenation in this language (initially

null, decimal 0, indicating emptiness).

<number> n = lang.postexhyphenchar(<language> l)

lang.postexhyphenchar(<language> l, <number> n)

Gets or sets the ‘post-break’ hyphen character for explicit hyphenation in this language (initially

null, decimal 0, indicating emptiness).

<boolean> success = lang.hyphenate(<node> head)

<boolean> success = lang.hyphenate(<node> head, <node> tail)

143LuaTEX Lua Libraries

Inserts hyphenation points (discretionary nodes) in a node list. If tail is given as argument,

processing stops on that node. Currently, success is always true if head (and tail, if specified)

are proper nodes, regardless of possible other errors.

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node

subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-

tion 3.1 for more details.

The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> l, <number> char, <number> usedchar)

<number> usedchar = lang.gethjcode(<language> l, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due

to \savinghyphcodes being larger than zero.

7.8 The lua library

This library contains one read-only item:

<string> s = lua.version

This returns the Lua version identifier string. The value is currently Lua 5.1.

7.8.1 LUA bytecode registers

Lua registers can be used to communicate Lua functions across Lua chunks. The accepted values

for assignments are functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f

lua.bytecode[<number> n]()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,

so it can also be used to preload Lua code.

Note: The function must not contain any upvalues. Currently, functions containing upvalues

can be stored (and their upvalues are set to nil), but this is an artifact of the current Lua

implementation and thus subject to change.

The associated function calls are

<function> f = lua.getbytecode(<number> n)

lua.setbytecode(<number> n, <function> f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,

a complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this

bytecode register:

LuaTEX Lua Libraries144

lua.bytecode[n]()

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and

therefore dumped into the format file if the above code is used in iniTEX. If it contains private

information, i.e. the user name, this information is then contained in the format file as well. This

should be kept in mind when preloading files into a bytecode register in iniTEX.

7.8.2 LUA chunk name registers

There is an array of 65536 (0–65535) potential chunk names for use with the \directlua and

\latelua primitives.

lua.name[<number> n] = <string> s

<string> s = lua.name[<number> n]

If you want to unset a Lua name, you can assign nil to it.

7.9 The mplib library

The MetaPost library interface registers itself in the table mplib. It is based on mplib version

1.9991.

7.9.1 mplib.new

To create a new MetaPost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields,

as follows:

name type description default

error_line number error line width 79

print_line number line length in ps output 100

random_seed number the initial random seed variable

interaction string the interactionmode, one of batch, errorstop

nonstop, scroll, errorstop

job_name string --jobname mpout

find_file function a function to find files only local files

The find_file function should be of this form:

<string> found = finder (<string> name, <string> mode, <string> type)

with:

name the requested file

mode the file mode: r or w

145LuaTEX Lua Libraries

type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full path name of the found file, or nil if the file cannot be found.

Note that the new version of mplib no longer uses binary mem files, so the way to preload a set

of macros is simply to start off with an input command in the first mp:execute() call.

7.9.2 mp:statistics

You can request statistics with:

<table> stats = mp:statistics()

This function returns the vital statistics for an mplib instance. There are four fields, giving the

maximum number of used items in each of four allocated object classes:

main_memory number memory size

hash_size number hash size

param_size number simultaneous macro parameters

max_in_open number input file nesting levels

Note that in the new version of mplib, this is informational only. The objects are all allocated

dynamically, so there is no chance of running out of space unless the available system memory

is exhausted.

7.9.3 mp:execute

You can ask the MetaPost interpreter to run a chunk of code by calling

<table> rettable = mp:execute('metapost language chunk')

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)

because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey

proper syntax, like each of them is a small file. For instance, you cannot split a single statement

over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start

of the first chunk.

7.9.4 mp:finish

<table> rettable = mp:finish()

If for some reason you want to stop using an mplib instance while processing is not yet actually

done, you can call mp:finish. Eventually, usedmemory will be freed and open files will be closed

LuaTEX Lua Libraries146

by the Lua garbage collector, but an explicit mp:finish is the only way to capture the final part

of the output streams.

7.9.5 Result table

The return value of mp:execute and mp:finish is a table with a few possible keys (only status

is always guaranteed to be present).

log string output to the ‘log’ stream

term string output to the ‘term’ stream

error string output to the ‘error’ stream (only used for ‘out of memory’)

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error

fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer

capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,

and each of those has a number of object methods you can call:

boundingbox function returns the bounding box, as an array of 4 values

postscript function returns a string that is the ps output of the fig. this function accepts

two optional integer arguments for specifying the values of prologues

(first argument) and procset (second argument)

svg function returns a string that is the svg output of the fig. This function accepts

an optional integer argument for specifying the value of prologues

objects function returns the actual array of graphic objects in this fig

copy_objects function returns a deep copy of the array of graphic objects in this fig

filename function the filename this fig’s PostScript output would have written to in stand

alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italcorr function the fontcharit value

charcode function the (rounded) charcode value

Note: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates

is larger than the second set, the picture is empty.

Graphical objects come in various types that each has a different list of accessible values. The

types are: fill, outline, text, start_clip, stop_clip, start_bounds, stop_bounds, special.

There is helper function (mplib.fields(obj)) to get the list of accessible values for a particular

object, but you can just as easily use the tables given below.

All graphical objects have a field type that gives the object type as a string value; it is not explicit

mentioned in the following tables. In the following, numbers are PostScript points represented

as a floating point number, unless stated otherwise. Field values that are of type table are

explained in the next section.

147LuaTEX Lua Libraries

7.9.5.1 fill

path table the list of knots

htap table the list of knots for the reversed trajectory

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

prescript string the prescript text

postscript string the postscript text

The entries htap and pen are optional.

There is helper function (mplib.pen_info(obj)) that returns a table containing a bunch of vital

characteristics of the used pen (all values are floats):

width number width of the pen

sx number 𝑥 scale
rx number 𝑥𝑦 multiplier
ry number 𝑦𝑥 multiplier
sy number 𝑦 scale
tx number 𝑥 offset
ty number 𝑦 offset

7.9.5.2 outline

path table the list of knots

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

linecap number line cap style (bare number)

dash table representation of a dash list

prescript string the prescript text

postscript string the postscript text

The entry dash is optional.

7.9.5.3 text

text string the text

font string font tfm name

dsize number font size

color table the object’s color

width number

height number

depth number

transform table a text transformation

LuaTEX Lua Libraries148

prescript string the prescript text

postscript string the postscript text

7.9.5.4 special

prescript string special text

7.9.5.5 start_bounds, start_clip

path table the list of knots

7.9.5.6 stop_bounds, stop_clip

Here are no fields available.

7.9.6 Subsidiary table formats

7.9.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are

represented by an array where each entry is a table that represents a knot.

left_type string when present: endpoint, but usually absent

right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot

right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra string-

valued key type with value elliptical besides the array part containing the knot list.

7.9.6.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0
3 rgb three values in the range (0, 1), ‘black’ is 0, 0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0, 0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values

representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.

149LuaTEX Lua Libraries

7.9.6.3 Transforms

Each transform is a six-item array.

1 number represents x

2 number represents y

3 number represents xx

4 number represents yx

5 number represents xy

6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,

where the translation comes last.

7.9.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the

dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

dashes hash an array of on-off numbers

offset number the starting offset value

7.9.7 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the

argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

7.9.7.1 mp:char_width

<number> w = mp:char_width(<string> fontname, <number> char)

7.9.7.2 mp:char_height

<number> w = mp:char_height(<string> fontname, <number> char)

7.9.7.3 mp:char_depth

<number> w = mp:char_depth(<string> fontname, <number> char)

7.10 The node library

The node library contains functions that facilitate dealing with (lists of) nodes and their values.

They allow you to create, alter, copy, delete, and insert LuaTEX node objects, the core objects

within the typesetter.

LuaTEX nodes are represented in Lua as userdata with the metadata type luatex.node. The

various parts within a node can be accessed using named fields.

LuaTEX Lua Libraries150

Each node has at least the three fields next, id, and subtype:

• The next field returns the userdata object for the next node in a linked list of nodes, or nil,

if there is no next node.

• The id indicates TEX’s ‘node type’. The field id has a numeric value for efficiency reasons,

but some of the library functions also accept a string value instead of id.

• The subtype is another number. It often gives further information about a node of a particular

id, but it is most important when dealing with ‘whatsits’, because they are differentiated

solely based on their subtype.

The other available fields depend on the id (and for ‘whatsits’, the subtype) of the node. Further

details on the various fields and their meanings are given in chapter 6.

Support for unset (alignment) nodes is partial: they can be queried and modified from Lua code,

but not created.

Nodes can be compared to each other, but: you are actually comparing indices into the node

memory. This means that equality tests can only be trusted under very limited conditions. It will

not work correctly in any situation where one of the two nodes has been freed and/or reallocated:

in that case, there will be false positives.

At the moment, memory management of nodes should still be done explicitly by the user. Nodes

are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing functions yourself

when you are no longer in need of a node (list). Nodes form linked lists without reference

counting, so you have to be careful that when control returns back to LuaTEX itself, you have

not deleted nodes that are still referenced from a next pointer elsewhere, and that you did not

create nodes that are referenced more than once.

There are statistics available with regards to the allocated node memory, which can be handy

for tracing.

7.10.1 Node handling functions

7.10.1.1 node.is_node

<boolean> t = node.is_node(<any> item)

This function returns true if the argument is a userdata object of type <node>.

7.10.1.2 node.types

<table> t = node.types()

This function returns an array that maps node id numbers to node type strings, providing an

overview of the possible top-level id types.

7.10.1.3 node.whatsits

<table> t = node.whatsits()

151LuaTEX Lua Libraries

TEX’s ‘whatsits’ all have the same id. The various subtypes are defined by their subtype fields.

The function is much like node.types, except that it provides an array of subtype mappings.

7.10.1.4 node.id

<number> id = node.id(<string> type)

This converts a single type name to its internal numeric representation.

7.10.1.5 node.subtype

<number> subtype = node.subtype(<string> type)

This converts a single whatsit name to its internal numeric representation (subtype).

7.10.1.6 node.type

<string> type = node.type(<any> n)

In the argument is a number, then this function converts an internal numeric representation to an

external string representation. Otherwise, it will return the string node if the object represents

a node, and nil otherwise.

7.10.1.7 node.fields

<table> t = node.fields(<number> id)

<table> t = node.fields(<number> id, <number> subtype)

This function returns an array of valid field names for a particular type of node. If you want to

get the valid fields for a ‘whatsit’, you have to supply the second argument also. In other cases,

any given second argument will be silently ignored.

This function accepts string id and subtype values as well.

7.10.1.8 node.has_field

<boolean> t = node.has_field(<node> n, <string> field)

This function returns a boolean that is only true if n is actually a node, and it has the field.

7.10.1.9 node.new

<node> n = node.new(<number> id)

<node> n = node.new(<number> id, <number> subtype)

Creates a new node. All of the new node’s fields are initialized to either zero or nil except for

id and subtype (if supplied). If you want to create a new whatsit, then the second argument is

LuaTEX Lua Libraries152

required, otherwise it need not be present. As with all node functions, this function creates a

node on the TEX level.

This function accepts string id and subtype values as well.

7.10.1.10 node.free

node.free(<node> n)

Removes the node n from TEX’s memory. Be careful: no checks are done on whether this node is

still pointed to from a register or some next field: it is up to you to make sure that the internal

data structures remain correct.

7.10.1.11 node.flush_list

node.flush_list(<node> n)

Removes the node list n and the complete node list following n from TEX’s memory. Be careful:

no checks are done on whether any of these nodes is still pointed to from a register or some

next field: it is up to you to make sure that the internal data structures remain correct.

7.10.1.12 node.copy

<node> m = node.copy(<node> n)

Creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.

7.10.1.13 node.copy_list

<node> m = node.copy_list(<node> n)

<node> m = node.copy_list(<node> n, <node> m)

Creates a deep copy of the node list that starts at n. If m is also given, the copy stops just before

node m.

Note that you cannot copy attribute lists this way, specialized functions for dealing with attribute

lists will be provided later but are not there yet. However, there is normally no need to copy at-

tribute lists as when you do assignments to the attr field or make changes to specific attributes,

the needed copying and freeing takes place automatically.

7.10.1.14 node.next

<node> m = node.next(<node> n)

Returns the node following this node, or nil if there is no such node.

153LuaTEX Lua Libraries

7.10.1.15 node.prev

<node> m = node.prev(<node> n)

Returns the node preceding this node, or nil if there is no such node.

7.10.1.16 node.current_attr

<node> m = node.current_attr()

Returns the currently active list of attributes, if there is one.

