perf: Fix inherit vs. context rotation bug
[linux-2.6/x86.git] / kernel / perf_event.c
blobf365dd8ef8b02a9b05fb9da95e664b03bc754d6f
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
54 int sysctl_perf_event_paranoid __read_mostly = 1;
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
59 * max perf event sample rate
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
63 static atomic64_t perf_event_id;
65 void __weak perf_event_print_debug(void) { }
67 extern __weak const char *perf_pmu_name(void)
69 return "pmu";
72 void perf_pmu_disable(struct pmu *pmu)
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 if (!(*count)++)
76 pmu->pmu_disable(pmu);
79 void perf_pmu_enable(struct pmu *pmu)
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
82 if (!--(*count))
83 pmu->pmu_enable(pmu);
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
93 static void perf_pmu_rotate_start(struct pmu *pmu)
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
98 WARN_ON(!irqs_disabled());
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
104 static void get_ctx(struct perf_event_context *ctx)
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
109 static void free_ctx(struct rcu_head *head)
111 struct perf_event_context *ctx;
113 ctx = container_of(head, struct perf_event_context, rcu_head);
114 kfree(ctx);
117 static void put_ctx(struct perf_event_context *ctx)
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
128 static void unclone_ctx(struct perf_event_context *ctx)
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
137 * If we inherit events we want to return the parent event id
138 * to userspace.
140 static u64 primary_event_id(struct perf_event *event)
142 u64 id = event->id;
144 if (event->parent)
145 id = event->parent->id;
147 return id;
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
158 struct perf_event_context *ctx;
160 rcu_read_lock();
161 retry:
162 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163 if (ctx) {
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
174 raw_spin_lock_irqsave(&ctx->lock, *flags);
175 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 goto retry;
180 if (!atomic_inc_not_zero(&ctx->refcount)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 ctx = NULL;
185 rcu_read_unlock();
186 return ctx;
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
197 struct perf_event_context *ctx;
198 unsigned long flags;
200 ctx = perf_lock_task_context(task, ctxn, &flags);
201 if (ctx) {
202 ++ctx->pin_count;
203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
205 return ctx;
208 static void perf_unpin_context(struct perf_event_context *ctx)
210 unsigned long flags;
212 raw_spin_lock_irqsave(&ctx->lock, flags);
213 --ctx->pin_count;
214 raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 put_ctx(ctx);
218 static inline u64 perf_clock(void)
220 return local_clock();
224 * Update the record of the current time in a context.
226 static void update_context_time(struct perf_event_context *ctx)
228 u64 now = perf_clock();
230 ctx->time += now - ctx->timestamp;
231 ctx->timestamp = now;
235 * Update the total_time_enabled and total_time_running fields for a event.
237 static void update_event_times(struct perf_event *event)
239 struct perf_event_context *ctx = event->ctx;
240 u64 run_end;
242 if (event->state < PERF_EVENT_STATE_INACTIVE ||
243 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244 return;
246 if (ctx->is_active)
247 run_end = ctx->time;
248 else
249 run_end = event->tstamp_stopped;
251 event->total_time_enabled = run_end - event->tstamp_enabled;
253 if (event->state == PERF_EVENT_STATE_INACTIVE)
254 run_end = event->tstamp_stopped;
255 else
256 run_end = ctx->time;
258 event->total_time_running = run_end - event->tstamp_running;
262 * Update total_time_enabled and total_time_running for all events in a group.
264 static void update_group_times(struct perf_event *leader)
266 struct perf_event *event;
268 update_event_times(leader);
269 list_for_each_entry(event, &leader->sibling_list, group_entry)
270 update_event_times(event);
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
276 if (event->attr.pinned)
277 return &ctx->pinned_groups;
278 else
279 return &ctx->flexible_groups;
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
289 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290 event->attach_state |= PERF_ATTACH_CONTEXT;
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
297 if (event->group_leader == event) {
298 struct list_head *list;
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
307 list_add_rcu(&event->event_entry, &ctx->event_list);
308 if (!ctx->nr_events)
309 perf_pmu_rotate_start(ctx->pmu);
310 ctx->nr_events++;
311 if (event->attr.inherit_stat)
312 ctx->nr_stat++;
315 static void perf_group_attach(struct perf_event *event)
317 struct perf_event *group_leader = event->group_leader;
320 * We can have double attach due to group movement in perf_event_open.
322 if (event->attach_state & PERF_ATTACH_GROUP)
323 return;
325 event->attach_state |= PERF_ATTACH_GROUP;
327 if (group_leader == event)
328 return;
330 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331 !is_software_event(event))
332 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
334 list_add_tail(&event->group_entry, &group_leader->sibling_list);
335 group_leader->nr_siblings++;
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
346 * We can have double detach due to exit/hot-unplug + close.
348 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349 return;
351 event->attach_state &= ~PERF_ATTACH_CONTEXT;
353 ctx->nr_events--;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat--;
357 list_del_rcu(&event->event_entry);
359 if (event->group_leader == event)
360 list_del_init(&event->group_entry);
362 update_group_times(event);
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
369 * of the event
371 if (event->state > PERF_EVENT_STATE_OFF)
372 event->state = PERF_EVENT_STATE_OFF;
375 static void perf_group_detach(struct perf_event *event)
377 struct perf_event *sibling, *tmp;
378 struct list_head *list = NULL;
381 * We can have double detach due to exit/hot-unplug + close.
