When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / PHIElimination.cpp
blobb940e26911289630a81ca8a13b0f1222e69a12b3
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include <algorithm>
34 #include <map>
35 using namespace llvm;
37 namespace {
38 class PHIElimination : public MachineFunctionPass {
39 MachineRegisterInfo *MRI; // Machine register information
41 public:
42 static char ID; // Pass identification, replacement for typeid
43 PHIElimination() : MachineFunctionPass(ID) {
44 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
47 virtual bool runOnMachineFunction(MachineFunction &Fn);
48 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
50 private:
51 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
52 /// in predecessor basic blocks.
53 ///
54 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
55 void LowerAtomicPHINode(MachineBasicBlock &MBB,
56 MachineBasicBlock::iterator AfterPHIsIt);
58 /// analyzePHINodes - Gather information about the PHI nodes in
59 /// here. In particular, we want to map the number of uses of a virtual
60 /// register which is used in a PHI node. We map that to the BB the
61 /// vreg is coming from. This is used later to determine when the vreg
62 /// is killed in the BB.
63 ///
64 void analyzePHINodes(const MachineFunction& Fn);
66 /// Split critical edges where necessary for good coalescer performance.
67 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
68 LiveVariables &LV, MachineLoopInfo *MLI);
70 typedef std::pair<unsigned, unsigned> BBVRegPair;
71 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
73 VRegPHIUse VRegPHIUseCount;
75 // Defs of PHI sources which are implicit_def.
76 SmallPtrSet<MachineInstr*, 4> ImpDefs;
78 // Map reusable lowered PHI node -> incoming join register.
79 typedef DenseMap<MachineInstr*, unsigned,
80 MachineInstrExpressionTrait> LoweredPHIMap;
81 LoweredPHIMap LoweredPHIs;
85 STATISTIC(NumAtomic, "Number of atomic phis lowered");
86 STATISTIC(NumReused, "Number of reused lowered phis");
88 char PHIElimination::ID = 0;
89 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
90 "Eliminate PHI nodes for register allocation", false, false)
92 char& llvm::PHIEliminationID = PHIElimination::ID;
94 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.addPreserved<LiveVariables>();
96 AU.addPreserved<MachineDominatorTree>();
97 AU.addPreserved<MachineLoopInfo>();
98 MachineFunctionPass::getAnalysisUsage(AU);
101 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
102 MRI = &MF.getRegInfo();
104 bool Changed = false;
106 // Split critical edges to help the coalescer
107 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
108 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
109 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
110 Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
113 // Populate VRegPHIUseCount
114 analyzePHINodes(MF);
116 // Eliminate PHI instructions by inserting copies into predecessor blocks.
117 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
118 Changed |= EliminatePHINodes(MF, *I);
120 // Remove dead IMPLICIT_DEF instructions.
121 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
122 E = ImpDefs.end(); I != E; ++I) {
123 MachineInstr *DefMI = *I;
124 unsigned DefReg = DefMI->getOperand(0).getReg();
125 if (MRI->use_nodbg_empty(DefReg))
126 DefMI->eraseFromParent();
129 // Clean up the lowered PHI instructions.
130 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
131 I != E; ++I)
132 MF.DeleteMachineInstr(I->first);
134 LoweredPHIs.clear();
135 ImpDefs.clear();
136 VRegPHIUseCount.clear();
138 return Changed;
141 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
142 /// predecessor basic blocks.
144 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
145 MachineBasicBlock &MBB) {
146 if (MBB.empty() || !MBB.front().isPHI())
147 return false; // Quick exit for basic blocks without PHIs.
149 // Get an iterator to the first instruction after the last PHI node (this may
150 // also be the end of the basic block).
151 MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
153 while (MBB.front().isPHI())
154 LowerAtomicPHINode(MBB, AfterPHIsIt);
156 return true;
159 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
160 /// are implicit_def's.