The intended usage of current_attr is as follows:

local x1 = node.new("glyph")

x1.attr = node.current_attr()

local x2 = node.new("glyph")

x2.attr = node.current_attr()

or:

local x1 = node.new("glyph")

local x2 = node.new("glyph")

local ca = node.current_attr()

x1.attr = ca

x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.

You cannot expect the value ca to be valid any more when you assign attributes (using tex.se-

tattribute) or when control has been passed back to TEX.

Note: this function is somewhat experimental, and it returns the actual attribute list, not a copy

thereof. Therefore, changing any of the attributes in the list will change these values for all

nodes that have the current attribute list assigned to them.

7.10.1.17 node.hpack

<node> h, <number> b = node.hpack(<node> n)

<node> h, <number> b = node.hpack(<node> n, <number> w, <string> info)

<node> h, <number> b = node.hpack(<node> n, <number> w, <string> info, <string>

dir)

This function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components.

In the three argument form, infomust be either additional or exactly, and w is the additional

(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness

of the generated box.

Caveat: at this moment, there can be unexpected side-effects to this function, like updating

some of the \marks and \inserts. Also note that the content of h is the original node list n: if

LuaTEX Lua Libraries154

you call node.free(h) you will also free the node list itself, unless you explicitly set the list

field to nil beforehand. And in a similar way, calling node.free(n) will invalidate h as well!

7.10.1.18 node.vpack

<node> h, <number> b = node.vpack(<node> n)

<node> h, <number> b = node.vpack(<node> n, <number> w, <string> info)

<node> h, <number> b = node.vpack(<node> n, <number> w, <string> info, <string>

dir)

This function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In

the three argument form, info must be either additional or exactly, and w is the additional

(\vbox spread) or exact (\vbox to) height to be used.

The second return value is the badness of the generated box.

See the description of node.hpack() for a few memory allocation caveats.

7.10.1.19 node.dimensions

<number> w, <number> h, <number> d = node.dimensions(<node> n)

<number> w, <number> h, <number> d = node.dimensions(<node> n, <string> dir)

<number> w, <number> h, <number> d = node.dimensions(<node> n, <node> t)

<number> w, <number> h, <number> d = node.dimensions(<node> n, <node> t, <string>

dir)

This function calculates the natural in-line dimensions of the node list starting at node n and

terminating just before node t (or the end of the list, if there is no second argument). The

return values are scaled points. An alternative format that starts with glue parameters as the

first three arguments is also possible:

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign,

<number> glue_order, <node> n)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign,

<number> glue_order, <node> n, <string> dir)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign,

<number> glue_order, <node> n, <node> t)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign,

<number> glue_order, <node> n, <node> t, <string> dir)

This calling method takes glue settings into account and is especially useful for finding the actual

width of a sublist of nodes that are already boxed, for example in code like this, which prints the

width of the space in between the a and b as it would be if \box0 was used as-is:

155LuaTEX Lua Libraries

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glue_set,

tex.box[0].glue_sign,

tex.box[0].glue_order,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

7.10.1.20 node.mlist_to_hlist

<node> h = node.mlist_to_hlist(<node> n,

<string> display_type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlist_to_hlist.

7.10.1.21 node.slide

<node> m = node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse

chain of prev pointers between nodes.

7.10.1.22 node.tail

<node> m = node.tail(<node> n)

Returns the last node of the node list that starts at n.

7.10.1.23 node.length

<number> i = node.length(<node> n)

<number> i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it

stops at m instead of at the end of the list. The node m is not counted.

7.10.1.24 node.count

<number> i = node.count(<number> id, <node> n)

<number> i = node.count(<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id

field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted.

LuaTEX Lua Libraries156

This function also accept string id’s.

7.10.1.25 node.traverse

<node> t = node.traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

...

end

is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then break end

...

end

end

It should be clear from the definition of the function f that even though it is possible to add or

remove nodes from the node list while traversing, you have to take great care to make sure all

the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

7.10.1.26 node.traverse_id

<node> t = node.traverse_id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching

id field.

See the previous section for details. The change is in the local function f, which now does an

extra while loop checking against the upvalue id:

local function f(head,var)

157LuaTEX Lua Libraries

local t

if var == nil then

t = head

else

t = var.next

end

while not t.id == id do

t = t.next

end

return t

end

7.10.1.27 node.end_of_math

<node> t = node.end_of_math(<node> start)

Looks for and returns the next math_node following the start. If the given node is a math

endnode this helper return that node, else it follows the list and return the next math endnote.

If no such node is found nil is returned.

7.10.1.28 node.remove

<node> head, current = node.remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to

make sure it is really part of that list. The return values are the new head and current nodes.

The returned current is the node following the current in the calling argument, and is only

passed back as a convenience (or nil, if there is no such node). The returned head is more

important, because if the function is called with current equal to head, it will be changed.

7.10.1.29 node.insert_before

<node> head, new = node.insert_before(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the (potentially

mutated) head and the node new, set up to be part of the list (with correct next field). If head is

initially nil, it will become new.

7.10.1.30 node.insert_after

<node> head, new = node.insert_after(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the head and

the node new, set up to be part of the list (with correct next field). If head is initially nil, it will

become new.

LuaTEX Lua Libraries158

7.10.1.31 node.first_glyph

<node> n = node.first_glyph(<node> n)

<node> n = node.first_glyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is

a glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing

stops at the end of the list.

7.10.1.32 node.ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned

nodes h and t are the new head and tail (both n and m can change into a new ligature).

7.10.1.33 node.kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)

<node> h, <node> t, <boolean> success = node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified node list. The tail node m is optional. The two returned

nodes h and t are the head and tail (either one of these can be an inserted kern node, because

special kernings with word boundaries are possible).

7.10.1.34 node.unprotect_glyphs

node.unprotect_glyphs(<node> n)

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to convert

from characters to glyphs during node processing.

7.10.1.35 node.protect_glyphs

node.protect_glyphs(<node> n)

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,

it adds only 255. The special handling of 1 means that characters will become glyphs after

subtraction of 256.

7.10.1.36 node.last_node

<node> n = node.last_node()

This function pops the last node from TEX’s ‘current list’. It returns that node, or nil if the

current list is empty.

159LuaTEX Lua Libraries

7.10.1.37 node.write

node.write(<node> n)

This is an experimental function that will append a node list to TEX’s ‘current list’ The node list

is not deep-copied! There is no error checking either!

7.10.1.38 node.protrusion_skippable

<boolean> skippable = node.protrusion_skippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,

this node can be skipped.

7.10.2 Glue handling

7.10.2.1 node.setglue

You can set the properties of a glue in one go. If you pass no values, the glue will become a zero

glue.

node.setglue(<node> n)

node.setglue(<node> n,width,stretch,shrink,stretch_order,shrink_order)

When you pass values, only arguments that are numbers are assigned so

node.setglue(n,655360,false,65536)

will only adapt the width and shrink.

7.10.2.2 node.getglue

The next call will return 5 values (or northing when no glue is passed).

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch_order,

<integer> shrink_order = node.getglue(<node> n)

7.10.2.3 node.is_zero_glue

This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue = node.is_zero_glue(<node> n)

7.10.3 Attribute handling

Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can

be handled individually, but it is much safer and more efficient to use the dedicated functions

associated with them.

LuaTEX Lua Libraries160

7.10.3.1 node.has_attribute

<number> v = node.has_attribute(<node> n, <number> id)

<number> v = node.has_attribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

7.10.3.2 node.set_attribute

node.set_attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored. [needs

explanation]

7.10.3.3 node.unset_attribute

<number> v = node.unset_attribute(<node> n, <number> id)

<number> v = node.unset_attribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation

if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

7.11 The pdf library

This contains variables and functions that are related to the pdf backend.

7.11.1 pdf.mapfile, pdf.mapline

pdf.mapfile(<string> map file)

pdf.mapline(<string> map line)

These two functions can be used to replace primitives \pdfmapfile and \pdfmapline from

pdfTEX. They expect a string as only parameter and have no return value.

The also functions replace the former variables pdf.pdfmapfile and pdf.pdfmapline.

7.11.2 pdf.catalog, pdf.info,pdf.names, pdf.trailer

These variables offer a read-write interface to the corresponding pdfTEX token lists. The value

types are strings and they are written out to the pdf file directly after the pdfTEX token registers.

The preferred interface is now pdf.setcatalog, pdf.setinfo pdf.setnames and pdf.set-

trailer for setting these properties and pdf.getcatalog, pdf.getinfo pdf.getnames and

pdf.gettrailer for querying them,

161LuaTEX Lua Libraries

The corresponding ‘pdf’ parameter names pdf.pdfcatalog, pdf.pdfinfo, pdf.pdfnames, and

pdf.pdftrailer are not available.

7.11.3 pdf.<set/get>pageattributes, pdf.<set/get>pageresources,

pdf.<set/get>pagesattributes

These variables offer a read-write interface to related token lists. The value types are strings.

The variables have no interaction with the corresponding pdfTEX token registers \pdfpageattr,

\pdfpageresources, and \pdfpagesattr. They are written out to the pdf file directly after the

pdfTEX token registers.

The preferred interface is now pdf.setpageattributes, pdf.setpagesattributes and

pdf.setpageresources for setting these properties and pdf.getpageattributes, pdf.get-

pageattributes and pdf.getpageresources for querying them.

7.11.4 pdf.<set/get>xformattributes, pdf.<set/get>xformresources

These variables offer a read-write interface to related token lists. The value types are strings.

The variables have no interaction with the corresponding pdfTEX token registers \pdfxformattr

and \pdfxformresources. They are written out to the pdf file directly after the pdfTEX token

registers.

The preferred interface is now pdf.setxformattributes and pdf.setxformattributes for set-

ting these properties and pdf.getxformattributes and pdf.getxformresources for querying

them.

7.11.5 pdf.setcompresslevel and pdf.setobjcompresslevel

These two functions set the level of compression. The minimum valu sis 0, the maximum is 9.

7.11.6 pdf.setdecimaldigits and pdf.getdecimaldigits

These two functions set the accuracy of floats written to the pdffile. You can set any value but

the backend will not go below 3 and above 6.

7.11.7 pdf.setpkresolution and pdf.getpkresolution

These setter takes two arguments: the resolution and an optional zero or one that indicates if

this is a fixed one. The getter returns these two values.

7.11.8 pdf.lastobj, pdf.lastlink, pdf.lastannot, and pdf.retval

These status variables are similar to the ones traditionally used at the TEX end.

7.11.9 pdf.setorigin, pdf.getorigin

This one is used to set the horizonal and/or vertical offset (a traditional backend property).

LuaTEX Lua Libraries162

pdf.setorigin() -- sets both to 0pt

pdf.setorigin(tex.sp("1in")) -- sets both to 1in

pdf.setorigin(tex.sp("1in"),tex.sp("1in"))

The counterpart of this function returns two values.

7.11.10 pdf.setlinkmargin, pdf.getlinkmargin pdf.setdestmargin,

pdf.getdestmargin pdf.setthreadmargin, pdf.getthreadmargin

pdf.setxformmargin, pdf.getxformmargin

These function can be used to set and retrieve themargins that are added to the natural bounding

boxes of the respective objects.

7.11.11 pdf.h, pdf.v

These are the h and v values that define the current location on the output page, measured from

its lower left corner. The values can be queried using scaled points as units.

local h = pdf.h

local v = pdf.v

7.11.12 pdf.getpos, pdf.gethpos, pdf.getvpos

These are the function variants of pdf.h and pdf.v. Sometimes using a function is preferred

over a key so this saves wrapping. Also, these functions are faster then the key based access,

as h and v keys are not real variables but looked up using a metatable call. The getpos function

returns two values, the other return one.

local h, v = pdf.getpos()

7.11.13 pdf.hasmatrix, pdf.getmatrix

The current matrix transformation is available via the getmatrix command, which returns 6

values: sx, rx, ry, sy, tx, and ty. The hasmatrix function returns truewhen a matrix is applied.

if pdf.hasmatrix() then

local sx, rx, ry, sy, tx, ty = pdf.getmatrix()

-- do something useful or not

end

7.11.14 pdf.print

A print function to write stuff to the pdf document that can be used from within a \latelua

argument. This function is not to be used inside \directlua unless you know exactly what you

are doing.

163LuaTEX Lua Libraries

pdf.print(<string> s)

pdf.print(<string> type, <string> s)

The optional parameter can be used to mimic the behavior of \pdfliteral: the type is direct

or page.

7.11.15 pdf.immediateobj

This function creates a pdf object and immediately writes it to the pdf file. It is modelled after

pdfTEX’s \immediate \pdfobj primitives. All function variants return the object number of the

newly generated object.

