OSX/iOS: Fix SDK incompatibility.
[luajit-2.0.git] / src / lj_strscan.c
blob9dbf477a914846438396a6ab67907ccf5cc8cd2a
1 /*
2 ** String scanning.
3 ** Copyright (C) 2005-2023 Mike Pall. See Copyright Notice in luajit.h
4 */
6 #include <math.h>
8 #define lj_strscan_c
9 #define LUA_CORE
11 #include "lj_obj.h"
12 #include "lj_char.h"
13 #include "lj_strscan.h"
15 /* -- Scanning numbers ---------------------------------------------------- */
18 ** Rationale for the builtin string to number conversion library:
20 ** It removes a dependency on libc's strtod(), which is a true portability
21 ** nightmare. Mainly due to the plethora of supported OS and toolchain
22 ** combinations. Sadly, the various implementations
23 ** a) are often buggy, incomplete (no hex floats) and/or imprecise,
24 ** b) sometimes crash or hang on certain inputs,
25 ** c) return non-standard NaNs that need to be filtered out, and
26 ** d) fail if the locale-specific decimal separator is not a dot,
27 ** which can only be fixed with atrocious workarounds.
29 ** Also, most of the strtod() implementations are hopelessly bloated,
30 ** which is not just an I-cache hog, but a problem for static linkage
31 ** on embedded systems, too.
33 ** OTOH the builtin conversion function is very compact. Even though it
34 ** does a lot more, like parsing long longs, octal or imaginary numbers
35 ** and returning the result in different formats:
36 ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os),
37 ** b) it doesn't perform any dynamic allocation and,
38 ** c) it needs only around 600 bytes of stack space.
40 ** The builtin function is faster than strtod() for typical inputs, e.g.
41 ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents,
42 ** which are not very common (this could be fixed, if needed).
44 ** And most importantly, the builtin function is equally precise on all
45 ** platforms. It correctly converts and rounds any input to a double.
46 ** If this is not the case, please send a bug report -- but PLEASE verify
47 ** that the implementation you're comparing to is not the culprit!
49 ** The implementation quickly pre-scans the entire string first and
50 ** handles simple integers on-the-fly. Otherwise, it dispatches to the
51 ** base-specific parser. Hex and octal is straightforward.
53 ** Decimal to binary conversion uses a fixed-length circular buffer in
54 ** base 100. Some simple cases are handled directly. For other cases, the
55 ** number in the buffer is up-scaled or down-scaled until the integer part
56 ** is in the proper range. Then the integer part is rounded and converted
57 ** to a double which is finally rescaled to the result. Denormals need
58 ** special treatment to prevent incorrect 'double rounding'.
61 /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */
62 #define STRSCAN_DIG 1024
63 #define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */
64 #define STRSCAN_DDIG (STRSCAN_DIG/2)
65 #define STRSCAN_DMASK (STRSCAN_DDIG-1)
66 #define STRSCAN_MAXEXP (1 << 20)
68 /* Helpers for circular buffer. */
69 #define DNEXT(a) (((a)+1) & STRSCAN_DMASK)
70 #define DPREV(a) (((a)-1) & STRSCAN_DMASK)
71 #define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK))
73 #define casecmp(c, k) (((c) | 0x20) == k)
75 /* Final conversion to double. */
76 static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg)
78 double n;
80 /* Avoid double rounding for denormals. */
81 if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) {
82 /* NYI: all of this generates way too much code on 32 bit CPUs. */
83 #if (defined(__GNUC__) || defined(__clang__)) && LJ_64
84 int32_t b = (int32_t)(__builtin_clzll(x)^63);
85 #else
86 int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) :
87 (int32_t)lj_fls((uint32_t)x);
88 #endif
89 if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) {
90 uint64_t rb = (uint64_t)1 << (-1075-ex2);
91 if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb;
92 x = (x & ~(rb+rb-1));
96 /* Convert to double using a signed int64_t conversion, then rescale. */
97 lj_assertX((int64_t)x >= 0, "bad double conversion");
98 n = (double)(int64_t)x;
99 if (neg) n = -n;
100 if (ex2) n = ldexp(n, ex2);
101 o->n = n;
104 /* Parse hexadecimal number. */
105 static StrScanFmt strscan_hex(const uint8_t *p, TValue *o,