161 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
162 const MachineRegisterInfo *MRI) {
163 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
164 unsigned SrcReg = MPhi->getOperand(i).getReg();
165 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
166 if (!DefMI || !DefMI->isImplicitDef())
167 return false;
169 return true;
174 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
175 /// under the assuption that it needs to be lowered in a way that supports
176 /// atomic execution of PHIs. This lowering method is always correct all of the
177 /// time.
179 void PHIElimination::LowerAtomicPHINode(
180 MachineBasicBlock &MBB,
181 MachineBasicBlock::iterator AfterPHIsIt) {
182 ++NumAtomic;
183 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
184 MachineInstr *MPhi = MBB.remove(MBB.begin());
186 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
187 unsigned DestReg = MPhi->getOperand(0).getReg();
188 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
189 bool isDead = MPhi->getOperand(0).isDead();
191 // Create a new register for the incoming PHI arguments.
192 MachineFunction &MF = *MBB.getParent();
193 unsigned IncomingReg = 0;
194 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
196 // Insert a register to register copy at the top of the current block (but
197 // after any remaining phi nodes) which copies the new incoming register
198 // into the phi node destination.
199 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
200 if (isSourceDefinedByImplicitDef(MPhi, MRI))
201 // If all sources of a PHI node are implicit_def, just emit an
202 // implicit_def instead of a copy.
203 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
204 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
205 else {
206 // Can we reuse an earlier PHI node? This only happens for critical edges,
207 // typically those created by tail duplication.
208 unsigned &entry = LoweredPHIs[MPhi];
209 if (entry) {
210 // An identical PHI node was already lowered. Reuse the incoming register.
211 IncomingReg = entry;
212 reusedIncoming = true;
213 ++NumReused;
214 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
215 } else {
216 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
217 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
219 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
220 TII->get(TargetOpcode::COPY), DestReg)
221 .addReg(IncomingReg);
224 // Update live variable information if there is any.
225 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
226 if (LV) {
227 MachineInstr *PHICopy = prior(AfterPHIsIt);
229 if (IncomingReg) {
230 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
232 // Increment use count of the newly created virtual register.
233 VI.NumUses++;
234 LV->setPHIJoin(IncomingReg);
236 // When we are reusing the incoming register, it may already have been
237 // killed in this block. The old kill will also have been inserted at
238 // AfterPHIsIt, so it appears before the current PHICopy.
239 if (reusedIncoming)
240 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
241 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
242 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
243 DEBUG(MBB.dump());
246 // Add information to LiveVariables to know that the incoming value is
247 // killed. Note that because the value is defined in several places (once
248 // each for each incoming block), the "def" block and instruction fields
249 // for the VarInfo is not filled in.
250 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
253 // Since we are going to be deleting the PHI node, if it is the last use of
254 // any registers, or if the value itself is dead, we need to move this
255 // information over to the new copy we just inserted.
256 LV->removeVirtualRegistersKilled(MPhi);
258 // If the result is dead, update LV.
259 if (isDead) {
260 LV->addVirtualRegisterDead(DestReg, PHICopy);
261 LV->removeVirtualRegisterDead(DestReg, MPhi);
265 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
266 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
267 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
268 MPhi->getOperand(i).getReg())];
270 // Now loop over all of the incoming arguments, changing them to copy into the
271 // IncomingReg register in the corresponding predecessor basic block.
272 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
273 for (int i = NumSrcs - 1; i >= 0; --i) {
274 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
275 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
277 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
278 "Machine PHI Operands must all be virtual registers!");
280 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
281 // path the PHI.
282 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
284 // If source is defined by an implicit def, there is no need to insert a
285 // copy.
286 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
287 if (DefMI->isImplicitDef()) {
288 ImpDefs.insert(DefMI);
289 continue;
292 // Check to make sure we haven't already emitted the copy for this block.
293 // This can happen because PHI nodes may have multiple entries for the same
294 // basic block.
295 if (!MBBsInsertedInto.insert(&opBlock))
296 continue; // If the copy has already been emitted, we're done.