<number> n = pdf.immediateobj(<string> objtext)

<number> n = pdf.immediateobj("file", <string> filename)

<number> n = pdf.immediateobj("stream", <string> streamtext, <string> attrtext)

<number> n = pdf.immediateobj("streamfile", <string> filename, <string> attr-

text)

The first version puts the objtext raw into an object. Only the object wrapper is automatically

generated, but any internal structure (like << >> dictionary markers) needs to provided by the

user. The second version with keyword "file" as 1st argument puts the contents of the file

with name filename raw into the object. The third version with keyword "stream" creates a

stream object and puts the streamtext raw into the stream. The stream length is automatically

calculated. The optional attrtext goes into the dictionary of that object. The fourth version

with keyword "streamfile" does the same as the 3rd one, it just reads the stream data raw

from a file.

An optional first argument can be given to make the function use a previously reserved pdf

object.

<number> n = pdf.immediateobj(<integer> n, <string> objtext)

<number> n = pdf.immediateobj(<integer> n, "file", <string> filename)

<number> n = pdf.immediateobj(<integer> n, "stream", <string> streamtext, <string>

attrtext)

<number> n = pdf.immediateobj(<integer> n, "streamfile", <string> filename,

<string> attrtext)

7.11.16 pdf.obj

This function creates a pdf object, which is written to the pdf file only when referenced, e.g., by

pdf.refobj().

All function variants return the object number of the newly generated object, and there are two

separate calling modes.

The first mode is modelled after pdfTEX’s \pdfobj primitive.

<number> n = pdf.obj(<string> objtext)

<number> n = pdf.obj("file", <string> filename)

LuaTEX Lua Libraries164

<number> n = pdf.obj("stream", <string> streamtext, <string> attrtext)

<number> n = pdf.obj("streamfile", <string> filename, <string> attrtext)

An optional first argument can be given to make the function use a previously reserved pdf

object.

<number> n = pdf.obj(<integer> n, <string> objtext)

<number> n = pdf.obj(<integer> n, "file", <string> filename)

<number> n = pdf.obj(<integer> n, "stream", <string> streamtext, <string> attr-

text)

<number> n = pdf.obj(<integer> n, "streamfile", <string> filename, <string> at-

trtext)

The second mode accepts a single argument table with key–value pairs.

<number> n = pdf.obj {

type = <string>,

immmediate = <boolean>,

objnum = <number>,

attr = <string>,

compresslevel = <number>,

objcompression = <boolean>,

file = <string>,

string = <string>

}

The type field can have the values raw and stream, this field is required, the others are optional

(within constraints).

Note: this mode makes pdf.obj look more flexible than it actually is: the constraints from the

separate parameter version still apply, so for example you can’t have both string and file at

the same time.

7.11.17 pdf.refobj

This function, the Lua version of the \pdfrefobj primitive, references an object by its object

number, so that the object will be written out.

pdf.refobj(<integer> n)

This function works in both the \directlua and \latelua environment. Inside \directlua a

new whatsit node ‘pdf_refobj’ is created, which will be marked for flushing during page output

and the object is then written directly after the page, when also the resources objects are written

out. Inside \latelua the object will be marked for flushing.

This function has no return values.

7.11.18 pdf.reserveobj

This function creates an empty pdf object and returns its number.

165LuaTEX Lua Libraries

<number> n = pdf.reserveobj()

<number> n = pdf.reserveobj("annot")

7.11.19 pdf.registerannot

This function adds an object number to the /Annots array for the current page without doing

anything else. This function can only be used from within \latelua.

pdf.registerannot (<number> objnum)

7.11.20 pdf.newcolorstack

This function allocates a new color stack and returns it’s id. The arguments are the same as for

the similar backend extension primitive.

pdf.newcolorstack("0 g","page",true) -- page|direct|origin

7.12 The pdfscanner library

The pdfscanner library allows interpretation of PDF content streams and /ToUnicode (cmap)

streams. You can get those streams from the epdf library, as explained in an earlier section.

There is only a single top-level function in this library:

pdfscanner.scan (<Object> stream, <table> operatortable, <table> info)

The first argument, stream, should be either a PDF stream object, or a PDF array of PDF stream

objects (those options comprise the possible return values of <Page>:getContents() and <Ob-

ject>:getStream() in the epdf library).

The second argument, operatortable, should be a Lua table where the keys are PDF operator

name strings and the values are Lua functions (defined by you) that are used to process those

operators. The functions are called whenever the scanner finds one of these PDF operators in

the content stream(s). The functions are called with two arguments: the scanner object itself,

and the info table that was passed are the third argument to pdfscanner.scan.

Internally, pdfscanner.scan loops over the PDF operators in the stream(s), collecting operands

on an internal stack until it finds a PDF operator. If that PDF operator’s name exists in opera-

tortable, then the associated function is executed. After the function has run (or when there is

no function to execute) the internal operand stack is cleared in preparation for the next operator,

and processing continues.

The scanner argument to the processing functions is needed because it offers various methods

to get the actual operands from the internal operand stack.

A simple example of processing a PDF’s document stream could look like this:

function Do (scanner, info)

local val = scanner:pop()

local name = val[2] -- val[1] == 'name'

LuaTEX Lua Libraries166

local resources = info.resources

local xobject = resources:lookup("XObject"):getDict():lookup(name)

print (info.space ..'Use XObject '.. name)

if xobject and xobject:isStream() then

local dict = xobject:getStream():getDict()

if dict then

local name = dict:lookup("Subtype")

if name:getName() == "Form" then

local newinfo = {

space = info.space .. " " ,

resources = dict:lookup("Resources"):getDict()

}

pdfscanner.scan(xobject, operatortable, newinfo)

end

end

end

end

operatortable = { Do = Do }

doc = epdf.open(arg[1])

pagenum = 1

while pagenum <= doc:getNumPages() do

local page = doc:getCatalog():getPage(pagenum)

local info = {

space = " " ,

resources = page:getResourceDict()

}

print('Page ' .. pagenum)

pdfscanner.scan(page:getContents(), operatortable, info)

pagenum = pagenum + 1

end

This example iterates over all the actual content in the PDF, and prints out the found XObject

names. While the code demonstrates quite some of the epdf functions, let’s focus on the type

pdfscanner specific code instead.

From the bottom up, the line

pdfscanner.scan(page:getContents(), operatortable, info)

runs the scanner with the PDF page’s top-level content.

The third argument, info, contains two entries: space is used to indent the printed output, and

resources is needed so that embedded XForms can find their own content.

The second argument, operatortable defines a processing function for a single PDF operator,

Do.

167LuaTEX Lua Libraries

The function Do prints the name of the current XObject, and then starts a new scanner for that

object’s content stream, under the condition that the XObject is in fact a /Form. That nested

scanner is called with new info argument with an updated space value so that the indentation

of the output nicely nests, and with an new resources field to help the next iteration down to

properly process any other, embedded XObjects.

Of course, this is not a very useful example in practise, but for the purpose of demonstrating

pdfscanner, it is just long enough. It makes use of only one scanner method: scanner:pop().

That function pops the top operand of the internal stack, and returns a Lua table where the

object at index one is a string representing the type of the operand, and object two is its value.

The list of possible operand types and associated Lua value types is:

integer <number>

real <number>

boolean <boolean>

name <string>

operator <string>

string <string>

array <table>

dict <table>

In case of integer or real, the value is always a Lua (floating point) number.

In case of name, the leading slash is always stripped.

In case of string, please bear in mind that PDF actually supports different types of strings (with

different encodings) in different parts of the PDF document, so may need to reencode some of the

results; pdfscanner always outputs the byte stream without reencoding anything. pdfscanner

does not differentiate between literal strings and hexadecimal strings (the hexadecimal values

are decoded), and it treats the stream data for inline images as a string that is the single operand

for EI.

In case of array, the table content is a list of pop return values.

In case of dict, the table keys are PDF name strings and the values are pop return values.

There are few more methods defined that you can ask scanner:

pop as explained above

popNumber return only the value of a real or integer

popName return only the value of a name

popString return only the value of a string

popArray return only the value of a array

popDict return only the value of a dict

popBool return only the value of a boolean

done abort further processing of this scan() call

The popXXX are convenience functions, and come in handy when you know the type of the

operands beforehand (which you usually do, in PDF). For example, the Do function could have

used local name = scanner:popName() instead, because the single operand to the Do operator

is always a PDF name object.

LuaTEX Lua Libraries168

The done function allows you to abort processing of a stream once you have learned everything

you want to learn. This comes in handy while parsing /ToUnicode, because there usually is

trailing garbage that you are not interested in. Without done, processing only end at the end of

the stream, possibly wasting CPU cycles.

7.13 The status library

This contains a number of run-time configuration items that you may find useful in message

reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the

values in status are fetched through a metatable at run-time whenever they are accessed, so

you cannot use pairs on status, but you can use pairs on info, of course. If you do not need

the full list, you can also ask for a single item by using its name as an index into status.

The current list is:

key explanation

pdf_gone written pdf bytes

pdf_ptr not yet written pdf bytes

dvi_gone written dvi bytes

dvi_ptr not yet written dvi bytes

total_pages number of written pages

output_file_name name of the pdf or dvi file

log_name name of the log file

banner terminal display banner

var_used variable (one-word) memory in use

dyn_used token (multi-word) memory in use

str_ptr number of strings

init_str_ptr number of iniTEX strings

max_strings maximum allowed strings

pool_ptr string pool index

init_pool_ptr iniTEX string pool index

pool_size current size allocated for string characters

node_mem_usage a string giving insight into currently used nodes

var_mem_max number of allocated words for nodes

fix_mem_max number of allocated words for tokens

fix_mem_end maximum number of used tokens

cs_count number of control sequences

hash_size size of hash

hash_extra extra allowed hash

font_ptr number of active fonts

input_ptr th elevel of input we’re at

max_in_stack max used input stack entries

max_nest_stack max used nesting stack entries

max_param_stack max used parameter stack entries

169LuaTEX Lua Libraries

max_buf_stack max used buffer position

max_save_stack max used save stack entries

stack_size input stack size

nest_size nesting stack size

param_size parameter stack size

buf_size current allocated size of the line buffer

save_size save stack size

obj_ptr max pdf object pointer

obj_tab_size pdf object table size

pdf_os_cntr max pdf object stream pointer

pdf_os_objidx pdf object stream index

pdf_dest_names_ptr max pdf destination pointer

dest_names_size pdf destination table size

pdf_mem_ptr max pdf memory used

pdf_mem_size pdf memory size

largest_used_mark max referenced marks class

filename name of the current input file

inputid numeric id of the current input

linenumber location in the current input file

lasterrorstring last TEX error string

lastluaerrorstring last Lua error string

lastwarningtag last warning string

lastwarningstring last warning tag, normally an indication of in what part

lasterrorcontext last error context string (with newlines)

luabytecodes number of active Lua bytecode registers

luabytecode_bytes number of bytes in Lua bytecode registers

luastate_bytes number of bytes in use by Lua interpreters

output_active true if the \output routine is active

callbacks total number of executed callbacks so far

indirect_callbacks number of those that were themselves a result of other callbacks (e.g.

file readers)

luatex_version the LuaTEX version number

luatex_revision the LuaTEX revision string

ini_version true if this is an iniTEX run

shell_escape 0 means disabled, 1 is restricted and 2 means anything is permitted

The error and warning messages can be wiped with the resetmessages function.

7.14 The tex library

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only

frontends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that has these characteristics:

LuaTEX Lua Libraries170

• You can use it after \the

• It is a single token.

• Some special others, see the list below

This excludes parameters that need extra arguments, like \the\scriptfont.

The subset comprising simple integer and dimension registers are writable as well as readable

(stuff like \tracingcommands and \parindent).

7.14.1 Internal parameter values

For all the parameters in this section, it is possible to access them directly using their names

as index in the tex table, or by using one of the functions tex.get and tex.set. If you created

aliasses, you can use accessors like tex.getdimen as these also understand names of built-in

variables.

The exact parameters and return values differ depending on the actual parameter, and so does

whether tex.set has any effect. For the parameters that can be set, it is possible to use global

as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (<string> n, ...)

tex.set ("global", <string> n, ...)

... = tex.get (<string> n)

There are also dedicated setters, getters and checkers:

local d = tex.getdimen("foo")

if tex.isdimen("bar") then

tex.setdimen("bar",d)

end

There are such helpers for dimen, count, skip, box and attribute registers.

7.14.1.1 Integer parameters

The integer parameters accept and return Lua numbers.

