sched: print module list in the "scheduling while atomic" warning
[linux-2.6/zen-sources.git] / kernel / sched.c
blob84a360670b9d79a1cff9d6dd419be01a08d1971a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 if (!overrun)
185 break;
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
209 ktime_t now;
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
236 #endif
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
248 struct cfs_rq;
250 static LIST_HEAD(task_groups);
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
271 #endif
273 struct rcu_head rcu;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif
301 #else
302 #define root_task_group init_task_group
303 #endif
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES 2
323 #define MAX_SHARES (ULONG_MAX - 1)
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group init_task_group;
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
336 struct task_group *tg;
338 #ifdef CONFIG_USER_SCHED
339 tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
343 #else
344 tg = &init_task_group;
345 #endif
346 return tg;
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
355 #endif
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
363 #else
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367 #endif /* CONFIG_GROUP_SCHED */
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
374 u64 exec_clock;
375 u64 min_vruntime;
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
380 struct list_head tasks;
381 struct list_head *balance_iterator;
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431 #endif
434 #ifdef CONFIG_SMP
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
444 struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
453 cpumask_t rto_mask;
454 atomic_t rto_count;
455 #ifdef CONFIG_SMP
456 struct cpupri cpupri;
457 #endif
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
464 static struct root_domain def_root_domain;
466 #endif
469 * This is the main, per-CPU runqueue data structure.
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
475 struct rq {
476 /* runqueue lock: */
477 spinlock_t lock;
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
483 unsigned long nr_running;
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486 unsigned char idle_at_tick;
487 #ifdef CONFIG_NO_HZ
488 unsigned long last_tick_seen;
489 unsigned char in_nohz_recently;
490 #endif
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
493 unsigned long nr_load_updates;
494 u64 nr_switches;
496 struct cfs_rq cfs;
497 struct rt_rq rt;
499 #ifdef CONFIG_FAIR_GROUP_SCHED
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
502 #endif
503 #ifdef CONFIG_RT_GROUP_SCHED
504 struct list_head leaf_rt_rq_list;
505 #endif
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
513 unsigned long nr_uninterruptible;
515 struct task_struct *curr, *idle;
516 unsigned long next_balance;
517 struct mm_struct *prev_mm;
519 u64 clock;
521 atomic_t nr_iowait;
523 #ifdef CONFIG_SMP
524 struct root_domain *rd;
525 struct sched_domain *sd;
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
530 /* cpu of this runqueue: */
531 int cpu;
533 struct task_struct *migration_thread;
534 struct list_head migration_queue;
535 #endif
537 #ifdef CONFIG_SCHED_HRTICK
538 unsigned long hrtick_flags;
539 ktime_t hrtick_expire;
540 struct hrtimer hrtick_timer;
541 #endif
543 #ifdef CONFIG_SCHEDSTATS
544 /* latency stats */
545 struct sched_info rq_sched_info;
547 /* sys_sched_yield() stats */
548 unsigned int yld_exp_empty;
549 unsigned int yld_act_empty;
550 unsigned int yld_both_empty;
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
562 /* BKL stats */
563 unsigned int bkl_count;
564 #endif
565 struct lock_class_key rq_lock_key;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
570 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572 rq->curr->sched_class->check_preempt_curr(rq, p);
575 static inline int cpu_of(struct rq *rq)
577 #ifdef CONFIG_SMP
578 return rq->cpu;
579 #else
580 return 0;
581 #endif
585 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
586 * See detach_destroy_domains: synchronize_sched for details.
588 * The domain tree of any CPU may only be accessed from within
589 * preempt-disabled sections.
591 #define for_each_domain(cpu, __sd) \
592 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
595 #define this_rq() (&__get_cpu_var(runqueues))
596 #define task_rq(p) cpu_rq(task_cpu(p))
597 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 static inline void update_rq_clock(struct rq *rq)
601 rq->clock = sched_clock_cpu(cpu_of(rq));
605 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 #ifdef CONFIG_SCHED_DEBUG
608 # define const_debug __read_mostly
609 #else
610 # define const_debug static const
611 #endif
614 * Debugging: various feature bits
617 #define SCHED_FEAT(name, enabled) \
618 __SCHED_FEAT_##name ,
620 enum {
621 #include "sched_features.h"
624 #undef SCHED_FEAT
626 #define SCHED_FEAT(name, enabled) \
627 (1UL << __SCHED_FEAT_##name) * enabled |
629 const_debug unsigned int sysctl_sched_features =
630 #include "sched_features.h"
633 #undef SCHED_FEAT
635 #ifdef CONFIG_SCHED_DEBUG
636 #define SCHED_FEAT(name, enabled) \
637 #name ,
639 static __read_mostly char *sched_feat_names[] = {
640 #include "sched_features.h"
641 NULL
644 #undef SCHED_FEAT
646 static int sched_feat_open(struct inode *inode, struct file *filp)
648 filp->private_data = inode->i_private;
649 return 0;
652 static ssize_t
653 sched_feat_read(struct file *filp, char __user *ubuf,
654 size_t cnt, loff_t *ppos)
656 char *buf;
657 int r = 0;
658 int len = 0;
659 int i;
661 for (i = 0; sched_feat_names[i]; i++) {
662 len += strlen(sched_feat_names[i]);
663 len += 4;
666 buf = kmalloc(len + 2, GFP_KERNEL);
667 if (!buf)
668 return -ENOMEM;
670 for (i = 0; sched_feat_names[i]; i++) {
671 if (sysctl_sched_features & (1UL << i))
672 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
673 else
674 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
677 r += sprintf(buf + r, "\n");
678 WARN_ON(r >= len + 2);
680 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
682 kfree(buf);
684 return r;
687 static ssize_t
688 sched_feat_write(struct file *filp, const char __user *ubuf,
689 size_t cnt, loff_t *ppos)
691 char buf[64];
692 char *cmp = buf;
693 int neg = 0;
694 int i;
696 if (cnt > 63)
697 cnt = 63;
699 if (copy_from_user(&buf, ubuf, cnt))
700 return -EFAULT;
702 buf[cnt] = 0;
704 if (strncmp(buf, "NO_", 3) == 0) {
705 neg = 1;
706 cmp += 3;
709 for (i = 0; sched_feat_names[i]; i++) {
710 int len = strlen(sched_feat_names[i]);
712 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
713 if (neg)
714 sysctl_sched_features &= ~(1UL << i);
715 else
716 sysctl_sched_features |= (1UL << i);
717 break;
721 if (!sched_feat_names[i])
722 return -EINVAL;
724 filp->f_pos += cnt;
726 return cnt;
729 static struct file_operations sched_feat_fops = {
730 .open = sched_feat_open,
731 .read = sched_feat_read,
732 .write = sched_feat_write,
735 static __init int sched_init_debug(void)
737 debugfs_create_file("sched_features", 0644, NULL, NULL,
738 &sched_feat_fops);
740 return 0;
742 late_initcall(sched_init_debug);
744 #endif
746 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
749 * Number of tasks to iterate in a single balance run.
750 * Limited because this is done with IRQs disabled.
752 const_debug unsigned int sysctl_sched_nr_migrate = 32;
755 * period over which we measure -rt task cpu usage in us.
756 * default: 1s
758 unsigned int sysctl_sched_rt_period = 1000000;
760 static __read_mostly int scheduler_running;
763 * part of the period that we allow rt tasks to run in us.
764 * default: 0.95s
766 int sysctl_sched_rt_runtime = 950000;
768 static inline u64 global_rt_period(void)
770 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
773 static inline u64 global_rt_runtime(void)
775 if (sysctl_sched_rt_period < 0)
776 return RUNTIME_INF;
778 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
781 unsigned long long time_sync_thresh = 100000;
783 static DEFINE_PER_CPU(unsigned long long, time_offset);
784 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
787 * Global lock which we take every now and then to synchronize
788 * the CPUs time. This method is not warp-safe, but it's good
789 * enough to synchronize slowly diverging time sources and thus
790 * it's good enough for tracing:
792 static DEFINE_SPINLOCK(time_sync_lock);
793 static unsigned long long prev_global_time;
795 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
798 * We want this inlined, to not get tracer function calls
799 * in this critical section:
801 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
802 __raw_spin_lock(&time_sync_lock.raw_lock);
804 if (time < prev_global_time) {
805 per_cpu(time_offset, cpu) += prev_global_time - time;
806 time = prev_global_time;
807 } else {
808 prev_global_time = time;
811 __raw_spin_unlock(&time_sync_lock.raw_lock);
812 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
814 return time;
817 static unsigned long long __cpu_clock(int cpu)
819 unsigned long long now;
822 * Only call sched_clock() if the scheduler has already been
823 * initialized (some code might call cpu_clock() very early):
825 if (unlikely(!scheduler_running))
826 return 0;
828 now = sched_clock_cpu(cpu);
830 return now;
834 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
835 * clock constructed from sched_clock():
837 unsigned long long cpu_clock(int cpu)
839 unsigned long long prev_cpu_time, time, delta_time;
840 unsigned long flags;
842 local_irq_save(flags);
843 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
844 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
845 delta_time = time-prev_cpu_time;
847 if (unlikely(delta_time > time_sync_thresh)) {
848 time = __sync_cpu_clock(time, cpu);
849 per_cpu(prev_cpu_time, cpu) = time;
851 local_irq_restore(flags);
853 return time;
855 EXPORT_SYMBOL_GPL(cpu_clock);
857 #ifndef prepare_arch_switch
858 # define prepare_arch_switch(next) do { } while (0)
859 #endif
860 #ifndef finish_arch_switch
861 # define finish_arch_switch(prev) do { } while (0)
862 #endif
864 static inline int task_current(struct rq *rq, struct task_struct *p)
866 return rq->curr == p;
869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
870 static inline int task_running(struct rq *rq, struct task_struct *p)
872 return task_current(rq, p);
875 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 #ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884 #endif
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892 spin_unlock_irq(&rq->lock);
895 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
896 static inline int task_running(struct rq *rq, struct task_struct *p)
898 #ifdef CONFIG_SMP
899 return p->oncpu;
900 #else
901 return task_current(rq, p);
902 #endif
905 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 #ifdef CONFIG_SMP
909 * We can optimise this out completely for !SMP, because the
910 * SMP rebalancing from interrupt is the only thing that cares
911 * here.
913 next->oncpu = 1;
914 #endif
915 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
916 spin_unlock_irq(&rq->lock);
917 #else
918 spin_unlock(&rq->lock);
919 #endif
922 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 #ifdef CONFIG_SMP
926 * After ->oncpu is cleared, the task can be moved to a different CPU.
927 * We must ensure this doesn't happen until the switch is completely
928 * finished.
930 smp_wmb();
931 prev->oncpu = 0;
932 #endif
933 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 local_irq_enable();
935 #endif
937 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 __acquires(rq->lock)
946 for (;;) {
947 struct rq *rq = task_rq(p);
948 spin_lock(&rq->lock);
949 if (likely(rq == task_rq(p)))
950 return rq;
951 spin_unlock(&rq->lock);
956 * task_rq_lock - lock the runqueue a given task resides on and disable
957 * interrupts. Note the ordering: we can safely lookup the task_rq without
958 * explicitly disabling preemption.
960 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
961 __acquires(rq->lock)
963 struct rq *rq;
965 for (;;) {
966 local_irq_save(*flags);
967 rq = task_rq(p);
968 spin_lock(&rq->lock);
969 if (likely(rq == task_rq(p)))
970 return rq;
971 spin_unlock_irqrestore(&rq->lock, *flags);
975 static void __task_rq_unlock(struct rq *rq)
976 __releases(rq->lock)
978 spin_unlock(&rq->lock);
981 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 __releases(rq->lock)
984 spin_unlock_irqrestore(&rq->lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
993 struct rq *rq;
995 local_irq_disable();
996 rq = this_rq();
997 spin_lock(&rq->lock);
999 return rq;
1002 static void __resched_task(struct task_struct *p, int tif_bit);
1004 static inline void resched_task(struct task_struct *p)
1006 __resched_task(p, TIF_NEED_RESCHED);
1009 #ifdef CONFIG_SCHED_HRTICK
1011 * Use HR-timers to deliver accurate preemption points.
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1020 static inline void resched_hrt(struct task_struct *p)
1022 __resched_task(p, TIF_HRTICK_RESCHED);
1025 static inline void resched_rq(struct rq *rq)
1027 unsigned long flags;
1029 spin_lock_irqsave(&rq->lock, flags);
1030 resched_task(rq->curr);
1031 spin_unlock_irqrestore(&rq->lock, flags);
1034 enum {
1035 HRTICK_SET, /* re-programm hrtick_timer */
1036 HRTICK_RESET, /* not a new slice */
1037 HRTICK_BLOCK, /* stop hrtick operations */
1041 * Use hrtick when:
1042 * - enabled by features
1043 * - hrtimer is actually high res
1045 static inline int hrtick_enabled(struct rq *rq)
1047 if (!sched_feat(HRTICK))
1048 return 0;
1049 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1050 return 0;
1051 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055 * Called to set the hrtick timer state.
1057 * called with rq->lock held and irqs disabled
1059 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1061 assert_spin_locked(&rq->lock);
1064 * preempt at: now + delay
1066 rq->hrtick_expire =
1067 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1069 * indicate we need to program the timer
1071 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1072 if (reset)
1073 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1076 * New slices are called from the schedule path and don't need a
1077 * forced reschedule.
1079 if (reset)
1080 resched_hrt(rq->curr);
1083 static void hrtick_clear(struct rq *rq)
1085 if (hrtimer_active(&rq->hrtick_timer))
1086 hrtimer_cancel(&rq->hrtick_timer);
1090 * Update the timer from the possible pending state.
1092 static void hrtick_set(struct rq *rq)
1094 ktime_t time;
1095 int set, reset;
1096 unsigned long flags;
1098 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1100 spin_lock_irqsave(&rq->lock, flags);
1101 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1102 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1103 time = rq->hrtick_expire;
1104 clear_thread_flag(TIF_HRTICK_RESCHED);
1105 spin_unlock_irqrestore(&rq->lock, flags);
1107 if (set) {
1108 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1109 if (reset && !hrtimer_active(&rq->hrtick_timer))
1110 resched_rq(rq);
1111 } else
1112 hrtick_clear(rq);
1116 * High-resolution timer tick.
1117 * Runs from hardirq context with interrupts disabled.
1119 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1121 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1123 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1125 spin_lock(&rq->lock);
1126 update_rq_clock(rq);
1127 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1128 spin_unlock(&rq->lock);
1130 return HRTIMER_NORESTART;
1133 #ifdef CONFIG_SMP
1134 static void hotplug_hrtick_disable(int cpu)
1136 struct rq *rq = cpu_rq(cpu);
1137 unsigned long flags;
1139 spin_lock_irqsave(&rq->lock, flags);
1140 rq->hrtick_flags = 0;
1141 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1142 spin_unlock_irqrestore(&rq->lock, flags);
1144 hrtick_clear(rq);
1147 static void hotplug_hrtick_enable(int cpu)
1149 struct rq *rq = cpu_rq(cpu);
1150 unsigned long flags;
1152 spin_lock_irqsave(&rq->lock, flags);
1153 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1154 spin_unlock_irqrestore(&rq->lock, flags);
1157 static int
1158 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1160 int cpu = (int)(long)hcpu;
1162 switch (action) {
1163 case CPU_UP_CANCELED:
1164 case CPU_UP_CANCELED_FROZEN:
1165 case CPU_DOWN_PREPARE:
1166 case CPU_DOWN_PREPARE_FROZEN:
1167 case CPU_DEAD:
1168 case CPU_DEAD_FROZEN:
1169 hotplug_hrtick_disable(cpu);
1170 return NOTIFY_OK;
1172 case CPU_UP_PREPARE:
1173 case CPU_UP_PREPARE_FROZEN:
1174 case CPU_DOWN_FAILED:
1175 case CPU_DOWN_FAILED_FROZEN:
1176 case CPU_ONLINE:
1177 case CPU_ONLINE_FROZEN:
1178 hotplug_hrtick_enable(cpu);
1179 return NOTIFY_OK;
1182 return NOTIFY_DONE;
1185 static void init_hrtick(void)
1187 hotcpu_notifier(hotplug_hrtick, 0);
1189 #endif /* CONFIG_SMP */
1191 static void init_rq_hrtick(struct rq *rq)
1193 rq->hrtick_flags = 0;
1194 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1195 rq->hrtick_timer.function = hrtick;
1196 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1199 void hrtick_resched(void)
1201 struct rq *rq;
1202 unsigned long flags;
1204 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1205 return;
1207 local_irq_save(flags);
1208 rq = cpu_rq(smp_processor_id());
1209 hrtick_set(rq);
1210 local_irq_restore(flags);
1212 #else
1213 static inline void hrtick_clear(struct rq *rq)
1217 static inline void hrtick_set(struct rq *rq)
1221 static inline void init_rq_hrtick(struct rq *rq)
1225 void hrtick_resched(void)
1229 static inline void init_hrtick(void)
1232 #endif
1235 * resched_task - mark a task 'to be rescheduled now'.
1237 * On UP this means the setting of the need_resched flag, on SMP it
1238 * might also involve a cross-CPU call to trigger the scheduler on
1239 * the target CPU.
1241 #ifdef CONFIG_SMP
1243 #ifndef tsk_is_polling
1244 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1245 #endif
1247 static void __resched_task(struct task_struct *p, int tif_bit)
1249 int cpu;
1251 assert_spin_locked(&task_rq(p)->lock);
1253 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1254 return;
1256 set_tsk_thread_flag(p, tif_bit);
1258 cpu = task_cpu(p);
1259 if (cpu == smp_processor_id())
1260 return;
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(p))
1265 smp_send_reschedule(cpu);
1268 static void resched_cpu(int cpu)
1270 struct rq *rq = cpu_rq(cpu);
1271 unsigned long flags;
1273 if (!spin_trylock_irqsave(&rq->lock, flags))
1274 return;
1275 resched_task(cpu_curr(cpu));
1276 spin_unlock_irqrestore(&rq->lock, flags);
1279 #ifdef CONFIG_NO_HZ
1281 * When add_timer_on() enqueues a timer into the timer wheel of an
1282 * idle CPU then this timer might expire before the next timer event
1283 * which is scheduled to wake up that CPU. In case of a completely
1284 * idle system the next event might even be infinite time into the
1285 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1286 * leaves the inner idle loop so the newly added timer is taken into
1287 * account when the CPU goes back to idle and evaluates the timer
1288 * wheel for the next timer event.
1290 void wake_up_idle_cpu(int cpu)
1292 struct rq *rq = cpu_rq(cpu);
1294 if (cpu == smp_processor_id())
1295 return;
1298 * This is safe, as this function is called with the timer
1299 * wheel base lock of (cpu) held. When the CPU is on the way
1300 * to idle and has not yet set rq->curr to idle then it will
1301 * be serialized on the timer wheel base lock and take the new
1302 * timer into account automatically.
1304 if (rq->curr != rq->idle)
1305 return;
1308 * We can set TIF_RESCHED on the idle task of the other CPU
1309 * lockless. The worst case is that the other CPU runs the
1310 * idle task through an additional NOOP schedule()
1312 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1314 /* NEED_RESCHED must be visible before we test polling */
1315 smp_mb();
1316 if (!tsk_is_polling(rq->idle))
1317 smp_send_reschedule(cpu);
1319 #endif
1321 #else
1322 static void __resched_task(struct task_struct *p, int tif_bit)
1324 assert_spin_locked(&task_rq(p)->lock);
1325 set_tsk_thread_flag(p, tif_bit);
1327 #endif
1329 #if BITS_PER_LONG == 32
1330 # define WMULT_CONST (~0UL)
1331 #else
1332 # define WMULT_CONST (1UL << 32)
1333 #endif
1335 #define WMULT_SHIFT 32
1338 * Shift right and round:
1340 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1342 static unsigned long
1343 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1344 struct load_weight *lw)
1346 u64 tmp;
1348 if (!lw->inv_weight)
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1351 tmp = (u64)delta_exec * weight;
1353 * Check whether we'd overflow the 64-bit multiplication:
1355 if (unlikely(tmp > WMULT_CONST))
1356 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1357 WMULT_SHIFT/2);
1358 else
1359 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1361 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 static inline unsigned long
1365 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1367 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1372 lw->weight += inc;
1373 lw->inv_weight = 0;
1376 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1378 lw->weight -= dec;
1379 lw->inv_weight = 0;
1383 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1384 * of tasks with abnormal "nice" values across CPUs the contribution that
1385 * each task makes to its run queue's load is weighted according to its
1386 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1387 * scaled version of the new time slice allocation that they receive on time
1388 * slice expiry etc.
1391 #define WEIGHT_IDLEPRIO 2
1392 #define WMULT_IDLEPRIO (1 << 31)
1395 * Nice levels are multiplicative, with a gentle 10% change for every
1396 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1397 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1398 * that remained on nice 0.
1400 * The "10% effect" is relative and cumulative: from _any_ nice level,
1401 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1402 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1403 * If a task goes up by ~10% and another task goes down by ~10% then
1404 * the relative distance between them is ~25%.)
1406 static const int prio_to_weight[40] = {
1407 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1408 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1409 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1410 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1411 /* 0 */ 1024, 820, 655, 526, 423,
1412 /* 5 */ 335, 272, 215, 172, 137,
1413 /* 10 */ 110, 87, 70, 56, 45,
1414 /* 15 */ 36, 29, 23, 18, 15,
1418 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1420 * In cases where the weight does not change often, we can use the
1421 * precalculated inverse to speed up arithmetics by turning divisions
1422 * into multiplications:
1424 static const u32 prio_to_wmult[40] = {
1425 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1426 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1427 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1428 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1429 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1430 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1431 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1432 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438 * runqueue iterator, to support SMP load-balancing between different
1439 * scheduling classes, without having to expose their internal data
1440 * structures to the load-balancing proper:
1442 struct rq_iterator {
1443 void *arg;
1444 struct task_struct *(*start)(void *);
1445 struct task_struct *(*next)(void *);
1448 #ifdef CONFIG_SMP
1449 static unsigned long
1450 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1451 unsigned long max_load_move, struct sched_domain *sd,
1452 enum cpu_idle_type idle, int *all_pinned,
1453 int *this_best_prio, struct rq_iterator *iterator);
1455 static int
1456 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1457 struct sched_domain *sd, enum cpu_idle_type idle,
1458 struct rq_iterator *iterator);
1459 #endif
1461 #ifdef CONFIG_CGROUP_CPUACCT
1462 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1463 #else
1464 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1465 #endif
1467 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1469 update_load_add(&rq->load, load);
1472 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1474 update_load_sub(&rq->load, load);
1477 #ifdef CONFIG_SMP
1478 static unsigned long source_load(int cpu, int type);
1479 static unsigned long target_load(int cpu, int type);
1480 static unsigned long cpu_avg_load_per_task(int cpu);
1481 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1482 #else /* CONFIG_SMP */
1484 #ifdef CONFIG_FAIR_GROUP_SCHED
1485 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488 #endif
1490 #endif /* CONFIG_SMP */
1492 #include "sched_stats.h"
1493 #include "sched_idletask.c"
1494 #include "sched_fair.c"
1495 #include "sched_rt.c"
1496 #ifdef CONFIG_SCHED_DEBUG
1497 # include "sched_debug.c"
1498 #endif
1500 #define sched_class_highest (&rt_sched_class)
1502 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1504 update_load_add(&rq->load, p->se.load.weight);
1507 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1509 update_load_sub(&rq->load, p->se.load.weight);
1512 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1514 rq->nr_running++;
1515 inc_load(rq, p);
1518 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1520 rq->nr_running--;
1521 dec_load(rq, p);
1524 static void set_load_weight(struct task_struct *p)
1526 if (task_has_rt_policy(p)) {
1527 p->se.load.weight = prio_to_weight[0] * 2;
1528 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1529 return;
1533 * SCHED_IDLE tasks get minimal weight:
1535 if (p->policy == SCHED_IDLE) {
1536 p->se.load.weight = WEIGHT_IDLEPRIO;
1537 p->se.load.inv_weight = WMULT_IDLEPRIO;
1538 return;
1541 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1542 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1547 sched_info_queued(p);
1548 p->sched_class->enqueue_task(rq, p, wakeup);
1549 p->se.on_rq = 1;
1552 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1554 p->sched_class->dequeue_task(rq, p, sleep);
1555 p->se.on_rq = 0;
1559 * __normal_prio - return the priority that is based on the static prio
1561 static inline int __normal_prio(struct task_struct *p)
1563 return p->static_prio;
1567 * Calculate the expected normal priority: i.e. priority
1568 * without taking RT-inheritance into account. Might be
1569 * boosted by interactivity modifiers. Changes upon fork,
1570 * setprio syscalls, and whenever the interactivity
1571 * estimator recalculates.
1573 static inline int normal_prio(struct task_struct *p)
1575 int prio;
1577 if (task_has_rt_policy(p))
1578 prio = MAX_RT_PRIO-1 - p->rt_priority;
1579 else
1580 prio = __normal_prio(p);
1581 return prio;
1585 * Calculate the current priority, i.e. the priority
1586 * taken into account by the scheduler. This value might
1587 * be boosted by RT tasks, or might be boosted by
1588 * interactivity modifiers. Will be RT if the task got
1589 * RT-boosted. If not then it returns p->normal_prio.
1591 static int effective_prio(struct task_struct *p)
1593 p->normal_prio = normal_prio(p);
1595 * If we are RT tasks or we were boosted to RT priority,
1596 * keep the priority unchanged. Otherwise, update priority
1597 * to the normal priority:
1599 if (!rt_prio(p->prio))
1600 return p->normal_prio;
1601 return p->prio;
1605 * activate_task - move a task to the runqueue.
1607 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1609 if (task_contributes_to_load(p))
1610 rq->nr_uninterruptible--;
1612 enqueue_task(rq, p, wakeup);
1613 inc_nr_running(p, rq);
1617 * deactivate_task - remove a task from the runqueue.
1619 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1621 if (task_contributes_to_load(p))
1622 rq->nr_uninterruptible++;
1624 dequeue_task(rq, p, sleep);
1625 dec_nr_running(p, rq);
1629 * task_curr - is this task currently executing on a CPU?
1630 * @p: the task in question.
1632 inline int task_curr(const struct task_struct *p)
1634 return cpu_curr(task_cpu(p)) == p;
1637 /* Used instead of source_load when we know the type == 0 */
1638 static unsigned long weighted_cpuload(const int cpu)
1640 return cpu_rq(cpu)->load.weight;
1643 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1645 set_task_rq(p, cpu);
1646 #ifdef CONFIG_SMP
1648 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1649 * successfuly executed on another CPU. We must ensure that updates of
1650 * per-task data have been completed by this moment.