383 if (!(event->attach_state & PERF_ATTACH_GROUP))
384 return;
386 event->attach_state &= ~PERF_ATTACH_GROUP;
389 * If this is a sibling, remove it from its group.
391 if (event->group_leader != event) {
392 list_del_init(&event->group_entry);
393 event->group_leader->nr_siblings--;
394 return;
397 if (!list_empty(&event->group_entry))
398 list = &event->group_entry;
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
405 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 if (list)
407 list_move_tail(&sibling->group_entry, list);
408 sibling->group_leader = sibling;
410 /* Inherit group flags from the previous leader */
411 sibling->group_flags = event->group_flags;
415 static inline int
416 event_filter_match(struct perf_event *event)
418 return event->cpu == -1 || event->cpu == smp_processor_id();
421 static void
422 event_sched_out(struct perf_event *event,
423 struct perf_cpu_context *cpuctx,
424 struct perf_event_context *ctx)
426 u64 delta;
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
433 if (event->state == PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event)) {
435 delta = ctx->time - event->tstamp_stopped;
436 event->tstamp_running += delta;
437 event->tstamp_stopped = ctx->time;
440 if (event->state != PERF_EVENT_STATE_ACTIVE)
441 return;
443 event->state = PERF_EVENT_STATE_INACTIVE;
444 if (event->pending_disable) {
445 event->pending_disable = 0;
446 event->state = PERF_EVENT_STATE_OFF;
448 event->tstamp_stopped = ctx->time;
449 event->pmu->del(event, 0);
450 event->oncpu = -1;
452 if (!is_software_event(event))
453 cpuctx->active_oncpu--;
454 ctx->nr_active--;
455 if (event->attr.exclusive || !cpuctx->active_oncpu)
456 cpuctx->exclusive = 0;
459 static void
460 group_sched_out(struct perf_event *group_event,
461 struct perf_cpu_context *cpuctx,
462 struct perf_event_context *ctx)
464 struct perf_event *event;
465 int state = group_event->state;
467 event_sched_out(group_event, cpuctx, ctx);
470 * Schedule out siblings (if any):
472 list_for_each_entry(event, &group_event->sibling_list, group_entry)
473 event_sched_out(event, cpuctx, ctx);
475 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 cpuctx->exclusive = 0;
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
482 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
486 * Cross CPU call to remove a performance event
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
491 static void __perf_event_remove_from_context(void *info)
493 struct perf_event *event = info;
494 struct perf_event_context *ctx = event->ctx;
495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
502 if (ctx->task && cpuctx->task_ctx != ctx)
503 return;
505 raw_spin_lock(&ctx->lock);
507 event_sched_out(event, cpuctx, ctx);
509 list_del_event(event, ctx);
511 raw_spin_unlock(&ctx->lock);
516 * Remove the event from a task's (or a CPU's) list of events.
518 * Must be called with ctx->mutex held.
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
530 static void perf_event_remove_from_context(struct perf_event *event)
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
535 if (!task) {
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
550 raw_spin_lock_irq(&ctx->lock);
552 * If the context is active we need to retry the smp call.
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
570 * Cross CPU call to disable a performance event
572 static void __perf_event_disable(void *info)
574 struct perf_event *event = info;
575 struct perf_event_context *ctx = event->ctx;
576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
585 raw_spin_lock(&ctx->lock);
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock(&ctx->lock);
605 * Disable a event.
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
617 void perf_event_disable(struct perf_event *event)
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
622 if (!task) {
624 * Disable the event on the cpu that it's on
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
634 raw_spin_lock_irq(&ctx->lock);
636 * If the event is still active, we need to retry the cross-call.
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
652 raw_spin_unlock_irq(&ctx->lock);
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
666 * The new state must be visible before we turn it on in the hardware:
668 smp_wmb();
670 if (event->pmu->add(event, PERF_EF_START)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
678 event->shadow_ctx_time = ctx->time - ctx->timestamp;
680 if (!is_software_event(event))
681 cpuctx->active_oncpu++;
682 ctx->nr_active++;
684 if (event->attr.exclusive)
685 cpuctx->exclusive = 1;
687 return 0;
690 static int
691 group_sched_in(struct perf_event *group_event,
692 struct perf_cpu_context *cpuctx,
693 struct perf_event_context *ctx)
695 struct perf_event *event, *partial_group = NULL;
696 struct pmu *pmu = group_event->pmu;
697 u64 now = ctx->time;
698 bool simulate = false;
700 if (group_event->state == PERF_EVENT_STATE_OFF)
701 return 0;
703 pmu->start_txn(pmu);
705 if (event_sched_in(group_event, cpuctx, ctx)) {
706 pmu->cancel_txn(pmu);
707 return -EAGAIN;
711 * Schedule in siblings as one group (if any):
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event_sched_in(event, cpuctx, ctx)) {
715 partial_group = event;
716 goto group_error;
720 if (!pmu->commit_txn(pmu))
721 return 0;
723 group_error:
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
738 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739 if (event == partial_group)
740 simulate = true;
742 if (simulate) {
743 event->tstamp_running += now - event->tstamp_stopped;
744 event->tstamp_stopped = now;
745 } else {
746 event_sched_out(event, cpuctx, ctx);
749 event_sched_out(group_event, cpuctx, ctx);
751 pmu->cancel_txn(pmu);
753 return -EAGAIN;
757 * Work out whether we can put this event group on the CPU now.