Read-write:

tex.adjdemerits

tex.binoppenalty

tex.brokenpenalty

tex.catcodetable

tex.clubpenalty

tex.day

tex.defaulthyphenchar

tex.defaultskewchar

tex.delimiterfactor

tex.displaywidowpenalty

tex.doublehyphendemerits

tex.endlinechar

tex.errorcontextlines

tex.escapechar

tex.exhyphenpenalty

tex.fam

tex.finalhyphendemerits

tex.floatingpenalty

tex.globaldefs

tex.hangafter

171LuaTEX Lua Libraries

tex.hbadness

tex.holdinginserts

tex.hyphenpenalty

tex.interlinepenalty

tex.language

tex.lastlinefit

tex.lefthyphenmin

tex.linepenalty

tex.localbrokenpenalty

tex.localinterlinepenalty

tex.looseness

tex.mag

tex.maxdeadcycles

tex.month

tex.newlinechar

tex.outputpenalty

tex.pausing

tex.postdisplaypenalty

tex.predisplaydirection

tex.predisplaypenalty

tex.pretolerance

tex.relpenalty

tex.righthyphenmin

tex.savinghyphcodes

tex.savingvdiscards

tex.showboxbreadth

tex.showboxdepth

tex.time

tex.tolerance

tex.tracingassigns

tex.tracingcommands

tex.tracinggroups

tex.tracingifs

tex.tracinglostchars

tex.tracingmacros

tex.tracingnesting

tex.tracingonline

tex.tracingoutput

tex.tracingpages

tex.tracingparagraphs

tex.tracingrestores

tex.tracingscantokens

tex.tracingstats

tex.uchyph

tex.vbadness

tex.widowpenalty

tex.year

Read-only:

tex.deadcycles

tex.insertpenalties

tex.parshape

tex.prevgraf

tex.spacefactor

7.14.1.2 Dimension parameters

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in-

cluded dimension). The result is always a number in scaled points.

Read-write:

tex.boxmaxdepth

tex.delimitershortfall

tex.displayindent

tex.displaywidth

tex.emergencystretch

tex.hangindent

tex.hfuzz

tex.hoffset

tex.hsize

tex.lineskiplimit

tex.mathsurround

tex.maxdepth

tex.nulldelimiterspace

tex.overfullrule

tex.pagebottomoffset

tex.pageheight

tex.pageleftoffset

tex.pagerightoffset

tex.pagetopoffset

tex.pagewidth

tex.parindent

tex.predisplaysize

tex.scriptspace

tex.splitmaxdepth

tex.vfuzz

tex.voffset

tex.vsize

tex.prevdepth

tex.prevgraf

tex.spacefactor

LuaTEX Lua Libraries172

Read-only:

tex.pagedepth

tex.pagefilllstretch

tex.pagefillstretch

tex.pagefilstretch

tex.pagegoal

tex.pageshrink

tex.pagestretch

tex.pagetotal

Beware: as with all Lua tables you can add values to them. So, the following is valid:

tex.foo = 123

When you access a TEX parameter a look up takes place. For read--only variables that means

that you will get something back, but when you set them you create a new entry in the table

thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space-

factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth = p

tex.nest[tex.nest.ptr].spacefactor = s

However, the following also works:

tex.prevdepth = p

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the Lua end you might need to

update the top of the nesting stack’s prevdepth explicitly as there is no way LuaTEX can guess

your intentions. By using the accessor in the tex tables, you get and set the values atthe top of

the nest stack.

7.14.1.3 Direction parameters

The direction parameters are read-only and return a Lua string.

tex.bodydir

tex.mathdir

tex.pagedir

tex.pardir

tex.textdir

7.14.1.4 Glue parameters

The glue parameters accept and return a userdata object that represents a glue_spec node.

tex.abovedisplayshortskip

tex.abovedisplayskip

tex.baselineskip

tex.belowdisplayshortskip

tex.belowdisplayskip

tex.leftskip

tex.lineskip

tex.parfillskip

tex.parskip

tex.rightskip

tex.spaceskip

tex.splittopskip

tex.tabskip

tex.topskip

tex.xspaceskip

173LuaTEX Lua Libraries

7.14.1.5 Muglue parameters

All muglue parameters are to be used read-only and return a Lua string.

tex.medmuskip tex.thickmuskip tex.thinmuskip

7.14.1.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it feels

bad to make exceptions in view of a coming extension that will accept full-blown token strings.

tex.errhelp

tex.everycr

tex.everydisplay

tex.everyeof

tex.everyhbox

tex.everyjob

tex.everymath

tex.everypar

tex.everyvbox

tex.output

tex.pdfpageattr

tex.pdfpageresources

tex.pdfpagesattr

tex.pdfpkmode

7.14.2 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this

moment are:

tex.eTeXVersion

tex.eTeXrevision

tex.formatname

tex.jobname

tex.luatexbanner

tex.luatexrevision

tex.pdfnormaldeviate

tex.fontname(number)

tex.pdffontname(number)

tex.pdffontobjnum(number)

tex.pdffontsize(number)

tex.uniformdeviate(number)

tex.number(number)

tex.romannumeral(number)

tex.pdfpageref(number)

tex.pdfxformname(number)

tex.fontidentifier(number)

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ internal

command that do not require an argument, as well as the ones that require only a simple numeric

value.

The special (lua-only) case of tex.fontidentifier returns the csname string that matches a

font id number (if there is one).

if these are really needed in a macro package.

7.14.3 Last item commands

All ‘last item’ commands are read-only and return a number.

The supported commands at this moment are:

LuaTEX Lua Libraries174

tex.lastpenalty

tex.lastkern

tex.lastskip

tex.lastnodetype

tex.inputlineno

tex.pdflastobj

tex.pdflastxform

tex.pdflastximage

tex.pdflastximagepages

tex.pdflastannot

tex.pdflastxpos

tex.pdflastypos

tex.pdfrandomseed

tex.pdflastlink

tex.luatexversion

tex.eTeXminorversion

tex.eTeXversion

tex.currentgrouplevel

tex.currentgrouptype

tex.currentiflevel

tex.currentiftype

tex.currentifbranch

tex.pdflastximagecol-

ordepth

7.14.4 Attribute, count, dimension, skip and token registers

TEX’s attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip) and token

(\toks) registers can be accessed and written to using two times five virtual sub-tables of the

tex table:

tex.attribute

tex.count

tex.dimen

tex.skip

tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0

enormous = tex.dimen['maxdimen']

In this case, LuaTEX looks up the value for you on the fly. You have to use a valid \countdef (or

\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a

number).

The attribute and count registers accept and return Lua numbers.

The dimension registers accept Lua numbers (in scaled points) or strings (with an included

absolute dimension; em and ex and px are forbidden). The result is always a number in scaled

points.

The token registers accept and return Lua strings. Lua strings are converted to and from token

lists using \the \toks style expansion: all category codes are either space (10) or other (12).

The skip registers accept and return glue_spec userdata node objects (see the description of

the node interface elsewhere in this manual).

As an alternative to array addressing, there are also accessor functions defined for all cases, for

example, here is the set of possibilities for \skip registers:

tex.setskip (<number> n, <node> s)

tex.setskip (<string> s, <node> s)

tex.setskip ("global",<number> n, <node> s)

tex.setskip ("global",<string> s, <node> s)

<node> s = tex.getskip (<number> n)

<node> s = tex.getskip (<string> s)

175LuaTEX Lua Libraries

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented

by numbers, skips and muskips by nodes, and toks by strings. For tokens registers we have an

alternative where a catcode table is specified:

tex.scantoks(0,3,"$e=mc^2$")

tex.scantoks("global",0,"$\int\limits^1_2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

There are four extra skip related helpers:

tex.setglue (<number> n, width, stretch, shrink, stretch_order, shrink_order)

tex.setglue (<string> s, width, stretch, shrink, stretch_order, shrink_order)

tex.setglue ("global",<number> n, width, stretch, shrink, stretch_order, shrink_or-

der)

tex.setglue ("global",<string> s, width, stretch, shrink, stretch_order, shrink_or-

der)

width, stretch, shrink, stretch_order, shrink_order = tex.getglue (<number> n)

width, stretch, shrink, stretch_order, shrink_order = tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

7.14.5 Character code registers

TEX’s character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can

be accessed and written to using six virtual subtables of the tex table

tex.lccode

tex.uccode

tex.sfcode

tex.catcode

tex.mathcode

tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the

simple ones:

tex.setsfcode (<number> n, <number> s)

tex.setsfcode ('global', <number> n, <number> s)

<number> s = tex.getsfcode (<number> n)

The function call interface for lccode and uccode additionally allows you to set the associated

sibling at the same time:

tex.setlccode (['global'], <number> n, <number> lc)

tex.setlccode (['global'], <number> n, <number> lc, <number> uc)

<number> lc = tex.getlccode (<number> n)

tex.setuccode (['global'], <number> n, <number> uc)

tex.setuccode (['global'], <number> n, <number> uc, <number> lc)

<number> uc = tex.getuccode (<number> n)

LuaTEX Lua Libraries176

The function call interface for catcode also allows you to specify a category table to use on

assignment or on query (default in both cases is the current one):

tex.setcatcode (['global'], <number> n, <number> c)

tex.setcatcode (['global'], <number> cattable, <number> n, <number> c)

<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (['global'], <number> n, <table> mval)

<table> mval = tex.getmathcode (<number> n)

tex.setdelcode (['global'], <number> n, <table> dval)

<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{<number> mathclass, <number> family, <number> character}

And the table for delcode is an array with 4 numbers, like this:

{<number> small_fam, <number> small_char, <number> large_fam, <number> large_char}

You can also avoid the table:

class, family, char = tex.getmathcodes (<number> n)

smallfam, smallchar, largefam, largechar = tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to

\Udelcode usage, but the returned table can have values there (if the delimiter code was set

using \delcode, for example). Unset delcode’s can be recognized because dval[1] is −1.

7.14.6 Box registers

It is possible to set and query actual boxes, using the node interface as defined in the node

library:

tex.box

for array access, or

tex.setbox(<number> n, <node> s)

tex.setbox(<string> cs, <node> s)

tex.setbox('global', <number> n, <node> s)

tex.setbox('global', <string> cs, <node> s)

<node> n = tex.getbox(<number> n)

<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally

by using the string global as the first function argument.

177LuaTEX Lua Libraries

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com-

mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,

always use node.copy_list() unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

The following function will register a box for reuse (this is modelled after so called xforms in

pdf). You can (re)use the box with \useboxresource or by creating a rule node with subtype 2.

local index = tex.saveboxresource(n,attributes,resources,immediate)

The optional second and third arguments are strings, the fourth is a boolean.

You can generate the reference (a rule type) with:

local reused = tex.useboxresource(n,wd,ht,dp)

The dimensions are optional and the final ones are returned as extra values. The following is

just a bonus (no dimensions returned means that the resource is unknown):

local w, h, d = tex.getboxresourcedimensions(n)

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is

comparable to the \vsplit operation. The mode can be additional or exactly and concerns

the split off box.

7.14.7 Math parameters

It is possible to set and query the internal math parameters using:

tex.setmath(<string> n, <string> t, <number> n)

tex.setmath('global', <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the

style name minus the trailing ‘style’.

Just to be complete, the values for the math parameter name are:

quad axis operatorsize

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

LuaTEX Lua Libraries178

radicalkern radicalrule radicalvgap

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing

ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing

opordspacing opopspacing opbinspacing oprelspacing

opopenspacing opclosespacing oppunctspacing opinnerspacing

binordspacing binopspacing binbinspacing binrelspacing

binopenspacing binclosespacing binpunctspacing bininnerspacing

relordspacing relopspacing relbinspacing relrelspacing

relopenspacing relclosespacing relpunctspacing relinnerspacing

openordspacing openopspacing openbinspacing openrelspacing

openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing

closeopenspacing closeclosespacing closepunctspacing closeinnerspacing

punctordspacing punctopspacing punctbinspacing punctrelspacing

punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing

innerordspacing inneropspacing innerbinspacing innerrelspacing

inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter name are:

display crampeddisplay

text crampedtext

script crampedscript

scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre-

senting a muskip for ordordspacing and similar spacing parameters.

7.14.8 Special list heads

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

field description

page_ins_head circular list of pending insertions

179LuaTEX Lua Libraries

contrib_head the recent contributions

page_head the current page content

hold_head used for held-over items for next page

adjust_head head of the current \vadjust list

pre_adjust_head head of the current \vadjust pre list

page_discards_head head of the discarded items of a page break

split_discards_head head of the discarded items in a vsplit

7.14.9 Semantic nest levels

The virtual table tex.nest contains the currently active semantic nesting state. It has two

main parts: a zero-based array of userdata for the semantic nest itself, and the numerical

value tex.nest.ptr, which gives the highest available index. Neither the array items in

tex.nest[] nor tex.nest.ptr can be assigned to (as this would confuse the typesetting en-

gine beyond repair), but you can assign to the individual values inside the array items, e.g.

tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, tex.nest[0] the outermost (main vertical

list) level.