1652 smp_wmb();
1653 task_thread_info(p)->cpu = cpu;
1654 #endif
1657 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1658 const struct sched_class *prev_class,
1659 int oldprio, int running)
1661 if (prev_class != p->sched_class) {
1662 if (prev_class->switched_from)
1663 prev_class->switched_from(rq, p, running);
1664 p->sched_class->switched_to(rq, p, running);
1665 } else
1666 p->sched_class->prio_changed(rq, p, oldprio, running);
1669 #ifdef CONFIG_SMP
1672 * Is this task likely cache-hot:
1674 static int
1675 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1677 s64 delta;
1680 * Buddy candidates are cache hot:
1682 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1683 return 1;
1685 if (p->sched_class != &fair_sched_class)
1686 return 0;
1688 if (sysctl_sched_migration_cost == -1)
1689 return 1;
1690 if (sysctl_sched_migration_cost == 0)
1691 return 0;
1693 delta = now - p->se.exec_start;
1695 return delta < (s64)sysctl_sched_migration_cost;
1699 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1701 int old_cpu = task_cpu(p);
1702 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1703 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1704 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1705 u64 clock_offset;
1707 clock_offset = old_rq->clock - new_rq->clock;
1709 #ifdef CONFIG_SCHEDSTATS
1710 if (p->se.wait_start)
1711 p->se.wait_start -= clock_offset;
1712 if (p->se.sleep_start)
1713 p->se.sleep_start -= clock_offset;
1714 if (p->se.block_start)
1715 p->se.block_start -= clock_offset;
1716 if (old_cpu != new_cpu) {
1717 schedstat_inc(p, se.nr_migrations);
1718 if (task_hot(p, old_rq->clock, NULL))
1719 schedstat_inc(p, se.nr_forced2_migrations);
1721 #endif
1722 p->se.vruntime -= old_cfsrq->min_vruntime -
1723 new_cfsrq->min_vruntime;
1725 __set_task_cpu(p, new_cpu);
1728 struct migration_req {
1729 struct list_head list;
1731 struct task_struct *task;
1732 int dest_cpu;
1734 struct completion done;
1738 * The task's runqueue lock must be held.
1739 * Returns true if you have to wait for migration thread.
1741 static int
1742 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1744 struct rq *rq = task_rq(p);
1747 * If the task is not on a runqueue (and not running), then
1748 * it is sufficient to simply update the task's cpu field.
1750 if (!p->se.on_rq && !task_running(rq, p)) {
1751 set_task_cpu(p, dest_cpu);
1752 return 0;
1755 init_completion(&req->done);
1756 req->task = p;
1757 req->dest_cpu = dest_cpu;
1758 list_add(&req->list, &rq->migration_queue);
1760 return 1;
1764 * wait_task_inactive - wait for a thread to unschedule.
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1772 void wait_task_inactive(struct task_struct *p)
1774 unsigned long flags;
1775 int running, on_rq;
1776 struct rq *rq;
1778 for (;;) {
1780 * We do the initial early heuristics without holding
1781 * any task-queue locks at all. We'll only try to get
1782 * the runqueue lock when things look like they will
1783 * work out!
1785 rq = task_rq(p);
1788 * If the task is actively running on another CPU
1789 * still, just relax and busy-wait without holding
1790 * any locks.
1792 * NOTE! Since we don't hold any locks, it's not
1793 * even sure that "rq" stays as the right runqueue!
1794 * But we don't care, since "task_running()" will
1795 * return false if the runqueue has changed and p
1796 * is actually now running somewhere else!
1798 while (task_running(rq, p))
1799 cpu_relax();
1802 * Ok, time to look more closely! We need the rq
1803 * lock now, to be *sure*. If we're wrong, we'll
1804 * just go back and repeat.
1806 rq = task_rq_lock(p, &flags);
1807 running = task_running(rq, p);
1808 on_rq = p->se.on_rq;
1809 task_rq_unlock(rq, &flags);
1812 * Was it really running after all now that we
1813 * checked with the proper locks actually held?
1815 * Oops. Go back and try again..
1817 if (unlikely(running)) {
1818 cpu_relax();
1819 continue;
1823 * It's not enough that it's not actively running,
1824 * it must be off the runqueue _entirely_, and not
1825 * preempted!
1827 * So if it wa still runnable (but just not actively
1828 * running right now), it's preempted, and we should
1829 * yield - it could be a while.
1831 if (unlikely(on_rq)) {
1832 schedule_timeout_uninterruptible(1);
1833 continue;
1837 * Ahh, all good. It wasn't running, and it wasn't
1838 * runnable, which means that it will never become
1839 * running in the future either. We're all done!
1841 break;
1845 /***
1846 * kick_process - kick a running thread to enter/exit the kernel
1847 * @p: the to-be-kicked thread
1849 * Cause a process which is running on another CPU to enter
1850 * kernel-mode, without any delay. (to get signals handled.)
1852 * NOTE: this function doesnt have to take the runqueue lock,
1853 * because all it wants to ensure is that the remote task enters
1854 * the kernel. If the IPI races and the task has been migrated
1855 * to another CPU then no harm is done and the purpose has been
1856 * achieved as well.
1858 void kick_process(struct task_struct *p)
1860 int cpu;
1862 preempt_disable();
1863 cpu = task_cpu(p);
1864 if ((cpu != smp_processor_id()) && task_curr(p))
1865 smp_send_reschedule(cpu);
1866 preempt_enable();
1870 * Return a low guess at the load of a migration-source cpu weighted
1871 * according to the scheduling class and "nice" value.
1873 * We want to under-estimate the load of migration sources, to
1874 * balance conservatively.
1876 static unsigned long source_load(int cpu, int type)
1878 struct rq *rq = cpu_rq(cpu);
1879 unsigned long total = weighted_cpuload(cpu);
1881 if (type == 0)
1882 return total;
1884 return min(rq->cpu_load[type-1], total);
1888 * Return a high guess at the load of a migration-target cpu weighted
1889 * according to the scheduling class and "nice" value.
1891 static unsigned long target_load(int cpu, int type)
1893 struct rq *rq = cpu_rq(cpu);
1894 unsigned long total = weighted_cpuload(cpu);
1896 if (type == 0)
1897 return total;
1899 return max(rq->cpu_load[type-1], total);
1903 * Return the average load per task on the cpu's run queue
1905 static unsigned long cpu_avg_load_per_task(int cpu)
1907 struct rq *rq = cpu_rq(cpu);
1908 unsigned long total = weighted_cpuload(cpu);
1909 unsigned long n = rq->nr_running;
1911 return n ? total / n : SCHED_LOAD_SCALE;
1915 * find_idlest_group finds and returns the least busy CPU group within the
1916 * domain.
1918 static struct sched_group *
1919 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1921 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1922 unsigned long min_load = ULONG_MAX, this_load = 0;
1923 int load_idx = sd->forkexec_idx;
1924 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1926 do {
1927 unsigned long load, avg_load;
1928 int local_group;
1929 int i;
1931 /* Skip over this group if it has no CPUs allowed */
1932 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1933 continue;
1935 local_group = cpu_isset(this_cpu, group->cpumask);
1937 /* Tally up the load of all CPUs in the group */
1938 avg_load = 0;
1940 for_each_cpu_mask(i, group->cpumask) {
1941 /* Bias balancing toward cpus of our domain */
1942 if (local_group)
1943 load = source_load(i, load_idx);
1944 else
1945 load = target_load(i, load_idx);
1947 avg_load += load;
1950 /* Adjust by relative CPU power of the group */
1951 avg_load = sg_div_cpu_power(group,
1952 avg_load * SCHED_LOAD_SCALE);
1954 if (local_group) {
1955 this_load = avg_load;
1956 this = group;
1957 } else if (avg_load < min_load) {
1958 min_load = avg_load;
1959 idlest = group;
1961 } while (group = group->next, group != sd->groups);
1963 if (!idlest || 100*this_load < imbalance*min_load)
1964 return NULL;
1965 return idlest;
1969 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1971 static int
1972 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1973 cpumask_t *tmp)
1975 unsigned long load, min_load = ULONG_MAX;
1976 int idlest = -1;
1977 int i;
1979 /* Traverse only the allowed CPUs */
1980 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1982 for_each_cpu_mask(i, *tmp) {
1983 load = weighted_cpuload(i);
1985 if (load < min_load || (load == min_load && i == this_cpu)) {
1986 min_load = load;
1987 idlest = i;
1991 return idlest;
1995 * sched_balance_self: balance the current task (running on cpu) in domains
1996 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1997 * SD_BALANCE_EXEC.
1999 * Balance, ie. select the least loaded group.
2001 * Returns the target CPU number, or the same CPU if no balancing is needed.
2003 * preempt must be disabled.
2005 static int sched_balance_self(int cpu, int flag)
2007 struct task_struct *t = current;
2008 struct sched_domain *tmp, *sd = NULL;
2010 for_each_domain(cpu, tmp) {
2012 * If power savings logic is enabled for a domain, stop there.
2014 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2015 break;
2016 if (tmp->flags & flag)
2017 sd = tmp;
2020 while (sd) {
2021 cpumask_t span, tmpmask;
2022 struct sched_group *group;
2023 int new_cpu, weight;
2025 if (!(sd->flags & flag)) {
2026 sd = sd->child;
2027 continue;
2030 span = sd->span;
2031 group = find_idlest_group(sd, t, cpu);
2032 if (!group) {
2033 sd = sd->child;
2034 continue;
2037 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2038 if (new_cpu == -1 || new_cpu == cpu) {
2039 /* Now try balancing at a lower domain level of cpu */
2040 sd = sd->child;
2041 continue;
2044 /* Now try balancing at a lower domain level of new_cpu */
2045 cpu = new_cpu;
2046 sd = NULL;
2047 weight = cpus_weight(span);
2048 for_each_domain(cpu, tmp) {
2049 if (weight <= cpus_weight(tmp->span))
2050 break;
2051 if (tmp->flags & flag)
2052 sd = tmp;
2054 /* while loop will break here if sd == NULL */
2057 return cpu;
2060 #endif /* CONFIG_SMP */
2062 /***
2063 * try_to_wake_up - wake up a thread
2064 * @p: the to-be-woken-up thread
2065 * @state: the mask of task states that can be woken
2066 * @sync: do a synchronous wakeup?
2068 * Put it on the run-queue if it's not already there. The "current"
2069 * thread is always on the run-queue (except when the actual
2070 * re-schedule is in progress), and as such you're allowed to do
2071 * the simpler "current->state = TASK_RUNNING" to mark yourself
2072 * runnable without the overhead of this.
2074 * returns failure only if the task is already active.
2076 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2078 int cpu, orig_cpu, this_cpu, success = 0;
2079 unsigned long flags;
2080 long old_state;
2081 struct rq *rq;
2083 if (!sched_feat(SYNC_WAKEUPS))
2084 sync = 0;
2086 smp_wmb();
2087 rq = task_rq_lock(p, &flags);
2088 old_state = p->state;
2089 if (!(old_state & state))
2090 goto out;
2092 if (p->se.on_rq)
2093 goto out_running;
2095 cpu = task_cpu(p);
2096 orig_cpu = cpu;
2097 this_cpu = smp_processor_id();
2099 #ifdef CONFIG_SMP
2100 if (unlikely(task_running(rq, p)))
2101 goto out_activate;
2103 cpu = p->sched_class->select_task_rq(p, sync);
2104 if (cpu != orig_cpu) {
2105 set_task_cpu(p, cpu);
2106 task_rq_unlock(rq, &flags);
2107 /* might preempt at this point */
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
2112 if (p->se.on_rq)
2113 goto out_running;
2115 this_cpu = smp_processor_id();
2116 cpu = task_cpu(p);
2119 #ifdef CONFIG_SCHEDSTATS
2120 schedstat_inc(rq, ttwu_count);
2121 if (cpu == this_cpu)
2122 schedstat_inc(rq, ttwu_local);
2123 else {
2124 struct sched_domain *sd;
2125 for_each_domain(this_cpu, sd) {
2126 if (cpu_isset(cpu, sd->span)) {
2127 schedstat_inc(sd, ttwu_wake_remote);
2128 break;
2132 #endif
2134 out_activate:
2135 #endif /* CONFIG_SMP */
2136 schedstat_inc(p, se.nr_wakeups);
2137 if (sync)
2138 schedstat_inc(p, se.nr_wakeups_sync);
2139 if (orig_cpu != cpu)
2140 schedstat_inc(p, se.nr_wakeups_migrate);
2141 if (cpu == this_cpu)
2142 schedstat_inc(p, se.nr_wakeups_local);
2143 else
2144 schedstat_inc(p, se.nr_wakeups_remote);
2145 update_rq_clock(rq);
2146 activate_task(rq, p, 1);
2147 success = 1;
2149 out_running:
2150 check_preempt_curr(rq, p);
2152 p->state = TASK_RUNNING;
2153 #ifdef CONFIG_SMP
2154 if (p->sched_class->task_wake_up)
2155 p->sched_class->task_wake_up(rq, p);
2156 #endif
2157 out:
2158 task_rq_unlock(rq, &flags);
2160 return success;
2163 int wake_up_process(struct task_struct *p)
2165 return try_to_wake_up(p, TASK_ALL, 0);
2167 EXPORT_SYMBOL(wake_up_process);
2169 int wake_up_state(struct task_struct *p, unsigned int state)
2171 return try_to_wake_up(p, state, 0);
2175 * Perform scheduler related setup for a newly forked process p.
2176 * p is forked by current.
2178 * __sched_fork() is basic setup used by init_idle() too:
2180 static void __sched_fork(struct task_struct *p)
2182 p->se.exec_start = 0;
2183 p->se.sum_exec_runtime = 0;
2184 p->se.prev_sum_exec_runtime = 0;
2185 p->se.last_wakeup = 0;
2186 p->se.avg_overlap = 0;
2188 #ifdef CONFIG_SCHEDSTATS
2189 p->se.wait_start = 0;
2190 p->se.sum_sleep_runtime = 0;
2191 p->se.sleep_start = 0;
2192 p->se.block_start = 0;
2193 p->se.sleep_max = 0;
2194 p->se.block_max = 0;
2195 p->se.exec_max = 0;
2196 p->se.slice_max = 0;
2197 p->se.wait_max = 0;
2198 #endif
2200 INIT_LIST_HEAD(&p->rt.run_list);
2201 p->se.on_rq = 0;
2202 INIT_LIST_HEAD(&p->se.group_node);
2204 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 INIT_HLIST_HEAD(&p->preempt_notifiers);
2206 #endif
2209 * We mark the process as running here, but have not actually
2210 * inserted it onto the runqueue yet. This guarantees that
2211 * nobody will actually run it, and a signal or other external
2212 * event cannot wake it up and insert it on the runqueue either.
2214 p->state = TASK_RUNNING;
2218 * fork()/clone()-time setup:
2220 void sched_fork(struct task_struct *p, int clone_flags)
2222 int cpu = get_cpu();
2224 __sched_fork(p);
2226 #ifdef CONFIG_SMP
2227 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2228 #endif
2229 set_task_cpu(p, cpu);
2232 * Make sure we do not leak PI boosting priority to the child:
2234 p->prio = current->normal_prio;
2235 if (!rt_prio(p->prio))
2236 p->sched_class = &fair_sched_class;
2238 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2239 if (likely(sched_info_on()))
2240 memset(&p->sched_info, 0, sizeof(p->sched_info));
2241 #endif
2242 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2243 p->oncpu = 0;
2244 #endif
2245 #ifdef CONFIG_PREEMPT
2246 /* Want to start with kernel preemption disabled. */
2247 task_thread_info(p)->preempt_count = 1;
2248 #endif
2249 put_cpu();
2253 * wake_up_new_task - wake up a newly created task for the first time.
2255 * This function will do some initial scheduler statistics housekeeping
2256 * that must be done for every newly created context, then puts the task
2257 * on the runqueue and wakes it.
2259 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2261 unsigned long flags;
2262 struct rq *rq;
2264 rq = task_rq_lock(p, &flags);
2265 BUG_ON(p->state != TASK_RUNNING);
2266 update_rq_clock(rq);
2268 p->prio = effective_prio(p);
2270 if (!p->sched_class->task_new || !current->se.on_rq) {
2271 activate_task(rq, p, 0);
2272 } else {
2274 * Let the scheduling class do new task startup
2275 * management (if any):
2277 p->sched_class->task_new(rq, p);
2278 inc_nr_running(p, rq);
2280 check_preempt_curr(rq, p);
2281 #ifdef CONFIG_SMP
2282 if (p->sched_class->task_wake_up)
2283 p->sched_class->task_wake_up(rq, p);
2284 #endif
2285 task_rq_unlock(rq, &flags);
2288 #ifdef CONFIG_PREEMPT_NOTIFIERS
2291 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2292 * @notifier: notifier struct to register
2294 void preempt_notifier_register(struct preempt_notifier *notifier)
2296 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2298 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301 * preempt_notifier_unregister - no longer interested in preemption notifications
2302 * @notifier: notifier struct to unregister
2304 * This is safe to call from within a preemption notifier.
2306 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2308 hlist_del(&notifier->link);
2310 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2312 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2314 struct preempt_notifier *notifier;
2315 struct hlist_node *node;
2317 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2318 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321 static void
2322 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2323 struct task_struct *next)
2325 struct preempt_notifier *notifier;
2326 struct hlist_node *node;
2328 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2329 notifier->ops->sched_out(notifier, next);
2332 #else
2334 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2338 static void
2339 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2340 struct task_struct *next)
2344 #endif
2347 * prepare_task_switch - prepare to switch tasks
2348 * @rq: the runqueue preparing to switch
2349 * @prev: the current task that is being switched out
2350 * @next: the task we are going to switch to.
2352 * This is called with the rq lock held and interrupts off. It must
2353 * be paired with a subsequent finish_task_switch after the context
2354 * switch.
2356 * prepare_task_switch sets up locking and calls architecture specific
2357 * hooks.
2359 static inline void
2360 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2361 struct task_struct *next)
2363 fire_sched_out_preempt_notifiers(prev, next);
2364 prepare_lock_switch(rq, next);
2365 prepare_arch_switch(next);
2369 * finish_task_switch - clean up after a task-switch
2370 * @rq: runqueue associated with task-switch
2371 * @prev: the thread we just switched away from.
2373 * finish_task_switch must be called after the context switch, paired
2374 * with a prepare_task_switch call before the context switch.
2375 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2376 * and do any other architecture-specific cleanup actions.
2378 * Note that we may have delayed dropping an mm in context_switch(). If
2379 * so, we finish that here outside of the runqueue lock. (Doing it
2380 * with the lock held can cause deadlocks; see schedule() for
2381 * details.)
2383 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2384 __releases(rq->lock)
2386 struct mm_struct *mm = rq->prev_mm;
2387 long prev_state;
2389 rq->prev_mm = NULL;
2392 * A task struct has one reference for the use as "current".
2393 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2394 * schedule one last time. The schedule call will never return, and
2395 * the scheduled task must drop that reference.
2396 * The test for TASK_DEAD must occur while the runqueue locks are
2397 * still held, otherwise prev could be scheduled on another cpu, die
2398 * there before we look at prev->state, and then the reference would
2399 * be dropped twice.
2400 * Manfred Spraul <manfred@colorfullife.com>
2402 prev_state = prev->state;
2403 finish_arch_switch(prev);
2404 finish_lock_switch(rq, prev);
2405 #ifdef CONFIG_SMP
2406 if (current->sched_class->post_schedule)
2407 current->sched_class->post_schedule(rq);
2408 #endif
2410 fire_sched_in_preempt_notifiers(current);
2411 if (mm)
2412 mmdrop(mm);
2413 if (unlikely(prev_state == TASK_DEAD)) {
2415 * Remove function-return probe instances associated with this
2416 * task and put them back on the free list.
2418 kprobe_flush_task(prev);
2419 put_task_struct(prev);
2424 * schedule_tail - first thing a freshly forked thread must call.
2425 * @prev: the thread we just switched away from.
2427 asmlinkage void schedule_tail(struct task_struct *prev)
2428 __releases(rq->lock)
2430 struct rq *rq = this_rq();
2432 finish_task_switch(rq, prev);
2433 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2434 /* In this case, finish_task_switch does not reenable preemption */
2435 preempt_enable();
2436 #endif
2437 if (current->set_child_tid)
2438 put_user(task_pid_vnr(current), current->set_child_tid);
2442 * context_switch - switch to the new MM and the new
2443 * thread's register state.
2445 static inline void
2446 context_switch(struct rq *rq, struct task_struct *prev,
2447 struct task_struct *next)
2449 struct mm_struct *mm, *oldmm;
2451 prepare_task_switch(rq, prev, next);
2452 mm = next->mm;
2453 oldmm = prev->active_mm;
2455 * For paravirt, this is coupled with an exit in switch_to to
2456 * combine the page table reload and the switch backend into
2457 * one hypercall.
2459 arch_enter_lazy_cpu_mode();
2461 if (unlikely(!mm)) {
2462 next->active_mm = oldmm;
2463 atomic_inc(&oldmm->mm_count);
2464 enter_lazy_tlb(oldmm, next);
2465 } else
2466 switch_mm(oldmm, mm, next);
2468 if (unlikely(!prev->mm)) {
2469 prev->active_mm = NULL;
2470 rq->prev_mm = oldmm;
2473 * Since the runqueue lock will be released by the next
2474 * task (which is an invalid locking op but in the case
2475 * of the scheduler it's an obvious special-case), so we
2476 * do an early lockdep release here:
2478 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2479 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2480 #endif
2482 /* Here we just switch the register state and the stack. */
2483 switch_to(prev, next, prev);
2485 barrier();
2487 * this_rq must be evaluated again because prev may have moved
2488 * CPUs since it called schedule(), thus the 'rq' on its stack
2489 * frame will be invalid.
2491 finish_task_switch(this_rq(), prev);
2495 * nr_running, nr_uninterruptible and nr_context_switches:
2497 * externally visible scheduler statistics: current number of runnable
2498 * threads, current number of uninterruptible-sleeping threads, total
2499 * number of context switches performed since bootup.
2501 unsigned long nr_running(void)
2503 unsigned long i, sum = 0;
2505 for_each_online_cpu(i)
2506 sum += cpu_rq(i)->nr_running;
2508 return sum;
2511 unsigned long nr_uninterruptible(void)
2513 unsigned long i, sum = 0;
2515 for_each_possible_cpu(i)
2516 sum += cpu_rq(i)->nr_uninterruptible;
2519 * Since we read the counters lockless, it might be slightly
2520 * inaccurate. Do not allow it to go below zero though:
2522 if (unlikely((long)sum < 0))
2523 sum = 0;
2525 return sum;
2528 unsigned long long nr_context_switches(void)
2530 int i;
2531 unsigned long long sum = 0;
2533 for_each_possible_cpu(i)
2534 sum += cpu_rq(i)->nr_switches;
2536 return sum;
2539 unsigned long nr_iowait(void)
2541 unsigned long i, sum = 0;
2543 for_each_possible_cpu(i)
2544 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2546 return sum;
2549 unsigned long nr_active(void)
2551 unsigned long i, running = 0, uninterruptible = 0;
2553 for_each_online_cpu(i) {
2554 running += cpu_rq(i)->nr_running;
2555 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 if (unlikely((long)uninterruptible < 0))
2559 uninterruptible = 0;
2561 return running + uninterruptible;
2565 * Update rq->cpu_load[] statistics. This function is usually called every
2566 * scheduler tick (TICK_NSEC).
2568 static void update_cpu_load(struct rq *this_rq)
2570 unsigned long this_load = this_rq->load.weight;
2571 int i, scale;
2573 this_rq->nr_load_updates++;
2575 /* Update our load: */
2576 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2577 unsigned long old_load, new_load;
2579 /* scale is effectively 1 << i now, and >> i divides by scale */
2581 old_load = this_rq->cpu_load[i];
2582 new_load = this_load;
2584 * Round up the averaging division if load is increasing. This
2585 * prevents us from getting stuck on 9 if the load is 10, for
2586 * example.
2588 if (new_load > old_load)
2589 new_load += scale-1;
2590 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2594 #ifdef CONFIG_SMP
2597 * double_rq_lock - safely lock two runqueues
2599 * Note this does not disable interrupts like task_rq_lock,
2600 * you need to do so manually before calling.
2602 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2603 __acquires(rq1->lock)
2604 __acquires(rq2->lock)
2606 BUG_ON(!irqs_disabled());
2607 if (rq1 == rq2) {
2608 spin_lock(&rq1->lock);
2609 __acquire(rq2->lock); /* Fake it out ;) */
2610 } else {
2611 if (rq1 < rq2) {
2612 spin_lock(&rq1->lock);
2613 spin_lock(&rq2->lock);
2614 } else {
2615 spin_lock(&rq2->lock);
2616 spin_lock(&rq1->lock);
2619 update_rq_clock(rq1);
2620 update_rq_clock(rq2);
2624 * double_rq_unlock - safely unlock two runqueues
2626 * Note this does not restore interrupts like task_rq_unlock,
2627 * you need to do so manually after calling.
2629 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2630 __releases(rq1->lock)
2631 __releases(rq2->lock)
2633 spin_unlock(&rq1->lock);
2634 if (rq1 != rq2)
2635 spin_unlock(&rq2->lock);
2636 else
2637 __release(rq2->lock);
2641 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2643 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2644 __releases(this_rq->lock)
2645 __acquires(busiest->lock)
2646 __acquires(this_rq->lock)
2648 int ret = 0;
2650 if (unlikely(!irqs_disabled())) {
2651 /* printk() doesn't work good under rq->lock */
2652 spin_unlock(&this_rq->lock);
2653 BUG_ON(1);
2655 if (unlikely(!spin_trylock(&busiest->lock))) {
2656 if (busiest < this_rq) {
2657 spin_unlock(&this_rq->lock);
2658 spin_lock(&busiest->lock);
2659 spin_lock(&this_rq->lock);
2660 ret = 1;
2661 } else
2662 spin_lock(&busiest->lock);
2664 return ret;
2668 * If dest_cpu is allowed for this process, migrate the task to it.
2669 * This is accomplished by forcing the cpu_allowed mask to only
2670 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2671 * the cpu_allowed mask is restored.