759 static int group_can_go_on(struct perf_event *event,
760 struct perf_cpu_context *cpuctx,
761 int can_add_hw)
764 * Groups consisting entirely of software events can always go on.
766 if (event->group_flags & PERF_GROUP_SOFTWARE)
767 return 1;
769 * If an exclusive group is already on, no other hardware
770 * events can go on.
772 if (cpuctx->exclusive)
773 return 0;
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
778 if (event->attr.exclusive && cpuctx->active_oncpu)
779 return 0;
781 * Otherwise, try to add it if all previous groups were able
782 * to go on.
784 return can_add_hw;
787 static void add_event_to_ctx(struct perf_event *event,
788 struct perf_event_context *ctx)
790 list_add_event(event, ctx);
791 perf_group_attach(event);
792 event->tstamp_enabled = ctx->time;
793 event->tstamp_running = ctx->time;
794 event->tstamp_stopped = ctx->time;
798 * Cross CPU call to install and enable a performance event
800 * Must be called with ctx->mutex held
802 static void __perf_install_in_context(void *info)
804 struct perf_event *event = info;
805 struct perf_event_context *ctx = event->ctx;
806 struct perf_event *leader = event->group_leader;
807 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808 int err;
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
817 if (ctx->task && cpuctx->task_ctx != ctx) {
818 if (cpuctx->task_ctx || ctx->task != current)
819 return;
820 cpuctx->task_ctx = ctx;
823 raw_spin_lock(&ctx->lock);
824 ctx->is_active = 1;
825 update_context_time(ctx);
827 add_event_to_ctx(event, ctx);
829 if (event->cpu != -1 && event->cpu != smp_processor_id())
830 goto unlock;
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
836 if (event->state != PERF_EVENT_STATE_INACTIVE ||
837 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838 goto unlock;
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
845 if (!group_can_go_on(event, cpuctx, 1))
846 err = -EEXIST;
847 else
848 err = event_sched_in(event, cpuctx, ctx);
850 if (err) {
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
856 if (leader != event)
857 group_sched_out(leader, cpuctx, ctx);
858 if (leader->attr.pinned) {
859 update_group_times(leader);
860 leader->state = PERF_EVENT_STATE_ERROR;
864 unlock:
865 raw_spin_unlock(&ctx->lock);
869 * Attach a performance event to a context
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
878 * Must be called with ctx->mutex held.
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882 struct perf_event *event,
883 int cpu)
885 struct task_struct *task = ctx->task;
887 event->ctx = ctx;
889 if (!task) {
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
894 smp_call_function_single(cpu, __perf_install_in_context,
895 event, 1);
896 return;
899 retry:
900 task_oncpu_function_call(task, __perf_install_in_context,
901 event);
903 raw_spin_lock_irq(&ctx->lock);
905 * we need to retry the smp call.
907 if (ctx->is_active && list_empty(&event->group_entry)) {
908 raw_spin_unlock_irq(&ctx->lock);
909 goto retry;
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
915 * succeed.
917 if (list_empty(&event->group_entry))
918 add_event_to_ctx(event, ctx);
919 raw_spin_unlock_irq(&ctx->lock);
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
930 static void __perf_event_mark_enabled(struct perf_event *event,
931 struct perf_event_context *ctx)
933 struct perf_event *sub;
935 event->state = PERF_EVENT_STATE_INACTIVE;
936 event->tstamp_enabled = ctx->time - event->total_time_enabled;
937 list_for_each_entry(sub, &event->sibling_list, group_entry) {
938 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 sub->tstamp_enabled =
940 ctx->time - sub->total_time_enabled;
946 * Cross CPU call to enable a performance event
948 static void __perf_event_enable(void *info)
950 struct perf_event *event = info;
951 struct perf_event_context *ctx = event->ctx;
952 struct perf_event *leader = event->group_leader;
953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954 int err;
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
960 if (ctx->task && cpuctx->task_ctx != ctx) {
961 if (cpuctx->task_ctx || ctx->task != current)
962 return;
963 cpuctx->task_ctx = ctx;
966 raw_spin_lock(&ctx->lock);
967 ctx->is_active = 1;
968 update_context_time(ctx);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto unlock;
972 __perf_event_mark_enabled(event, ctx);
974 if (event->cpu != -1 && event->cpu != smp_processor_id())
975 goto unlock;
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982 goto unlock;
984 if (!group_can_go_on(event, cpuctx, 1)) {
985 err = -EEXIST;
986 } else {
987 if (event == leader)
988 err = group_sched_in(event, cpuctx, ctx);
989 else
990 err = event_sched_in(event, cpuctx, ctx);
993 if (err) {
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
998 if (leader != event)
999 group_sched_out(leader, cpuctx, ctx);
1000 if (leader->attr.pinned) {
1001 update_group_times(leader);
1002 leader->state = PERF_EVENT_STATE_ERROR;
1006 unlock:
1007 raw_spin_unlock(&ctx->lock);
1011 * Enable a event.