The known fields are:

key type modes explanation

mode number all The current mode. This is a number representing the main

mode at this level:

0 == no mode (this happens during \write)

1 == vertical,

127 = horizontal,

253 = display math.

-1 == internal vertical,

-127 = restricted horizontal,

-253 = inline math.

modeline number all source input line where this mode was entered in, negative

inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph (equal to \pdfignoreddimen

when it is to be ignored)

spacefactor number hmode the current space factor

dirs node hmode used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,

for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter, for

\middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir

mathstyle number mmode the current \mathstyle

LuaTEX Lua Libraries180

7.14.10 Print functions

The tex table also contains the three print functions that are the major interface from Lua

scripting to TEX.

The arguments to these three functions are all stored in an in-memory virtual file that is fed to

the TEX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available

system ram. However, each separate printed string has to fit completely in TEX’s input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

7.14.10.1 tex.print

tex.print(<string> s, ...)

tex.print(<number> n, <string> s, ...)

tex.print(<table> t)

tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument

instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string

value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by

\catcodetable n. If n is −1, the currently active catcode regime is used. If n is −2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space

character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it

is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print() command in a \directlua will not have the

\endlinechar appended, all others do.

7.14.10.2 tex.sprint

tex.sprint(<string> s, ...)

tex.sprint(<number> n, <string> s, ...)

tex.sprint(<table> t)

tex.sprint(<number> n, <table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a partial line input mechanism:

• TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

• No \endlinechar is inserted.

• Trailing spaces are not removed.

Note that this does not prevent TEX itself from eating spaces as result of interpreting the line.

For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" inbetween")}after

181LuaTEX Lua Libraries

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print().

7.14.10.3 tex.tprint

tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>

s, ...), once for each of the supplied argument tables.

7.14.10.4 tex.cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or

an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

7.14.10.5 tex.write

tex.write(<string> s, ...)

tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a quick way to dump information:

• All catcodes on that line are either ‘space’ (for ’ ’) or ‘character’ (for all others).

• There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

7.14.11 Helper functions

7.14.11.1 tex.round

<number> n = tex.round(<number> o)

LuaTEX Lua Libraries182

Rounds Lua number o, and returns a number that is in the range of a valid TEX register value.

If the number starts out of range, it generates a ‘number to big’ error as well.

7.14.11.2 tex.scale

<number> n = tex.scale(<number> o, <number> delta)

<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of

a valid TEX register value. In the table version, it creates a copy of the table with all numeric

top--level values scaled in that manner. If the multiplied number(s) are of range, it generates

‘number to big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer’s architecture

and operating system, so use with care! An interface to LuaTEX’s internal, 100% portable scale

function will be added at a later date.

7.14.11.3 tex.sp

<number> n = tex.sp(<number> o)

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number

of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTEX would use

if it was scanning a dimension specifier in its TEX-like input language (this includes generating

errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

7.14.11.4 tex.definefont

tex.definefont(<string> csname, <number> fontid)

tex.definefont(<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)

global is specified and true (the setting of globaldefs is not taken into account).

7.14.11.5 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()

tex.setlinenumber(n+10)

which can be shortcut to:

183LuaTEX Lua Libraries

tex.setlinenumber(10,true)

This might be handy when you have a callback that read numbers from a file and combines

them in one line (in which case an error message probably has to refer to the original line).

Interference with TEX’s internal handling of numbers is of course possible.

7.14.11.6 tex.error

tex.error(<string> s)

tex.error(<string> s, <table> help)

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur-

ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

7.14.11.7 tex.hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a name and token table pair (see section ?? about token tables) iterator for every non-

zero entry in the hash table. This can be useful for debugging, but note that this also reports

control sequences that may be unreachable at this moment due to local redefinitions: it is strictly

a dump of the hash table.

7.14.12 Functions for dealing with primitives

7.14.12.1 tex.enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names.

For each combination of ‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’

is an actual primitive (it must be returned by one of the tex.extraprimitives() calls explained

below, or part of TEX82, or \directlua). If it is not, tex.enableprimitives does nothing and

skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,

unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the

‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un-

defined (note: that is not the same as \relax), it will globally define the csname to have the

meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already

defined, it does nothing and tries the next pair.

An example:

tex.enableprimitives('LuaTeX', {'formatname'})

LuaTEX Lua Libraries184

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive

\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTEX is run with --ini only the TEX82 primitives and \directlua are available, so no

extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,

you will have to add

\ifx\directlua\undefined \else

\directlua {tex.enableprimitives('',tex.extraprimitives ())}

\fi

near the beginning of your format generation file. Or you can choose different prefixes for dif-

ferent subsets, as you see fit.

Calling some form of tex.enableprimitives() is highly important though, because if you do

not, you will end up with a TEX82-lookalike that can run Lua code but not do much else. The

defined csnames are (of course) saved in the format and will be available at runtime.

7.14.12.2 tex.extraprimitives

<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re-

quested string value(s). The possible values and their (current) return values are:

name values

tex vskip write vsize \normalcontrolspace boundary unhcopy output - / unskip

unvbox boxmaxdepth muskipdef string toksdef floatingpenalty righthyphen-

min voffset escapechar topmark splitfirstmark vsplit everydisplay badness

xleaders textfont showlists language mathchoice topskip abovedisplayshort-

skip underline tracinglostchars pagefillstretch unvcopy splitbotmark fi-

nalhyphendemerits atopwithdelims pretolerance fi dp setlanguage ht math-

chardef nulldelimiterspace or wd pagegoal advance chardef catcode mathchar

scriptscriptfont mathcode leftskip pageshrink pagefilstretch delcode font-

name brokenpenalty lastkern belowdisplayshortskip tolerance mathopen ex-

hyphenpenalty maxdepth futurelet abovewithdelims csstring hangindent last-

skip linepenalty everyjob xspaceskip globaldefs everypar scriptfont delim-

iter afterassignment firstmark lineskiplimit lineskip def fam day iffalse

textstyle end mag box belowdisplayskip ifx let errmessage exhyphenchar hss

expandafter the displaywidth Uright mathsurround pagedepth looseness lead-

ers vss ifhmode botmark ifinner displaystyle accent immediate ifmmode par-

shape meaning abovedisplayskip medmuskip emergencystretch rightskip math-

close hangafter hoffset aftergroup cleaders romannumeral hbadness mathbin

showboxbreadth ifvmode jobname vbadness patterns nonstopmode errhelp predis-

playpenalty endlinechar mathinner lastbox showboxdepth postdisplaypenalty

mathrel holdinginserts radical mathord pagetotal everycr adjdemerits halign

defaultskewchar errorcontextlines splitmaxdepth Uleft ifcase noindent trac-

185LuaTEX Lua Libraries

ingmacros moveright predisplaysize tracingrestores message ifhbox deadcy-

cles interlinepenalty mathpunct lccode noboundary displayindent nonscript

everyhbox global penalty tracingcommands everymath nolimits noalign inputli-

neno pagestretch parskip indent dimendef widowpenalty ifvbox above spaceskip

middle displaylimits pausing everyvbox iftrue moveleft mathop endcsname di-

men ifcat clubpenalty splittopskip doublehyphendemerits ifdim limits ifeof

ignorespaces insert delimitershortfall ifodd insertpenalties tracingpages

hpack vadjust tracingonline count ifnum edef char begingroup sfcode trac-

ingparagraphs hyphenation uccode hfuzz openout leqno hyphenpenalty vcenter

hfil thickmuskip maxdeadcycles mkern hbox overfullrule else hsize raise thin-

muskip spacefactor input hrule left eqno parfillskip font valign dump relax

prevdepth read shipout batchmode right skipdef setbox baselineskip special

mskip endgroup uchyph binoppenalty endinput omit pagefilllstretch overwith-

delims newlinechar vfilneg time tpack skip vfill span prevgraf over show vbox

tracingstats year defaulthyphenchar nullfont muskip vpack toks outer multi-

ply tracingoutput firstvalidlanguage parindent displaywidowpenalty unhbox

lefthyphenmin vtop mathaccent discretionary vfuzz overline unkern closeout

showthe showbox uppercase lowercase closein openin errorstopmode scrollmode

skewchar hyphenchar countdef xdef gdef long Umiddle atop scriptscriptstyle

scriptstyle unpenalty copy lower kern vfil hfilneg hfill hskip crcr cr ifvoid

if number lastpenalty par vrule noexpand mark fontdimen divide csname script-

space outputpenalty month delimiterfactor relpenalty tabskip

core directlua

etex unless botmarks currentiftype pagediscards mutoglue displaywidowpenalties

fontcharic fontchardp fontcharht fontcharwd widowpenalties tracingifs if-

fontchar eTeXVersion protected topmarks showgroups glueexpr splitfirstmarks

predisplaydirection everyeof eTeXversion clubpenalties savingvdiscards

splitbotmarks showtokens tracingassigns dimexpr parshapedimen readline trac-

ingscantokens tracingnesting ifdefined currentifbranch firstmarks lastnode-

type marks currentgrouplevel interlinepenalties muexpr unexpanded ifcsname

parshapeindent showifs parshapelength currentgrouptype splitdiscards glue-

tomu glueshrink gluestretch glueshrinkorder gluestretchorder numexpr scant-

okens interactionmode detokenize currentiflevel savinghyphcodes lastlinefit

tracinggroups eTeXrevision eTeXminorversion

luatex Umathcloseopspacing textdir Umathordpunctspacing Udelimiterunder Uskewed-

withdelims Umathopenpunctspacing pagebottomoffset mathsurroundskip Umath-

ordinnerspacing Umathbinclosespacing toksapp rightghost Umathlimitbelowbgap

Umathopeninnerspacing tokspre Uoverdelimiter Umathpunctpunctspacing Umath-

closepunctspacing mathdisplayskipmode saveimageresource Umathrelordspac-

ing Umathsupbottommin Umathlimitbelowkern copyfont Umathstackdenomdown lo-

calrightbox Umathfractionrule Umathcharfam Umathcloseinnerspacing Umath-

openrelspacing Uhextensible Umathsupsubbottommax leftmarginkern Umath-

closerelspacing ifincsname Umathcharnum Umathinnerordspacing synctex for-

matname letterspacefont pdfextension Umathrelinnerspacing Umathsubtopmax

randomseed suppressoutererror Umathsubsupshiftdown Umathopbinspacing Umath-

ordbinspacing Umathrelopspacing Umathopenbinspacing Umathoverdelimiterbgap

LuaTEX Lua Libraries186

localleftbox alignmark Uunderdelimiter hyphenationmin Umathclosebinspac-

ing Umathcodenum dvifeedback outputmode luafunction Umathpunctopenspacing

Umathconnectoroverlapmin crampedscriptscriptstyle Umathradicaldegreeafter

uniformdeviate luatexversion Umathfractionnumup rightmarginkern Umathop-

closespacing Umathordclosespacing Umathoverdelimitervgap etokspre expanded

suppressmathparerror Udelcode bodydir Umathopenclosespacing attribute

Umathsubshiftdrop Umathsubshiftdown matheqnogapstep Umathpunctrelspacing

lastsavedimageresourceindex lastsavedimageresourcepages mathoption Umath-

radicaldegreeraise adjustspacing Umathsupshiftdrop Umathcharslot Umath-

closeclosespacing luatexrevision insertht localinterlinepenalty useboxre-

source Umathchar Udelimiterover Ustack Umathcode saveboxresource Udelcode-

num suppresslongerror ignoreligaturesinfont Umathaxis Umathfractionnumvgap

Umathskewedfractionhgap Umathrelclosespacing Umathpunctbinspacing luatex-

datestamp Ustopdisplaymath quitvmode crampedscriptstyle letcharcode setran-

domseed crampedtextstyle pagedir Umathbinrelspacing Umathopordspacing dvi-

variable attributedef Umathordordspacing pdffeedback Umathskewedfraction-

vgap Umathopenordspacing mathdir outputbox Umathcloseordspacing pagewidth

Ustopmath aligntab prehyphenchar dviextension Umathpunctopspacing Umath-

subsupvgap luaescapestring Umathfractiondenomvgap begincsname Umathradi-

calrule Umathunderbarrule postexhyphenchar Umathradicaldegreebefore Umath-

stacknumup normaldeviate Umathbinopspacing boxdir Ustartdisplaymath save-

catcodetable Umathbinpunctspacing tagcode Uroot lastsavedboxresourcein-

dex Umathoverbarkern Umathoperatorsize Uradical mathstyle Umathopopenspac-

ing Umathordopenspacing Umathbininnerspacing Umathinnerrelspacing clear-

marks Umathoverbarvgap fontid Umathopenopenspacing Umathunderdelimiterbgap

Umathoverbarrule setfontid crampeddisplaystyle ifabsdim Umathlimitabove-

bgap Umathcharclass Umathstackvgap Umathinneropspacing Umathrelbinspac-

ing Umathcloseopenspacing pardir initcatcodetable nokerns pageleftoffset

tracingfonts nospaces Umathrelopenspacing Umathlimitabovekern Udelimiter

savepos nohrule localbrokenpenalty Umathfractiondelsize gleaders Umath-

underdelimitervgap Umathinnerbinspacing noligs pagerightoffset draftmode

Usubscript Umathcharnumdef rpcode Umathaccent pagetopoffset pageheight cat-

codetable Umathspaceafterscript primitive Umathinneropenspacing Uskewed

pxdimen Umathordopspacing Umathopenopspacing ifabsnum scantextokens math-

scriptsmode suppressifcsnameerror suppressfontnotfounderror pdfvariable

latelua useimageresource efcode lpcode hjcode preexhyphenchar posthyphen-

char Umathinnerinnerspacing Umathinnerpunctspacing Umathinnerclosespacing

Umathpunctinnerspacing Umathpunctclosespacing Umathpunctordspacing Umath-

relpunctspacing Umathrelrelspacing Umathbinopenspacing Umathbinbinspacing

Umathbinordspacing Umathopinnerspacing Umathoppunctspacing Umathoprelspac-

ing Umathopopspacing Umathordrelspacing Umathsupshiftup Umathlimitbelowvgap

Umathlimitabovevgap Umathfractiondenomdown Umathradicalvgap Umathradicalk-

ern Umathunderbarvgap Umathunderbarkern Umathquad Umathchardef Uvextensi-

ble Usuperscript Ustartmath ifprimitive Uchar luatexbanner lastypos lastxpos

novrule etoksapp leftghost expandglyphsinfont lastnamedcs protrudechars

Note that 'luatex' does not contain directlua, as that is considered to be a core primitive,