2673 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2675 struct migration_req req;
2676 unsigned long flags;
2677 struct rq *rq;
2679 rq = task_rq_lock(p, &flags);
2680 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2681 || unlikely(cpu_is_offline(dest_cpu)))
2682 goto out;
2684 /* force the process onto the specified CPU */
2685 if (migrate_task(p, dest_cpu, &req)) {
2686 /* Need to wait for migration thread (might exit: take ref). */
2687 struct task_struct *mt = rq->migration_thread;
2689 get_task_struct(mt);
2690 task_rq_unlock(rq, &flags);
2691 wake_up_process(mt);
2692 put_task_struct(mt);
2693 wait_for_completion(&req.done);
2695 return;
2697 out:
2698 task_rq_unlock(rq, &flags);
2702 * sched_exec - execve() is a valuable balancing opportunity, because at
2703 * this point the task has the smallest effective memory and cache footprint.
2705 void sched_exec(void)
2707 int new_cpu, this_cpu = get_cpu();
2708 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2709 put_cpu();
2710 if (new_cpu != this_cpu)
2711 sched_migrate_task(current, new_cpu);
2715 * pull_task - move a task from a remote runqueue to the local runqueue.
2716 * Both runqueues must be locked.
2718 static void pull_task(struct rq *src_rq, struct task_struct *p,
2719 struct rq *this_rq, int this_cpu)
2721 deactivate_task(src_rq, p, 0);
2722 set_task_cpu(p, this_cpu);
2723 activate_task(this_rq, p, 0);
2725 * Note that idle threads have a prio of MAX_PRIO, for this test
2726 * to be always true for them.
2728 check_preempt_curr(this_rq, p);
2732 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2734 static
2735 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2736 struct sched_domain *sd, enum cpu_idle_type idle,
2737 int *all_pinned)
2740 * We do not migrate tasks that are:
2741 * 1) running (obviously), or
2742 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2743 * 3) are cache-hot on their current CPU.
2745 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2746 schedstat_inc(p, se.nr_failed_migrations_affine);
2747 return 0;
2749 *all_pinned = 0;
2751 if (task_running(rq, p)) {
2752 schedstat_inc(p, se.nr_failed_migrations_running);
2753 return 0;
2757 * Aggressive migration if:
2758 * 1) task is cache cold, or
2759 * 2) too many balance attempts have failed.
2762 if (!task_hot(p, rq->clock, sd) ||
2763 sd->nr_balance_failed > sd->cache_nice_tries) {
2764 #ifdef CONFIG_SCHEDSTATS
2765 if (task_hot(p, rq->clock, sd)) {
2766 schedstat_inc(sd, lb_hot_gained[idle]);
2767 schedstat_inc(p, se.nr_forced_migrations);
2769 #endif
2770 return 1;
2773 if (task_hot(p, rq->clock, sd)) {
2774 schedstat_inc(p, se.nr_failed_migrations_hot);
2775 return 0;
2777 return 1;
2780 static unsigned long
2781 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2782 unsigned long max_load_move, struct sched_domain *sd,
2783 enum cpu_idle_type idle, int *all_pinned,
2784 int *this_best_prio, struct rq_iterator *iterator)
2786 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2787 struct task_struct *p;
2788 long rem_load_move = max_load_move;
2790 if (max_load_move == 0)
2791 goto out;
2793 pinned = 1;
2796 * Start the load-balancing iterator:
2798 p = iterator->start(iterator->arg);
2799 next:
2800 if (!p || loops++ > sysctl_sched_nr_migrate)
2801 goto out;
2803 * To help distribute high priority tasks across CPUs we don't
2804 * skip a task if it will be the highest priority task (i.e. smallest
2805 * prio value) on its new queue regardless of its load weight
2807 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2808 SCHED_LOAD_SCALE_FUZZ;
2809 if ((skip_for_load && p->prio >= *this_best_prio) ||
2810 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2811 p = iterator->next(iterator->arg);
2812 goto next;
2815 pull_task(busiest, p, this_rq, this_cpu);
2816 pulled++;
2817 rem_load_move -= p->se.load.weight;
2820 * We only want to steal up to the prescribed amount of weighted load.
2822 if (rem_load_move > 0) {
2823 if (p->prio < *this_best_prio)
2824 *this_best_prio = p->prio;
2825 p = iterator->next(iterator->arg);
2826 goto next;
2828 out:
2830 * Right now, this is one of only two places pull_task() is called,
2831 * so we can safely collect pull_task() stats here rather than
2832 * inside pull_task().
2834 schedstat_add(sd, lb_gained[idle], pulled);
2836 if (all_pinned)
2837 *all_pinned = pinned;
2839 return max_load_move - rem_load_move;
2843 * move_tasks tries to move up to max_load_move weighted load from busiest to
2844 * this_rq, as part of a balancing operation within domain "sd".
2845 * Returns 1 if successful and 0 otherwise.
2847 * Called with both runqueues locked.
2849 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2850 unsigned long max_load_move,
2851 struct sched_domain *sd, enum cpu_idle_type idle,
2852 int *all_pinned)
2854 const struct sched_class *class = sched_class_highest;
2855 unsigned long total_load_moved = 0;
2856 int this_best_prio = this_rq->curr->prio;
2858 do {
2859 total_load_moved +=
2860 class->load_balance(this_rq, this_cpu, busiest,
2861 max_load_move - total_load_moved,
2862 sd, idle, all_pinned, &this_best_prio);
2863 class = class->next;
2864 } while (class && max_load_move > total_load_moved);
2866 return total_load_moved > 0;
2869 static int
2870 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2871 struct sched_domain *sd, enum cpu_idle_type idle,
2872 struct rq_iterator *iterator)
2874 struct task_struct *p = iterator->start(iterator->arg);
2875 int pinned = 0;
2877 while (p) {
2878 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2879 pull_task(busiest, p, this_rq, this_cpu);
2881 * Right now, this is only the second place pull_task()
2882 * is called, so we can safely collect pull_task()
2883 * stats here rather than inside pull_task().
2885 schedstat_inc(sd, lb_gained[idle]);
2887 return 1;
2889 p = iterator->next(iterator->arg);
2892 return 0;
2896 * move_one_task tries to move exactly one task from busiest to this_rq, as
2897 * part of active balancing operations within "domain".
2898 * Returns 1 if successful and 0 otherwise.
2900 * Called with both runqueues locked.
2902 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle)
2905 const struct sched_class *class;
2907 for (class = sched_class_highest; class; class = class->next)
2908 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2909 return 1;
2911 return 0;
2915 * find_busiest_group finds and returns the busiest CPU group within the
2916 * domain. It calculates and returns the amount of weighted load which
2917 * should be moved to restore balance via the imbalance parameter.
2919 static struct sched_group *
2920 find_busiest_group(struct sched_domain *sd, int this_cpu,
2921 unsigned long *imbalance, enum cpu_idle_type idle,
2922 int *sd_idle, const cpumask_t *cpus, int *balance)
2924 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2925 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2926 unsigned long max_pull;
2927 unsigned long busiest_load_per_task, busiest_nr_running;
2928 unsigned long this_load_per_task, this_nr_running;
2929 int load_idx, group_imb = 0;
2930 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2931 int power_savings_balance = 1;
2932 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2933 unsigned long min_nr_running = ULONG_MAX;
2934 struct sched_group *group_min = NULL, *group_leader = NULL;
2935 #endif
2937 max_load = this_load = total_load = total_pwr = 0;
2938 busiest_load_per_task = busiest_nr_running = 0;
2939 this_load_per_task = this_nr_running = 0;
2940 if (idle == CPU_NOT_IDLE)
2941 load_idx = sd->busy_idx;
2942 else if (idle == CPU_NEWLY_IDLE)
2943 load_idx = sd->newidle_idx;
2944 else
2945 load_idx = sd->idle_idx;
2947 do {
2948 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2949 int local_group;
2950 int i;
2951 int __group_imb = 0;
2952 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2953 unsigned long sum_nr_running, sum_weighted_load;
2955 local_group = cpu_isset(this_cpu, group->cpumask);
2957 if (local_group)
2958 balance_cpu = first_cpu(group->cpumask);
2960 /* Tally up the load of all CPUs in the group */
2961 sum_weighted_load = sum_nr_running = avg_load = 0;
2962 max_cpu_load = 0;
2963 min_cpu_load = ~0UL;
2965 for_each_cpu_mask(i, group->cpumask) {
2966 struct rq *rq;
2968 if (!cpu_isset(i, *cpus))
2969 continue;
2971 rq = cpu_rq(i);
2973 if (*sd_idle && rq->nr_running)
2974 *sd_idle = 0;
2976 /* Bias balancing toward cpus of our domain */
2977 if (local_group) {
2978 if (idle_cpu(i) && !first_idle_cpu) {
2979 first_idle_cpu = 1;
2980 balance_cpu = i;
2983 load = target_load(i, load_idx);
2984 } else {
2985 load = source_load(i, load_idx);
2986 if (load > max_cpu_load)
2987 max_cpu_load = load;
2988 if (min_cpu_load > load)
2989 min_cpu_load = load;
2992 avg_load += load;
2993 sum_nr_running += rq->nr_running;
2994 sum_weighted_load += weighted_cpuload(i);
2998 * First idle cpu or the first cpu(busiest) in this sched group
2999 * is eligible for doing load balancing at this and above
3000 * domains. In the newly idle case, we will allow all the cpu's
3001 * to do the newly idle load balance.
3003 if (idle != CPU_NEWLY_IDLE && local_group &&
3004 balance_cpu != this_cpu && balance) {
3005 *balance = 0;
3006 goto ret;
3009 total_load += avg_load;
3010 total_pwr += group->__cpu_power;
3012 /* Adjust by relative CPU power of the group */
3013 avg_load = sg_div_cpu_power(group,
3014 avg_load * SCHED_LOAD_SCALE);
3016 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3017 __group_imb = 1;
3019 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3021 if (local_group) {
3022 this_load = avg_load;
3023 this = group;
3024 this_nr_running = sum_nr_running;
3025 this_load_per_task = sum_weighted_load;
3026 } else if (avg_load > max_load &&
3027 (sum_nr_running > group_capacity || __group_imb)) {
3028 max_load = avg_load;
3029 busiest = group;
3030 busiest_nr_running = sum_nr_running;
3031 busiest_load_per_task = sum_weighted_load;
3032 group_imb = __group_imb;
3035 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3037 * Busy processors will not participate in power savings
3038 * balance.
3040 if (idle == CPU_NOT_IDLE ||
3041 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3042 goto group_next;
3045 * If the local group is idle or completely loaded
3046 * no need to do power savings balance at this domain
3048 if (local_group && (this_nr_running >= group_capacity ||
3049 !this_nr_running))
3050 power_savings_balance = 0;
3053 * If a group is already running at full capacity or idle,
3054 * don't include that group in power savings calculations
3056 if (!power_savings_balance || sum_nr_running >= group_capacity
3057 || !sum_nr_running)
3058 goto group_next;
3061 * Calculate the group which has the least non-idle load.
3062 * This is the group from where we need to pick up the load
3063 * for saving power
3065 if ((sum_nr_running < min_nr_running) ||
3066 (sum_nr_running == min_nr_running &&
3067 first_cpu(group->cpumask) <
3068 first_cpu(group_min->cpumask))) {
3069 group_min = group;
3070 min_nr_running = sum_nr_running;
3071 min_load_per_task = sum_weighted_load /
3072 sum_nr_running;
3076 * Calculate the group which is almost near its
3077 * capacity but still has some space to pick up some load
3078 * from other group and save more power
3080 if (sum_nr_running <= group_capacity - 1) {
3081 if (sum_nr_running > leader_nr_running ||
3082 (sum_nr_running == leader_nr_running &&
3083 first_cpu(group->cpumask) >
3084 first_cpu(group_leader->cpumask))) {
3085 group_leader = group;
3086 leader_nr_running = sum_nr_running;
3089 group_next:
3090 #endif
3091 group = group->next;
3092 } while (group != sd->groups);
3094 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3095 goto out_balanced;
3097 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3099 if (this_load >= avg_load ||
3100 100*max_load <= sd->imbalance_pct*this_load)
3101 goto out_balanced;
3103 busiest_load_per_task /= busiest_nr_running;
3104 if (group_imb)
3105 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108 * We're trying to get all the cpus to the average_load, so we don't
3109 * want to push ourselves above the average load, nor do we wish to
3110 * reduce the max loaded cpu below the average load, as either of these
3111 * actions would just result in more rebalancing later, and ping-pong
3112 * tasks around. Thus we look for the minimum possible imbalance.
3113 * Negative imbalances (*we* are more loaded than anyone else) will
3114 * be counted as no imbalance for these purposes -- we can't fix that
3115 * by pulling tasks to us. Be careful of negative numbers as they'll
3116 * appear as very large values with unsigned longs.
3118 if (max_load <= busiest_load_per_task)
3119 goto out_balanced;
3122 * In the presence of smp nice balancing, certain scenarios can have
3123 * max load less than avg load(as we skip the groups at or below
3124 * its cpu_power, while calculating max_load..)
3126 if (max_load < avg_load) {
3127 *imbalance = 0;
3128 goto small_imbalance;
3131 /* Don't want to pull so many tasks that a group would go idle */
3132 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3134 /* How much load to actually move to equalise the imbalance */
3135 *imbalance = min(max_pull * busiest->__cpu_power,
3136 (avg_load - this_load) * this->__cpu_power)
3137 / SCHED_LOAD_SCALE;
3140 * if *imbalance is less than the average load per runnable task
3141 * there is no gaurantee that any tasks will be moved so we'll have
3142 * a think about bumping its value to force at least one task to be
3143 * moved
3145 if (*imbalance < busiest_load_per_task) {
3146 unsigned long tmp, pwr_now, pwr_move;
3147 unsigned int imbn;
3149 small_imbalance:
3150 pwr_move = pwr_now = 0;
3151 imbn = 2;
3152 if (this_nr_running) {
3153 this_load_per_task /= this_nr_running;
3154 if (busiest_load_per_task > this_load_per_task)
3155 imbn = 1;
3156 } else
3157 this_load_per_task = SCHED_LOAD_SCALE;
3159 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3160 busiest_load_per_task * imbn) {
3161 *imbalance = busiest_load_per_task;
3162 return busiest;
3166 * OK, we don't have enough imbalance to justify moving tasks,
3167 * however we may be able to increase total CPU power used by
3168 * moving them.
3171 pwr_now += busiest->__cpu_power *
3172 min(busiest_load_per_task, max_load);
3173 pwr_now += this->__cpu_power *
3174 min(this_load_per_task, this_load);
3175 pwr_now /= SCHED_LOAD_SCALE;
3177 /* Amount of load we'd subtract */
3178 tmp = sg_div_cpu_power(busiest,
3179 busiest_load_per_task * SCHED_LOAD_SCALE);
3180 if (max_load > tmp)
3181 pwr_move += busiest->__cpu_power *
3182 min(busiest_load_per_task, max_load - tmp);
3184 /* Amount of load we'd add */
3185 if (max_load * busiest->__cpu_power <
3186 busiest_load_per_task * SCHED_LOAD_SCALE)
3187 tmp = sg_div_cpu_power(this,
3188 max_load * busiest->__cpu_power);
3189 else
3190 tmp = sg_div_cpu_power(this,
3191 busiest_load_per_task * SCHED_LOAD_SCALE);
3192 pwr_move += this->__cpu_power *
3193 min(this_load_per_task, this_load + tmp);
3194 pwr_move /= SCHED_LOAD_SCALE;
3196 /* Move if we gain throughput */
3197 if (pwr_move > pwr_now)
3198 *imbalance = busiest_load_per_task;
3201 return busiest;
3203 out_balanced:
3204 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3205 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3206 goto ret;
3208 if (this == group_leader && group_leader != group_min) {
3209 *imbalance = min_load_per_task;
3210 return group_min;
3212 #endif
3213 ret:
3214 *imbalance = 0;
3215 return NULL;
3219 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3221 static struct rq *
3222 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3223 unsigned long imbalance, const cpumask_t *cpus)
3225 struct rq *busiest = NULL, *rq;
3226 unsigned long max_load = 0;
3227 int i;
3229 for_each_cpu_mask(i, group->cpumask) {
3230 unsigned long wl;
3232 if (!cpu_isset(i, *cpus))
3233 continue;
3235 rq = cpu_rq(i);
3236 wl = weighted_cpuload(i);
3238 if (rq->nr_running == 1 && wl > imbalance)
3239 continue;
3241 if (wl > max_load) {
3242 max_load = wl;
3243 busiest = rq;
3247 return busiest;
3251 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3252 * so long as it is large enough.
3254 #define MAX_PINNED_INTERVAL 512
3257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3258 * tasks if there is an imbalance.
3260 static int load_balance(int this_cpu, struct rq *this_rq,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *balance, cpumask_t *cpus)
3264 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3265 struct sched_group *group;
3266 unsigned long imbalance;
3267 struct rq *busiest;
3268 unsigned long flags;
3270 cpus_setall(*cpus);
3273 * When power savings policy is enabled for the parent domain, idle
3274 * sibling can pick up load irrespective of busy siblings. In this case,
3275 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3276 * portraying it as CPU_NOT_IDLE.
3278 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3280 sd_idle = 1;
3282 schedstat_inc(sd, lb_count[idle]);
3284 redo:
3285 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3286 cpus, balance);
3288 if (*balance == 0)
3289 goto out_balanced;
3291 if (!group) {
3292 schedstat_inc(sd, lb_nobusyg[idle]);
3293 goto out_balanced;
3296 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3297 if (!busiest) {
3298 schedstat_inc(sd, lb_nobusyq[idle]);
3299 goto out_balanced;
3302 BUG_ON(busiest == this_rq);
3304 schedstat_add(sd, lb_imbalance[idle], imbalance);
3306 ld_moved = 0;
3307 if (busiest->nr_running > 1) {
3309 * Attempt to move tasks. If find_busiest_group has found
3310 * an imbalance but busiest->nr_running <= 1, the group is
3311 * still unbalanced. ld_moved simply stays zero, so it is
3312 * correctly treated as an imbalance.
3314 local_irq_save(flags);
3315 double_rq_lock(this_rq, busiest);
3316 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3317 imbalance, sd, idle, &all_pinned);
3318 double_rq_unlock(this_rq, busiest);
3319 local_irq_restore(flags);
3322 * some other cpu did the load balance for us.
3324 if (ld_moved && this_cpu != smp_processor_id())
3325 resched_cpu(this_cpu);
3327 /* All tasks on this runqueue were pinned by CPU affinity */
3328 if (unlikely(all_pinned)) {
3329 cpu_clear(cpu_of(busiest), *cpus);
3330 if (!cpus_empty(*cpus))
3331 goto redo;
3332 goto out_balanced;
3336 if (!ld_moved) {
3337 schedstat_inc(sd, lb_failed[idle]);
3338 sd->nr_balance_failed++;
3340 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3342 spin_lock_irqsave(&busiest->lock, flags);
3344 /* don't kick the migration_thread, if the curr
3345 * task on busiest cpu can't be moved to this_cpu
3347 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3348 spin_unlock_irqrestore(&busiest->lock, flags);
3349 all_pinned = 1;
3350 goto out_one_pinned;
3353 if (!busiest->active_balance) {
3354 busiest->active_balance = 1;
3355 busiest->push_cpu = this_cpu;
3356 active_balance = 1;
3358 spin_unlock_irqrestore(&busiest->lock, flags);
3359 if (active_balance)
3360 wake_up_process(busiest->migration_thread);
3363 * We've kicked active balancing, reset the failure
3364 * counter.
3366 sd->nr_balance_failed = sd->cache_nice_tries+1;
3368 } else
3369 sd->nr_balance_failed = 0;
3371 if (likely(!active_balance)) {
3372 /* We were unbalanced, so reset the balancing interval */
3373 sd->balance_interval = sd->min_interval;
3374 } else {
3376 * If we've begun active balancing, start to back off. This
3377 * case may not be covered by the all_pinned logic if there
3378 * is only 1 task on the busy runqueue (because we don't call
3379 * move_tasks).
3381 if (sd->balance_interval < sd->max_interval)
3382 sd->balance_interval *= 2;
3385 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3387 return -1;
3388 return ld_moved;
3390 out_balanced:
3391 schedstat_inc(sd, lb_balanced[idle]);
3393 sd->nr_balance_failed = 0;
3395 out_one_pinned:
3396 /* tune up the balancing interval */
3397 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3398 (sd->balance_interval < sd->max_interval))
3399 sd->balance_interval *= 2;
3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3403 return -1;
3404 return 0;
3408 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3409 * tasks if there is an imbalance.
3411 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3412 * this_rq is locked.
3414 static int
3415 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3416 cpumask_t *cpus)
3418 struct sched_group *group;
3419 struct rq *busiest = NULL;
3420 unsigned long imbalance;
3421 int ld_moved = 0;
3422 int sd_idle = 0;
3423 int all_pinned = 0;
3425 cpus_setall(*cpus);
3428 * When power savings policy is enabled for the parent domain, idle
3429 * sibling can pick up load irrespective of busy siblings. In this case,
3430 * let the state of idle sibling percolate up as IDLE, instead of
3431 * portraying it as CPU_NOT_IDLE.
3433 if (sd->flags & SD_SHARE_CPUPOWER &&
3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3435 sd_idle = 1;
3437 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3438 redo:
3439 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3440 &sd_idle, cpus, NULL);
3441 if (!group) {
3442 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3443 goto out_balanced;
3446 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3447 if (!busiest) {
3448 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3449 goto out_balanced;
3452 BUG_ON(busiest == this_rq);
3454 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3456 ld_moved = 0;
3457 if (busiest->nr_running > 1) {
3458 /* Attempt to move tasks */
3459 double_lock_balance(this_rq, busiest);
3460 /* this_rq->clock is already updated */
3461 update_rq_clock(busiest);
3462 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3463 imbalance, sd, CPU_NEWLY_IDLE,
3464 &all_pinned);
3465 spin_unlock(&busiest->lock);
3467 if (unlikely(all_pinned)) {
3468 cpu_clear(cpu_of(busiest), *cpus);
3469 if (!cpus_empty(*cpus))
3470 goto redo;
3474 if (!ld_moved) {
3475 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3476 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3477 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3478 return -1;
3479 } else
3480 sd->nr_balance_failed = 0;
3482 return ld_moved;
3484 out_balanced:
3485 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3486 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3487 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3488 return -1;
3489 sd->nr_balance_failed = 0;
3491 return 0;
3495 * idle_balance is called by schedule() if this_cpu is about to become
3496 * idle. Attempts to pull tasks from other CPUs.
3498 static void idle_balance(int this_cpu, struct rq *this_rq)
3500 struct sched_domain *sd;
3501 int pulled_task = -1;
3502 unsigned long next_balance = jiffies + HZ;
3503 cpumask_t tmpmask;
3505 for_each_domain(this_cpu, sd) {
3506 unsigned long interval;
3508 if (!(sd->flags & SD_LOAD_BALANCE))
3509 continue;
3511 if (sd->flags & SD_BALANCE_NEWIDLE)
3512 /* If we've pulled tasks over stop searching: */
3513 pulled_task = load_balance_newidle(this_cpu, this_rq,
3514 sd, &tmpmask);
3516 interval = msecs_to_jiffies(sd->balance_interval);
3517 if (time_after(next_balance, sd->last_balance + interval))
3518 next_balance = sd->last_balance + interval;
3519 if (pulled_task)
3520 break;
3522 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3524 * We are going idle. next_balance may be set based on
3525 * a busy processor. So reset next_balance.
3527 this_rq->next_balance = next_balance;
3532 * active_load_balance is run by migration threads. It pushes running tasks
3533 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3534 * running on each physical CPU where possible, and avoids physical /
3535 * logical imbalances.
3537 * Called with busiest_rq locked.
3539 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3541 int target_cpu = busiest_rq->push_cpu;
3542 struct sched_domain *sd;
3543 struct rq *target_rq;
3545 /* Is there any task to move? */
3546 if (busiest_rq->nr_running <= 1)
3547 return;
3549 target_rq = cpu_rq(target_cpu);
3552 * This condition is "impossible", if it occurs
3553 * we need to fix it. Originally reported by
3554 * Bjorn Helgaas on a 128-cpu setup.
3556 BUG_ON(busiest_rq == target_rq);
3558 /* move a task from busiest_rq to target_rq */
3559 double_lock_balance(busiest_rq, target_rq);
3560 update_rq_clock(busiest_rq);
3561 update_rq_clock(target_rq);
3563 /* Search for an sd spanning us and the target CPU. */
3564 for_each_domain(target_cpu, sd) {
3565 if ((sd->flags & SD_LOAD_BALANCE) &&
3566 cpu_isset(busiest_cpu, sd->span))
3567 break;
3570 if (likely(sd)) {
3571 schedstat_inc(sd, alb_count);
3573 if (move_one_task(target_rq, target_cpu, busiest_rq,
3574 sd, CPU_IDLE))
3575 schedstat_inc(sd, alb_pushed);
3576 else
3577 schedstat_inc(sd, alb_failed);
3579 spin_unlock(&target_rq->lock);
3582 #ifdef CONFIG_NO_HZ
3583 static struct {
3584 atomic_t load_balancer;
3585 cpumask_t cpu_mask;
3586 } nohz ____cacheline_aligned = {
3587 .load_balancer = ATOMIC_INIT(-1),
3588 .cpu_mask = CPU_MASK_NONE,
3592 * This routine will try to nominate the ilb (idle load balancing)
3593 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3594 * load balancing on behalf of all those cpus. If all the cpus in the system
3595 * go into this tickless mode, then there will be no ilb owner (as there is
3596 * no need for one) and all the cpus will sleep till the next wakeup event
3597 * arrives...
3599 * For the ilb owner, tick is not stopped. And this tick will be used
3600 * for idle load balancing. ilb owner will still be part of
3601 * nohz.cpu_mask..
3603 * While stopping the tick, this cpu will become the ilb owner if there
3604 * is no other owner. And will be the owner till that cpu becomes busy
3605 * or if all cpus in the system stop their ticks at which point
3606 * there is no need for ilb owner.
3608 * When the ilb owner becomes busy, it nominates another owner, during the
3609 * next busy scheduler_tick()
3611 int select_nohz_load_balancer(int stop_tick)
3613 int cpu = smp_processor_id();
3615 if (stop_tick) {
3616 cpu_set(cpu, nohz.cpu_mask);
3617 cpu_rq(cpu)->in_nohz_recently = 1;
3620 * If we are going offline and still the leader, give up!