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1019 void perf_event_enable(struct perf_event *event)
1021 struct perf_event_context *ctx = event->ctx;
1022 struct task_struct *task = ctx->task;
1024 if (!task) {
1026 * Enable the event on the cpu that it's on
1028 smp_call_function_single(event->cpu, __perf_event_enable,
1029 event, 1);
1030 return;
1033 raw_spin_lock_irq(&ctx->lock);
1034 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035 goto out;
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1044 if (event->state == PERF_EVENT_STATE_ERROR)
1045 event->state = PERF_EVENT_STATE_OFF;
1047 retry:
1048 raw_spin_unlock_irq(&ctx->lock);
1049 task_oncpu_function_call(task, __perf_event_enable, event);
1051 raw_spin_lock_irq(&ctx->lock);
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1057 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058 goto retry;
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1064 if (event->state == PERF_EVENT_STATE_OFF)
1065 __perf_event_mark_enabled(event, ctx);
1067 out:
1068 raw_spin_unlock_irq(&ctx->lock);
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1074 * not supported on inherited events
1076 if (event->attr.inherit)
1077 return -EINVAL;
1079 atomic_add(refresh, &event->event_limit);
1080 perf_event_enable(event);
1082 return 0;
1085 enum event_type_t {
1086 EVENT_FLEXIBLE = 0x1,
1087 EVENT_PINNED = 0x2,
1088 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092 struct perf_cpu_context *cpuctx,
1093 enum event_type_t event_type)
1095 struct perf_event *event;
1097 raw_spin_lock(&ctx->lock);
1098 perf_pmu_disable(ctx->pmu);
1099 ctx->is_active = 0;
1100 if (likely(!ctx->nr_events))
1101 goto out;
1102 update_context_time(ctx);
1104 if (!ctx->nr_active)
1105 goto out;
1107 if (event_type & EVENT_PINNED) {
1108 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109 group_sched_out(event, cpuctx, ctx);
1112 if (event_type & EVENT_FLEXIBLE) {
1113 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114 group_sched_out(event, cpuctx, ctx);
1116 out:
1117 perf_pmu_enable(ctx->pmu);
1118 raw_spin_unlock(&ctx->lock);
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1132 static int context_equiv(struct perf_event_context *ctx1,
1133 struct perf_event_context *ctx2)
1135 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136 && ctx1->parent_gen == ctx2->parent_gen
1137 && !ctx1->pin_count && !ctx2->pin_count;
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141 struct perf_event *next_event)
1143 u64 value;
1145 if (!event->attr.inherit_stat)
1146 return;
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1155 switch (event->state) {
1156 case PERF_EVENT_STATE_ACTIVE:
1157 event->pmu->read(event);
1158 /* fall-through */
1160 case PERF_EVENT_STATE_INACTIVE:
1161 update_event_times(event);
1162 break;
1164 default:
1165 break;
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1172 value = local64_read(&next_event->count);
1173 value = local64_xchg(&event->count, value);
1174 local64_set(&next_event->count, value);
1176 swap(event->total_time_enabled, next_event->total_time_enabled);
1177 swap(event->total_time_running, next_event->total_time_running);
1180 * Since we swizzled the values, update the user visible data too.
1182 perf_event_update_userpage(event);
1183 perf_event_update_userpage(next_event);
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190 struct perf_event_context *next_ctx)
1192 struct perf_event *event, *next_event;
1194 if (!ctx->nr_stat)
1195 return;
1197 update_context_time(ctx);
1199 event = list_first_entry(&ctx->event_list,
1200 struct perf_event, event_entry);
1202 next_event = list_first_entry(&next_ctx->event_list,
1203 struct perf_event, event_entry);
1205 while (&event->event_entry != &ctx->event_list &&
1206 &next_event->event_entry != &next_ctx->event_list) {
1208 __perf_event_sync_stat(event, next_event);
1210 event = list_next_entry(event, event_entry);
1211 next_event = list_next_entry(next_event, event_entry);
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216 struct task_struct *next)
1218 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 struct perf_event_context *next_ctx;
1220 struct perf_event_context *parent;
1221 struct perf_cpu_context *cpuctx;
1222 int do_switch = 1;
1224 if (likely(!ctx))
1225 return;
1227 cpuctx = __get_cpu_context(ctx);
1228 if (!cpuctx->task_ctx)
1229 return;
1231 rcu_read_lock();
1232 parent = rcu_dereference(ctx->parent_ctx);
1233 next_ctx = next->perf_event_ctxp[ctxn];
1234 if (parent && next_ctx &&
1235 rcu_dereference(next_ctx->parent_ctx) == parent) {
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1245 raw_spin_lock(&ctx->lock);
1246 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247 if (context_equiv(ctx, next_ctx)) {
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1252 task->perf_event_ctxp[ctxn] = next_ctx;
1253 next->perf_event_ctxp[ctxn] = ctx;
1254 ctx->task = next;
1255 next_ctx->task = task;
1256 do_switch = 0;
1258 perf_event_sync_stat(ctx, next_ctx);
1260 raw_spin_unlock(&next_ctx->lock);
1261 raw_spin_unlock(&ctx->lock);
1263 rcu_read_unlock();
1265 if (do_switch) {
1266 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 cpuctx->task_ctx = NULL;
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1278 * We stop each event and update the event value in event->count.