187LuaTEX Lua Libraries

along with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives() will give you the complete list of primitives -ini startup. It

is exactly equivalent to tex.extraprimitives('etex' and 'luatex').

7.14.12.3 tex.primitives

<table> t = tex.primitives()

This function returns a hash table listing all primitives that LuaTEX knows about. The keys in

the hash are primitives names, the values are tables representing tokens (see section ??). The

third value is always zero.

In the beginning we had omega and pdftex subsets but in the meantime relevant primitives ave

been promoted (either or not adapted) to the luatex set when found useful, or removed when

considered to be of no use. Originally we had two sets of math definition primitives but the

Omega ones have been removed, so we no longer have a subset for math either.

7.14.13 Core functionality interfaces

7.14.13.1 tex.badness

<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the

function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3;

7.14.13.2 tex.resetparagraph

This function resets the parameters that TEX normally resets when a new paragraph is seen.

7.14.13.3 tex.linebreak

local <node> nodelist, <table> info =

tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

name type description

pardir string

pretolerance number

tracingparagraphs number

tolerance number

looseness number

hyphenpenalty number

exhyphenpenalty number

LuaTEX Lua Libraries188

pdfadjustspacing number

adjdemerits number

pdfprotrudechars number

linepenalty number

lastlinefit number

doublehyphendemerits number

finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal-

ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue_spec node

rightskip glue_spec node

pdfignoreddimen number in scaled points

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice

for widowpenalties yourself.

Themeaning of the various keys should be fairly obvious from the table (the namesmatch the TEX

and pdfTEX primitives) except for the last 5 entries. The four pdf...line... keys are ignored

if their value equals pdfignoreddimen.

It is your own job to make sure that listhead is a proper paragraph list: this function does

not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

have to do the following (when you are not actually working in the pre_linebreak_filter or

linebreak_filter callbacks, or when the original list starting at listhead was generated in

horizontal mode):

• add an ‘indent box’ and perhaps a local_par node at the start (only if you need them)

• replace any found final glue by an infinite penalty (or add such a penalty, if the last node is

not a glue)

• add a glue node for the \parfillskip after that penalty node

• make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox.

The returned info table contains four values that are all numbers:

prevdepth depth of the last line in the broken paragraph

prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph

demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font

expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.

189LuaTEX Lua Libraries

The same is true for hbadness and hfuzz etc. All these are in the hpack() routine, and that

fetches its own variables via globals.

7.14.13.4 tex.shipout

tex.shipout(<number> n)

Ships out box number n to the output file, and clears the box register.

7.15 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of

settings that are read out by the executable after loading and executing the startup file.

key type default explanation

kpse_init boolean true false totally disables kpathsea initialisation, and

enables interpretation of the following numeric

key–value pairs. (only ever unset this if you im-

plement all file find callbacks!)

shell_escape string 'f' Use 'y' or 't' or '1' to enable \write 18 un-

conditionally, 'p' to enable the commands that

are listed in shell_escape_commands

shell_escape_commands string Comma-separated list of command names thatmay

be executed by \write 18 even if shell_escape

is set to 'p'. Do not use spaces around com-

mas, separate any required command arguments

by using a space, and use the ascii double quote

(") for any needed argument or path quoting

string_vacancies number 75000 cf. web2c docs

pool_free number 5000 cf. web2c docs

max_strings number 15000 cf. web2c docs

strings_free number 100 cf. web2c docs

nest_size number 50 cf. web2c docs

max_in_open number 15 cf. web2c docs

param_size number 60 cf. web2c docs

save_size number 4000 cf. web2c docs

stack_size number 300 cf. web2c docs

dvi_buf_size number 16384 cf. web2c docs

error_line number 79 cf. web2c docs

half_error_line number 50 cf. web2c docs

max_print_line number 79 cf. web2c docs

hash_extra number 0 cf. web2c docs

pk_dpi number 72 cf. web2c docs

trace_file_names boolean true false disables TEX’s normal file open-close feed-

back (the assumption is that callbacks will take

care of that)

LuaTEX Lua Libraries190

file_line_error boolean false do file:line style error messages

halt_on_error boolean false abort run on the first encountered error

formatname string if no format name was given on the command

line, this key will be tested first instead of sim-

ply quitting

jobname string if no input file name was given on the command

line, this key will be tested first instead of simply

giving up

Note: the numeric values that match web2c parameters are only used if kpse_init is explicitly

set to false. In all other cases, the normal values from texmf.cnf are used.

7.16 The texio library

This library takes care of the low-level I/O interface.

7.16.1 Printing functions

7.16.1.1 texio.write

texio.write(<string> target, <string> s, ...)

texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes-

sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes

to the log and the terminal. The optional target can be one of three possibilities: term, log or

term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets

above, the target must be specified explicitly to prevent Lua from interpreting the first string

as the target.

7.16.1.2 texio.write_nl

texio.write_nl(<string> target, <string> s, ...)

texio.write_nl(<string> s, ...)

This function behaves like texio.write, but make sure that the given strings will appear at the

beginning of a new line. You can pass a single empty string if you only want to move to the next

line.

7.16.1.3 texio.setescape

You can disable ^^ escaping of control characters by passing a value of zero.

191LuaTEX Lua Libraries

7.16.2 The token libray

The current token library will be replaced by a new one that is more flexible and powerful. The

transition takes place in steps. In version 0.80 we have token and in version 0.85 the old lib will

be replaced completely. So if you use this new mechanism in production code you need to be

aware of incompatible updates between 0.80 and 0.90. Because the related in- and output code

will also be cleaned up and rewritten you should be aware of incompatible logging and error

reporting too.

The old library presents tokens as triplets or numbers, the new library presents a userdata

object. The old library used a callback to intercept tokens in the input but the new library

provides a basic scanner infrastructure that can be used to write macros that accept a wide

range of arguments. This interface is on purpose kept general and as performance is quite ok

one can build additional parsers without too much overhead. It’s up to macro package writers to

see how they can benefit from this as the main principle behind LuaTEX is to provide a minimal

set of tools and no solutions.

The current functions in the token namespace are given in the next table:

function argument result

is_token token checks if the given argument is a token userdatum

get_next returns the next token in the input

scan_keyword string returns true if the given keyword is gobbled

scan_int returns a number

scan_dimen infinity, mu-units returns a number representing a dimension and or two

numbers being the filler and order

scan_glue mu-units returns a glue spec node

scan_toks definer, expand returns a table of tokens token list (this can become a

linked list in later releases)

scan_code bitset returns a character if its category is in the given bitset

(representing catcodes)

scan_string returns a string given between {}, as \macro or as se-

quence of characters with catcode 11 or 12

scan_word returns a sequence of characters with catcode 11 or 12

as string

scan_csname returns foo after scanning \foo

set_macro see below assign a macro

create returns a userdata token object of the given control se-

quence name (or character); this interface can change

The scanners can be considered stable apart from the one scanning for a token. This is because

futures releases can return a linked list instead of a table (as with nodes). The scan_code func-

tion takes an optional number, the keyword function a normal Lua string. The infinity boolean

signals that we also permit fill as dimension and the mu-units flags the scanner that we expect

math units. When scanning tokens we can indicate that we are defining a macro, in which case

the result will also provide information about what arguments are expected and in the result

this is separated from the meaning by a separator token. The expand flag determines if the list

will be expanded.

LuaTEX Lua Libraries192

The string scanner scans for something between curly braces and expands on the way, or when

it sees a control sequence it will return its meaning. Otherwise it will scan characters with

catcode letter or other. So, given the following definition:

\def\bar{bar}

\def\foo{foo-\bar}

we get:

\directlua{token.scan_string()}{foo} foo full expansion

\directlua{token.scan_string()}foo foo letters and others

\directlua{token.scan_string()}\foo foo-bar meaning

The \foo case only gives themeaning, but one can pass an already expanded definition (\edef’d).

In the case of the braced variant one can of course use the \detokenize and \unexpanded prim-

itives as there we do expand.

The scan_word scanner can be used to implement for instance a number scanner:

function token.scan_number(base)

return tonumber(token.scan_word(),base)

end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible

properties of tokens are:

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the

classifier that determines the internal treatment

csname the associated control sequence (if applicable)

id the unique id of the token

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

The numbers that represent a catcode are the same as in TEX itself, so using this information

assumes that you know a bit about TEX’s internals. The other numbers and names are used

consistently but are not frozen. So, when you use them for comparing you can best query a

known primitive or character first to see the values.

More interesting are the scanners. You can use the Lua interface as follows:

\directlua {

function mymacro(n)

...

193LuaTEX Lua Libraries

end

}

\def\mymacro#1{%

\directlua {

mymacro(\number\dimexpr#1)

}%

}

\mymacro{12pt}

\mymacro{\dimen0}

You can also do this:

\directlua {

function mymacro()

local d = token.scan_dimen()

...

end

}

\def\mymacro{%

\directlua {

mymacro()

}%

}

\mymacro 12pt

\mymacro \dimen0

It is quite clear from looking at the code what the first method needs as argument(s). For the

second method you need to look at the Lua code to see what gets picked up. Instead of passing

from TEX to Lua we let Lua fetch from the input stream.

In the first case the input is tokenized and then turned into a string when it’s passed to Lua

where it gets interpreted. In the second case only a function call gets interpreted but then the

input is picked up by explicitly calling the scanner functions. These return proper Lua variables

so no further conversion has to be done. This is more efficient but in practice (given what TEX

has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit

but for passing strings conversion to and from tokens has to be done anyway (although we can

probably speed up the process in later versions if needed).

When the interface is stable and has replaced the old one completely we will add some more

information here. By that time the internals have been cleaned up a bit more so we know then

what will stay and go. A positive side effect of this transition is that we can simplify the input

part because we no longer need to intercept using callbacks.

The set_macro function can get upto 4 arguments:

setmacro("csname","content")

LuaTEX Lua Libraries194

setmacro("csname","content","global")

setmacro("csname")

You can pass a catcodetable identifier as first argument:

setmacro(catcodetable,"csname","content")

setmacro(catcodetable,"csname","content","global")

setmacro(catcodetable,"csname")

The results are like:

\def\csname{content}

\gdef\csname{content}

\def\csname{}

There is a (for now) experimental putter:

local t1 = token.get_next()

local t2 = token.get_next()

local t3 = token.get_next()

local t4 = token.get_next()

-- watch out, we flush in sequence

token.put_next { t1, t2 }

-- but this one gets pushed in front

token.put_next (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of

tokens.

195Modifications

8 Modifications

8.1 The merged engines

8.1.1 The need for change

The first version of LuaTEX only had a few extra primitives and it was largely the same as pdfTEX.

Then we merged substantial parts of Aleph into the code and got more primitives. When we got

more stable the decision was made to clean up the rather hybrid nature of the program. This

means that some primitives have been promoted to core primitives, often with a different name,

and that others were removed. This made it possible to start cleaning up the code base. We will

describe most in following paragraphs.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-

pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often

than not, a change neccessary to clean up the internal interfaces. These will also be mentioned.