3622 if (cpu_is_offline(cpu) &&
3623 atomic_read(&nohz.load_balancer) == cpu) {
3624 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3625 BUG();
3626 return 0;
3629 /* time for ilb owner also to sleep */
3630 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3631 if (atomic_read(&nohz.load_balancer) == cpu)
3632 atomic_set(&nohz.load_balancer, -1);
3633 return 0;
3636 if (atomic_read(&nohz.load_balancer) == -1) {
3637 /* make me the ilb owner */
3638 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3639 return 1;
3640 } else if (atomic_read(&nohz.load_balancer) == cpu)
3641 return 1;
3642 } else {
3643 if (!cpu_isset(cpu, nohz.cpu_mask))
3644 return 0;
3646 cpu_clear(cpu, nohz.cpu_mask);
3648 if (atomic_read(&nohz.load_balancer) == cpu)
3649 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3650 BUG();
3652 return 0;
3654 #endif
3656 static DEFINE_SPINLOCK(balancing);
3659 * It checks each scheduling domain to see if it is due to be balanced,
3660 * and initiates a balancing operation if so.
3662 * Balancing parameters are set up in arch_init_sched_domains.
3664 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3666 int balance = 1;
3667 struct rq *rq = cpu_rq(cpu);
3668 unsigned long interval;
3669 struct sched_domain *sd;
3670 /* Earliest time when we have to do rebalance again */
3671 unsigned long next_balance = jiffies + 60*HZ;
3672 int update_next_balance = 0;
3673 int need_serialize;
3674 cpumask_t tmp;
3676 for_each_domain(cpu, sd) {
3677 if (!(sd->flags & SD_LOAD_BALANCE))
3678 continue;
3680 interval = sd->balance_interval;
3681 if (idle != CPU_IDLE)
3682 interval *= sd->busy_factor;
3684 /* scale ms to jiffies */
3685 interval = msecs_to_jiffies(interval);
3686 if (unlikely(!interval))
3687 interval = 1;
3688 if (interval > HZ*NR_CPUS/10)
3689 interval = HZ*NR_CPUS/10;
3691 need_serialize = sd->flags & SD_SERIALIZE;
3693 if (need_serialize) {
3694 if (!spin_trylock(&balancing))
3695 goto out;
3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3701 * We've pulled tasks over so either we're no
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3705 idle = CPU_NOT_IDLE;
3707 sd->last_balance = jiffies;
3709 if (need_serialize)
3710 spin_unlock(&balancing);
3711 out:
3712 if (time_after(next_balance, sd->last_balance + interval)) {
3713 next_balance = sd->last_balance + interval;
3714 update_next_balance = 1;
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3722 if (!balance)
3723 break;
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3740 static void run_rebalance_domains(struct softirq_action *h)
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
3747 rebalance_domains(this_cpu, idle);
3749 #ifdef CONFIG_NO_HZ
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3761 cpu_clear(this_cpu, cpus);
3762 for_each_cpu_mask(balance_cpu, cpus) {
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3768 if (need_resched())
3769 break;
3771 rebalance_domains(balance_cpu, CPU_IDLE);
3773 rq = cpu_rq(balance_cpu);
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
3778 #endif
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3788 static inline void trigger_load_balance(struct rq *rq, int cpu)
3790 #ifdef CONFIG_NO_HZ
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3813 int ilb = first_cpu(nohz.cpu_mask);
3815 if (ilb < nr_cpu_ids)
3816 resched_cpu(ilb);
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837 #endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
3842 #else /* CONFIG_SMP */
3845 * on UP we do not need to balance between CPUs:
3847 static inline void idle_balance(int cpu, struct rq *rq)
3851 #endif
3853 DEFINE_PER_CPU(struct kernel_stat, kstat);
3855 EXPORT_PER_CPU_SYMBOL(kstat);
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
3861 unsigned long long task_sched_runtime(struct task_struct *p)
3863 unsigned long flags;
3864 u64 ns, delta_exec;
3865 struct rq *rq;
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
3869 if (task_current(rq, p)) {
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3875 task_rq_unlock(rq, &flags);
3877 return ns;
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
3883 * @cputime: the cpu time spent in user space since the last update
3885 void account_user_time(struct task_struct *p, cputime_t cputime)
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3890 p->utime = cputime_add(p->utime, cputime);
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3905 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3910 tmp = cputime_to_cputime64(cputime);
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3924 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3935 void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939 struct rq *rq = this_rq();
3940 cputime64_t tmp;
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3947 p->stime = cputime_add(p->stime, cputime);
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955 else if (p != rq->idle)
3956 cpustat->system = cputime64_add(cpustat->system, tmp);
3957 else if (atomic_read(&rq->nr_iowait) > 0)
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3971 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3981 void account_steal_time(struct task_struct *p, cputime_t steal)
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
3985 struct rq *rq = this_rq();
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3993 } else
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4004 void scheduler_tick(void)
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
4008 struct task_struct *curr = rq->curr;
4010 sched_clock_tick();
4012 spin_lock(&rq->lock);
4013 update_rq_clock(rq);
4014 update_cpu_load(rq);
4015 curr->sched_class->task_tick(rq, curr, 0);
4016 spin_unlock(&rq->lock);
4018 #ifdef CONFIG_SMP
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
4021 #endif
4024 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4026 void __kprobes add_preempt_count(int val)
4029 * Underflow?
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
4033 preempt_count() += val;
4035 * Spinlock count overflowing soon?
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
4040 EXPORT_SYMBOL(add_preempt_count);
4042 void __kprobes sub_preempt_count(int val)
4045 * Underflow?
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
4050 * Is the spinlock portion underflowing?
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4056 preempt_count() -= val;
4058 EXPORT_SYMBOL(sub_preempt_count);
4060 #endif
4063 * Print scheduling while atomic bug:
4065 static noinline void __schedule_bug(struct task_struct *prev)
4067 struct pt_regs *regs = get_irq_regs();
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4072 debug_show_held_locks(prev);
4073 print_modules();
4074 if (irqs_disabled())
4075 print_irqtrace_events(prev);
4077 if (regs)
4078 show_regs(regs);
4079 else
4080 dump_stack();
4084 * Various schedule()-time debugging checks and statistics:
4086 static inline void schedule_debug(struct task_struct *prev)
4089 * Test if we are atomic. Since do_exit() needs to call into
4090 * schedule() atomically, we ignore that path for now.
4091 * Otherwise, whine if we are scheduling when we should not be.
4093 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4094 __schedule_bug(prev);
4096 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4098 schedstat_inc(this_rq(), sched_count);
4099 #ifdef CONFIG_SCHEDSTATS
4100 if (unlikely(prev->lock_depth >= 0)) {
4101 schedstat_inc(this_rq(), bkl_count);
4102 schedstat_inc(prev, sched_info.bkl_count);
4104 #endif
4108 * Pick up the highest-prio task:
4110 static inline struct task_struct *
4111 pick_next_task(struct rq *rq, struct task_struct *prev)
4113 const struct sched_class *class;
4114 struct task_struct *p;
4117 * Optimization: we know that if all tasks are in
4118 * the fair class we can call that function directly:
4120 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4121 p = fair_sched_class.pick_next_task(rq);
4122 if (likely(p))
4123 return p;
4126 class = sched_class_highest;
4127 for ( ; ; ) {
4128 p = class->pick_next_task(rq);
4129 if (p)
4130 return p;
4132 * Will never be NULL as the idle class always
4133 * returns a non-NULL p:
4135 class = class->next;
4140 * schedule() is the main scheduler function.
4142 asmlinkage void __sched schedule(void)
4144 struct task_struct *prev, *next;
4145 unsigned long *switch_count;
4146 struct rq *rq;
4147 int cpu, hrtick = sched_feat(HRTICK);
4149 need_resched:
4150 preempt_disable();
4151 cpu = smp_processor_id();
4152 rq = cpu_rq(cpu);
4153 rcu_qsctr_inc(cpu);
4154 prev = rq->curr;
4155 switch_count = &prev->nivcsw;
4157 release_kernel_lock(prev);
4158 need_resched_nonpreemptible:
4160 schedule_debug(prev);
4162 if (hrtick)
4163 hrtick_clear(rq);
4166 * Do the rq-clock update outside the rq lock:
4168 local_irq_disable();
4169 update_rq_clock(rq);
4170 spin_lock(&rq->lock);
4171 clear_tsk_need_resched(prev);
4173 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4174 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4175 signal_pending(prev))) {
4176 prev->state = TASK_RUNNING;
4177 } else {
4178 deactivate_task(rq, prev, 1);
4180 switch_count = &prev->nvcsw;
4183 #ifdef CONFIG_SMP
4184 if (prev->sched_class->pre_schedule)
4185 prev->sched_class->pre_schedule(rq, prev);
4186 #endif
4188 if (unlikely(!rq->nr_running))
4189 idle_balance(cpu, rq);
4191 prev->sched_class->put_prev_task(rq, prev);
4192 next = pick_next_task(rq, prev);
4194 if (likely(prev != next)) {
4195 sched_info_switch(prev, next);
4197 rq->nr_switches++;
4198 rq->curr = next;
4199 ++*switch_count;
4201 context_switch(rq, prev, next); /* unlocks the rq */
4203 * the context switch might have flipped the stack from under
4204 * us, hence refresh the local variables.
4206 cpu = smp_processor_id();
4207 rq = cpu_rq(cpu);
4208 } else
4209 spin_unlock_irq(&rq->lock);
4211 if (hrtick)
4212 hrtick_set(rq);
4214 if (unlikely(reacquire_kernel_lock(current) < 0))
4215 goto need_resched_nonpreemptible;
4217 preempt_enable_no_resched();
4218 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4219 goto need_resched;
4221 EXPORT_SYMBOL(schedule);
4223 #ifdef CONFIG_PREEMPT
4225 * this is the entry point to schedule() from in-kernel preemption
4226 * off of preempt_enable. Kernel preemptions off return from interrupt
4227 * occur there and call schedule directly.
4229 asmlinkage void __sched preempt_schedule(void)
4231 struct thread_info *ti = current_thread_info();
4234 * If there is a non-zero preempt_count or interrupts are disabled,
4235 * we do not want to preempt the current task. Just return..
4237 if (likely(ti->preempt_count || irqs_disabled()))
4238 return;
4240 do {
4241 add_preempt_count(PREEMPT_ACTIVE);
4242 schedule();
4243 sub_preempt_count(PREEMPT_ACTIVE);
4246 * Check again in case we missed a preemption opportunity
4247 * between schedule and now.
4249 barrier();
4250 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4252 EXPORT_SYMBOL(preempt_schedule);
4255 * this is the entry point to schedule() from kernel preemption
4256 * off of irq context.
4257 * Note, that this is called and return with irqs disabled. This will
4258 * protect us against recursive calling from irq.
4260 asmlinkage void __sched preempt_schedule_irq(void)
4262 struct thread_info *ti = current_thread_info();
4264 /* Catch callers which need to be fixed */
4265 BUG_ON(ti->preempt_count || !irqs_disabled());
4267 do {
4268 add_preempt_count(PREEMPT_ACTIVE);
4269 local_irq_enable();
4270 schedule();
4271 local_irq_disable();
4272 sub_preempt_count(PREEMPT_ACTIVE);
4275 * Check again in case we missed a preemption opportunity
4276 * between schedule and now.
4278 barrier();
4279 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4282 #endif /* CONFIG_PREEMPT */
4284 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4285 void *key)
4287 return try_to_wake_up(curr->private, mode, sync);
4289 EXPORT_SYMBOL(default_wake_function);
4292 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4293 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4294 * number) then we wake all the non-exclusive tasks and one exclusive task.
4296 * There are circumstances in which we can try to wake a task which has already
4297 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4298 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4300 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4301 int nr_exclusive, int sync, void *key)
4303 wait_queue_t *curr, *next;
4305 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4306 unsigned flags = curr->flags;
4308 if (curr->func(curr, mode, sync, key) &&
4309 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4310 break;
4315 * __wake_up - wake up threads blocked on a waitqueue.
4316 * @q: the waitqueue
4317 * @mode: which threads
4318 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4319 * @key: is directly passed to the wakeup function
4321 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4322 int nr_exclusive, void *key)
4324 unsigned long flags;
4326 spin_lock_irqsave(&q->lock, flags);
4327 __wake_up_common(q, mode, nr_exclusive, 0, key);
4328 spin_unlock_irqrestore(&q->lock, flags);
4330 EXPORT_SYMBOL(__wake_up);
4333 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4335 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4337 __wake_up_common(q, mode, 1, 0, NULL);
4341 * __wake_up_sync - wake up threads blocked on a waitqueue.
4342 * @q: the waitqueue
4343 * @mode: which threads
4344 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4346 * The sync wakeup differs that the waker knows that it will schedule
4347 * away soon, so while the target thread will be woken up, it will not
4348 * be migrated to another CPU - ie. the two threads are 'synchronized'
4349 * with each other. This can prevent needless bouncing between CPUs.
4351 * On UP it can prevent extra preemption.
4353 void
4354 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4356 unsigned long flags;
4357 int sync = 1;
4359 if (unlikely(!q))
4360 return;
4362 if (unlikely(!nr_exclusive))
4363 sync = 0;
4365 spin_lock_irqsave(&q->lock, flags);
4366 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4367 spin_unlock_irqrestore(&q->lock, flags);
4369 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4371 void complete(struct completion *x)
4373 unsigned long flags;
4375 spin_lock_irqsave(&x->wait.lock, flags);
4376 x->done++;
4377 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4378 spin_unlock_irqrestore(&x->wait.lock, flags);
4380 EXPORT_SYMBOL(complete);
4382 void complete_all(struct completion *x)
4384 unsigned long flags;
4386 spin_lock_irqsave(&x->wait.lock, flags);
4387 x->done += UINT_MAX/2;
4388 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4389 spin_unlock_irqrestore(&x->wait.lock, flags);
4391 EXPORT_SYMBOL(complete_all);
4393 static inline long __sched
4394 do_wait_for_common(struct completion *x, long timeout, int state)
4396 if (!x->done) {
4397 DECLARE_WAITQUEUE(wait, current);
4399 wait.flags |= WQ_FLAG_EXCLUSIVE;
4400 __add_wait_queue_tail(&x->wait, &wait);
4401 do {
4402 if ((state == TASK_INTERRUPTIBLE &&
4403 signal_pending(current)) ||
4404 (state == TASK_KILLABLE &&
4405 fatal_signal_pending(current))) {
4406 __remove_wait_queue(&x->wait, &wait);
4407 return -ERESTARTSYS;
4409 __set_current_state(state);
4410 spin_unlock_irq(&x->wait.lock);
4411 timeout = schedule_timeout(timeout);
4412 spin_lock_irq(&x->wait.lock);
4413 if (!timeout) {
4414 __remove_wait_queue(&x->wait, &wait);
4415 return timeout;
4417 } while (!x->done);
4418 __remove_wait_queue(&x->wait, &wait);
4420 x->done--;
4421 return timeout;
4424 static long __sched
4425 wait_for_common(struct completion *x, long timeout, int state)
4427 might_sleep();
4429 spin_lock_irq(&x->wait.lock);
4430 timeout = do_wait_for_common(x, timeout, state);
4431 spin_unlock_irq(&x->wait.lock);
4432 return timeout;
4435 void __sched wait_for_completion(struct completion *x)
4437 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4439 EXPORT_SYMBOL(wait_for_completion);
4441 unsigned long __sched
4442 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4444 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4446 EXPORT_SYMBOL(wait_for_completion_timeout);
4448 int __sched wait_for_completion_interruptible(struct completion *x)
4450 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4451 if (t == -ERESTARTSYS)
4452 return t;
4453 return 0;
4455 EXPORT_SYMBOL(wait_for_completion_interruptible);
4457 unsigned long __sched
4458 wait_for_completion_interruptible_timeout(struct completion *x,
4459 unsigned long timeout)
4461 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4463 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4465 int __sched wait_for_completion_killable(struct completion *x)
4467 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4468 if (t == -ERESTARTSYS)
4469 return t;
4470 return 0;
4472 EXPORT_SYMBOL(wait_for_completion_killable);
4474 static long __sched
4475 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4477 unsigned long flags;
4478 wait_queue_t wait;
4480 init_waitqueue_entry(&wait, current);
4482 __set_current_state(state);
4484 spin_lock_irqsave(&q->lock, flags);
4485 __add_wait_queue(q, &wait);
4486 spin_unlock(&q->lock);
4487 timeout = schedule_timeout(timeout);
4488 spin_lock_irq(&q->lock);
4489 __remove_wait_queue(q, &wait);
4490 spin_unlock_irqrestore(&q->lock, flags);
4492 return timeout;
4495 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4497 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4499 EXPORT_SYMBOL(interruptible_sleep_on);
4501 long __sched
4502 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4504 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4506 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4508 void __sched sleep_on(wait_queue_head_t *q)
4510 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4512 EXPORT_SYMBOL(sleep_on);
4514 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4516 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4518 EXPORT_SYMBOL(sleep_on_timeout);
4520 #ifdef CONFIG_RT_MUTEXES
4523 * rt_mutex_setprio - set the current priority of a task
4524 * @p: task
4525 * @prio: prio value (kernel-internal form)
4527 * This function changes the 'effective' priority of a task. It does
4528 * not touch ->normal_prio like __setscheduler().
4530 * Used by the rt_mutex code to implement priority inheritance logic.
4532 void rt_mutex_setprio(struct task_struct *p, int prio)
4534 unsigned long flags;
4535 int oldprio, on_rq, running;
4536 struct rq *rq;
4537 const struct sched_class *prev_class = p->sched_class;
4539 BUG_ON(prio < 0 || prio > MAX_PRIO);
4541 rq = task_rq_lock(p, &flags);
4542 update_rq_clock(rq);
4544 oldprio = p->prio;
4545 on_rq = p->se.on_rq;
4546 running = task_current(rq, p);
4547 if (on_rq)
4548 dequeue_task(rq, p, 0);
4549 if (running)
4550 p->sched_class->put_prev_task(rq, p);
4552 if (rt_prio(prio))
4553 p->sched_class = &rt_sched_class;
4554 else
4555 p->sched_class = &fair_sched_class;
4557 p->prio = prio;
4559 if (running)
4560 p->sched_class->set_curr_task(rq);
4561 if (on_rq) {
4562 enqueue_task(rq, p, 0);
4564 check_class_changed(rq, p, prev_class, oldprio, running);
4566 task_rq_unlock(rq, &flags);
4569 #endif
4571 void set_user_nice(struct task_struct *p, long nice)
4573 int old_prio, delta, on_rq;
4574 unsigned long flags;
4575 struct rq *rq;
4577 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4578 return;
4580 * We have to be careful, if called from sys_setpriority(),
4581 * the task might be in the middle of scheduling on another CPU.
4583 rq = task_rq_lock(p, &flags);
4584 update_rq_clock(rq);
4586 * The RT priorities are set via sched_setscheduler(), but we still
4587 * allow the 'normal' nice value to be set - but as expected
4588 * it wont have any effect on scheduling until the task is
4589 * SCHED_FIFO/SCHED_RR:
4591 if (task_has_rt_policy(p)) {
4592 p->static_prio = NICE_TO_PRIO(nice);
4593 goto out_unlock;
4595 on_rq = p->se.on_rq;
4596 if (on_rq) {
4597 dequeue_task(rq, p, 0);
4598 dec_load(rq, p);
4601 p->static_prio = NICE_TO_PRIO(nice);
4602 set_load_weight(p);
4603 old_prio = p->prio;
4604 p->prio = effective_prio(p);
4605 delta = p->prio - old_prio;
4607 if (on_rq) {
4608 enqueue_task(rq, p, 0);
4609 inc_load(rq, p);
4611 * If the task increased its priority or is running and
4612 * lowered its priority, then reschedule its CPU:
4614 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4615 resched_task(rq->curr);
4617 out_unlock:
4618 task_rq_unlock(rq, &flags);
4620 EXPORT_SYMBOL(set_user_nice);
4623 * can_nice - check if a task can reduce its nice value
4624 * @p: task
4625 * @nice: nice value
4627 int can_nice(const struct task_struct *p, const int nice)
4629 /* convert nice value [19,-20] to rlimit style value [1,40] */
4630 int nice_rlim = 20 - nice;
4632 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4633 capable(CAP_SYS_NICE));
4636 #ifdef __ARCH_WANT_SYS_NICE
4639 * sys_nice - change the priority of the current process.
4640 * @increment: priority increment
4642 * sys_setpriority is a more generic, but much slower function that
4643 * does similar things.
4645 asmlinkage long sys_nice(int increment)
4647 long nice, retval;
4650 * Setpriority might change our priority at the same moment.
4651 * We don't have to worry. Conceptually one call occurs first
4652 * and we have a single winner.
4654 if (increment < -40)
4655 increment = -40;
4656 if (increment > 40)
4657 increment = 40;
4659 nice = PRIO_TO_NICE(current->static_prio) + increment;
4660 if (nice < -20)
4661 nice = -20;
4662 if (nice > 19)
4663 nice = 19;
4665 if (increment < 0 && !can_nice(current, nice))
4666 return -EPERM;
4668 retval = security_task_setnice(current, nice);
4669 if (retval)
4670 return retval;
4672 set_user_nice(current, nice);
4673 return 0;
4676 #endif
4679 * task_prio - return the priority value of a given task.
4680 * @p: the task in question.
4682 * This is the priority value as seen by users in /proc.
4683 * RT tasks are offset by -200. Normal tasks are centered
4684 * around 0, value goes from -16 to +15.
4686 int task_prio(const struct task_struct *p)
4688 return p->prio - MAX_RT_PRIO;
4692 * task_nice - return the nice value of a given task.
4693 * @p: the task in question.
4695 int task_nice(const struct task_struct *p)
4697 return TASK_NICE(p);
4699 EXPORT_SYMBOL(task_nice);
4702 * idle_cpu - is a given cpu idle currently?
4703 * @cpu: the processor in question.
4705 int idle_cpu(int cpu)
4707 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4711 * idle_task - return the idle task for a given cpu.
4712 * @cpu: the processor in question.
4714 struct task_struct *idle_task(int cpu)
4716 return cpu_rq(cpu)->idle;
4720 * find_process_by_pid - find a process with a matching PID value.
4721 * @pid: the pid in question.
4723 static struct task_struct *find_process_by_pid(pid_t pid)
4725 return pid ? find_task_by_vpid(pid) : current;
4728 /* Actually do priority change: must hold rq lock. */
4729 static void
4730 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4732 BUG_ON(p->se.on_rq);
4734 p->policy = policy;
4735 switch (p->policy) {
4736 case SCHED_NORMAL:
4737 case SCHED_BATCH:
4738 case SCHED_IDLE:
4739 p->sched_class = &fair_sched_class;
4740 break;
4741 case SCHED_FIFO:
4742 case SCHED_RR:
4743 p->sched_class = &rt_sched_class;
4744 break;
4747 p->rt_priority = prio;
4748 p->normal_prio = normal_prio(p);
4749 /* we are holding p->pi_lock already */
4750 p->prio = rt_mutex_getprio(p);
4751 set_load_weight(p);
4755 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4756 * @p: the task in question.
4757 * @policy: new policy.
4758 * @param: structure containing the new RT priority.
4760 * NOTE that the task may be already dead.
4762 int sched_setscheduler(struct task_struct *p, int policy,
4763 struct sched_param *param)
4765 int retval, oldprio, oldpolicy = -1, on_rq, running;
4766 unsigned long flags;
4767 const struct sched_class *prev_class = p->sched_class;
4768 struct rq *rq;
4770 /* may grab non-irq protected spin_locks */
4771 BUG_ON(in_interrupt());
4772 recheck:
4773 /* double check policy once rq lock held */
4774 if (policy < 0)
4775 policy = oldpolicy = p->policy;
4776 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4777 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4778 policy != SCHED_IDLE)
4779 return -EINVAL;
4781 * Valid priorities for SCHED_FIFO and SCHED_RR are
4782 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4783 * SCHED_BATCH and SCHED_IDLE is 0.
4785 if (param->sched_priority < 0 ||
4786 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4787 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4788 return -EINVAL;
4789 if (rt_policy(policy) != (param->sched_priority != 0))
4790 return -EINVAL;
4793 * Allow unprivileged RT tasks to decrease priority:
4795 if (!capable(CAP_SYS_NICE)) {
4796 if (rt_policy(policy)) {
4797 unsigned long rlim_rtprio;
4799 if (!lock_task_sighand(p, &flags))
4800 return -ESRCH;
4801 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4802 unlock_task_sighand(p, &flags);
4804 /* can't set/change the rt policy */
4805 if (policy != p->policy && !rlim_rtprio)
4806 return -EPERM;
4808 /* can't increase priority */
4809 if (param->sched_priority > p->rt_priority &&
4810 param->sched_priority > rlim_rtprio)
4811 return -EPERM;
4814 * Like positive nice levels, dont allow tasks to
4815 * move out of SCHED_IDLE either:
4817 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4818 return -EPERM;
4820 /* can't change other user's priorities */
4821 if ((current->euid != p->euid) &&
4822 (current->euid != p->uid))
4823 return -EPERM;
4826 #ifdef CONFIG_RT_GROUP_SCHED
4828 * Do not allow realtime tasks into groups that have no runtime
4829 * assigned.
4831 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4832 return -EPERM;
4833 #endif
4835 retval = security_task_setscheduler(p, policy, param);
4836 if (retval)
4837 return retval;
4839 * make sure no PI-waiters arrive (or leave) while we are
4840 * changing the priority of the task:
4842 spin_lock_irqsave(&p->pi_lock, flags);
4844 * To be able to change p->policy safely, the apropriate
4845 * runqueue lock must be held.
4847 rq = __task_rq_lock(p);
4848 /* recheck policy now with rq lock held */
4849 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4850 policy = oldpolicy = -1;
4851 __task_rq_unlock(rq);
4852 spin_unlock_irqrestore(&p->pi_lock, flags);
4853 goto recheck;
4855 update_rq_clock(rq);
4856 on_rq = p->se.on_rq;
4857 running = task_current(rq, p);
4858 if (on_rq)
4859 deactivate_task(rq, p, 0);
4860 if (running)
4861 p->sched_class->put_prev_task(rq, p);
4863 oldprio = p->prio;
4864 __setscheduler(rq, p, policy, param->sched_priority);
4866 if (running)
4867 p->sched_class->set_curr_task(rq);
4868 if (on_rq) {
4869 activate_task(rq, p, 0);
4871 check_class_changed(rq, p, prev_class, oldprio, running);
4873 __task_rq_unlock(rq);
4874 spin_unlock_irqrestore(&p->pi_lock, flags);
4876 rt_mutex_adjust_pi(p);
4878 return 0;
4880 EXPORT_SYMBOL_GPL(sched_setscheduler);
4882 static int
4883 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4885 struct sched_param lparam;
4886 struct task_struct *p;
4887 int retval;
4889 if (!param || pid < 0)
4890 return -EINVAL;
4891 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4892 return -EFAULT;
4894 rcu_read_lock();
4895 retval = -ESRCH;
4896 p = find_process_by_pid(pid);
4897 if (p != NULL)
4898 retval = sched_setscheduler(p, policy, &lparam);
4899 rcu_read_unlock();
4901 return retval;
4905 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4906 * @pid: the pid in question.