298 // Find a safe location to insert the copy, this may be the first terminator
299 // in the block (or end()).
300 MachineBasicBlock::iterator InsertPos =
301 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
303 // Insert the copy.
304 if (!reusedIncoming && IncomingReg)
305 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
306 TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
308 // Now update live variable information if we have it. Otherwise we're done
309 if (!LV) continue;
311 // We want to be able to insert a kill of the register if this PHI (aka, the
312 // copy we just inserted) is the last use of the source value. Live
313 // variable analysis conservatively handles this by saying that the value is
314 // live until the end of the block the PHI entry lives in. If the value
315 // really is dead at the PHI copy, there will be no successor blocks which
316 // have the value live-in.
318 // Also check to see if this register is in use by another PHI node which
319 // has not yet been eliminated. If so, it will be killed at an appropriate
320 // point later.
322 // Is it used by any PHI instructions in this block?
323 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
325 // Okay, if we now know that the value is not live out of the block, we can
326 // add a kill marker in this block saying that it kills the incoming value!
327 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
328 // In our final twist, we have to decide which instruction kills the
329 // register. In most cases this is the copy, however, the first
330 // terminator instruction at the end of the block may also use the value.
331 // In this case, we should mark *it* as being the killing block, not the
332 // copy.
333 MachineBasicBlock::iterator KillInst;
334 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
335 if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
336 KillInst = Term;
338 // Check that no other terminators use values.
339 #ifndef NDEBUG
340 for (MachineBasicBlock::iterator TI = llvm::next(Term);
341 TI != opBlock.end(); ++TI) {
342 if (TI->isDebugValue())
343 continue;
344 assert(!TI->readsRegister(SrcReg) &&
345 "Terminator instructions cannot use virtual registers unless"
346 "they are the first terminator in a block!");
348 #endif
349 } else if (reusedIncoming || !IncomingReg) {
350 // We may have to rewind a bit if we didn't insert a copy this time.
351 KillInst = Term;
352 while (KillInst != opBlock.begin()) {
353 --KillInst;
354 if (KillInst->isDebugValue())
355 continue;
356 if (KillInst->readsRegister(SrcReg))
357 break;
359 } else {
360 // We just inserted this copy.
361 KillInst = prior(InsertPos);
363 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
365 // Finally, mark it killed.
366 LV->addVirtualRegisterKilled(SrcReg, KillInst);
368 // This vreg no longer lives all of the way through opBlock.
369 unsigned opBlockNum = opBlock.getNumber();
370 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
374 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
375 if (reusedIncoming || !IncomingReg)
376 MF.DeleteMachineInstr(MPhi);
379 /// analyzePHINodes - Gather information about the PHI nodes in here. In
380 /// particular, we want to map the number of uses of a virtual register which is
381 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
382 /// used later to determine when the vreg is killed in the BB.
384 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
385 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
386 I != E; ++I)
387 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
388 BBI != BBE && BBI->isPHI(); ++BBI)
389 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
390 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
391 BBI->getOperand(i).getReg())];
394 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
395 MachineBasicBlock &MBB,
396 LiveVariables &LV,
397 MachineLoopInfo *MLI) {
398 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
399 return false; // Quick exit for basic blocks without PHIs.
401 bool Changed = false;
402 for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
403 BBI != BBE && BBI->isPHI(); ++BBI) {
404 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
405 unsigned Reg = BBI->getOperand(i).getReg();
406 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
407 // We break edges when registers are live out from the predecessor block
408 // (not considering PHI nodes). If the register is live in to this block
409 // anyway, we would gain nothing from splitting.
410 // Avoid splitting backedges of loops. It would introduce small
411 // out-of-line blocks into the loop which is very bad for code placement.
412 if (PreMBB != &MBB &&
413 !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
414 if (!MLI ||
415 !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
416 MLI->isLoopHeader(&MBB)))
417 Changed |= PreMBB->SplitCriticalEdge(&MBB, this) != 0;
421 return true;