106 StrScanFmt fmt, uint32_t opt,
107 int32_t ex2, int32_t neg, uint32_t dig)
109 uint64_t x = 0;
110 uint32_t i;
112 /* Scan hex digits. */
113 for (i = dig > 16 ? 16 : dig ; i; i--, p++) {
114 uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9;
115 x = (x << 4) + (d & 15);
118 /* Summarize rounding-effect of excess digits. */
119 for (i = 16; i < dig; i++, p++)
120 x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4;
122 /* Format-specific handling. */
123 switch (fmt) {
124 case STRSCAN_INT:
125 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg &&
126 !(x == 0 && neg)) {
127 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
128 return STRSCAN_INT; /* Fast path for 32 bit integers. */
130 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
131 /* fallthrough */
132 case STRSCAN_U32:
133 if (dig > 8) return STRSCAN_ERROR;
134 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
135 return STRSCAN_U32;
136 case STRSCAN_I64:
137 case STRSCAN_U64:
138 if (dig > 16) return STRSCAN_ERROR;
139 o->u64 = neg ? ~x+1u : x;
140 return fmt;
141 default:
142 break;
145 /* Reduce range, then convert to double. */
146 if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
147 strscan_double(x, o, ex2, neg);
148 return fmt;
151 /* Parse octal number. */
152 static StrScanFmt strscan_oct(const uint8_t *p, TValue *o,
153 StrScanFmt fmt, int32_t neg, uint32_t dig)
155 uint64_t x = 0;
157 /* Scan octal digits. */
158 if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR;
159 while (dig-- > 0) {
160 if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR;
161 x = (x << 3) + (*p++ & 7);
164 /* Format-specific handling. */
165 switch (fmt) {
166 case STRSCAN_INT:
167 if (x >= 0x80000000u+neg) fmt = STRSCAN_U32;
168 /* fallthrough */
169 case STRSCAN_U32:
170 if ((x >> 32)) return STRSCAN_ERROR;
171 o->i = neg ? (int32_t)(~(uint32_t)x+1u) : (int32_t)x;
172 break;
173 default:
174 case STRSCAN_I64:
175 case STRSCAN_U64:
176 o->u64 = neg ? ~x+1u : x;
177 break;
179 return fmt;
182 /* Parse decimal number. */
183 static StrScanFmt strscan_dec(const uint8_t *p, TValue *o,
184 StrScanFmt fmt, uint32_t opt,
185 int32_t ex10, int32_t neg, uint32_t dig)
187 uint8_t xi[STRSCAN_DDIG], *xip = xi;
189 if (dig) {
190 uint32_t i = dig;
191 if (i > STRSCAN_MAXDIG) {
192 ex10 += (int32_t)(i - STRSCAN_MAXDIG);
193 i = STRSCAN_MAXDIG;
195 /* Scan unaligned leading digit. */
196 if (((ex10^i) & 1))
197 *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++;
198 /* Scan aligned double-digits. */
199 for ( ; i > 1; i -= 2) {
200 uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++;
201 *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++;
203 /* Scan and realign trailing digit. */
204 if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++;
206 /* Summarize rounding-effect of excess digits. */
207 if (dig > STRSCAN_MAXDIG) {
208 do {
209 if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; }
210 p++;
211 } while (--dig > STRSCAN_MAXDIG);
212 dig = STRSCAN_MAXDIG;
213 } else { /* Simplify exponent. */
214 while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2;
216 } else { /* Only got zeros. */
217 ex10 = 0;
218 xi[0] = 0;
221 /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */
222 if (dig <= 20 && ex10 == 0) {
223 uint8_t *xis;
224 uint64_t x = xi[0];
225 double n;
226 for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis;
227 if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */
228 /* Format-specific handling. */
229 switch (fmt) {
230 case STRSCAN_INT:
231 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
232 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
233 return STRSCAN_INT; /* Fast path for 32 bit integers. */
235 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; }
236 /* fallthrough */
237 case STRSCAN_U32:
238 if ((x >> 32) != 0) return STRSCAN_ERROR;
239 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
240 return STRSCAN_U32;
241 case STRSCAN_I64:
242 case STRSCAN_U64:
243 o->u64 = neg ? ~x+1u : x;
244 return fmt;
245 default:
246 plainnumber: /* Fast path for plain numbers < 2^63. */
247 if ((int64_t)x < 0) break;
248 n = (double)(int64_t)x;
249 if (neg) n = -n;
250 o->n = n;
251 return fmt;
256 /* Slow non-integer path. */
257 if (fmt == STRSCAN_INT) {