4907 * @policy: new policy.
4908 * @param: structure containing the new RT priority.
4910 asmlinkage long
4911 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4913 /* negative values for policy are not valid */
4914 if (policy < 0)
4915 return -EINVAL;
4917 return do_sched_setscheduler(pid, policy, param);
4921 * sys_sched_setparam - set/change the RT priority of a thread
4922 * @pid: the pid in question.
4923 * @param: structure containing the new RT priority.
4925 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4927 return do_sched_setscheduler(pid, -1, param);
4931 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4932 * @pid: the pid in question.
4934 asmlinkage long sys_sched_getscheduler(pid_t pid)
4936 struct task_struct *p;
4937 int retval;
4939 if (pid < 0)
4940 return -EINVAL;
4942 retval = -ESRCH;
4943 read_lock(&tasklist_lock);
4944 p = find_process_by_pid(pid);
4945 if (p) {
4946 retval = security_task_getscheduler(p);
4947 if (!retval)
4948 retval = p->policy;
4950 read_unlock(&tasklist_lock);
4951 return retval;
4955 * sys_sched_getscheduler - get the RT priority of a thread
4956 * @pid: the pid in question.
4957 * @param: structure containing the RT priority.
4959 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4961 struct sched_param lp;
4962 struct task_struct *p;
4963 int retval;
4965 if (!param || pid < 0)
4966 return -EINVAL;
4968 read_lock(&tasklist_lock);
4969 p = find_process_by_pid(pid);
4970 retval = -ESRCH;
4971 if (!p)
4972 goto out_unlock;
4974 retval = security_task_getscheduler(p);
4975 if (retval)
4976 goto out_unlock;
4978 lp.sched_priority = p->rt_priority;
4979 read_unlock(&tasklist_lock);
4982 * This one might sleep, we cannot do it with a spinlock held ...
4984 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4986 return retval;
4988 out_unlock:
4989 read_unlock(&tasklist_lock);
4990 return retval;
4993 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4995 cpumask_t cpus_allowed;
4996 cpumask_t new_mask = *in_mask;
4997 struct task_struct *p;
4998 int retval;
5000 get_online_cpus();
5001 read_lock(&tasklist_lock);
5003 p = find_process_by_pid(pid);
5004 if (!p) {
5005 read_unlock(&tasklist_lock);
5006 put_online_cpus();
5007 return -ESRCH;
5011 * It is not safe to call set_cpus_allowed with the
5012 * tasklist_lock held. We will bump the task_struct's
5013 * usage count and then drop tasklist_lock.
5015 get_task_struct(p);
5016 read_unlock(&tasklist_lock);
5018 retval = -EPERM;
5019 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5020 !capable(CAP_SYS_NICE))
5021 goto out_unlock;
5023 retval = security_task_setscheduler(p, 0, NULL);
5024 if (retval)
5025 goto out_unlock;
5027 cpuset_cpus_allowed(p, &cpus_allowed);
5028 cpus_and(new_mask, new_mask, cpus_allowed);
5029 again:
5030 retval = set_cpus_allowed_ptr(p, &new_mask);
5032 if (!retval) {
5033 cpuset_cpus_allowed(p, &cpus_allowed);
5034 if (!cpus_subset(new_mask, cpus_allowed)) {
5036 * We must have raced with a concurrent cpuset
5037 * update. Just reset the cpus_allowed to the
5038 * cpuset's cpus_allowed
5040 new_mask = cpus_allowed;
5041 goto again;
5044 out_unlock:
5045 put_task_struct(p);
5046 put_online_cpus();
5047 return retval;
5050 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5051 cpumask_t *new_mask)
5053 if (len < sizeof(cpumask_t)) {
5054 memset(new_mask, 0, sizeof(cpumask_t));
5055 } else if (len > sizeof(cpumask_t)) {
5056 len = sizeof(cpumask_t);
5058 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5062 * sys_sched_setaffinity - set the cpu affinity of a process
5063 * @pid: pid of the process
5064 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5065 * @user_mask_ptr: user-space pointer to the new cpu mask
5067 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5068 unsigned long __user *user_mask_ptr)
5070 cpumask_t new_mask;
5071 int retval;
5073 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5074 if (retval)
5075 return retval;
5077 return sched_setaffinity(pid, &new_mask);
5081 * Represents all cpu's present in the system
5082 * In systems capable of hotplug, this map could dynamically grow
5083 * as new cpu's are detected in the system via any platform specific
5084 * method, such as ACPI for e.g.
5087 cpumask_t cpu_present_map __read_mostly;
5088 EXPORT_SYMBOL(cpu_present_map);
5090 #ifndef CONFIG_SMP
5091 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5092 EXPORT_SYMBOL(cpu_online_map);
5094 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5095 EXPORT_SYMBOL(cpu_possible_map);
5096 #endif
5098 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5100 struct task_struct *p;
5101 int retval;
5103 get_online_cpus();
5104 read_lock(&tasklist_lock);
5106 retval = -ESRCH;
5107 p = find_process_by_pid(pid);
5108 if (!p)
5109 goto out_unlock;
5111 retval = security_task_getscheduler(p);
5112 if (retval)
5113 goto out_unlock;
5115 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5117 out_unlock:
5118 read_unlock(&tasklist_lock);
5119 put_online_cpus();
5121 return retval;
5125 * sys_sched_getaffinity - get the cpu affinity of a process
5126 * @pid: pid of the process
5127 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5128 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5130 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5131 unsigned long __user *user_mask_ptr)
5133 int ret;
5134 cpumask_t mask;
5136 if (len < sizeof(cpumask_t))
5137 return -EINVAL;
5139 ret = sched_getaffinity(pid, &mask);
5140 if (ret < 0)
5141 return ret;
5143 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5144 return -EFAULT;
5146 return sizeof(cpumask_t);
5150 * sys_sched_yield - yield the current processor to other threads.
5152 * This function yields the current CPU to other tasks. If there are no
5153 * other threads running on this CPU then this function will return.
5155 asmlinkage long sys_sched_yield(void)
5157 struct rq *rq = this_rq_lock();
5159 schedstat_inc(rq, yld_count);
5160 current->sched_class->yield_task(rq);
5163 * Since we are going to call schedule() anyway, there's
5164 * no need to preempt or enable interrupts:
5166 __release(rq->lock);
5167 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5168 _raw_spin_unlock(&rq->lock);
5169 preempt_enable_no_resched();
5171 schedule();
5173 return 0;
5176 static void __cond_resched(void)
5178 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5179 __might_sleep(__FILE__, __LINE__);
5180 #endif
5182 * The BKS might be reacquired before we have dropped
5183 * PREEMPT_ACTIVE, which could trigger a second
5184 * cond_resched() call.
5186 do {
5187 add_preempt_count(PREEMPT_ACTIVE);
5188 schedule();
5189 sub_preempt_count(PREEMPT_ACTIVE);
5190 } while (need_resched());
5193 int __sched _cond_resched(void)
5195 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5196 system_state == SYSTEM_RUNNING) {
5197 __cond_resched();
5198 return 1;
5200 return 0;
5202 EXPORT_SYMBOL(_cond_resched);
5205 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5206 * call schedule, and on return reacquire the lock.
5208 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5209 * operations here to prevent schedule() from being called twice (once via
5210 * spin_unlock(), once by hand).
5212 int cond_resched_lock(spinlock_t *lock)
5214 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5215 int ret = 0;
5217 if (spin_needbreak(lock) || resched) {
5218 spin_unlock(lock);
5219 if (resched && need_resched())
5220 __cond_resched();
5221 else
5222 cpu_relax();
5223 ret = 1;
5224 spin_lock(lock);
5226 return ret;
5228 EXPORT_SYMBOL(cond_resched_lock);
5230 int __sched cond_resched_softirq(void)
5232 BUG_ON(!in_softirq());
5234 if (need_resched() && system_state == SYSTEM_RUNNING) {
5235 local_bh_enable();
5236 __cond_resched();
5237 local_bh_disable();
5238 return 1;
5240 return 0;
5242 EXPORT_SYMBOL(cond_resched_softirq);
5245 * yield - yield the current processor to other threads.
5247 * This is a shortcut for kernel-space yielding - it marks the
5248 * thread runnable and calls sys_sched_yield().
5250 void __sched yield(void)
5252 set_current_state(TASK_RUNNING);
5253 sys_sched_yield();
5255 EXPORT_SYMBOL(yield);
5258 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5259 * that process accounting knows that this is a task in IO wait state.
5261 * But don't do that if it is a deliberate, throttling IO wait (this task
5262 * has set its backing_dev_info: the queue against which it should throttle)
5264 void __sched io_schedule(void)
5266 struct rq *rq = &__raw_get_cpu_var(runqueues);
5268 delayacct_blkio_start();
5269 atomic_inc(&rq->nr_iowait);
5270 schedule();
5271 atomic_dec(&rq->nr_iowait);
5272 delayacct_blkio_end();
5274 EXPORT_SYMBOL(io_schedule);
5276 long __sched io_schedule_timeout(long timeout)
5278 struct rq *rq = &__raw_get_cpu_var(runqueues);
5279 long ret;
5281 delayacct_blkio_start();
5282 atomic_inc(&rq->nr_iowait);
5283 ret = schedule_timeout(timeout);
5284 atomic_dec(&rq->nr_iowait);
5285 delayacct_blkio_end();
5286 return ret;
5290 * sys_sched_get_priority_max - return maximum RT priority.
5291 * @policy: scheduling class.
5293 * this syscall returns the maximum rt_priority that can be used
5294 * by a given scheduling class.
5296 asmlinkage long sys_sched_get_priority_max(int policy)
5298 int ret = -EINVAL;
5300 switch (policy) {
5301 case SCHED_FIFO:
5302 case SCHED_RR:
5303 ret = MAX_USER_RT_PRIO-1;
5304 break;
5305 case SCHED_NORMAL:
5306 case SCHED_BATCH:
5307 case SCHED_IDLE:
5308 ret = 0;
5309 break;
5311 return ret;
5315 * sys_sched_get_priority_min - return minimum RT priority.
5316 * @policy: scheduling class.
5318 * this syscall returns the minimum rt_priority that can be used
5319 * by a given scheduling class.
5321 asmlinkage long sys_sched_get_priority_min(int policy)
5323 int ret = -EINVAL;
5325 switch (policy) {
5326 case SCHED_FIFO:
5327 case SCHED_RR:
5328 ret = 1;
5329 break;
5330 case SCHED_NORMAL:
5331 case SCHED_BATCH:
5332 case SCHED_IDLE:
5333 ret = 0;
5335 return ret;
5339 * sys_sched_rr_get_interval - return the default timeslice of a process.
5340 * @pid: pid of the process.
5341 * @interval: userspace pointer to the timeslice value.
5343 * this syscall writes the default timeslice value of a given process
5344 * into the user-space timespec buffer. A value of '0' means infinity.
5346 asmlinkage
5347 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5349 struct task_struct *p;
5350 unsigned int time_slice;
5351 int retval;
5352 struct timespec t;
5354 if (pid < 0)
5355 return -EINVAL;
5357 retval = -ESRCH;
5358 read_lock(&tasklist_lock);
5359 p = find_process_by_pid(pid);
5360 if (!p)
5361 goto out_unlock;
5363 retval = security_task_getscheduler(p);
5364 if (retval)
5365 goto out_unlock;
5368 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5369 * tasks that are on an otherwise idle runqueue:
5371 time_slice = 0;
5372 if (p->policy == SCHED_RR) {
5373 time_slice = DEF_TIMESLICE;
5374 } else if (p->policy != SCHED_FIFO) {
5375 struct sched_entity *se = &p->se;
5376 unsigned long flags;
5377 struct rq *rq;
5379 rq = task_rq_lock(p, &flags);
5380 if (rq->cfs.load.weight)
5381 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5382 task_rq_unlock(rq, &flags);
5384 read_unlock(&tasklist_lock);
5385 jiffies_to_timespec(time_slice, &t);
5386 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5387 return retval;
5389 out_unlock:
5390 read_unlock(&tasklist_lock);
5391 return retval;
5394 static const char stat_nam[] = "RSDTtZX";
5396 void sched_show_task(struct task_struct *p)
5398 unsigned long free = 0;
5399 unsigned state;
5401 state = p->state ? __ffs(p->state) + 1 : 0;
5402 printk(KERN_INFO "%-13.13s %c", p->comm,
5403 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5404 #if BITS_PER_LONG == 32
5405 if (state == TASK_RUNNING)
5406 printk(KERN_CONT " running ");
5407 else
5408 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5409 #else
5410 if (state == TASK_RUNNING)
5411 printk(KERN_CONT " running task ");
5412 else
5413 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5414 #endif
5415 #ifdef CONFIG_DEBUG_STACK_USAGE
5417 unsigned long *n = end_of_stack(p);
5418 while (!*n)
5419 n++;
5420 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5422 #endif
5423 printk(KERN_CONT "%5lu %5d %6d\n", free,
5424 task_pid_nr(p), task_pid_nr(p->real_parent));
5426 show_stack(p, NULL);
5429 void show_state_filter(unsigned long state_filter)
5431 struct task_struct *g, *p;
5433 #if BITS_PER_LONG == 32
5434 printk(KERN_INFO
5435 " task PC stack pid father\n");
5436 #else
5437 printk(KERN_INFO
5438 " task PC stack pid father\n");
5439 #endif
5440 read_lock(&tasklist_lock);
5441 do_each_thread(g, p) {
5443 * reset the NMI-timeout, listing all files on a slow
5444 * console might take alot of time:
5446 touch_nmi_watchdog();
5447 if (!state_filter || (p->state & state_filter))
5448 sched_show_task(p);
5449 } while_each_thread(g, p);
5451 touch_all_softlockup_watchdogs();
5453 #ifdef CONFIG_SCHED_DEBUG
5454 sysrq_sched_debug_show();
5455 #endif
5456 read_unlock(&tasklist_lock);
5458 * Only show locks if all tasks are dumped:
5460 if (state_filter == -1)
5461 debug_show_all_locks();
5464 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5466 idle->sched_class = &idle_sched_class;
5470 * init_idle - set up an idle thread for a given CPU
5471 * @idle: task in question
5472 * @cpu: cpu the idle task belongs to
5474 * NOTE: this function does not set the idle thread's NEED_RESCHED
5475 * flag, to make booting more robust.
5477 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5479 struct rq *rq = cpu_rq(cpu);
5480 unsigned long flags;
5482 __sched_fork(idle);
5483 idle->se.exec_start = sched_clock();
5485 idle->prio = idle->normal_prio = MAX_PRIO;
5486 idle->cpus_allowed = cpumask_of_cpu(cpu);
5487 __set_task_cpu(idle, cpu);
5489 spin_lock_irqsave(&rq->lock, flags);
5490 rq->curr = rq->idle = idle;
5491 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5492 idle->oncpu = 1;
5493 #endif
5494 spin_unlock_irqrestore(&rq->lock, flags);
5496 /* Set the preempt count _outside_ the spinlocks! */
5497 #if defined(CONFIG_PREEMPT)
5498 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5499 #else
5500 task_thread_info(idle)->preempt_count = 0;
5501 #endif
5503 * The idle tasks have their own, simple scheduling class:
5505 idle->sched_class = &idle_sched_class;
5509 * In a system that switches off the HZ timer nohz_cpu_mask
5510 * indicates which cpus entered this state. This is used
5511 * in the rcu update to wait only for active cpus. For system
5512 * which do not switch off the HZ timer nohz_cpu_mask should
5513 * always be CPU_MASK_NONE.
5515 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5518 * Increase the granularity value when there are more CPUs,
5519 * because with more CPUs the 'effective latency' as visible
5520 * to users decreases. But the relationship is not linear,
5521 * so pick a second-best guess by going with the log2 of the
5522 * number of CPUs.
5524 * This idea comes from the SD scheduler of Con Kolivas:
5526 static inline void sched_init_granularity(void)
5528 unsigned int factor = 1 + ilog2(num_online_cpus());
5529 const unsigned long limit = 200000000;
5531 sysctl_sched_min_granularity *= factor;
5532 if (sysctl_sched_min_granularity > limit)
5533 sysctl_sched_min_granularity = limit;
5535 sysctl_sched_latency *= factor;
5536 if (sysctl_sched_latency > limit)
5537 sysctl_sched_latency = limit;
5539 sysctl_sched_wakeup_granularity *= factor;
5542 #ifdef CONFIG_SMP
5544 * This is how migration works:
5546 * 1) we queue a struct migration_req structure in the source CPU's
5547 * runqueue and wake up that CPU's migration thread.
5548 * 2) we down() the locked semaphore => thread blocks.
5549 * 3) migration thread wakes up (implicitly it forces the migrated
5550 * thread off the CPU)
5551 * 4) it gets the migration request and checks whether the migrated
5552 * task is still in the wrong runqueue.
5553 * 5) if it's in the wrong runqueue then the migration thread removes
5554 * it and puts it into the right queue.
5555 * 6) migration thread up()s the semaphore.
5556 * 7) we wake up and the migration is done.
5560 * Change a given task's CPU affinity. Migrate the thread to a
5561 * proper CPU and schedule it away if the CPU it's executing on
5562 * is removed from the allowed bitmask.
5564 * NOTE: the caller must have a valid reference to the task, the
5565 * task must not exit() & deallocate itself prematurely. The
5566 * call is not atomic; no spinlocks may be held.
5568 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5570 struct migration_req req;
5571 unsigned long flags;
5572 struct rq *rq;
5573 int ret = 0;
5575 rq = task_rq_lock(p, &flags);
5576 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5577 ret = -EINVAL;
5578 goto out;
5581 if (p->sched_class->set_cpus_allowed)
5582 p->sched_class->set_cpus_allowed(p, new_mask);
5583 else {
5584 p->cpus_allowed = *new_mask;
5585 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5588 /* Can the task run on the task's current CPU? If so, we're done */
5589 if (cpu_isset(task_cpu(p), *new_mask))
5590 goto out;
5592 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5593 /* Need help from migration thread: drop lock and wait. */
5594 task_rq_unlock(rq, &flags);
5595 wake_up_process(rq->migration_thread);
5596 wait_for_completion(&req.done);
5597 tlb_migrate_finish(p->mm);
5598 return 0;
5600 out:
5601 task_rq_unlock(rq, &flags);
5603 return ret;
5605 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5608 * Move (not current) task off this cpu, onto dest cpu. We're doing
5609 * this because either it can't run here any more (set_cpus_allowed()
5610 * away from this CPU, or CPU going down), or because we're
5611 * attempting to rebalance this task on exec (sched_exec).
5613 * So we race with normal scheduler movements, but that's OK, as long
5614 * as the task is no longer on this CPU.
5616 * Returns non-zero if task was successfully migrated.
5618 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5620 struct rq *rq_dest, *rq_src;
5621 int ret = 0, on_rq;
5623 if (unlikely(cpu_is_offline(dest_cpu)))
5624 return ret;
5626 rq_src = cpu_rq(src_cpu);
5627 rq_dest = cpu_rq(dest_cpu);
5629 double_rq_lock(rq_src, rq_dest);
5630 /* Already moved. */
5631 if (task_cpu(p) != src_cpu)
5632 goto out;
5633 /* Affinity changed (again). */
5634 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5635 goto out;
5637 on_rq = p->se.on_rq;
5638 if (on_rq)
5639 deactivate_task(rq_src, p, 0);
5641 set_task_cpu(p, dest_cpu);
5642 if (on_rq) {
5643 activate_task(rq_dest, p, 0);
5644 check_preempt_curr(rq_dest, p);
5646 ret = 1;
5647 out:
5648 double_rq_unlock(rq_src, rq_dest);
5649 return ret;
5653 * migration_thread - this is a highprio system thread that performs
5654 * thread migration by bumping thread off CPU then 'pushing' onto
5655 * another runqueue.
5657 static int migration_thread(void *data)
5659 int cpu = (long)data;
5660 struct rq *rq;
5662 rq = cpu_rq(cpu);
5663 BUG_ON(rq->migration_thread != current);
5665 set_current_state(TASK_INTERRUPTIBLE);
5666 while (!kthread_should_stop()) {
5667 struct migration_req *req;
5668 struct list_head *head;
5670 spin_lock_irq(&rq->lock);
5672 if (cpu_is_offline(cpu)) {
5673 spin_unlock_irq(&rq->lock);
5674 goto wait_to_die;
5677 if (rq->active_balance) {
5678 active_load_balance(rq, cpu);
5679 rq->active_balance = 0;
5682 head = &rq->migration_queue;
5684 if (list_empty(head)) {
5685 spin_unlock_irq(&rq->lock);
5686 schedule();
5687 set_current_state(TASK_INTERRUPTIBLE);
5688 continue;
5690 req = list_entry(head->next, struct migration_req, list);
5691 list_del_init(head->next);
5693 spin_unlock(&rq->lock);
5694 __migrate_task(req->task, cpu, req->dest_cpu);
5695 local_irq_enable();
5697 complete(&req->done);
5699 __set_current_state(TASK_RUNNING);
5700 return 0;
5702 wait_to_die:
5703 /* Wait for kthread_stop */
5704 set_current_state(TASK_INTERRUPTIBLE);
5705 while (!kthread_should_stop()) {
5706 schedule();
5707 set_current_state(TASK_INTERRUPTIBLE);
5709 __set_current_state(TASK_RUNNING);
5710 return 0;
5713 #ifdef CONFIG_HOTPLUG_CPU
5715 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5717 int ret;
5719 local_irq_disable();
5720 ret = __migrate_task(p, src_cpu, dest_cpu);
5721 local_irq_enable();
5722 return ret;
5726 * Figure out where task on dead CPU should go, use force if necessary.
5727 * NOTE: interrupts should be disabled by the caller
5729 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5731 unsigned long flags;
5732 cpumask_t mask;
5733 struct rq *rq;
5734 int dest_cpu;
5736 do {
5737 /* On same node? */
5738 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5739 cpus_and(mask, mask, p->cpus_allowed);
5740 dest_cpu = any_online_cpu(mask);
5742 /* On any allowed CPU? */
5743 if (dest_cpu >= nr_cpu_ids)
5744 dest_cpu = any_online_cpu(p->cpus_allowed);
5746 /* No more Mr. Nice Guy. */
5747 if (dest_cpu >= nr_cpu_ids) {
5748 cpumask_t cpus_allowed;
5750 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5752 * Try to stay on the same cpuset, where the
5753 * current cpuset may be a subset of all cpus.
5754 * The cpuset_cpus_allowed_locked() variant of
5755 * cpuset_cpus_allowed() will not block. It must be
5756 * called within calls to cpuset_lock/cpuset_unlock.
5758 rq = task_rq_lock(p, &flags);
5759 p->cpus_allowed = cpus_allowed;
5760 dest_cpu = any_online_cpu(p->cpus_allowed);
5761 task_rq_unlock(rq, &flags);
5764 * Don't tell them about moving exiting tasks or
5765 * kernel threads (both mm NULL), since they never
5766 * leave kernel.
5768 if (p->mm && printk_ratelimit()) {
5769 printk(KERN_INFO "process %d (%s) no "
5770 "longer affine to cpu%d\n",
5771 task_pid_nr(p), p->comm, dead_cpu);
5774 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5778 * While a dead CPU has no uninterruptible tasks queued at this point,
5779 * it might still have a nonzero ->nr_uninterruptible counter, because
5780 * for performance reasons the counter is not stricly tracking tasks to
5781 * their home CPUs. So we just add the counter to another CPU's counter,
5782 * to keep the global sum constant after CPU-down:
5784 static void migrate_nr_uninterruptible(struct rq *rq_src)
5786 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5787 unsigned long flags;
5789 local_irq_save(flags);
5790 double_rq_lock(rq_src, rq_dest);
5791 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5792 rq_src->nr_uninterruptible = 0;
5793 double_rq_unlock(rq_src, rq_dest);
5794 local_irq_restore(flags);
5797 /* Run through task list and migrate tasks from the dead cpu. */
5798 static void migrate_live_tasks(int src_cpu)
5800 struct task_struct *p, *t;
5802 read_lock(&tasklist_lock);
5804 do_each_thread(t, p) {
5805 if (p == current)
5806 continue;
5808 if (task_cpu(p) == src_cpu)
5809 move_task_off_dead_cpu(src_cpu, p);
5810 } while_each_thread(t, p);
5812 read_unlock(&tasklist_lock);
5816 * Schedules idle task to be the next runnable task on current CPU.
5817 * It does so by boosting its priority to highest possible.
5818 * Used by CPU offline code.
5820 void sched_idle_next(void)
5822 int this_cpu = smp_processor_id();
5823 struct rq *rq = cpu_rq(this_cpu);
5824 struct task_struct *p = rq->idle;
5825 unsigned long flags;
5827 /* cpu has to be offline */
5828 BUG_ON(cpu_online(this_cpu));
5831 * Strictly not necessary since rest of the CPUs are stopped by now
5832 * and interrupts disabled on the current cpu.
5834 spin_lock_irqsave(&rq->lock, flags);
5836 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5838 update_rq_clock(rq);
5839 activate_task(rq, p, 0);
5841 spin_unlock_irqrestore(&rq->lock, flags);
5845 * Ensures that the idle task is using init_mm right before its cpu goes
5846 * offline.
5848 void idle_task_exit(void)
5850 struct mm_struct *mm = current->active_mm;
5852 BUG_ON(cpu_online(smp_processor_id()));
5854 if (mm != &init_mm)
5855 switch_mm(mm, &init_mm, current);
5856 mmdrop(mm);
5859 /* called under rq->lock with disabled interrupts */
5860 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5862 struct rq *rq = cpu_rq(dead_cpu);
5864 /* Must be exiting, otherwise would be on tasklist. */
5865 BUG_ON(!p->exit_state);
5867 /* Cannot have done final schedule yet: would have vanished. */
5868 BUG_ON(p->state == TASK_DEAD);
5870 get_task_struct(p);
5873 * Drop lock around migration; if someone else moves it,
5874 * that's OK. No task can be added to this CPU, so iteration is
5875 * fine.