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286 struct task_struct *next)
1288 int ctxn;
1290 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1292 for_each_task_context_nr(ctxn)
1293 perf_event_context_sched_out(task, ctxn, next);
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297 enum event_type_t event_type)
1299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1301 if (!cpuctx->task_ctx)
1302 return;
1304 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1305 return;
1307 ctx_sched_out(ctx, cpuctx, event_type);
1308 cpuctx->task_ctx = NULL;
1312 * Called with IRQs disabled
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315 enum event_type_t event_type)
1317 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1320 static void
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322 struct perf_cpu_context *cpuctx)
1324 struct perf_event *event;
1326 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327 if (event->state <= PERF_EVENT_STATE_OFF)
1328 continue;
1329 if (event->cpu != -1 && event->cpu != smp_processor_id())
1330 continue;
1332 if (group_can_go_on(event, cpuctx, 1))
1333 group_sched_in(event, cpuctx, ctx);
1336 * If this pinned group hasn't been scheduled,
1337 * put it in error state.
1339 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340 update_group_times(event);
1341 event->state = PERF_EVENT_STATE_ERROR;
1346 static void
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348 struct perf_cpu_context *cpuctx)
1350 struct perf_event *event;
1351 int can_add_hw = 1;
1353 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354 /* Ignore events in OFF or ERROR state */
1355 if (event->state <= PERF_EVENT_STATE_OFF)
1356 continue;
1358 * Listen to the 'cpu' scheduling filter constraint
1359 * of events:
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362 continue;
1364 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365 if (group_sched_in(event, cpuctx, ctx))
1366 can_add_hw = 0;
1371 static void
1372 ctx_sched_in(struct perf_event_context *ctx,
1373 struct perf_cpu_context *cpuctx,
1374 enum event_type_t event_type)
1376 raw_spin_lock(&ctx->lock);
1377 ctx->is_active = 1;
1378 if (likely(!ctx->nr_events))
1379 goto out;
1381 ctx->timestamp = perf_clock();
1384 * First go through the list and put on any pinned groups
1385 * in order to give them the best chance of going on.
1387 if (event_type & EVENT_PINNED)
1388 ctx_pinned_sched_in(ctx, cpuctx);
1390 /* Then walk through the lower prio flexible groups */
1391 if (event_type & EVENT_FLEXIBLE)
1392 ctx_flexible_sched_in(ctx, cpuctx);
1394 out:
1395 raw_spin_unlock(&ctx->lock);
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399 enum event_type_t event_type)
1401 struct perf_event_context *ctx = &cpuctx->ctx;
1403 ctx_sched_in(ctx, cpuctx, event_type);
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407 enum event_type_t event_type)
1409 struct perf_cpu_context *cpuctx;
1411 cpuctx = __get_cpu_context(ctx);
1412 if (cpuctx->task_ctx == ctx)
1413 return;
1415 ctx_sched_in(ctx, cpuctx, event_type);
1416 cpuctx->task_ctx = ctx;
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1421 struct perf_cpu_context *cpuctx;
1423 cpuctx = __get_cpu_context(ctx);
1424 if (cpuctx->task_ctx == ctx)
1425 return;
1427 perf_pmu_disable(ctx->pmu);
1429 * We want to keep the following priority order:
1430 * cpu pinned (that don't need to move), task pinned,
1431 * cpu flexible, task flexible.
1433 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1435 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1439 cpuctx->task_ctx = ctx;
1442 * Since these rotations are per-cpu, we need to ensure the
1443 * cpu-context we got scheduled on is actually rotating.
1445 perf_pmu_rotate_start(ctx->pmu);
1446 perf_pmu_enable(ctx->pmu);
1450 * Called from scheduler to add the events of the current task
1451 * with interrupts disabled.
1453 * We restore the event value and then enable it.
1455 * This does not protect us against NMI, but enable()
1456 * sets the enabled bit in the control field of event _before_
1457 * accessing the event control register. If a NMI hits, then it will
1458 * keep the event running.
1460 void __perf_event_task_sched_in(struct task_struct *task)
1462 struct perf_event_context *ctx;
1463 int ctxn;
1465 for_each_task_context_nr(ctxn) {
1466 ctx = task->perf_event_ctxp[ctxn];
1467 if (likely(!ctx))
1468 continue;
1470 perf_event_context_sched_in(ctx);
1474 #define MAX_INTERRUPTS (~0ULL)
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1480 u64 frequency = event->attr.sample_freq;
1481 u64 sec = NSEC_PER_SEC;
1482 u64 divisor, dividend;
1484 int count_fls, nsec_fls, frequency_fls, sec_fls;
1486 count_fls = fls64(count);
1487 nsec_fls = fls64(nsec);
1488 frequency_fls = fls64(frequency);
1489 sec_fls = 30;
1492 * We got @count in @nsec, with a target of sample_freq HZ
1493 * the target period becomes:
1495 * @count * 10^9
1496 * period = -------------------
1497 * @nsec * sample_freq
1502 * Reduce accuracy by one bit such that @a and @b converge
1503 * to a similar magnitude.
1505 #define REDUCE_FLS(a, b) \
1506 do { \
1507 if (a##_fls > b##_fls) { \
1508 a >>= 1; \
1509 a##_fls--; \
1510 } else { \
1511 b >>= 1; \
1512 b##_fls--; \
1514 } while (0)
1517 * Reduce accuracy until either term fits in a u64, then proceed with
1518 * the other, so that finally we can do a u64/u64 division.