8.1.2 Changes from TEX 3.1415926

Of course it all starts with traditional TEX. Even if we started with pdfTEX, most still comes from

the original. But we divert a bit.

• The current code base is written in C, not Pascal. We use cweb when possible.

• See chapter 3 for many small changes related to paragraph building, language handling and

hyphenation. The most important change is that adding a brace group in the middle of a word

(like in of{}fice) does not prevent ligature creation.

• There is no pool file, all strings are embedded during compilation.

• The specifier plus 1 fillll does not generate an error. The extra ‘l’ is simply typeset.

• The upper limit to \endlinechar and \newlinechar is 127.

• The hz optimization code has been partially redone so that we no longer need to create extra

font instances. The front- and backend have been decoupled and more efficient (pdf) code is

generated.

8.1.3 Changes from 𝜺-TEX 2.2

Being the de factor standard extension of course we provide the 𝜀-TEX functionality, but with a
few small adaptations.

• The 𝜀-TEX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTEX is not needed.

• The TEXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,

\endR and \endL are missing.

• Some of the tracing information that is output by 𝜀-TEX’s \tracingassigns and \tracingre-
stores is not there.

Modifications196

• Register management in LuaTEX uses the Aleph model, so the maximum value is 65535 and

the implementation uses a flat array instead of the mixed flat&sparse model from 𝜀-TEX.
• When kpathsea is used to find files, LuaTEX uses the ofm file format to search for font metrics.

In turn, this means that LuaTEX looks at the OFMFONTS configuration variable (like Omega and

Aleph) instead of TFMFONTS (like TEX and pdfTEX). Likewise for virtual fonts (LuaTEX uses the

variable OVFFONTS instead of VFFONTS).

8.1.4 Changes from PDFTEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTEX pro-

gram. We inherit the stable features, dropped most of the experimental code and promoted

some functionality to core LuaTEX functionality which in turn triggered renaming primitives.

• The (experimental) support for snap nodes has been removed, because it is muchmore natural

to build this functionality on top of node processing and attributes. The associated primitives

that are now gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

• The (experimental) support for specialized spacing around nodes has also been removed.

The associated primitives that are now gone are: \pdfadjustinterwordglue, \pdfprepend-

kern, and \pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode,

\shbscode, \knbccode, and \knaccode.

• A number of ‘pdfTEX primitives’ have been removed as they can be implemented using Lua:

\pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffiledump,

\pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch, \pdfmd-

fivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclusion-

errorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex

• The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are

no longer present as there is no longer a strict relationship with pdfTEX development.

• The experimental snapper mechanism has been removed and therefore also the primitives:

\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and

\pdflastlinedepth

• The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-

moted to core primitives. The \pdf* prefixed originals are not available.

• The png transparency fix from 1.40.6 is not applied as high-level support is pending.

• Two extra token lists are provides, \pdfxformresources and \pdfxformattr, as an alterna-

tive to \pdfxform keywords.

• The current version of LuaTEX no longer replaces and/or merges fonts in embedded pdf files

with fonts of the enveloping pdf document. This regression may be temporary, depending on

how the rewritten font backend will look like.

• The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth

and \pageheight have that purpose.

• The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and

\pdfrandomseed have been promoted to core primitives without pdf prefix so the original

commands are no longer recognized.

• The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

• As the hz and protrusion mechanism are part of the core the related primitives \lpcode,

\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.

197Modifications

The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf

originals.

• When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When

the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

• The \tagcode primitive is promoted to core primitive.

• The \letterspacefont feature is now part of the core but will not be changed (improved).

We just provide it for legacy use.

• The \pdfnoligatures primitive is now \ignoreligaturesinfont.

• The \pdfcopyfont primitive is now \copyfont.

• The \pdffontexpand primitive is now \expandglyphsinfont.

• Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-

pos commands now replace their pdf prefixed originals.

• The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-

moved. One can use external applications to determine these properties or use the built-in

img library.

• The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now

\draftmode.

• The pixel multiplier dimension \pdfpxdimen lots its prefix and is now calles \pxdimen.

• An extra \pdfimageaddfilename option has been added that can be used to block writing the

filename to the pdf file.

One change involves the so called xforms and ximages. In pdfTEX these are implemented as so

called whatsits. But contrary to other whatsits they have dimensions that need to be taken into

account when for instance calculating optimal line breaks. In LuaTEX these are now promoted

to normal nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability

to use content that has been rendered in several places, and images are also common. For that

reason we also changed the names:

new name old name

\saveboxresource \pdfxform

\saveimageresource \pdfximage

\useboxresource \pdfrefxform

\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform

\lastsavedimageresourceindex \pdflastximage

\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdf... primitives that relate to this but these are typical backend specific

ones. The index that gets returned is to be considered as ‘just a number’ and although it still

has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.

When protrusion characters are identified some nodes are skipped:

• zero glue

• penalties

• empty discretionaries

Modifications198

• normal zero kerns

• rules with zero dimensions

• math nodes with a surround of zero

• dir nodes

• empty horizontal lists

• local par nodes

• inserts, marks and adjusts

• boundaries

• whatsits

Because this can not be enough, you can also use a boundary node to make the next node being

ignored. When the boundary value is 1 or 3, the next node will be ignored in the test when

locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored

when locating a right boundary condition (the search goes from right to left). This permits

protrusion combined with for instance content moved into the margin:

\boundary1\llap{!\quad}«Who needs protrusion?»

8.1.5 Changes from ALEPH RC4

Because wewanted proper directional typesetting the Alephmechanisms lookedmost attractive.

These are rather close to the ones provided by Omega, so what we say next applies to both these

programs.

• The extended 16-bit math primitives (\omathcode etc.) have been removed.

• The OCP processing is no longer supported at all. As a consequence, the following primitives

have been removed:

\ocp, \externalocp, \ocplist, \pushocplist, \popocplist, \clearocplists, \addbe-

foreocplist, \addafterocplist, \removebeforeocplist, \removeafterocplist and

\ocptracelevel

• LuaTEX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),

RTT (cjk), LTL (mongolian). All other direction specifiers generate an error.

• The input translations from Aleph are not implemented, the related primitives are not avail-

able:

\DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \DefaultOutput-

Mode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInputTranslation,

\noDefaultInputTranslation, \noInputTranslation, \InputTranslation, \DefaultOut-

putTranslation, \noDefaultOutputTranslation, \noOutputTranslation and \Output-

Translation

• Several bugs have been fixed. The \hoffset bug when \pagedir TRT is gone, removing the

need for an explicit fix to \hoffset. Also bug causing \fam to fail for family numbers above

15 is fixed. A fair amount of other minor bugs are fixed as well, most of these related to

\tracingcommands output.

• The scanner for direction specifications now allows an optional space after the direction is

completely parsed.

• The ^^ notation has been extended: after ^^^^ four hexadecimal characters are expected and

after ^^^^^^ six hexadecimal characters have to be given. The original TEX interpretation is

199Modifications

still valid for the ^^ case but the four and six variants do no backtracking, i.e. when they are

not followed by the right number of hexadecimal digits they issue an error message. Because

^^^ is a normal TEX case, we don’t support the odd number of ^^^^^ either.

• Glues immediately after direction change commands are not legal breakpoints.

• Several mechanisms that need to be right-to-left aware have been improved. For instance

placement of formula numbers.

• The page dimension related primitives \pagewidth and \pageheight have been promoted to

core primitives.

• The primitives \charwd, \charht, \chardp and \charit have been removes as we have the

𝜀-TEX variants \fontchar*.
• The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-

itives.

• The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and

\boxdir are now core primitives.

• The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.

• The experimental primitive \pdfinsertht is kept as \insertht.

• The promotion of primitives to core primitives as well as the removed of all others mean that

the initialization namespace aleph is gone.

8.1.6 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.

This framework also provides some common features that deal with reading bytes from files and

locating files in tds. This is what we do different:

• There is no mltex support.

• There is no enctex support.

• The following commandline switches are silently ignored, even in non-Lua mode: -8bit, -

translate-file, -mltex, -enc and -etex.

• The \openout whatsits are not written to the log file.

• Some of the so-called web2c extensions are hard to set up in non-kpse mode because

texmf.cnf is not read: shell-escape is off (but that is not a problem because of Lua’s os.ex-

ecute), and the paranoia checks on openin and openout do not happen (however, it is easy

for a Lua script to do this itself by overloading io.open).

• The ‘E’ option does not do anything useful.

8.1.7 The backend primitives \pdf *

In a previous section we mentioned that some pdfTEX primitives were removed and others pro-

moted to core LuaTEX primitives. That is only part of the story. In order to separate the backend

specific primitives in de code these commands are now replaced by only a few. In traditional

TEX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is

implemented as ‘extensions’ in TEXspeak. By separating more strickly we are able to keep the

core (fontend) clean and stable. If for some reason an extra backend option is needed, it can be

implemented without touching the core. The three pdf backend related primitives are

\pdfextension command [specification]

Modifications200

\pdfvariable name

\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind

of) register and can be read and written, while a feedback is reporting something (as it comes

from the backend it’s normally a sequence of tokens).

In order for LuaTEX to be more than just TEX you need to enable primitives. That has already

be the case right from the start. If you want the traditional pdfTEX primitives (for as far their

functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}

\protected\def\pdfcolorstack {\pdfextension colorstack}

\protected\def\pdfsetmatrix {\pdfextension setmatrix}

\protected\def\pdfsave {\pdfextension save\relax}

\protected\def\pdfrestore {\pdfextension restore\relax}

\protected\def\pdfobj {\pdfextension obj }

\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink {\pdfextension startlink }

\protected\def\pdfendlink {\pdfextension endlink\relax}

\protected\def\pdfoutline {\pdfextension outline }

\protected\def\pdfdest {\pdfextension dest }

\protected\def\pdfthread {\pdfextension thread }

\protected\def\pdfstartthread {\pdfextension startthread }

\protected\def\pdfendthread {\pdfextension endthread\relax}

\protected\def\pdfinfo {\pdfextension info }

\protected\def\pdfcatalog {\pdfextension catalog }

\protected\def\pdfnames {\pdfextension names }

\protected\def\pdfincludechars {\pdfextension includechars }

\protected\def\pdffontattr {\pdfextension fontattr }

\protected\def\pdfmapfile {\pdfextension mapfile }

\protected\def\pdfmapline {\pdfextension mapline }

\protected\def\pdftrailer {\pdfextension trailer }

\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback version\relax}

\def\pdftexrevision {\pdffeedback revision}

\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}

\def\pdfretval {\numexpr\pdffeedback retval\relax}

\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}

\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}

\def\pdfxformname {\numexpr\pdffeedback xformname\relax}

\def\pdfcreationdate {\pdffeedback creationdate}

\def\pdffontname {\numexpr\pdffeedback fontname\relax}

\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}

201Modifications

\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}

\def\pdfpageref {\numexpr\pdffeedback pageref\relax}

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}

\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}

\edef\pdfdecimaldigits {\pdfvariable decimaldigits}

\edef\pdfgamma {\pdfvariable gamma}

\edef\pdfimageresolution {\pdfvariable imageresolution}

\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}

\edef\pdfimagegamma {\pdfvariable imagegamma}

\edef\pdfimagehicolor {\pdfvariable imagehicolor}

\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}

\edef\pdfpkresolution {\pdfvariable pkresolution}

\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}

\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}

\edef\pdfgentounicode {\pdfvariable gentounicode}

\edef\pdfpagebox {\pdfvariable pagebox}

\edef\pdfminorversion {\pdfvariable minorversion}

\edef\pdfuniqueresname {\pdfvariable uniqueresname}

\edef\pdfhorigin {\pdfvariable horigin}

\edef\pdfvorigin {\pdfvariable vorigin}

\edef\pdflinkmargin {\pdfvariable linkmargin}

\edef\pdfdestmargin {\pdfvariable destmargin}

\edef\pdfthreadmargin {\pdfvariable threadmargin}

\edef\pdfxformmargin {\pdfvariable xformmargin}

\edef\pdfpagesattr {\pdfvariable pagesattr}

\edef\pdfpageattr {\pdfvariable pageattr}

\edef\pdfpageresources {\pdfvariable pageresources}

\edef\pdfxformattr {\pdfvariable xformattr}

\edef\pdfxformresources {\pdfvariable xformresources}

\edef\pdfpkmode {\pdfvariable pkmode}

\edef\pdfsuppressoptionalinfo {\pdfvariable suppressoptionalinfo }

\edef\pdftrailerid {\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few

previously defined ones:

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

Modifications202

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

The \edef can also be an \def but it’s a bit more efficient to expand the lookup related register

beforehand. After that you can adapt the defaults; these are:

\pdfcompresslevel 9

\pdfobjcompresslevel 1 % used: (0,9)