5877 spin_unlock_irq(&rq->lock);
5878 move_task_off_dead_cpu(dead_cpu, p);
5879 spin_lock_irq(&rq->lock);
5881 put_task_struct(p);
5884 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5885 static void migrate_dead_tasks(unsigned int dead_cpu)
5887 struct rq *rq = cpu_rq(dead_cpu);
5888 struct task_struct *next;
5890 for ( ; ; ) {
5891 if (!rq->nr_running)
5892 break;
5893 update_rq_clock(rq);
5894 next = pick_next_task(rq, rq->curr);
5895 if (!next)
5896 break;
5897 migrate_dead(dead_cpu, next);
5901 #endif /* CONFIG_HOTPLUG_CPU */
5903 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5905 static struct ctl_table sd_ctl_dir[] = {
5907 .procname = "sched_domain",
5908 .mode = 0555,
5910 {0, },
5913 static struct ctl_table sd_ctl_root[] = {
5915 .ctl_name = CTL_KERN,
5916 .procname = "kernel",
5917 .mode = 0555,
5918 .child = sd_ctl_dir,
5920 {0, },
5923 static struct ctl_table *sd_alloc_ctl_entry(int n)
5925 struct ctl_table *entry =
5926 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5928 return entry;
5931 static void sd_free_ctl_entry(struct ctl_table **tablep)
5933 struct ctl_table *entry;
5936 * In the intermediate directories, both the child directory and
5937 * procname are dynamically allocated and could fail but the mode
5938 * will always be set. In the lowest directory the names are
5939 * static strings and all have proc handlers.
5941 for (entry = *tablep; entry->mode; entry++) {
5942 if (entry->child)
5943 sd_free_ctl_entry(&entry->child);
5944 if (entry->proc_handler == NULL)
5945 kfree(entry->procname);
5948 kfree(*tablep);
5949 *tablep = NULL;
5952 static void
5953 set_table_entry(struct ctl_table *entry,
5954 const char *procname, void *data, int maxlen,
5955 mode_t mode, proc_handler *proc_handler)
5957 entry->procname = procname;
5958 entry->data = data;
5959 entry->maxlen = maxlen;
5960 entry->mode = mode;
5961 entry->proc_handler = proc_handler;
5964 static struct ctl_table *
5965 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5967 struct ctl_table *table = sd_alloc_ctl_entry(12);
5969 if (table == NULL)
5970 return NULL;
5972 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5973 sizeof(long), 0644, proc_doulongvec_minmax);
5974 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5975 sizeof(long), 0644, proc_doulongvec_minmax);
5976 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5977 sizeof(int), 0644, proc_dointvec_minmax);
5978 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5979 sizeof(int), 0644, proc_dointvec_minmax);
5980 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5981 sizeof(int), 0644, proc_dointvec_minmax);
5982 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5983 sizeof(int), 0644, proc_dointvec_minmax);
5984 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5985 sizeof(int), 0644, proc_dointvec_minmax);
5986 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5987 sizeof(int), 0644, proc_dointvec_minmax);
5988 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5989 sizeof(int), 0644, proc_dointvec_minmax);
5990 set_table_entry(&table[9], "cache_nice_tries",
5991 &sd->cache_nice_tries,
5992 sizeof(int), 0644, proc_dointvec_minmax);
5993 set_table_entry(&table[10], "flags", &sd->flags,
5994 sizeof(int), 0644, proc_dointvec_minmax);
5995 /* &table[11] is terminator */
5997 return table;
6000 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6002 struct ctl_table *entry, *table;
6003 struct sched_domain *sd;
6004 int domain_num = 0, i;
6005 char buf[32];
6007 for_each_domain(cpu, sd)
6008 domain_num++;
6009 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6010 if (table == NULL)
6011 return NULL;
6013 i = 0;
6014 for_each_domain(cpu, sd) {
6015 snprintf(buf, 32, "domain%d", i);
6016 entry->procname = kstrdup(buf, GFP_KERNEL);
6017 entry->mode = 0555;
6018 entry->child = sd_alloc_ctl_domain_table(sd);
6019 entry++;
6020 i++;
6022 return table;
6025 static struct ctl_table_header *sd_sysctl_header;
6026 static void register_sched_domain_sysctl(void)
6028 int i, cpu_num = num_online_cpus();
6029 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6030 char buf[32];
6032 WARN_ON(sd_ctl_dir[0].child);
6033 sd_ctl_dir[0].child = entry;
6035 if (entry == NULL)
6036 return;
6038 for_each_online_cpu(i) {
6039 snprintf(buf, 32, "cpu%d", i);
6040 entry->procname = kstrdup(buf, GFP_KERNEL);
6041 entry->mode = 0555;
6042 entry->child = sd_alloc_ctl_cpu_table(i);
6043 entry++;
6046 WARN_ON(sd_sysctl_header);
6047 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6050 /* may be called multiple times per register */
6051 static void unregister_sched_domain_sysctl(void)
6053 if (sd_sysctl_header)
6054 unregister_sysctl_table(sd_sysctl_header);
6055 sd_sysctl_header = NULL;
6056 if (sd_ctl_dir[0].child)
6057 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6059 #else
6060 static void register_sched_domain_sysctl(void)
6063 static void unregister_sched_domain_sysctl(void)
6066 #endif
6069 * migration_call - callback that gets triggered when a CPU is added.
6070 * Here we can start up the necessary migration thread for the new CPU.
6072 static int __cpuinit
6073 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6075 struct task_struct *p;
6076 int cpu = (long)hcpu;
6077 unsigned long flags;
6078 struct rq *rq;
6080 switch (action) {
6082 case CPU_UP_PREPARE:
6083 case CPU_UP_PREPARE_FROZEN:
6084 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6085 if (IS_ERR(p))
6086 return NOTIFY_BAD;
6087 kthread_bind(p, cpu);
6088 /* Must be high prio: stop_machine expects to yield to it. */
6089 rq = task_rq_lock(p, &flags);
6090 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6091 task_rq_unlock(rq, &flags);
6092 cpu_rq(cpu)->migration_thread = p;
6093 break;
6095 case CPU_ONLINE:
6096 case CPU_ONLINE_FROZEN:
6097 /* Strictly unnecessary, as first user will wake it. */
6098 wake_up_process(cpu_rq(cpu)->migration_thread);
6100 /* Update our root-domain */
6101 rq = cpu_rq(cpu);
6102 spin_lock_irqsave(&rq->lock, flags);
6103 if (rq->rd) {
6104 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6105 cpu_set(cpu, rq->rd->online);
6107 spin_unlock_irqrestore(&rq->lock, flags);
6108 break;
6110 #ifdef CONFIG_HOTPLUG_CPU
6111 case CPU_UP_CANCELED:
6112 case CPU_UP_CANCELED_FROZEN:
6113 if (!cpu_rq(cpu)->migration_thread)
6114 break;
6115 /* Unbind it from offline cpu so it can run. Fall thru. */
6116 kthread_bind(cpu_rq(cpu)->migration_thread,
6117 any_online_cpu(cpu_online_map));
6118 kthread_stop(cpu_rq(cpu)->migration_thread);
6119 cpu_rq(cpu)->migration_thread = NULL;
6120 break;
6122 case CPU_DEAD:
6123 case CPU_DEAD_FROZEN:
6124 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6125 migrate_live_tasks(cpu);
6126 rq = cpu_rq(cpu);
6127 kthread_stop(rq->migration_thread);
6128 rq->migration_thread = NULL;
6129 /* Idle task back to normal (off runqueue, low prio) */
6130 spin_lock_irq(&rq->lock);
6131 update_rq_clock(rq);
6132 deactivate_task(rq, rq->idle, 0);
6133 rq->idle->static_prio = MAX_PRIO;
6134 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6135 rq->idle->sched_class = &idle_sched_class;
6136 migrate_dead_tasks(cpu);
6137 spin_unlock_irq(&rq->lock);
6138 cpuset_unlock();
6139 migrate_nr_uninterruptible(rq);
6140 BUG_ON(rq->nr_running != 0);
6143 * No need to migrate the tasks: it was best-effort if
6144 * they didn't take sched_hotcpu_mutex. Just wake up
6145 * the requestors.
6147 spin_lock_irq(&rq->lock);
6148 while (!list_empty(&rq->migration_queue)) {
6149 struct migration_req *req;
6151 req = list_entry(rq->migration_queue.next,
6152 struct migration_req, list);
6153 list_del_init(&req->list);
6154 complete(&req->done);
6156 spin_unlock_irq(&rq->lock);
6157 break;
6159 case CPU_DYING:
6160 case CPU_DYING_FROZEN:
6161 /* Update our root-domain */
6162 rq = cpu_rq(cpu);
6163 spin_lock_irqsave(&rq->lock, flags);
6164 if (rq->rd) {
6165 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6166 cpu_clear(cpu, rq->rd->online);
6168 spin_unlock_irqrestore(&rq->lock, flags);
6169 break;
6170 #endif
6172 return NOTIFY_OK;
6175 /* Register at highest priority so that task migration (migrate_all_tasks)
6176 * happens before everything else.
6178 static struct notifier_block __cpuinitdata migration_notifier = {
6179 .notifier_call = migration_call,
6180 .priority = 10
6183 void __init migration_init(void)
6185 void *cpu = (void *)(long)smp_processor_id();
6186 int err;
6188 /* Start one for the boot CPU: */
6189 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6190 BUG_ON(err == NOTIFY_BAD);
6191 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6192 register_cpu_notifier(&migration_notifier);
6194 #endif
6196 #ifdef CONFIG_SMP
6198 #ifdef CONFIG_SCHED_DEBUG
6200 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6201 cpumask_t *groupmask)
6203 struct sched_group *group = sd->groups;
6204 char str[256];
6206 cpulist_scnprintf(str, sizeof(str), sd->span);
6207 cpus_clear(*groupmask);
6209 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6211 if (!(sd->flags & SD_LOAD_BALANCE)) {
6212 printk("does not load-balance\n");
6213 if (sd->parent)
6214 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6215 " has parent");
6216 return -1;
6219 printk(KERN_CONT "span %s\n", str);
6221 if (!cpu_isset(cpu, sd->span)) {
6222 printk(KERN_ERR "ERROR: domain->span does not contain "
6223 "CPU%d\n", cpu);
6225 if (!cpu_isset(cpu, group->cpumask)) {
6226 printk(KERN_ERR "ERROR: domain->groups does not contain"
6227 " CPU%d\n", cpu);
6230 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6231 do {
6232 if (!group) {
6233 printk("\n");
6234 printk(KERN_ERR "ERROR: group is NULL\n");
6235 break;
6238 if (!group->__cpu_power) {
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: domain->cpu_power not "
6241 "set\n");
6242 break;
6245 if (!cpus_weight(group->cpumask)) {
6246 printk(KERN_CONT "\n");
6247 printk(KERN_ERR "ERROR: empty group\n");
6248 break;
6251 if (cpus_intersects(*groupmask, group->cpumask)) {
6252 printk(KERN_CONT "\n");
6253 printk(KERN_ERR "ERROR: repeated CPUs\n");
6254 break;
6257 cpus_or(*groupmask, *groupmask, group->cpumask);
6259 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6260 printk(KERN_CONT " %s", str);
6262 group = group->next;
6263 } while (group != sd->groups);
6264 printk(KERN_CONT "\n");
6266 if (!cpus_equal(sd->span, *groupmask))
6267 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6269 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6270 printk(KERN_ERR "ERROR: parent span is not a superset "
6271 "of domain->span\n");
6272 return 0;
6275 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6277 cpumask_t *groupmask;
6278 int level = 0;
6280 if (!sd) {
6281 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6282 return;
6285 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6287 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6288 if (!groupmask) {
6289 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6290 return;
6293 for (;;) {
6294 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6295 break;
6296 level++;
6297 sd = sd->parent;
6298 if (!sd)
6299 break;
6301 kfree(groupmask);
6303 #else
6304 # define sched_domain_debug(sd, cpu) do { } while (0)
6305 #endif
6307 static int sd_degenerate(struct sched_domain *sd)
6309 if (cpus_weight(sd->span) == 1)
6310 return 1;
6312 /* Following flags need at least 2 groups */
6313 if (sd->flags & (SD_LOAD_BALANCE |
6314 SD_BALANCE_NEWIDLE |
6315 SD_BALANCE_FORK |
6316 SD_BALANCE_EXEC |
6317 SD_SHARE_CPUPOWER |
6318 SD_SHARE_PKG_RESOURCES)) {
6319 if (sd->groups != sd->groups->next)
6320 return 0;
6323 /* Following flags don't use groups */
6324 if (sd->flags & (SD_WAKE_IDLE |
6325 SD_WAKE_AFFINE |
6326 SD_WAKE_BALANCE))
6327 return 0;
6329 return 1;
6332 static int
6333 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6335 unsigned long cflags = sd->flags, pflags = parent->flags;
6337 if (sd_degenerate(parent))
6338 return 1;
6340 if (!cpus_equal(sd->span, parent->span))
6341 return 0;
6343 /* Does parent contain flags not in child? */
6344 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6345 if (cflags & SD_WAKE_AFFINE)
6346 pflags &= ~SD_WAKE_BALANCE;
6347 /* Flags needing groups don't count if only 1 group in parent */
6348 if (parent->groups == parent->groups->next) {
6349 pflags &= ~(SD_LOAD_BALANCE |
6350 SD_BALANCE_NEWIDLE |
6351 SD_BALANCE_FORK |
6352 SD_BALANCE_EXEC |
6353 SD_SHARE_CPUPOWER |
6354 SD_SHARE_PKG_RESOURCES);
6356 if (~cflags & pflags)
6357 return 0;
6359 return 1;
6362 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6364 unsigned long flags;
6365 const struct sched_class *class;
6367 spin_lock_irqsave(&rq->lock, flags);
6369 if (rq->rd) {
6370 struct root_domain *old_rd = rq->rd;
6372 for (class = sched_class_highest; class; class = class->next) {
6373 if (class->leave_domain)
6374 class->leave_domain(rq);
6377 cpu_clear(rq->cpu, old_rd->span);
6378 cpu_clear(rq->cpu, old_rd->online);
6380 if (atomic_dec_and_test(&old_rd->refcount))
6381 kfree(old_rd);
6384 atomic_inc(&rd->refcount);
6385 rq->rd = rd;
6387 cpu_set(rq->cpu, rd->span);
6388 if (cpu_isset(rq->cpu, cpu_online_map))
6389 cpu_set(rq->cpu, rd->online);
6391 for (class = sched_class_highest; class; class = class->next) {
6392 if (class->join_domain)
6393 class->join_domain(rq);
6396 spin_unlock_irqrestore(&rq->lock, flags);
6399 static void init_rootdomain(struct root_domain *rd)
6401 memset(rd, 0, sizeof(*rd));
6403 cpus_clear(rd->span);
6404 cpus_clear(rd->online);
6406 cpupri_init(&rd->cpupri);
6409 static void init_defrootdomain(void)
6411 init_rootdomain(&def_root_domain);
6412 atomic_set(&def_root_domain.refcount, 1);
6415 static struct root_domain *alloc_rootdomain(void)
6417 struct root_domain *rd;
6419 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6420 if (!rd)
6421 return NULL;
6423 init_rootdomain(rd);
6425 return rd;
6429 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6430 * hold the hotplug lock.
6432 static void
6433 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6435 struct rq *rq = cpu_rq(cpu);
6436 struct sched_domain *tmp;
6438 /* Remove the sched domains which do not contribute to scheduling. */
6439 for (tmp = sd; tmp; tmp = tmp->parent) {
6440 struct sched_domain *parent = tmp->parent;
6441 if (!parent)
6442 break;
6443 if (sd_parent_degenerate(tmp, parent)) {
6444 tmp->parent = parent->parent;
6445 if (parent->parent)
6446 parent->parent->child = tmp;
6450 if (sd && sd_degenerate(sd)) {
6451 sd = sd->parent;
6452 if (sd)
6453 sd->child = NULL;
6456 sched_domain_debug(sd, cpu);
6458 rq_attach_root(rq, rd);
6459 rcu_assign_pointer(rq->sd, sd);
6462 /* cpus with isolated domains */
6463 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6465 /* Setup the mask of cpus configured for isolated domains */
6466 static int __init isolated_cpu_setup(char *str)
6468 int ints[NR_CPUS], i;
6470 str = get_options(str, ARRAY_SIZE(ints), ints);
6471 cpus_clear(cpu_isolated_map);
6472 for (i = 1; i <= ints[0]; i++)
6473 if (ints[i] < NR_CPUS)
6474 cpu_set(ints[i], cpu_isolated_map);
6475 return 1;
6478 __setup("isolcpus=", isolated_cpu_setup);
6481 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6482 * to a function which identifies what group(along with sched group) a CPU
6483 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6484 * (due to the fact that we keep track of groups covered with a cpumask_t).
6486 * init_sched_build_groups will build a circular linked list of the groups
6487 * covered by the given span, and will set each group's ->cpumask correctly,
6488 * and ->cpu_power to 0.
6490 static void
6491 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6492 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6493 struct sched_group **sg,
6494 cpumask_t *tmpmask),
6495 cpumask_t *covered, cpumask_t *tmpmask)
6497 struct sched_group *first = NULL, *last = NULL;
6498 int i;
6500 cpus_clear(*covered);
6502 for_each_cpu_mask(i, *span) {
6503 struct sched_group *sg;
6504 int group = group_fn(i, cpu_map, &sg, tmpmask);
6505 int j;
6507 if (cpu_isset(i, *covered))
6508 continue;
6510 cpus_clear(sg->cpumask);
6511 sg->__cpu_power = 0;
6513 for_each_cpu_mask(j, *span) {
6514 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6515 continue;
6517 cpu_set(j, *covered);
6518 cpu_set(j, sg->cpumask);
6520 if (!first)
6521 first = sg;
6522 if (last)
6523 last->next = sg;
6524 last = sg;
6526 last->next = first;
6529 #define SD_NODES_PER_DOMAIN 16
6531 #ifdef CONFIG_NUMA
6534 * find_next_best_node - find the next node to include in a sched_domain
6535 * @node: node whose sched_domain we're building
6536 * @used_nodes: nodes already in the sched_domain
6538 * Find the next node to include in a given scheduling domain. Simply
6539 * finds the closest node not already in the @used_nodes map.
6541 * Should use nodemask_t.
6543 static int find_next_best_node(int node, nodemask_t *used_nodes)
6545 int i, n, val, min_val, best_node = 0;
6547 min_val = INT_MAX;
6549 for (i = 0; i < MAX_NUMNODES; i++) {
6550 /* Start at @node */
6551 n = (node + i) % MAX_NUMNODES;
6553 if (!nr_cpus_node(n))
6554 continue;
6556 /* Skip already used nodes */
6557 if (node_isset(n, *used_nodes))
6558 continue;
6560 /* Simple min distance search */
6561 val = node_distance(node, n);
6563 if (val < min_val) {
6564 min_val = val;
6565 best_node = n;
6569 node_set(best_node, *used_nodes);
6570 return best_node;
6574 * sched_domain_node_span - get a cpumask for a node's sched_domain
6575 * @node: node whose cpumask we're constructing
6576 * @span: resulting cpumask
6578 * Given a node, construct a good cpumask for its sched_domain to span. It
6579 * should be one that prevents unnecessary balancing, but also spreads tasks
6580 * out optimally.
6582 static void sched_domain_node_span(int node, cpumask_t *span)
6584 nodemask_t used_nodes;
6585 node_to_cpumask_ptr(nodemask, node);
6586 int i;
6588 cpus_clear(*span);
6589 nodes_clear(used_nodes);
6591 cpus_or(*span, *span, *nodemask);
6592 node_set(node, used_nodes);
6594 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6595 int next_node = find_next_best_node(node, &used_nodes);
6597 node_to_cpumask_ptr_next(nodemask, next_node);
6598 cpus_or(*span, *span, *nodemask);
6601 #endif
6603 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6606 * SMT sched-domains:
6608 #ifdef CONFIG_SCHED_SMT
6609 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6610 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6612 static int
6613 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6614 cpumask_t *unused)
6616 if (sg)
6617 *sg = &per_cpu(sched_group_cpus, cpu);
6618 return cpu;
6620 #endif
6623 * multi-core sched-domains:
6625 #ifdef CONFIG_SCHED_MC
6626 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6627 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6628 #endif
6630 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6631 static int
6632 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6633 cpumask_t *mask)
6635 int group;
6637 *mask = per_cpu(cpu_sibling_map, cpu);
6638 cpus_and(*mask, *mask, *cpu_map);
6639 group = first_cpu(*mask);
6640 if (sg)
6641 *sg = &per_cpu(sched_group_core, group);
6642 return group;
6644 #elif defined(CONFIG_SCHED_MC)
6645 static int
6646 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6647 cpumask_t *unused)
6649 if (sg)
6650 *sg = &per_cpu(sched_group_core, cpu);
6651 return cpu;
6653 #endif
6655 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6656 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6658 static int
6659 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6660 cpumask_t *mask)
6662 int group;
6663 #ifdef CONFIG_SCHED_MC
6664 *mask = cpu_coregroup_map(cpu);
6665 cpus_and(*mask, *mask, *cpu_map);
6666 group = first_cpu(*mask);
6667 #elif defined(CONFIG_SCHED_SMT)
6668 *mask = per_cpu(cpu_sibling_map, cpu);
6669 cpus_and(*mask, *mask, *cpu_map);
6670 group = first_cpu(*mask);
6671 #else
6672 group = cpu;
6673 #endif
6674 if (sg)
6675 *sg = &per_cpu(sched_group_phys, group);
6676 return group;
6679 #ifdef CONFIG_NUMA
6681 * The init_sched_build_groups can't handle what we want to do with node
6682 * groups, so roll our own. Now each node has its own list of groups which
6683 * gets dynamically allocated.
6685 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6686 static struct sched_group ***sched_group_nodes_bycpu;
6688 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6689 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6691 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6692 struct sched_group **sg, cpumask_t *nodemask)
6694 int group;
6696 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6697 cpus_and(*nodemask, *nodemask, *cpu_map);
6698 group = first_cpu(*nodemask);
6700 if (sg)
6701 *sg = &per_cpu(sched_group_allnodes, group);
6702 return group;
6705 static void init_numa_sched_groups_power(struct sched_group *group_head)
6707 struct sched_group *sg = group_head;
6708 int j;
6710 if (!sg)
6711 return;
6712 do {
6713 for_each_cpu_mask(j, sg->cpumask) {
6714 struct sched_domain *sd;
6716 sd = &per_cpu(phys_domains, j);
6717 if (j != first_cpu(sd->groups->cpumask)) {
6719 * Only add "power" once for each
6720 * physical package.
6722 continue;
6725 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6727 sg = sg->next;
6728 } while (sg != group_head);
6730 #endif
6732 #ifdef CONFIG_NUMA
6733 /* Free memory allocated for various sched_group structures */
6734 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6736 int cpu, i;
6738 for_each_cpu_mask(cpu, *cpu_map) {
6739 struct sched_group **sched_group_nodes
6740 = sched_group_nodes_bycpu[cpu];
6742 if (!sched_group_nodes)
6743 continue;
6745 for (i = 0; i < MAX_NUMNODES; i++) {
6746 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6748 *nodemask = node_to_cpumask(i);
6749 cpus_and(*nodemask, *nodemask, *cpu_map);
6750 if (cpus_empty(*nodemask))
6751 continue;
6753 if (sg == NULL)
6754 continue;
6755 sg = sg->next;
6756 next_sg:
6757 oldsg = sg;
6758 sg = sg->next;
6759 kfree(oldsg);
6760 if (oldsg != sched_group_nodes[i])
6761 goto next_sg;
6763 kfree(sched_group_nodes);
6764 sched_group_nodes_bycpu[cpu] = NULL;
6767 #else
6768 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6771 #endif
6774 * Initialize sched groups cpu_power.
6776 * cpu_power indicates the capacity of sched group, which is used while
6777 * distributing the load between different sched groups in a sched domain.
6778 * Typically cpu_power for all the groups in a sched domain will be same unless
6779 * there are asymmetries in the topology. If there are asymmetries, group
6780 * having more cpu_power will pickup more load compared to the group having
6781 * less cpu_power.
6783 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6784 * the maximum number of tasks a group can handle in the presence of other idle
6785 * or lightly loaded groups in the same sched domain.
6787 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6789 struct sched_domain *child;
6790 struct sched_group *group;
6792 WARN_ON(!sd || !sd->groups);
6794 if (cpu != first_cpu(sd->groups->cpumask))
6795 return;
6797 child = sd->child;
6799 sd->groups->__cpu_power = 0;
6802 * For perf policy, if the groups in child domain share resources
6803 * (for example cores sharing some portions of the cache hierarchy
6804 * or SMT), then set this domain groups cpu_power such that each group
6805 * can handle only one task, when there are other idle groups in the
6806 * same sched domain.
6808 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6809 (child->flags &
6810 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6811 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6812 return;
6816 * add cpu_power of each child group to this groups cpu_power
6818 group = child->groups;
6819 do {
6820 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6821 group = group->next;
6822 } while (group != child->groups);
6826 * Initializers for schedule domains
6827 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6830 #define SD_INIT(sd, type) sd_init_##type(sd)
6831 #define SD_INIT_FUNC(type) \
6832 static noinline void sd_init_##type(struct sched_domain *sd) \
6834 memset(sd, 0, sizeof(*sd)); \
6835 *sd = SD_##type##_INIT; \
6836 sd->level = SD_LV_##type; \
6839 SD_INIT_FUNC(CPU)
6840 #ifdef CONFIG_NUMA
6841 SD_INIT_FUNC(ALLNODES)
6842 SD_INIT_FUNC(NODE)
6843 #endif
6844 #ifdef CONFIG_SCHED_SMT
6845 SD_INIT_FUNC(SIBLING)
6846 #endif
6847 #ifdef CONFIG_SCHED_MC
6848 SD_INIT_FUNC(MC)
6849 #endif
6852 * To minimize stack usage kmalloc room for cpumasks and share the
6853 * space as the usage in build_sched_domains() dictates. Used only
6854 * if the amount of space is significant.