1520 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521 REDUCE_FLS(nsec, frequency);
1522 REDUCE_FLS(sec, count);
1525 if (count_fls + sec_fls > 64) {
1526 divisor = nsec * frequency;
1528 while (count_fls + sec_fls > 64) {
1529 REDUCE_FLS(count, sec);
1530 divisor >>= 1;
1533 dividend = count * sec;
1534 } else {
1535 dividend = count * sec;
1537 while (nsec_fls + frequency_fls > 64) {
1538 REDUCE_FLS(nsec, frequency);
1539 dividend >>= 1;
1542 divisor = nsec * frequency;
1545 if (!divisor)
1546 return dividend;
1548 return div64_u64(dividend, divisor);
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1553 struct hw_perf_event *hwc = &event->hw;
1554 s64 period, sample_period;
1555 s64 delta;
1557 period = perf_calculate_period(event, nsec, count);
1559 delta = (s64)(period - hwc->sample_period);
1560 delta = (delta + 7) / 8; /* low pass filter */
1562 sample_period = hwc->sample_period + delta;
1564 if (!sample_period)
1565 sample_period = 1;
1567 hwc->sample_period = sample_period;
1569 if (local64_read(&hwc->period_left) > 8*sample_period) {
1570 event->pmu->stop(event, PERF_EF_UPDATE);
1571 local64_set(&hwc->period_left, 0);
1572 event->pmu->start(event, PERF_EF_RELOAD);
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1578 struct perf_event *event;
1579 struct hw_perf_event *hwc;
1580 u64 interrupts, now;
1581 s64 delta;
1583 raw_spin_lock(&ctx->lock);
1584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585 if (event->state != PERF_EVENT_STATE_ACTIVE)
1586 continue;
1588 if (event->cpu != -1 && event->cpu != smp_processor_id())
1589 continue;
1591 hwc = &event->hw;
1593 interrupts = hwc->interrupts;
1594 hwc->interrupts = 0;
1597 * unthrottle events on the tick
1599 if (interrupts == MAX_INTERRUPTS) {
1600 perf_log_throttle(event, 1);
1601 event->pmu->start(event, 0);
1604 if (!event->attr.freq || !event->attr.sample_freq)
1605 continue;
1607 event->pmu->read(event);
1608 now = local64_read(&event->count);
1609 delta = now - hwc->freq_count_stamp;
1610 hwc->freq_count_stamp = now;
1612 if (delta > 0)
1613 perf_adjust_period(event, period, delta);
1615 raw_spin_unlock(&ctx->lock);
1619 * Round-robin a context's events:
1621 static void rotate_ctx(struct perf_event_context *ctx)
1623 raw_spin_lock(&ctx->lock);
1626 * Rotate the first entry last of non-pinned groups. Rotation might be
1627 * disabled by the inheritance code.
1629 if (!ctx->rotate_disable)
1630 list_rotate_left(&ctx->flexible_groups);
1632 raw_spin_unlock(&ctx->lock);
1636 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1637 * because they're strictly cpu affine and rotate_start is called with IRQs
1638 * disabled, while rotate_context is called from IRQ context.
1640 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1642 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1643 struct perf_event_context *ctx = NULL;
1644 int rotate = 0, remove = 1;
1646 if (cpuctx->ctx.nr_events) {
1647 remove = 0;
1648 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1649 rotate = 1;
1652 ctx = cpuctx->task_ctx;
1653 if (ctx && ctx->nr_events) {
1654 remove = 0;
1655 if (ctx->nr_events != ctx->nr_active)
1656 rotate = 1;
1659 perf_pmu_disable(cpuctx->ctx.pmu);
1660 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1661 if (ctx)
1662 perf_ctx_adjust_freq(ctx, interval);
1664 if (!rotate)
1665 goto done;
1667 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1668 if (ctx)
1669 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1671 rotate_ctx(&cpuctx->ctx);
1672 if (ctx)
1673 rotate_ctx(ctx);
1675 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1676 if (ctx)
1677 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1679 done:
1680 if (remove)
1681 list_del_init(&cpuctx->rotation_list);
1683 perf_pmu_enable(cpuctx->ctx.pmu);
1686 void perf_event_task_tick(void)
1688 struct list_head *head = &__get_cpu_var(rotation_list);
1689 struct perf_cpu_context *cpuctx, *tmp;
1691 WARN_ON(!irqs_disabled());
1693 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1694 if (cpuctx->jiffies_interval == 1 ||
1695 !(jiffies % cpuctx->jiffies_interval))
1696 perf_rotate_context(cpuctx);
1700 static int event_enable_on_exec(struct perf_event *event,
1701 struct perf_event_context *ctx)
1703 if (!event->attr.enable_on_exec)
1704 return 0;
1706 event->attr.enable_on_exec = 0;
1707 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1708 return 0;
1710 __perf_event_mark_enabled(event, ctx);
1712 return 1;
1716 * Enable all of a task's events that have been marked enable-on-exec.
1717 * This expects task == current.