258 if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
259 fmt = STRSCAN_NUM;
260 } else if (fmt > STRSCAN_INT) {
261 return STRSCAN_ERROR;
264 uint32_t hi = 0, lo = (uint32_t)(xip-xi);
265 int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1);
267 lj_assertX(lo > 0 && (ex10 & 1) == 0, "bad lo %d ex10 %d", lo, ex10);
269 /* Handle simple overflow/underflow. */
270 if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; }
271 else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; }
273 /* Scale up until we have at least 17 or 18 integer part digits. */
274 while (idig < 9 && idig < DLEN(lo, hi)) {
275 uint32_t i, cy = 0;
276 ex2 -= 6;
277 for (i = DPREV(lo); ; i = DPREV(i)) {
278 uint32_t d = (xi[i] << 6) + cy;
279 cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */
280 xi[i] = (uint8_t)d;
281 if (i == hi) break;
282 if (d == 0 && i == DPREV(lo)) lo = i;
284 if (cy) {
285 hi = DPREV(hi);
286 if (xi[DPREV(lo)] == 0) lo = DPREV(lo);
287 else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; }
288 xi[hi] = (uint8_t)cy; idig++;
292 /* Scale down until no more than 17 or 18 integer part digits remain. */
293 while (idig > 9) {
294 uint32_t i = hi, cy = 0;
295 ex2 += 6;
296 do {
297 cy += xi[i];
298 xi[i] = (cy >> 6);
299 cy = 100 * (cy & 0x3f);
300 if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--;
301 i = DNEXT(i);
302 } while (i != lo);
303 while (cy) {
304 if (hi == lo) { xi[DPREV(lo)] |= 1; break; }
305 xi[lo] = (cy >> 6); lo = DNEXT(lo);
306 cy = 100 * (cy & 0x3f);
310 /* Collect integer part digits and convert to rescaled double. */
312 uint64_t x = xi[hi];
313 uint32_t i;
314 for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i))
315 x = x * 100 + xi[i];
316 if (i == lo) {
317 while (--idig >= 0) x = x * 100;
318 } else { /* Gather round bit from remaining digits. */
319 x <<= 1; ex2--;
320 do {
321 if (xi[i]) { x |= 1; break; }
322 i = DNEXT(i);
323 } while (i != lo);
325 strscan_double(x, o, ex2, neg);
328 return fmt;
331 /* Parse binary number. */
332 static StrScanFmt strscan_bin(const uint8_t *p, TValue *o,
333 StrScanFmt fmt, uint32_t opt,
334 int32_t ex2, int32_t neg, uint32_t dig)
336 uint64_t x = 0;
337 uint32_t i;
339 if (ex2 || dig > 64) return STRSCAN_ERROR;
341 /* Scan binary digits. */
342 for (i = dig; i; i--, p++) {
343 if ((*p & ~1) != '0') return STRSCAN_ERROR;
344 x = (x << 1) | (*p & 1);
347 /* Format-specific handling. */
348 switch (fmt) {
349 case STRSCAN_INT:
350 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
351 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
352 return STRSCAN_INT; /* Fast path for 32 bit integers. */
354 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
355 /* fallthrough */
356 case STRSCAN_U32:
357 if (dig > 32) return STRSCAN_ERROR;
358 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
359 return STRSCAN_U32;
360 case STRSCAN_I64:
361 case STRSCAN_U64:
362 o->u64 = neg ? ~x+1u : x;
363 return fmt;
364 default:
365 break;
368 /* Reduce range, then convert to double. */
369 if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
370 strscan_double(x, o, ex2, neg);
371 return fmt;
374 /* Scan string containing a number. Returns format. Returns value in o. */
375 StrScanFmt lj_strscan_scan(const uint8_t *p, MSize len, TValue *o,
376 uint32_t opt)
378 int32_t neg = 0;
379 const uint8_t *pe = p + len;
381 /* Remove leading space, parse sign and non-numbers. */
382 if (LJ_UNLIKELY(!lj_char_isdigit(*p))) {
383 while (lj_char_isspace(*p)) p++;
384 if (*p == '+' || *p == '-') neg = (*p++ == '-');
385 if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */
386 TValue tmp;
387 setnanV(&tmp);
388 if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) {
389 if (neg) setminfV(&tmp); else setpinfV(&tmp);
390 p += 3;
391 if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') &&
392 casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5;
393 } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) {
394 p += 3;
396 while (lj_char_isspace(*p)) p++;
397 if (*p || p < pe) return STRSCAN_ERROR;
398 o->u64 = tmp.u64;
399 return STRSCAN_NUM;
403 /* Parse regular number. */
405 StrScanFmt fmt = STRSCAN_INT;
406 int cmask = LJ_CHAR_DIGIT;
407 int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10;
408 const uint8_t *sp, *dp = NULL;
409 uint32_t dig = 0, hasdig = 0, x = 0;