6856 struct allmasks {
6857 cpumask_t tmpmask; /* make this one first */
6858 union {
6859 cpumask_t nodemask;
6860 cpumask_t this_sibling_map;
6861 cpumask_t this_core_map;
6863 cpumask_t send_covered;
6865 #ifdef CONFIG_NUMA
6866 cpumask_t domainspan;
6867 cpumask_t covered;
6868 cpumask_t notcovered;
6869 #endif
6872 #if NR_CPUS > 128
6873 #define SCHED_CPUMASK_ALLOC 1
6874 #define SCHED_CPUMASK_FREE(v) kfree(v)
6875 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6876 #else
6877 #define SCHED_CPUMASK_ALLOC 0
6878 #define SCHED_CPUMASK_FREE(v)
6879 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6880 #endif
6882 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6883 ((unsigned long)(a) + offsetof(struct allmasks, v))
6885 static int default_relax_domain_level = -1;
6887 static int __init setup_relax_domain_level(char *str)
6889 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6890 return 1;
6892 __setup("relax_domain_level=", setup_relax_domain_level);
6894 static void set_domain_attribute(struct sched_domain *sd,
6895 struct sched_domain_attr *attr)
6897 int request;
6899 if (!attr || attr->relax_domain_level < 0) {
6900 if (default_relax_domain_level < 0)
6901 return;
6902 else
6903 request = default_relax_domain_level;
6904 } else
6905 request = attr->relax_domain_level;
6906 if (request < sd->level) {
6907 /* turn off idle balance on this domain */
6908 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6909 } else {
6910 /* turn on idle balance on this domain */
6911 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6916 * Build sched domains for a given set of cpus and attach the sched domains
6917 * to the individual cpus
6919 static int __build_sched_domains(const cpumask_t *cpu_map,
6920 struct sched_domain_attr *attr)
6922 int i;
6923 struct root_domain *rd;
6924 SCHED_CPUMASK_DECLARE(allmasks);
6925 cpumask_t *tmpmask;
6926 #ifdef CONFIG_NUMA
6927 struct sched_group **sched_group_nodes = NULL;
6928 int sd_allnodes = 0;
6931 * Allocate the per-node list of sched groups
6933 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6934 GFP_KERNEL);
6935 if (!sched_group_nodes) {
6936 printk(KERN_WARNING "Can not alloc sched group node list\n");
6937 return -ENOMEM;
6939 #endif
6941 rd = alloc_rootdomain();
6942 if (!rd) {
6943 printk(KERN_WARNING "Cannot alloc root domain\n");
6944 #ifdef CONFIG_NUMA
6945 kfree(sched_group_nodes);
6946 #endif
6947 return -ENOMEM;
6950 #if SCHED_CPUMASK_ALLOC
6951 /* get space for all scratch cpumask variables */
6952 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6953 if (!allmasks) {
6954 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6955 kfree(rd);
6956 #ifdef CONFIG_NUMA
6957 kfree(sched_group_nodes);
6958 #endif
6959 return -ENOMEM;
6961 #endif
6962 tmpmask = (cpumask_t *)allmasks;
6965 #ifdef CONFIG_NUMA
6966 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6967 #endif
6970 * Set up domains for cpus specified by the cpu_map.
6972 for_each_cpu_mask(i, *cpu_map) {
6973 struct sched_domain *sd = NULL, *p;
6974 SCHED_CPUMASK_VAR(nodemask, allmasks);
6976 *nodemask = node_to_cpumask(cpu_to_node(i));
6977 cpus_and(*nodemask, *nodemask, *cpu_map);
6979 #ifdef CONFIG_NUMA
6980 if (cpus_weight(*cpu_map) >
6981 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6982 sd = &per_cpu(allnodes_domains, i);
6983 SD_INIT(sd, ALLNODES);
6984 set_domain_attribute(sd, attr);
6985 sd->span = *cpu_map;
6986 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6987 p = sd;
6988 sd_allnodes = 1;
6989 } else
6990 p = NULL;
6992 sd = &per_cpu(node_domains, i);
6993 SD_INIT(sd, NODE);
6994 set_domain_attribute(sd, attr);
6995 sched_domain_node_span(cpu_to_node(i), &sd->span);
6996 sd->parent = p;
6997 if (p)
6998 p->child = sd;
6999 cpus_and(sd->span, sd->span, *cpu_map);
7000 #endif
7002 p = sd;
7003 sd = &per_cpu(phys_domains, i);
7004 SD_INIT(sd, CPU);
7005 set_domain_attribute(sd, attr);
7006 sd->span = *nodemask;
7007 sd->parent = p;
7008 if (p)
7009 p->child = sd;
7010 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7012 #ifdef CONFIG_SCHED_MC
7013 p = sd;
7014 sd = &per_cpu(core_domains, i);
7015 SD_INIT(sd, MC);
7016 set_domain_attribute(sd, attr);
7017 sd->span = cpu_coregroup_map(i);
7018 cpus_and(sd->span, sd->span, *cpu_map);
7019 sd->parent = p;
7020 p->child = sd;
7021 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7022 #endif
7024 #ifdef CONFIG_SCHED_SMT
7025 p = sd;
7026 sd = &per_cpu(cpu_domains, i);
7027 SD_INIT(sd, SIBLING);
7028 set_domain_attribute(sd, attr);
7029 sd->span = per_cpu(cpu_sibling_map, i);
7030 cpus_and(sd->span, sd->span, *cpu_map);
7031 sd->parent = p;
7032 p->child = sd;
7033 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7034 #endif
7037 #ifdef CONFIG_SCHED_SMT
7038 /* Set up CPU (sibling) groups */
7039 for_each_cpu_mask(i, *cpu_map) {
7040 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7041 SCHED_CPUMASK_VAR(send_covered, allmasks);
7043 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7044 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7045 if (i != first_cpu(*this_sibling_map))
7046 continue;
7048 init_sched_build_groups(this_sibling_map, cpu_map,
7049 &cpu_to_cpu_group,
7050 send_covered, tmpmask);
7052 #endif
7054 #ifdef CONFIG_SCHED_MC
7055 /* Set up multi-core groups */
7056 for_each_cpu_mask(i, *cpu_map) {
7057 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7058 SCHED_CPUMASK_VAR(send_covered, allmasks);
7060 *this_core_map = cpu_coregroup_map(i);
7061 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7062 if (i != first_cpu(*this_core_map))
7063 continue;
7065 init_sched_build_groups(this_core_map, cpu_map,
7066 &cpu_to_core_group,
7067 send_covered, tmpmask);
7069 #endif
7071 /* Set up physical groups */
7072 for (i = 0; i < MAX_NUMNODES; i++) {
7073 SCHED_CPUMASK_VAR(nodemask, allmasks);
7074 SCHED_CPUMASK_VAR(send_covered, allmasks);
7076 *nodemask = node_to_cpumask(i);
7077 cpus_and(*nodemask, *nodemask, *cpu_map);
7078 if (cpus_empty(*nodemask))
7079 continue;
7081 init_sched_build_groups(nodemask, cpu_map,
7082 &cpu_to_phys_group,
7083 send_covered, tmpmask);
7086 #ifdef CONFIG_NUMA
7087 /* Set up node groups */
7088 if (sd_allnodes) {
7089 SCHED_CPUMASK_VAR(send_covered, allmasks);
7091 init_sched_build_groups(cpu_map, cpu_map,
7092 &cpu_to_allnodes_group,
7093 send_covered, tmpmask);
7096 for (i = 0; i < MAX_NUMNODES; i++) {
7097 /* Set up node groups */
7098 struct sched_group *sg, *prev;
7099 SCHED_CPUMASK_VAR(nodemask, allmasks);
7100 SCHED_CPUMASK_VAR(domainspan, allmasks);
7101 SCHED_CPUMASK_VAR(covered, allmasks);
7102 int j;
7104 *nodemask = node_to_cpumask(i);
7105 cpus_clear(*covered);
7107 cpus_and(*nodemask, *nodemask, *cpu_map);
7108 if (cpus_empty(*nodemask)) {
7109 sched_group_nodes[i] = NULL;
7110 continue;
7113 sched_domain_node_span(i, domainspan);
7114 cpus_and(*domainspan, *domainspan, *cpu_map);
7116 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7117 if (!sg) {
7118 printk(KERN_WARNING "Can not alloc domain group for "
7119 "node %d\n", i);
7120 goto error;
7122 sched_group_nodes[i] = sg;
7123 for_each_cpu_mask(j, *nodemask) {
7124 struct sched_domain *sd;
7126 sd = &per_cpu(node_domains, j);
7127 sd->groups = sg;
7129 sg->__cpu_power = 0;
7130 sg->cpumask = *nodemask;
7131 sg->next = sg;
7132 cpus_or(*covered, *covered, *nodemask);
7133 prev = sg;
7135 for (j = 0; j < MAX_NUMNODES; j++) {
7136 SCHED_CPUMASK_VAR(notcovered, allmasks);
7137 int n = (i + j) % MAX_NUMNODES;
7138 node_to_cpumask_ptr(pnodemask, n);
7140 cpus_complement(*notcovered, *covered);
7141 cpus_and(*tmpmask, *notcovered, *cpu_map);
7142 cpus_and(*tmpmask, *tmpmask, *domainspan);
7143 if (cpus_empty(*tmpmask))
7144 break;
7146 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7147 if (cpus_empty(*tmpmask))
7148 continue;
7150 sg = kmalloc_node(sizeof(struct sched_group),
7151 GFP_KERNEL, i);
7152 if (!sg) {
7153 printk(KERN_WARNING
7154 "Can not alloc domain group for node %d\n", j);
7155 goto error;
7157 sg->__cpu_power = 0;
7158 sg->cpumask = *tmpmask;
7159 sg->next = prev->next;
7160 cpus_or(*covered, *covered, *tmpmask);
7161 prev->next = sg;
7162 prev = sg;
7165 #endif
7167 /* Calculate CPU power for physical packages and nodes */
7168 #ifdef CONFIG_SCHED_SMT
7169 for_each_cpu_mask(i, *cpu_map) {
7170 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7172 init_sched_groups_power(i, sd);
7174 #endif
7175 #ifdef CONFIG_SCHED_MC
7176 for_each_cpu_mask(i, *cpu_map) {
7177 struct sched_domain *sd = &per_cpu(core_domains, i);
7179 init_sched_groups_power(i, sd);
7181 #endif
7183 for_each_cpu_mask(i, *cpu_map) {
7184 struct sched_domain *sd = &per_cpu(phys_domains, i);
7186 init_sched_groups_power(i, sd);
7189 #ifdef CONFIG_NUMA
7190 for (i = 0; i < MAX_NUMNODES; i++)
7191 init_numa_sched_groups_power(sched_group_nodes[i]);
7193 if (sd_allnodes) {
7194 struct sched_group *sg;
7196 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7197 tmpmask);
7198 init_numa_sched_groups_power(sg);
7200 #endif
7202 /* Attach the domains */
7203 for_each_cpu_mask(i, *cpu_map) {
7204 struct sched_domain *sd;
7205 #ifdef CONFIG_SCHED_SMT
7206 sd = &per_cpu(cpu_domains, i);
7207 #elif defined(CONFIG_SCHED_MC)
7208 sd = &per_cpu(core_domains, i);
7209 #else
7210 sd = &per_cpu(phys_domains, i);
7211 #endif
7212 cpu_attach_domain(sd, rd, i);
7215 SCHED_CPUMASK_FREE((void *)allmasks);
7216 return 0;
7218 #ifdef CONFIG_NUMA
7219 error:
7220 free_sched_groups(cpu_map, tmpmask);
7221 SCHED_CPUMASK_FREE((void *)allmasks);
7222 return -ENOMEM;
7223 #endif
7226 static int build_sched_domains(const cpumask_t *cpu_map)
7228 return __build_sched_domains(cpu_map, NULL);
7231 static cpumask_t *doms_cur; /* current sched domains */
7232 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7233 static struct sched_domain_attr *dattr_cur;
7234 /* attribues of custom domains in 'doms_cur' */
7237 * Special case: If a kmalloc of a doms_cur partition (array of
7238 * cpumask_t) fails, then fallback to a single sched domain,
7239 * as determined by the single cpumask_t fallback_doms.
7241 static cpumask_t fallback_doms;
7243 void __attribute__((weak)) arch_update_cpu_topology(void)
7248 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7249 * For now this just excludes isolated cpus, but could be used to
7250 * exclude other special cases in the future.
7252 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7254 int err;
7256 arch_update_cpu_topology();
7257 ndoms_cur = 1;
7258 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7259 if (!doms_cur)
7260 doms_cur = &fallback_doms;
7261 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7262 dattr_cur = NULL;
7263 err = build_sched_domains(doms_cur);
7264 register_sched_domain_sysctl();
7266 return err;
7269 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7270 cpumask_t *tmpmask)
7272 free_sched_groups(cpu_map, tmpmask);
7276 * Detach sched domains from a group of cpus specified in cpu_map
7277 * These cpus will now be attached to the NULL domain
7279 static void detach_destroy_domains(const cpumask_t *cpu_map)
7281 cpumask_t tmpmask;
7282 int i;
7284 unregister_sched_domain_sysctl();
7286 for_each_cpu_mask(i, *cpu_map)
7287 cpu_attach_domain(NULL, &def_root_domain, i);
7288 synchronize_sched();
7289 arch_destroy_sched_domains(cpu_map, &tmpmask);
7292 /* handle null as "default" */
7293 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7294 struct sched_domain_attr *new, int idx_new)
7296 struct sched_domain_attr tmp;
7298 /* fast path */
7299 if (!new && !cur)
7300 return 1;
7302 tmp = SD_ATTR_INIT;
7303 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7304 new ? (new + idx_new) : &tmp,
7305 sizeof(struct sched_domain_attr));
7309 * Partition sched domains as specified by the 'ndoms_new'
7310 * cpumasks in the array doms_new[] of cpumasks. This compares
7311 * doms_new[] to the current sched domain partitioning, doms_cur[].
7312 * It destroys each deleted domain and builds each new domain.
7314 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7315 * The masks don't intersect (don't overlap.) We should setup one
7316 * sched domain for each mask. CPUs not in any of the cpumasks will
7317 * not be load balanced. If the same cpumask appears both in the
7318 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7319 * it as it is.
7321 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7322 * ownership of it and will kfree it when done with it. If the caller
7323 * failed the kmalloc call, then it can pass in doms_new == NULL,
7324 * and partition_sched_domains() will fallback to the single partition
7325 * 'fallback_doms'.
7327 * Call with hotplug lock held
7329 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7330 struct sched_domain_attr *dattr_new)
7332 int i, j;
7334 mutex_lock(&sched_domains_mutex);
7336 /* always unregister in case we don't destroy any domains */
7337 unregister_sched_domain_sysctl();
7339 if (doms_new == NULL) {
7340 ndoms_new = 1;
7341 doms_new = &fallback_doms;
7342 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7343 dattr_new = NULL;
7346 /* Destroy deleted domains */
7347 for (i = 0; i < ndoms_cur; i++) {
7348 for (j = 0; j < ndoms_new; j++) {
7349 if (cpus_equal(doms_cur[i], doms_new[j])
7350 && dattrs_equal(dattr_cur, i, dattr_new, j))
7351 goto match1;
7353 /* no match - a current sched domain not in new doms_new[] */
7354 detach_destroy_domains(doms_cur + i);
7355 match1:
7359 /* Build new domains */
7360 for (i = 0; i < ndoms_new; i++) {
7361 for (j = 0; j < ndoms_cur; j++) {
7362 if (cpus_equal(doms_new[i], doms_cur[j])
7363 && dattrs_equal(dattr_new, i, dattr_cur, j))
7364 goto match2;
7366 /* no match - add a new doms_new */
7367 __build_sched_domains(doms_new + i,
7368 dattr_new ? dattr_new + i : NULL);
7369 match2:
7373 /* Remember the new sched domains */
7374 if (doms_cur != &fallback_doms)
7375 kfree(doms_cur);
7376 kfree(dattr_cur); /* kfree(NULL) is safe */
7377 doms_cur = doms_new;
7378 dattr_cur = dattr_new;
7379 ndoms_cur = ndoms_new;
7381 register_sched_domain_sysctl();
7383 mutex_unlock(&sched_domains_mutex);
7386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7387 int arch_reinit_sched_domains(void)
7389 int err;
7391 get_online_cpus();
7392 mutex_lock(&sched_domains_mutex);
7393 detach_destroy_domains(&cpu_online_map);
7394 err = arch_init_sched_domains(&cpu_online_map);
7395 mutex_unlock(&sched_domains_mutex);
7396 put_online_cpus();
7398 return err;
7401 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7403 int ret;
7405 if (buf[0] != '0' && buf[0] != '1')
7406 return -EINVAL;
7408 if (smt)
7409 sched_smt_power_savings = (buf[0] == '1');
7410 else
7411 sched_mc_power_savings = (buf[0] == '1');
7413 ret = arch_reinit_sched_domains();
7415 return ret ? ret : count;
7418 #ifdef CONFIG_SCHED_MC
7419 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7421 return sprintf(page, "%u\n", sched_mc_power_savings);
7423 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7424 const char *buf, size_t count)
7426 return sched_power_savings_store(buf, count, 0);
7428 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7429 sched_mc_power_savings_store);
7430 #endif
7432 #ifdef CONFIG_SCHED_SMT
7433 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7435 return sprintf(page, "%u\n", sched_smt_power_savings);
7437 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7438 const char *buf, size_t count)
7440 return sched_power_savings_store(buf, count, 1);
7442 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7443 sched_smt_power_savings_store);
7444 #endif
7446 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7448 int err = 0;
7450 #ifdef CONFIG_SCHED_SMT
7451 if (smt_capable())
7452 err = sysfs_create_file(&cls->kset.kobj,
7453 &attr_sched_smt_power_savings.attr);
7454 #endif
7455 #ifdef CONFIG_SCHED_MC
7456 if (!err && mc_capable())
7457 err = sysfs_create_file(&cls->kset.kobj,
7458 &attr_sched_mc_power_savings.attr);
7459 #endif
7460 return err;
7462 #endif
7465 * Force a reinitialization of the sched domains hierarchy. The domains
7466 * and groups cannot be updated in place without racing with the balancing
7467 * code, so we temporarily attach all running cpus to the NULL domain
7468 * which will prevent rebalancing while the sched domains are recalculated.
7470 static int update_sched_domains(struct notifier_block *nfb,
7471 unsigned long action, void *hcpu)
7473 switch (action) {
7474 case CPU_UP_PREPARE:
7475 case CPU_UP_PREPARE_FROZEN:
7476 case CPU_DOWN_PREPARE:
7477 case CPU_DOWN_PREPARE_FROZEN:
7478 detach_destroy_domains(&cpu_online_map);
7479 return NOTIFY_OK;
7481 case CPU_UP_CANCELED:
7482 case CPU_UP_CANCELED_FROZEN:
7483 case CPU_DOWN_FAILED:
7484 case CPU_DOWN_FAILED_FROZEN:
7485 case CPU_ONLINE:
7486 case CPU_ONLINE_FROZEN:
7487 case CPU_DEAD:
7488 case CPU_DEAD_FROZEN:
7490 * Fall through and re-initialise the domains.
7492 break;
7493 default:
7494 return NOTIFY_DONE;
7497 /* The hotplug lock is already held by cpu_up/cpu_down */
7498 arch_init_sched_domains(&cpu_online_map);
7500 return NOTIFY_OK;
7503 void __init sched_init_smp(void)
7505 cpumask_t non_isolated_cpus;
7507 #if defined(CONFIG_NUMA)
7508 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7509 GFP_KERNEL);
7510 BUG_ON(sched_group_nodes_bycpu == NULL);
7511 #endif
7512 get_online_cpus();
7513 mutex_lock(&sched_domains_mutex);
7514 arch_init_sched_domains(&cpu_online_map);
7515 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7516 if (cpus_empty(non_isolated_cpus))
7517 cpu_set(smp_processor_id(), non_isolated_cpus);
7518 mutex_unlock(&sched_domains_mutex);
7519 put_online_cpus();
7520 /* XXX: Theoretical race here - CPU may be hotplugged now */
7521 hotcpu_notifier(update_sched_domains, 0);
7522 init_hrtick();
7524 /* Move init over to a non-isolated CPU */
7525 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7526 BUG();
7527 sched_init_granularity();
7529 #else
7530 void __init sched_init_smp(void)
7532 sched_init_granularity();
7534 #endif /* CONFIG_SMP */
7536 int in_sched_functions(unsigned long addr)
7538 return in_lock_functions(addr) ||
7539 (addr >= (unsigned long)__sched_text_start
7540 && addr < (unsigned long)__sched_text_end);
7543 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7545 cfs_rq->tasks_timeline = RB_ROOT;
7546 INIT_LIST_HEAD(&cfs_rq->tasks);
7547 #ifdef CONFIG_FAIR_GROUP_SCHED
7548 cfs_rq->rq = rq;
7549 #endif
7550 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7553 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7555 struct rt_prio_array *array;
7556 int i;
7558 array = &rt_rq->active;
7559 for (i = 0; i < MAX_RT_PRIO; i++) {
7560 INIT_LIST_HEAD(array->xqueue + i);
7561 INIT_LIST_HEAD(array->squeue + i);
7562 __clear_bit(i, array->bitmap);
7564 /* delimiter for bitsearch: */
7565 __set_bit(MAX_RT_PRIO, array->bitmap);
7567 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7568 rt_rq->highest_prio = MAX_RT_PRIO;
7569 #endif
7570 #ifdef CONFIG_SMP
7571 rt_rq->rt_nr_migratory = 0;
7572 rt_rq->overloaded = 0;
7573 #endif
7575 rt_rq->rt_time = 0;
7576 rt_rq->rt_throttled = 0;
7577 rt_rq->rt_runtime = 0;
7578 spin_lock_init(&rt_rq->rt_runtime_lock);
7580 #ifdef CONFIG_RT_GROUP_SCHED
7581 rt_rq->rt_nr_boosted = 0;
7582 rt_rq->rq = rq;
7583 #endif
7586 #ifdef CONFIG_FAIR_GROUP_SCHED
7587 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7588 struct sched_entity *se, int cpu, int add,
7589 struct sched_entity *parent)
7591 struct rq *rq = cpu_rq(cpu);
7592 tg->cfs_rq[cpu] = cfs_rq;
7593 init_cfs_rq(cfs_rq, rq);
7594 cfs_rq->tg = tg;
7595 if (add)
7596 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7598 tg->se[cpu] = se;
7599 /* se could be NULL for init_task_group */
7600 if (!se)
7601 return;
7603 if (!parent)
7604 se->cfs_rq = &rq->cfs;
7605 else
7606 se->cfs_rq = parent->my_q;
7608 se->my_q = cfs_rq;
7609 se->load.weight = tg->shares;
7610 se->load.inv_weight = 0;
7611 se->parent = parent;
7613 #endif
7615 #ifdef CONFIG_RT_GROUP_SCHED
7616 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7617 struct sched_rt_entity *rt_se, int cpu, int add,
7618 struct sched_rt_entity *parent)
7620 struct rq *rq = cpu_rq(cpu);
7622 tg->rt_rq[cpu] = rt_rq;
7623 init_rt_rq(rt_rq, rq);
7624 rt_rq->tg = tg;
7625 rt_rq->rt_se = rt_se;
7626 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7627 if (add)
7628 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7630 tg->rt_se[cpu] = rt_se;
7631 if (!rt_se)
7632 return;
7634 if (!parent)
7635 rt_se->rt_rq = &rq->rt;
7636 else
7637 rt_se->rt_rq = parent->my_q;
7639 rt_se->rt_rq = &rq->rt;
7640 rt_se->my_q = rt_rq;
7641 rt_se->parent = parent;
7642 INIT_LIST_HEAD(&rt_se->run_list);
7644 #endif
7646 void __init sched_init(void)
7648 int i, j;
7649 unsigned long alloc_size = 0, ptr;
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7653 #endif
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7656 #endif
7657 #ifdef CONFIG_USER_SCHED
7658 alloc_size *= 2;
7659 #endif
7661 * As sched_init() is called before page_alloc is setup,
7662 * we use alloc_bootmem().
7664 if (alloc_size) {
7665 ptr = (unsigned long)alloc_bootmem(alloc_size);
7667 #ifdef CONFIG_FAIR_GROUP_SCHED
7668 init_task_group.se = (struct sched_entity **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7671 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7672 ptr += nr_cpu_ids * sizeof(void **);
7674 #ifdef CONFIG_USER_SCHED
7675 root_task_group.se = (struct sched_entity **)ptr;
7676 ptr += nr_cpu_ids * sizeof(void **);
7678 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7679 ptr += nr_cpu_ids * sizeof(void **);
7680 #endif
7681 #endif
7682 #ifdef CONFIG_RT_GROUP_SCHED
7683 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7684 ptr += nr_cpu_ids * sizeof(void **);
7686 init_task_group.rt_rq = (struct rt_rq **)ptr;
7687 ptr += nr_cpu_ids * sizeof(void **);
7689 #ifdef CONFIG_USER_SCHED
7690 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7691 ptr += nr_cpu_ids * sizeof(void **);
7693 root_task_group.rt_rq = (struct rt_rq **)ptr;
7694 ptr += nr_cpu_ids * sizeof(void **);
7695 #endif
7696 #endif
7699 #ifdef CONFIG_SMP
7700 init_defrootdomain();
7701 #endif
7703 init_rt_bandwidth(&def_rt_bandwidth,
7704 global_rt_period(), global_rt_runtime());
7706 #ifdef CONFIG_RT_GROUP_SCHED
7707 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7708 global_rt_period(), global_rt_runtime());
7709 #ifdef CONFIG_USER_SCHED
7710 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7711 global_rt_period(), RUNTIME_INF);
7712 #endif
7713 #endif
7715 #ifdef CONFIG_GROUP_SCHED
7716 list_add(&init_task_group.list, &task_groups);
7717 INIT_LIST_HEAD(&init_task_group.children);
7719 #ifdef CONFIG_USER_SCHED
7720 INIT_LIST_HEAD(&root_task_group.children);
7721 init_task_group.parent = &root_task_group;
7722 list_add(&init_task_group.siblings, &root_task_group.children);
7723 #endif
7724 #endif
7726 for_each_possible_cpu(i) {
7727 struct rq *rq;
7729 rq = cpu_rq(i);
7730 spin_lock_init(&rq->lock);
7731 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7732 rq->nr_running = 0;
7733 init_cfs_rq(&rq->cfs, rq);
7734 init_rt_rq(&rq->rt, rq);
7735 #ifdef CONFIG_FAIR_GROUP_SCHED
7736 init_task_group.shares = init_task_group_load;
7737 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7738 #ifdef CONFIG_CGROUP_SCHED
7740 * How much cpu bandwidth does init_task_group get?
7742 * In case of task-groups formed thr' the cgroup filesystem, it
7743 * gets 100% of the cpu resources in the system. This overall
7744 * system cpu resource is divided among the tasks of
7745 * init_task_group and its child task-groups in a fair manner,
7746 * based on each entity's (task or task-group's) weight
7747 * (se->load.weight).
7749 * In other words, if init_task_group has 10 tasks of weight
7750 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7751 * then A0's share of the cpu resource is:
7753 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7755 * We achieve this by letting init_task_group's tasks sit
7756 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7758 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7759 #elif defined CONFIG_USER_SCHED
7760 root_task_group.shares = NICE_0_LOAD;
7761 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7763 * In case of task-groups formed thr' the user id of tasks,
7764 * init_task_group represents tasks belonging to root user.