1719 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1721 struct perf_event *event;
1722 unsigned long flags;
1723 int enabled = 0;
1724 int ret;
1726 local_irq_save(flags);
1727 if (!ctx || !ctx->nr_events)
1728 goto out;
1730 task_ctx_sched_out(ctx, EVENT_ALL);
1732 raw_spin_lock(&ctx->lock);
1734 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1735 ret = event_enable_on_exec(event, ctx);
1736 if (ret)
1737 enabled = 1;
1740 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1741 ret = event_enable_on_exec(event, ctx);
1742 if (ret)
1743 enabled = 1;
1747 * Unclone this context if we enabled any event.
1749 if (enabled)
1750 unclone_ctx(ctx);
1752 raw_spin_unlock(&ctx->lock);
1754 perf_event_context_sched_in(ctx);
1755 out:
1756 local_irq_restore(flags);
1760 * Cross CPU call to read the hardware event
1762 static void __perf_event_read(void *info)
1764 struct perf_event *event = info;
1765 struct perf_event_context *ctx = event->ctx;
1766 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1769 * If this is a task context, we need to check whether it is
1770 * the current task context of this cpu. If not it has been
1771 * scheduled out before the smp call arrived. In that case
1772 * event->count would have been updated to a recent sample
1773 * when the event was scheduled out.
1775 if (ctx->task && cpuctx->task_ctx != ctx)
1776 return;
1778 raw_spin_lock(&ctx->lock);
1779 update_context_time(ctx);
1780 update_event_times(event);
1781 raw_spin_unlock(&ctx->lock);
1783 event->pmu->read(event);
1786 static inline u64 perf_event_count(struct perf_event *event)
1788 return local64_read(&event->count) + atomic64_read(&event->child_count);
1791 static u64 perf_event_read(struct perf_event *event)
1794 * If event is enabled and currently active on a CPU, update the
1795 * value in the event structure:
1797 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1798 smp_call_function_single(event->oncpu,
1799 __perf_event_read, event, 1);
1800 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1801 struct perf_event_context *ctx = event->ctx;
1802 unsigned long flags;
1804 raw_spin_lock_irqsave(&ctx->lock, flags);
1806 * may read while context is not active
1807 * (e.g., thread is blocked), in that case
1808 * we cannot update context time
1810 if (ctx->is_active)
1811 update_context_time(ctx);
1812 update_event_times(event);
1813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1816 return perf_event_count(event);
1820 * Callchain support
1823 struct callchain_cpus_entries {
1824 struct rcu_head rcu_head;
1825 struct perf_callchain_entry *cpu_entries[0];
1828 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1829 static atomic_t nr_callchain_events;
1830 static DEFINE_MUTEX(callchain_mutex);
1831 struct callchain_cpus_entries *callchain_cpus_entries;
1834 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1835 struct pt_regs *regs)
1839 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1840 struct pt_regs *regs)
1844 static void release_callchain_buffers_rcu(struct rcu_head *head)
1846 struct callchain_cpus_entries *entries;
1847 int cpu;
1849 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1851 for_each_possible_cpu(cpu)
1852 kfree(entries->cpu_entries[cpu]);
1854 kfree(entries);
1857 static void release_callchain_buffers(void)
1859 struct callchain_cpus_entries *entries;
1861 entries = callchain_cpus_entries;
1862 rcu_assign_pointer(callchain_cpus_entries, NULL);
1863 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1866 static int alloc_callchain_buffers(void)
1868 int cpu;
1869 int size;
1870 struct callchain_cpus_entries *entries;
1873 * We can't use the percpu allocation API for data that can be
1874 * accessed from NMI. Use a temporary manual per cpu allocation
1875 * until that gets sorted out.
1877 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1878 num_possible_cpus();
1880 entries = kzalloc(size, GFP_KERNEL);
1881 if (!entries)
1882 return -ENOMEM;
1884 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1886 for_each_possible_cpu(cpu) {
1887 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1888 cpu_to_node(cpu));
1889 if (!entries->cpu_entries[cpu])
1890 goto fail;
1893 rcu_assign_pointer(callchain_cpus_entries, entries);
1895 return 0;
1897 fail:
1898 for_each_possible_cpu(cpu)
1899 kfree(entries->cpu_entries[cpu]);
1900 kfree(entries);
1902 return -ENOMEM;
1905 static int get_callchain_buffers(void)
1907 int err = 0;
1908 int count;
1910 mutex_lock(&callchain_mutex);
1912 count = atomic_inc_return(&nr_callchain_events);
1913 if (WARN_ON_ONCE(count < 1)) {
1914 err = -EINVAL;
1915 goto exit;
1918 if (count > 1) {
1919 /* If the allocation failed, give up */
1920 if (!callchain_cpus_entries)
1921 err = -ENOMEM;
1922 goto exit;
1925 err = alloc_callchain_buffers();
1926 if (err)
1927 release_callchain_buffers();
1928 exit:
1929 mutex_unlock(&callchain_mutex);
1931 return err;
1934 static void put_callchain_buffers(void)
1936 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1937 release_callchain_buffers();
1938 mutex_unlock(&callchain_mutex);