410 int32_t ex = 0;
412 /* Determine base and skip leading zeros. */
413 if (LJ_UNLIKELY(*p <= '0')) {
414 if (*p == '0') {
415 if (casecmp(p[1], 'x'))
416 base = 16, cmask = LJ_CHAR_XDIGIT, p += 2;
417 else if (casecmp(p[1], 'b'))
418 base = 2, cmask = LJ_CHAR_DIGIT, p += 2;
420 for ( ; ; p++) {
421 if (*p == '0') {
422 hasdig = 1;
423 } else if (*p == '.') {
424 if (dp) return STRSCAN_ERROR;
425 dp = p;
426 } else {
427 break;
432 /* Preliminary digit and decimal point scan. */
433 for (sp = p; ; p++) {
434 if (LJ_LIKELY(lj_char_isa(*p, cmask))) {
435 x = x * 10 + (*p & 15); /* For fast path below. */
436 dig++;
437 } else if (*p == '.') {
438 if (dp) return STRSCAN_ERROR;
439 dp = p;
440 } else {
441 break;
444 if (!(hasdig | dig)) return STRSCAN_ERROR;
446 /* Handle decimal point. */
447 if (dp) {
448 if (base == 2) return STRSCAN_ERROR;
449 fmt = STRSCAN_NUM;
450 if (dig) {
451 ex = (int32_t)(dp-(p-1)); dp = p-1;
452 while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */
453 if (ex <= -STRSCAN_MAXEXP) return STRSCAN_ERROR;
454 if (base == 16) ex *= 4;
458 /* Parse exponent. */
459 if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) {
460 uint32_t xx;
461 int negx = 0;
462 fmt = STRSCAN_NUM; p++;
463 if (*p == '+' || *p == '-') negx = (*p++ == '-');
464 if (!lj_char_isdigit(*p)) return STRSCAN_ERROR;
465 xx = (*p++ & 15);
466 while (lj_char_isdigit(*p)) {
467 xx = xx * 10 + (*p & 15);
468 if (xx >= STRSCAN_MAXEXP) return STRSCAN_ERROR;
469 p++;
471 ex += negx ? (int32_t)(~xx+1u) : (int32_t)xx;
474 /* Parse suffix. */
475 if (*p) {
476 /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */
477 /* NYI: f (float). Not needed until cp_number() handles non-integers. */
478 if (casecmp(*p, 'i')) {
479 if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR;
480 p++; fmt = STRSCAN_IMAG;
481 } else if (fmt == STRSCAN_INT) {
482 if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32;
483 if (casecmp(*p, 'l')) {
484 p++;
485 if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT;
486 else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
487 else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT;
489 if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64))
490 p++, fmt += STRSCAN_U32 - STRSCAN_INT;
491 if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) ||
492 (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL)))
493 return STRSCAN_ERROR;
495 while (lj_char_isspace(*p)) p++;
496 if (*p) return STRSCAN_ERROR;
498 if (p < pe) return STRSCAN_ERROR;
500 /* Fast path for decimal 32 bit integers. */
501 if (fmt == STRSCAN_INT && base == 10 &&
502 (dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) {
503 if ((opt & STRSCAN_OPT_TONUM)) {
504 o->n = neg ? -(double)x : (double)x;
505 return STRSCAN_NUM;
506 } else if (x == 0 && neg) {
507 o->n = -0.0;
508 return STRSCAN_NUM;
509 } else {
510 o->i = neg ? (int32_t)(~x+1u) : (int32_t)x;
511 return STRSCAN_INT;
515 /* Dispatch to base-specific parser. */
516 if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG))
517 return strscan_oct(sp, o, fmt, neg, dig);
518 if (base == 16)
519 fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig);
520 else if (base == 2)
521 fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig);
522 else
523 fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig);
525 /* Try to convert number to integer, if requested. */
526 if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT) && !tvismzero(o)) {
527 double n = o->n;
528 int32_t i = lj_num2int(n);
529 if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; }
531 return fmt;
535 int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o)
537 StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o,
538 STRSCAN_OPT_TONUM);
539 lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM, "bad scan format");
540 return (fmt != STRSCAN_ERROR);
543 #if LJ_DUALNUM
544 int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o)
546 StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o,
547 STRSCAN_OPT_TOINT);
548 lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT,
549 "bad scan format");
550 if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM);
551 return (fmt != STRSCAN_ERROR);
553 #endif
555 #undef DNEXT
556 #undef DPREV
557 #undef DLEN