7765 * Hence it forms a sibling of all subsequent groups formed.
7766 * In this case, init_task_group gets only a fraction of overall
7767 * system cpu resource, based on the weight assigned to root
7768 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7769 * by letting tasks of init_task_group sit in a separate cfs_rq
7770 * (init_cfs_rq) and having one entity represent this group of
7771 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7773 init_tg_cfs_entry(&init_task_group,
7774 &per_cpu(init_cfs_rq, i),
7775 &per_cpu(init_sched_entity, i), i, 1,
7776 root_task_group.se[i]);
7778 #endif
7779 #endif /* CONFIG_FAIR_GROUP_SCHED */
7781 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7782 #ifdef CONFIG_RT_GROUP_SCHED
7783 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7784 #ifdef CONFIG_CGROUP_SCHED
7785 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7786 #elif defined CONFIG_USER_SCHED
7787 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7788 init_tg_rt_entry(&init_task_group,
7789 &per_cpu(init_rt_rq, i),
7790 &per_cpu(init_sched_rt_entity, i), i, 1,
7791 root_task_group.rt_se[i]);
7792 #endif
7793 #endif
7795 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7796 rq->cpu_load[j] = 0;
7797 #ifdef CONFIG_SMP
7798 rq->sd = NULL;
7799 rq->rd = NULL;
7800 rq->active_balance = 0;
7801 rq->next_balance = jiffies;
7802 rq->push_cpu = 0;
7803 rq->cpu = i;
7804 rq->migration_thread = NULL;
7805 INIT_LIST_HEAD(&rq->migration_queue);
7806 rq_attach_root(rq, &def_root_domain);
7807 #endif
7808 init_rq_hrtick(rq);
7809 atomic_set(&rq->nr_iowait, 0);
7812 set_load_weight(&init_task);
7814 #ifdef CONFIG_PREEMPT_NOTIFIERS
7815 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7816 #endif
7818 #ifdef CONFIG_SMP
7819 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7820 #endif
7822 #ifdef CONFIG_RT_MUTEXES
7823 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7824 #endif
7827 * The boot idle thread does lazy MMU switching as well:
7829 atomic_inc(&init_mm.mm_count);
7830 enter_lazy_tlb(&init_mm, current);
7833 * Make us the idle thread. Technically, schedule() should not be
7834 * called from this thread, however somewhere below it might be,
7835 * but because we are the idle thread, we just pick up running again
7836 * when this runqueue becomes "idle".
7838 init_idle(current, smp_processor_id());
7840 * During early bootup we pretend to be a normal task:
7842 current->sched_class = &fair_sched_class;
7844 scheduler_running = 1;
7847 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7848 void __might_sleep(char *file, int line)
7850 #ifdef in_atomic
7851 static unsigned long prev_jiffy; /* ratelimiting */
7853 if ((in_atomic() || irqs_disabled()) &&
7854 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7855 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7856 return;
7857 prev_jiffy = jiffies;
7858 printk(KERN_ERR "BUG: sleeping function called from invalid"
7859 " context at %s:%d\n", file, line);
7860 printk("in_atomic():%d, irqs_disabled():%d\n",
7861 in_atomic(), irqs_disabled());
7862 debug_show_held_locks(current);
7863 if (irqs_disabled())
7864 print_irqtrace_events(current);
7865 dump_stack();
7867 #endif
7869 EXPORT_SYMBOL(__might_sleep);
7870 #endif
7872 #ifdef CONFIG_MAGIC_SYSRQ
7873 static void normalize_task(struct rq *rq, struct task_struct *p)
7875 int on_rq;
7877 update_rq_clock(rq);
7878 on_rq = p->se.on_rq;
7879 if (on_rq)
7880 deactivate_task(rq, p, 0);
7881 __setscheduler(rq, p, SCHED_NORMAL, 0);
7882 if (on_rq) {
7883 activate_task(rq, p, 0);
7884 resched_task(rq->curr);
7888 void normalize_rt_tasks(void)
7890 struct task_struct *g, *p;
7891 unsigned long flags;
7892 struct rq *rq;
7894 read_lock_irqsave(&tasklist_lock, flags);
7895 do_each_thread(g, p) {
7897 * Only normalize user tasks:
7899 if (!p->mm)
7900 continue;
7902 p->se.exec_start = 0;
7903 #ifdef CONFIG_SCHEDSTATS
7904 p->se.wait_start = 0;
7905 p->se.sleep_start = 0;
7906 p->se.block_start = 0;
7907 #endif
7909 if (!rt_task(p)) {
7911 * Renice negative nice level userspace
7912 * tasks back to 0:
7914 if (TASK_NICE(p) < 0 && p->mm)
7915 set_user_nice(p, 0);
7916 continue;
7919 spin_lock(&p->pi_lock);
7920 rq = __task_rq_lock(p);
7922 normalize_task(rq, p);
7924 __task_rq_unlock(rq);
7925 spin_unlock(&p->pi_lock);
7926 } while_each_thread(g, p);
7928 read_unlock_irqrestore(&tasklist_lock, flags);
7931 #endif /* CONFIG_MAGIC_SYSRQ */
7933 #ifdef CONFIG_IA64
7935 * These functions are only useful for the IA64 MCA handling.
7937 * They can only be called when the whole system has been
7938 * stopped - every CPU needs to be quiescent, and no scheduling
7939 * activity can take place. Using them for anything else would
7940 * be a serious bug, and as a result, they aren't even visible
7941 * under any other configuration.
7945 * curr_task - return the current task for a given cpu.
7946 * @cpu: the processor in question.
7948 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7950 struct task_struct *curr_task(int cpu)
7952 return cpu_curr(cpu);
7956 * set_curr_task - set the current task for a given cpu.
7957 * @cpu: the processor in question.
7958 * @p: the task pointer to set.
7960 * Description: This function must only be used when non-maskable interrupts
7961 * are serviced on a separate stack. It allows the architecture to switch the
7962 * notion of the current task on a cpu in a non-blocking manner. This function
7963 * must be called with all CPU's synchronized, and interrupts disabled, the
7964 * and caller must save the original value of the current task (see
7965 * curr_task() above) and restore that value before reenabling interrupts and
7966 * re-starting the system.
7968 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7970 void set_curr_task(int cpu, struct task_struct *p)
7972 cpu_curr(cpu) = p;
7975 #endif
7977 #ifdef CONFIG_FAIR_GROUP_SCHED
7978 static void free_fair_sched_group(struct task_group *tg)
7980 int i;
7982 for_each_possible_cpu(i) {
7983 if (tg->cfs_rq)
7984 kfree(tg->cfs_rq[i]);
7985 if (tg->se)
7986 kfree(tg->se[i]);
7989 kfree(tg->cfs_rq);
7990 kfree(tg->se);
7993 static
7994 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7996 struct cfs_rq *cfs_rq;
7997 struct sched_entity *se, *parent_se;
7998 struct rq *rq;
7999 int i;
8001 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8002 if (!tg->cfs_rq)
8003 goto err;
8004 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8005 if (!tg->se)
8006 goto err;
8008 tg->shares = NICE_0_LOAD;
8010 for_each_possible_cpu(i) {
8011 rq = cpu_rq(i);
8013 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8014 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8015 if (!cfs_rq)
8016 goto err;
8018 se = kmalloc_node(sizeof(struct sched_entity),
8019 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8020 if (!se)
8021 goto err;
8023 parent_se = parent ? parent->se[i] : NULL;
8024 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8027 return 1;
8029 err:
8030 return 0;
8033 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8035 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8036 &cpu_rq(cpu)->leaf_cfs_rq_list);
8039 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8041 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8043 #else
8044 static inline void free_fair_sched_group(struct task_group *tg)
8048 static inline
8049 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8051 return 1;
8054 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8058 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8061 #endif
8063 #ifdef CONFIG_RT_GROUP_SCHED
8064 static void free_rt_sched_group(struct task_group *tg)
8066 int i;
8068 destroy_rt_bandwidth(&tg->rt_bandwidth);
8070 for_each_possible_cpu(i) {
8071 if (tg->rt_rq)
8072 kfree(tg->rt_rq[i]);
8073 if (tg->rt_se)
8074 kfree(tg->rt_se[i]);
8077 kfree(tg->rt_rq);
8078 kfree(tg->rt_se);
8081 static
8082 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8084 struct rt_rq *rt_rq;
8085 struct sched_rt_entity *rt_se, *parent_se;
8086 struct rq *rq;
8087 int i;
8089 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8090 if (!tg->rt_rq)
8091 goto err;
8092 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8093 if (!tg->rt_se)
8094 goto err;
8096 init_rt_bandwidth(&tg->rt_bandwidth,
8097 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8099 for_each_possible_cpu(i) {
8100 rq = cpu_rq(i);
8102 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8103 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8104 if (!rt_rq)
8105 goto err;
8107 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8108 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8109 if (!rt_se)
8110 goto err;
8112 parent_se = parent ? parent->rt_se[i] : NULL;
8113 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8116 return 1;
8118 err:
8119 return 0;
8122 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8124 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8125 &cpu_rq(cpu)->leaf_rt_rq_list);
8128 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8130 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8132 #else
8133 static inline void free_rt_sched_group(struct task_group *tg)
8137 static inline
8138 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8140 return 1;
8143 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8147 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8150 #endif
8152 #ifdef CONFIG_GROUP_SCHED
8153 static void free_sched_group(struct task_group *tg)
8155 free_fair_sched_group(tg);
8156 free_rt_sched_group(tg);
8157 kfree(tg);
8160 /* allocate runqueue etc for a new task group */
8161 struct task_group *sched_create_group(struct task_group *parent)
8163 struct task_group *tg;
8164 unsigned long flags;
8165 int i;
8167 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8168 if (!tg)
8169 return ERR_PTR(-ENOMEM);
8171 if (!alloc_fair_sched_group(tg, parent))
8172 goto err;
8174 if (!alloc_rt_sched_group(tg, parent))
8175 goto err;
8177 spin_lock_irqsave(&task_group_lock, flags);
8178 for_each_possible_cpu(i) {
8179 register_fair_sched_group(tg, i);
8180 register_rt_sched_group(tg, i);
8182 list_add_rcu(&tg->list, &task_groups);
8184 WARN_ON(!parent); /* root should already exist */
8186 tg->parent = parent;
8187 list_add_rcu(&tg->siblings, &parent->children);
8188 INIT_LIST_HEAD(&tg->children);
8189 spin_unlock_irqrestore(&task_group_lock, flags);
8191 return tg;
8193 err:
8194 free_sched_group(tg);
8195 return ERR_PTR(-ENOMEM);
8198 /* rcu callback to free various structures associated with a task group */
8199 static void free_sched_group_rcu(struct rcu_head *rhp)
8201 /* now it should be safe to free those cfs_rqs */
8202 free_sched_group(container_of(rhp, struct task_group, rcu));
8205 /* Destroy runqueue etc associated with a task group */
8206 void sched_destroy_group(struct task_group *tg)
8208 unsigned long flags;
8209 int i;
8211 spin_lock_irqsave(&task_group_lock, flags);
8212 for_each_possible_cpu(i) {
8213 unregister_fair_sched_group(tg, i);
8214 unregister_rt_sched_group(tg, i);
8216 list_del_rcu(&tg->list);
8217 list_del_rcu(&tg->siblings);
8218 spin_unlock_irqrestore(&task_group_lock, flags);
8220 /* wait for possible concurrent references to cfs_rqs complete */
8221 call_rcu(&tg->rcu, free_sched_group_rcu);
8224 /* change task's runqueue when it moves between groups.
8225 * The caller of this function should have put the task in its new group
8226 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8227 * reflect its new group.
8229 void sched_move_task(struct task_struct *tsk)
8231 int on_rq, running;
8232 unsigned long flags;
8233 struct rq *rq;
8235 rq = task_rq_lock(tsk, &flags);
8237 update_rq_clock(rq);
8239 running = task_current(rq, tsk);
8240 on_rq = tsk->se.on_rq;
8242 if (on_rq)
8243 dequeue_task(rq, tsk, 0);
8244 if (unlikely(running))
8245 tsk->sched_class->put_prev_task(rq, tsk);
8247 set_task_rq(tsk, task_cpu(tsk));
8249 #ifdef CONFIG_FAIR_GROUP_SCHED
8250 if (tsk->sched_class->moved_group)
8251 tsk->sched_class->moved_group(tsk);
8252 #endif
8254 if (unlikely(running))
8255 tsk->sched_class->set_curr_task(rq);
8256 if (on_rq)
8257 enqueue_task(rq, tsk, 0);
8259 task_rq_unlock(rq, &flags);
8261 #endif
8263 #ifdef CONFIG_FAIR_GROUP_SCHED
8264 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8266 struct cfs_rq *cfs_rq = se->cfs_rq;
8267 struct rq *rq = cfs_rq->rq;
8268 int on_rq;
8270 spin_lock_irq(&rq->lock);
8272 on_rq = se->on_rq;
8273 if (on_rq)
8274 dequeue_entity(cfs_rq, se, 0);
8276 se->load.weight = shares;
8277 se->load.inv_weight = 0;
8279 if (on_rq)
8280 enqueue_entity(cfs_rq, se, 0);
8282 spin_unlock_irq(&rq->lock);
8285 static DEFINE_MUTEX(shares_mutex);
8287 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8289 int i;
8290 unsigned long flags;
8293 * We can't change the weight of the root cgroup.
8295 if (!tg->se[0])
8296 return -EINVAL;
8298 if (shares < MIN_SHARES)
8299 shares = MIN_SHARES;
8300 else if (shares > MAX_SHARES)
8301 shares = MAX_SHARES;
8303 mutex_lock(&shares_mutex);
8304 if (tg->shares == shares)
8305 goto done;
8307 spin_lock_irqsave(&task_group_lock, flags);
8308 for_each_possible_cpu(i)
8309 unregister_fair_sched_group(tg, i);
8310 list_del_rcu(&tg->siblings);
8311 spin_unlock_irqrestore(&task_group_lock, flags);
8313 /* wait for any ongoing reference to this group to finish */
8314 synchronize_sched();
8317 * Now we are free to modify the group's share on each cpu
8318 * w/o tripping rebalance_share or load_balance_fair.
8320 tg->shares = shares;
8321 for_each_possible_cpu(i)
8322 set_se_shares(tg->se[i], shares);
8325 * Enable load balance activity on this group, by inserting it back on
8326 * each cpu's rq->leaf_cfs_rq_list.
8328 spin_lock_irqsave(&task_group_lock, flags);
8329 for_each_possible_cpu(i)
8330 register_fair_sched_group(tg, i);
8331 list_add_rcu(&tg->siblings, &tg->parent->children);
8332 spin_unlock_irqrestore(&task_group_lock, flags);
8333 done:
8334 mutex_unlock(&shares_mutex);
8335 return 0;
8338 unsigned long sched_group_shares(struct task_group *tg)
8340 return tg->shares;
8342 #endif
8344 #ifdef CONFIG_RT_GROUP_SCHED
8346 * Ensure that the real time constraints are schedulable.
8348 static DEFINE_MUTEX(rt_constraints_mutex);
8350 static unsigned long to_ratio(u64 period, u64 runtime)
8352 if (runtime == RUNTIME_INF)
8353 return 1ULL << 16;
8355 return div64_u64(runtime << 16, period);
8358 #ifdef CONFIG_CGROUP_SCHED
8359 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8361 struct task_group *tgi, *parent = tg->parent;
8362 unsigned long total = 0;
8364 if (!parent) {
8365 if (global_rt_period() < period)
8366 return 0;
8368 return to_ratio(period, runtime) <
8369 to_ratio(global_rt_period(), global_rt_runtime());
8372 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8373 return 0;
8375 rcu_read_lock();
8376 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8377 if (tgi == tg)
8378 continue;
8380 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8381 tgi->rt_bandwidth.rt_runtime);
8383 rcu_read_unlock();
8385 return total + to_ratio(period, runtime) <
8386 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8387 parent->rt_bandwidth.rt_runtime);
8389 #elif defined CONFIG_USER_SCHED
8390 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8392 struct task_group *tgi;
8393 unsigned long total = 0;
8394 unsigned long global_ratio =
8395 to_ratio(global_rt_period(), global_rt_runtime());
8397 rcu_read_lock();
8398 list_for_each_entry_rcu(tgi, &task_groups, list) {
8399 if (tgi == tg)
8400 continue;
8402 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8403 tgi->rt_bandwidth.rt_runtime);
8405 rcu_read_unlock();
8407 return total + to_ratio(period, runtime) < global_ratio;
8409 #endif
8411 /* Must be called with tasklist_lock held */
8412 static inline int tg_has_rt_tasks(struct task_group *tg)
8414 struct task_struct *g, *p;
8415 do_each_thread(g, p) {
8416 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8417 return 1;
8418 } while_each_thread(g, p);
8419 return 0;
8422 static int tg_set_bandwidth(struct task_group *tg,
8423 u64 rt_period, u64 rt_runtime)
8425 int i, err = 0;
8427 mutex_lock(&rt_constraints_mutex);
8428 read_lock(&tasklist_lock);
8429 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8430 err = -EBUSY;
8431 goto unlock;
8433 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8434 err = -EINVAL;
8435 goto unlock;
8438 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8439 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8440 tg->rt_bandwidth.rt_runtime = rt_runtime;
8442 for_each_possible_cpu(i) {
8443 struct rt_rq *rt_rq = tg->rt_rq[i];
8445 spin_lock(&rt_rq->rt_runtime_lock);
8446 rt_rq->rt_runtime = rt_runtime;
8447 spin_unlock(&rt_rq->rt_runtime_lock);
8449 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8450 unlock:
8451 read_unlock(&tasklist_lock);
8452 mutex_unlock(&rt_constraints_mutex);
8454 return err;
8457 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8459 u64 rt_runtime, rt_period;
8461 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8462 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8463 if (rt_runtime_us < 0)
8464 rt_runtime = RUNTIME_INF;
8466 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8469 long sched_group_rt_runtime(struct task_group *tg)
8471 u64 rt_runtime_us;
8473 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8474 return -1;
8476 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8477 do_div(rt_runtime_us, NSEC_PER_USEC);
8478 return rt_runtime_us;
8481 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8483 u64 rt_runtime, rt_period;
8485 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8486 rt_runtime = tg->rt_bandwidth.rt_runtime;
8488 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8491 long sched_group_rt_period(struct task_group *tg)
8493 u64 rt_period_us;
8495 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8496 do_div(rt_period_us, NSEC_PER_USEC);
8497 return rt_period_us;
8500 static int sched_rt_global_constraints(void)
8502 int ret = 0;
8504 mutex_lock(&rt_constraints_mutex);
8505 if (!__rt_schedulable(NULL, 1, 0))
8506 ret = -EINVAL;
8507 mutex_unlock(&rt_constraints_mutex);
8509 return ret;
8511 #else
8512 static int sched_rt_global_constraints(void)
8514 unsigned long flags;
8515 int i;
8517 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8518 for_each_possible_cpu(i) {
8519 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8521 spin_lock(&rt_rq->rt_runtime_lock);
8522 rt_rq->rt_runtime = global_rt_runtime();
8523 spin_unlock(&rt_rq->rt_runtime_lock);
8525 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8527 return 0;
8529 #endif
8531 int sched_rt_handler(struct ctl_table *table, int write,
8532 struct file *filp, void __user *buffer, size_t *lenp,
8533 loff_t *ppos)
8535 int ret;
8536 int old_period, old_runtime;
8537 static DEFINE_MUTEX(mutex);
8539 mutex_lock(&mutex);
8540 old_period = sysctl_sched_rt_period;
8541 old_runtime = sysctl_sched_rt_runtime;
8543 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8545 if (!ret && write) {
8546 ret = sched_rt_global_constraints();
8547 if (ret) {
8548 sysctl_sched_rt_period = old_period;
8549 sysctl_sched_rt_runtime = old_runtime;
8550 } else {
8551 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8552 def_rt_bandwidth.rt_period =
8553 ns_to_ktime(global_rt_period());
8556 mutex_unlock(&mutex);
8558 return ret;
8561 #ifdef CONFIG_CGROUP_SCHED
8563 /* return corresponding task_group object of a cgroup */
8564 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8566 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8567 struct task_group, css);
8570 static struct cgroup_subsys_state *
8571 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8573 struct task_group *tg, *parent;
8575 if (!cgrp->parent) {
8576 /* This is early initialization for the top cgroup */
8577 init_task_group.css.cgroup = cgrp;
8578 return &init_task_group.css;
8581 parent = cgroup_tg(cgrp->parent);
8582 tg = sched_create_group(parent);
8583 if (IS_ERR(tg))
8584 return ERR_PTR(-ENOMEM);
8586 /* Bind the cgroup to task_group object we just created */
8587 tg->css.cgroup = cgrp;
8589 return &tg->css;
8592 static void
8593 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8595 struct task_group *tg = cgroup_tg(cgrp);
8597 sched_destroy_group(tg);
8600 static int
8601 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8602 struct task_struct *tsk)
8604 #ifdef CONFIG_RT_GROUP_SCHED
8605 /* Don't accept realtime tasks when there is no way for them to run */
8606 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8607 return -EINVAL;
8608 #else
8609 /* We don't support RT-tasks being in separate groups */
8610 if (tsk->sched_class != &fair_sched_class)
8611 return -EINVAL;
8612 #endif
8614 return 0;
8617 static void
8618 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8619 struct cgroup *old_cont, struct task_struct *tsk)
8621 sched_move_task(tsk);
8624 #ifdef CONFIG_FAIR_GROUP_SCHED
8625 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8626 u64 shareval)
8628 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8631 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8633 struct task_group *tg = cgroup_tg(cgrp);
8635 return (u64) tg->shares;
8637 #endif
8639 #ifdef CONFIG_RT_GROUP_SCHED
8640 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8641 s64 val)
8643 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8646 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8648 return sched_group_rt_runtime(cgroup_tg(cgrp));
8651 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8652 u64 rt_period_us)
8654 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8657 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8659 return sched_group_rt_period(cgroup_tg(cgrp));
8661 #endif
8663 static struct cftype cpu_files[] = {
8664 #ifdef CONFIG_FAIR_GROUP_SCHED
8666 .name = "shares",
8667 .read_u64 = cpu_shares_read_u64,
8668 .write_u64 = cpu_shares_write_u64,
8670 #endif
8671 #ifdef CONFIG_RT_GROUP_SCHED
8673 .name = "rt_runtime_us",
8674 .read_s64 = cpu_rt_runtime_read,
8675 .write_s64 = cpu_rt_runtime_write,
8678 .name = "rt_period_us",
8679 .read_u64 = cpu_rt_period_read_uint,
8680 .write_u64 = cpu_rt_period_write_uint,
8682 #endif
8685 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8687 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8690 struct cgroup_subsys cpu_cgroup_subsys = {
8691 .name = "cpu",
8692 .create = cpu_cgroup_create,
8693 .destroy = cpu_cgroup_destroy,
8694 .can_attach = cpu_cgroup_can_attach,
8695 .attach = cpu_cgroup_attach,
8696 .populate = cpu_cgroup_populate,
8697 .subsys_id = cpu_cgroup_subsys_id,
8698 .early_init = 1,
8701 #endif /* CONFIG_CGROUP_SCHED */
8703 #ifdef CONFIG_CGROUP_CPUACCT
8706 * CPU accounting code for task groups.
8708 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8709 * (balbir@in.ibm.com).
8712 /* track cpu usage of a group of tasks */
8713 struct cpuacct {
8714 struct cgroup_subsys_state css;
8715 /* cpuusage holds pointer to a u64-type object on every cpu */
8716 u64 *cpuusage;
8719 struct cgroup_subsys cpuacct_subsys;
8721 /* return cpu accounting group corresponding to this container */
8722 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8724 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8725 struct cpuacct, css);
8728 /* return cpu accounting group to which this task belongs */
8729 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8731 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8732 struct cpuacct, css);
8735 /* create a new cpu accounting group */
8736 static struct cgroup_subsys_state *cpuacct_create(
8737 struct cgroup_subsys *ss, struct cgroup *cgrp)
8739 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8741 if (!ca)
8742 return ERR_PTR(-ENOMEM);
8744 ca->cpuusage = alloc_percpu(u64);
8745 if (!ca->cpuusage) {
8746 kfree(ca);
8747 return ERR_PTR(-ENOMEM);
8750 return &ca->css;
8753 /* destroy an existing cpu accounting group */
8754 static void
8755 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8757 struct cpuacct *ca = cgroup_ca(cgrp);
8759 free_percpu(ca->cpuusage);
8760 kfree(ca);
8763 /* return total cpu usage (in nanoseconds) of a group */
8764 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8766 struct cpuacct *ca = cgroup_ca(cgrp);
8767 u64 totalcpuusage = 0;
8768 int i;
8770 for_each_possible_cpu(i) {
8771 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8774 * Take rq->lock to make 64-bit addition safe on 32-bit
8775 * platforms.
8777 spin_lock_irq(&cpu_rq(i)->lock);
8778 totalcpuusage += *cpuusage;
8779 spin_unlock_irq(&cpu_rq(i)->lock);
8782 return totalcpuusage;
8785 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8786 u64 reset)
8788 struct cpuacct *ca = cgroup_ca(cgrp);
8789 int err = 0;
8790 int i;
8792 if (reset) {
8793 err = -EINVAL;
8794 goto out;
8797 for_each_possible_cpu(i) {
8798 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8800 spin_lock_irq(&cpu_rq(i)->lock);
8801 *cpuusage = 0;
8802 spin_unlock_irq(&cpu_rq(i)->lock);
8804 out:
8805 return err;
8808 static struct cftype files[] = {
8810 .name = "usage",
8811 .read_u64 = cpuusage_read,
8812 .write_u64 = cpuusage_write,
8816 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8818 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8822 * charge this task's execution time to its accounting group.
8824 * called with rq->lock held.
8826 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8828 struct cpuacct *ca;
8830 if (!cpuacct_subsys.active)
8831 return;
8833 ca = task_ca(tsk);
8834 if (ca) {
8835 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8837 *cpuusage += cputime;
8841 struct cgroup_subsys cpuacct_subsys = {
8842 .name = "cpuacct",
8843 .create = cpuacct_create,
8844 .destroy = cpuacct_destroy,
8845 .populate = cpuacct_populate,
8846 .subsys_id = cpuacct_subsys_id,
8848 #endif /* CONFIG_CGROUP_CPUACCT */