\pdfdecimaldigits 4 % used: (3,6)

\pdfgamma 1000

\pdfimageresolution 71

\pdfimageapplygamma 0

\pdfimagegamma 2200

\pdfimagehicolor 1

\pdfimageaddfilename 1

\pdfpkresolution 72

\pdfpkfixeddpi 0

\pdfinclusioncopyfonts 0

\pdfinclusionerrorlevel 0

\pdfignoreunknownimages 0

\pdfgentounicode 0

\pdfpagebox 0

\pdfminorversion 4

\pdfuniqueresname 0

\pdfhorigin 1in

\pdfvorigin 1in

\pdflinkmargin 0pt

\pdfdestmargin 0pt

\pdfthreadmargin 0pt

\pdfxformmargin 0pt

If you also want some backward compatibility, you can add:

\let\pdfpagewidth \pagewidth

\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing

\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont

\let\pdffontexpand \expandglyphsinfont

\let\pdfcopyfont \copyfont

\let\pdfxform \saveboxresource

\let\pdflastxform \lastsavedboxresourceindex

203Modifications

\let\pdfrefxform \useboxresource

\let\pdfximage \saveimageresource

\let\pdflastximage \lastsavedimageresourceindex

\let\pdflastximagepages\lastsavedimageresourcepages

\let\pdfrefximage \useimageresource

\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdfoutput \outputmode

\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed

\let\pdfprimitive \primitive

\let\ifpdfprimitive \ifprimitive

\let\ifpdfabsnum \ifabsnum

\let\ifpdfabsdim \ifabsdim

And even:

\newdimen\pdfeachlineheight

\newdimen\pdfeachlinedepth

\newdimen\pdflastlinedepth

\newdimen\pdffirstlineheight

\newdimen\pdfignoreddimen

The backend is derived from pdfTEX so the same syntax applies. However, the outline command

accepts a objnum followed by a number. No checking takes place so when this is used it had

better be a valid (flushed) object.

In order to be (more or less) compatible with pdfTEX we also support the option to suppress

some info:

\pdfvariable suppressoptionalinfo \numexpr

0

+ 1 % PTEX.FullBanner

+ 2 % PTEX.FileName

Modifications204

+ 4 % PTEX.PageNumber

+ 8 % PTEX.InfoDict

+ 16 % Creator

+ 32 % CreationDate

+ 64 % ModDate

+ 128 % Producer

+ 256 % Trapped

+ 512 % ID

\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have

to pass a valid array. The following is like the ones normally generated by the engine:

\pdfvariable trailerid {[

<FA052949448907805BA83C1E78896398>

<FA052949448907805BA83C1E78896398>

]}

So, you even need to include the brackets!

8.2 Implementation notes

8.2.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two

separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memory,

mem_bot, extra_mem_top and extra_mem_bot). ‘Out of main memory’ errors can still occur, but

the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code

now lives in the C file texnode.c, and basically uses a dozen or so ‘avail’ lists instead of a doubly-

linked model. An extra function layer is added so that the code can ask for nodes by type instead

of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some

of the macros have been duplicated. For instance, there are now vlink and vinfo as well as

token_link and token_info. All access to the variable memory array is now hidden behind a

macro called vmem.

The implementation of the growth of two arrays (via reallocation) introduces a potential pitfall:

the memory arrays should never be used as the left hand side of a statement that can modify

the array in question.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf

settings buf_size and pool_size are silently ignored.

205Modifications

8.2.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode tables are now sparse ar-

rays that are implemented in C. They are no longer part of the TEX ‘equivalence table’ and be-

cause each had 1.1 million entries with a few memory words each, this makes a major difference

in memory usage.

The \catcode, \sfcode, \lccode and \uccode assignments do not yet show up when using the

etex tracing routines \tracingassigns and \tracingrestores (code simply not written yet).

A side-effect of the current implementation is that \global is now more expensive in terms of

processing than non-global assignments.

See mathcodes.c and textcodes.c if you are interested in the details.

Also, the glyph ids within a font are now managed by means of a sparse array and glyph ids can

go up to index 221 − 1.

8.2.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in

the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences

that uses a prefix that is otherwise impossible to obtain.

8.2.4 Compressed format

The format is passed through zlib, allowing it to shrink to roughly half of the size it would have

had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should

still be faster.

8.2.5 Binary file reading

All of the internal code is changed in such a way that if one of the read_xxx_file callbacks is not

set, then the file is read by a C function using basically the same convention as the callback: a

single read into a buffer big enough to hold the entire file contents. While this uses more memory

than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on

your io subsystem).

Modifications206

	Introduction
	1 Basic TEX enhancements
	1.1 Introduction
	1.2 Version information
	1.3 UNICODE text support
	1.4 Extended tables
	1.5 Attributes
	1.5.1 Attribute registers
	1.5.2 Box attributes

	1.6 LUA related primitives
	1.6.1 directlua
	1.6.2 latelua
	1.6.3 luaescapestring
	1.6.4 luafunction

	1.7 clearmarks
	1.8 noligs and nokerns
	1.9 formatname
	1.10 scantextokens
	1.11 Alignments
	1.11.1 \alignmark
	1.11.2 \aligntab

	1.12 Catcode tables
	1.12.1 catcodetable
	1.12.2 initcatcodetable
	1.12.3 savecatcodetable

	1.13 Suppressing errors
	1.13.1 suppressfontnotfounderror
	1.13.2 suppresslongerror
	1.13.3 suppressifcsnameerror
	1.13.4 suppressoutererror
	1.13.5 suppressmathparerror

	1.14 matheqnogapstep
	1.15 outputbox
	1.16 fontid and setfontid
	1.17 gleaders
	1.18 nohrule and novrule
	1.19 Uchar
	1.20 hyphenationmin
	1.21 boundary and noboundary
	1.22 vpack, hpack and tpack
	1.23 csstring, begincsname and lastnamedcs
	1.24 toksapp, tokspre, etoksapp and etokspre
	1.25 Debugging
	1.26 Images and Forms
	1.27 outputmode and draftmode
	1.28 File syntax
	1.29 Font syntax
	1.30 Writing to file
	1.31 nospaces
	1.32 letcharcode

	2 LUA general
	2.1 Initialization
	2.1.1 LUATEX as a LUA interpreter
	2.1.2 LUATEX as a LUA byte compiler
	2.1.3 Other commandline processing

	2.2 LUA behaviour
	2.3 LUA modules

	3 Languages, characters, fonts and glyphs
	3.1 Characters and glyphs
	3.2 The main control loop
	3.3 Loading patterns and exceptions
	3.4 Applying hyphenation
	3.5 Applying ligatures and kerning
	3.6 Breaking paragraphs into lines

	4 Font structure
	4.1 Real fonts
	4.2 Virtual fonts
	4.2.1 Artificial fonts
	4.2.2 Example virtual font

	5 Math
	5.1 The current math style
	5.1.1 mathstyle
	5.1.2 Ustack

	5.2 Unicode math characters
	5.3 Cramped math styles
	5.4 Math parameter settings
	5.5 Skips around display math
	5.6 Font-based Math Parameters
	5.7 Math spacing setting
	5.8 Math accent handling
	5.9 Math root extension
	5.10 Math kerning in super- and subscripts
	5.11 Scripts on horizontally extensible items like arrows
	5.12 Extracting values
	5.13 fractions
	5.14 Other Math changes
	5.14.1 Verbose versions of single-character math commands
	5.14.2 Allowed math commands in non-math modes

	5.15 Math surrounding skips
	5.15.1 Delimiters: Uleft, Umiddle and Uright
	5.15.2 Fixed scripts
	5.15.3 Tracing
	5.15.4 Math options

	6 Nodes
	6.1 LUA node representation
	6.1.1 Auxiliary items
	6.1.2 Main text nodes
	6.1.3 Math nodes
	6.1.4 whatsit nodes

	6.2 Two access models

	7 LUATEX LUA Libraries
	7.1 The callback library
	7.1.1 File discovery callbacks
	7.1.2 File reading callbacks
	7.1.3 Data processing callbacks
	7.1.4 Node list processing callbacks
	7.1.5 Information reporting callbacks
	7.1.6 PDF-related callbacks
	7.1.7 Font-related callbacks

	7.2 The epdf library
	7.3 The font library
	7.3.1 Loading a TFM file
	7.3.2 Loading a VF file
	7.3.3 The fonts array
	7.3.4 Checking a font's status
	7.3.5 Defining a font directly
	7.3.6 Projected next font id
	7.3.7 Font id
	7.3.8 Currently active font
	7.3.9 Maximum font id
	7.3.10 Iterating over all fonts

	7.4 The fontloader library
	7.4.1 Getting quick information on a font
	7.4.2 Loading an OPENTYPE or TRUETYPE file
	7.4.3 Applying a 'feature file'
	7.4.4 Applying an 'AFM file'
	7.4.5 Fontloader font tables

	7.5 The img library
	7.5.1 img.new
	7.5.2 img.keys
	7.5.3 img.scan
	7.5.4 img.copy
	7.5.5 img.write
	7.5.6 img.immediatewrite
	7.5.7 img.node
	7.5.8 img.types
	7.5.9 img.boxes

	7.6 The kpse library
	7.6.1 kpse.set_program_name and kpse.new
	7.6.2 find_file
	7.6.3 lookup
	7.6.4 init_prog
	7.6.5 readable_file
	7.6.6 expand_path
	7.6.7 expand_var
	7.6.8 expand_braces
	7.6.9 show_path
	7.6.10 var_value
	7.6.11 version

	7.7 The lang library
	7.8 The lua library
	7.8.1 LUA bytecode registers
	7.8.2 LUA chunk name registers

	7.9 The mplib library
	7.9.1 mplib.new
	7.9.2 mp:statistics
	7.9.3 mp:execute
	7.9.4 mp:finish
	7.9.5 Result table
	7.9.6 Subsidiary table formats
	7.9.7 Character size information

	7.10 The node library
	7.10.1 Node handling functions
	7.10.2 Glue handling
	7.10.3 Attribute handling

	7.11 The pdf library
	7.11.1 pdf.mapfile, pdf.mapline
	7.11.2 pdf.catalog, pdf.info,pdf.names, pdf.trailer
	7.11.3 pdf.<set/get>pageattributes, pdf.<set/get>pageresources, pdf.<set/get>pagesattributes
	7.11.4 pdf.<set/get>xformattributes, pdf.<set/get>xformresources
	7.11.5 pdf.setcompresslevel and pdf.setobjcompresslevel
	7.11.6 pdf.setdecimaldigits and pdf.getdecimaldigits
	7.11.7 pdf.setpkresolution and pdf.getpkresolution
	7.11.8 pdf.lastobj, pdf.lastlink, pdf.lastannot, and pdf.retval
	7.11.9 pdf.setorigin, pdf.getorigin
	7.11.10 pdf.setlinkmargin, pdf.getlinkmargin pdf.setdestmargin, pdf.getdestmargin pdf.setthreadmargin, pdf.getthreadmargin pdf.setxformmargin, pdf.getxformmargin
	7.11.11 pdf.h, pdf.v
	7.11.12 pdf.getpos, pdf.gethpos, pdf.getvpos
	7.11.13 pdf.hasmatrix, pdf.getmatrix
	7.11.14 pdf.print
	7.11.15 pdf.immediateobj
	7.11.16 pdf.obj
	7.11.17 pdf.refobj
	7.11.18 pdf.reserveobj
	7.11.19 pdf.registerannot
	7.11.20 pdf.newcolorstack

	7.12 The pdfscanner library
	7.13 The status library
	7.14 The tex library
	7.14.1 Internal parameter values
	7.14.2 Convert commands
	7.14.3 Last item commands
	7.14.4 Attribute, count, dimension, skip and token registers
	7.14.5 Character code registers
	7.14.6 Box registers
	7.14.7 Math parameters
	7.14.8 Special list heads
	7.14.9 Semantic nest levels
	7.14.10 Print functions
	7.14.11 Helper functions
	7.14.12 Functions for dealing with primitives
	7.14.13 Core functionality interfaces

	7.15 The texconfig table
	7.16 The texio library
	7.16.1 Printing functions
	7.16.2 The token libray

	8 Modifications
	8.1 The merged engines
	8.1.1 The need for change
	8.1.2 Changes from TEX 3.1415926
	8.1.3 Changes from ETEX 2.2
	8.1.4 Changes from PDFTEX 1.40
	8.1.5 Changes from ALEPH RC4
	8.1.6 Changes from standard WEBC
	8.1.7 The backend primitives pdf*

	8.2 Implementation notes
	8.2.1 Memory allocation
	8.2.2 Sparse arrays
	8.2.3 Simple single-character csnames
	8.2.4 Compressed format
	8.2.5 Binary file reading