1942 static int get_recursion_context(int *recursion)
1944 int rctx;
1946 if (in_nmi())
1947 rctx = 3;
1948 else if (in_irq())
1949 rctx = 2;
1950 else if (in_softirq())
1951 rctx = 1;
1952 else
1953 rctx = 0;
1955 if (recursion[rctx])
1956 return -1;
1958 recursion[rctx]++;
1959 barrier();
1961 return rctx;
1964 static inline void put_recursion_context(int *recursion, int rctx)
1966 barrier();
1967 recursion[rctx]--;
1970 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1972 int cpu;
1973 struct callchain_cpus_entries *entries;
1975 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1976 if (*rctx == -1)
1977 return NULL;
1979 entries = rcu_dereference(callchain_cpus_entries);
1980 if (!entries)
1981 return NULL;
1983 cpu = smp_processor_id();
1985 return &entries->cpu_entries[cpu][*rctx];
1988 static void
1989 put_callchain_entry(int rctx)
1991 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1994 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1996 int rctx;
1997 struct perf_callchain_entry *entry;
2000 entry = get_callchain_entry(&rctx);
2001 if (rctx == -1)
2002 return NULL;
2004 if (!entry)
2005 goto exit_put;
2007 entry->nr = 0;
2009 if (!user_mode(regs)) {
2010 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2011 perf_callchain_kernel(entry, regs);
2012 if (current->mm)
2013 regs = task_pt_regs(current);
2014 else
2015 regs = NULL;
2018 if (regs) {
2019 perf_callchain_store(entry, PERF_CONTEXT_USER);
2020 perf_callchain_user(entry, regs);
2023 exit_put:
2024 put_callchain_entry(rctx);
2026 return entry;
2030 * Initialize the perf_event context in a task_struct:
2032 static void __perf_event_init_context(struct perf_event_context *ctx)
2034 raw_spin_lock_init(&ctx->lock);
2035 mutex_init(&ctx->mutex);
2036 INIT_LIST_HEAD(&ctx->pinned_groups);
2037 INIT_LIST_HEAD(&ctx->flexible_groups);
2038 INIT_LIST_HEAD(&ctx->event_list);
2039 atomic_set(&ctx->refcount, 1);
2042 static struct perf_event_context *
2043 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2045 struct perf_event_context *ctx;
2047 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2048 if (!ctx)
2049 return NULL;
2051 __perf_event_init_context(ctx);
2052 if (task) {
2053 ctx->task = task;
2054 get_task_struct(task);
2056 ctx->pmu = pmu;
2058 return ctx;
2061 static struct task_struct *
2062 find_lively_task_by_vpid(pid_t vpid)
2064 struct task_struct *task;
2065 int err;
2067 rcu_read_lock();
2068 if (!vpid)
2069 task = current;
2070 else
2071 task = find_task_by_vpid(vpid);
2072 if (task)
2073 get_task_struct(task);
2074 rcu_read_unlock();
2076 if (!task)
2077 return ERR_PTR(-ESRCH);
2080 * Can't attach events to a dying task.
2082 err = -ESRCH;
2083 if (task->flags & PF_EXITING)
2084 goto errout;
2086 /* Reuse ptrace permission checks for now. */
2087 err = -EACCES;
2088 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2089 goto errout;
2091 return task;
2092 errout:
2093 put_task_struct(task);
2094 return ERR_PTR(err);
2098 static struct perf_event_context *
2099 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2101 struct perf_event_context *ctx;
2102 struct perf_cpu_context *cpuctx;
2103 unsigned long flags;
2104 int ctxn, err;
2106 if (!task && cpu != -1) {
2107 /* Must be root to operate on a CPU event: */
2108 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2109 return ERR_PTR(-EACCES);
2111 if (cpu < 0 || cpu >= nr_cpumask_bits)
2112 return ERR_PTR(-EINVAL);
2115 * We could be clever and allow to attach a event to an
2116 * offline CPU and activate it when the CPU comes up, but
2117 * that's for later.
2119 if (!cpu_online(cpu))
2120 return ERR_PTR(-ENODEV);
2122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2123 ctx = &cpuctx->ctx;
2124 get_ctx(ctx);
2126 return ctx;
2129 err = -EINVAL;
2130 ctxn = pmu->task_ctx_nr;
2131 if (ctxn < 0)
2132 goto errout;
2134 retry:
2135 ctx = perf_lock_task_context(task, ctxn, &flags);
2136 if (ctx) {
2137 unclone_ctx(ctx);
2138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2141 if (!ctx) {
2142 ctx = alloc_perf_context(pmu, task);
2143 err = -ENOMEM;
2144 if (!ctx)
2145 goto errout;
2147 get_ctx(ctx);
2149 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2151 * We raced with some other task; use
2152 * the context they set.
2154 put_task_struct(task);
2155 kfree(ctx);
2156 goto retry;
2160 return ctx;
2162 errout:
2163 return ERR_PTR(err);
2166 static void perf_event_free_filter(struct perf_event *event);
2168 static void free_event_rcu(struct rcu_head *head)
2170 struct perf_event *event;
2172 event = container_of(head, struct perf_event, rcu_head);
2173 if (event->ns)
2174 put_pid_ns(event->ns);
2175 perf_event_free_filter(event);
2176 kfree(event);
2179 static void perf_buffer_put(struct perf_buffer *buffer);
2181 static void free_event(struct perf_event *event)
2183 irq_work_sync(&event->pending);
2185 if (!event->parent) {
2186 if (event->attach_state & PERF_ATTACH_TASK)
2187 jump_label_dec(&perf_task_events);
2188 if (event->attr.mmap || event->attr.mmap_data)
2189 atomic_dec(&nr_mmap_events);
2190 if (event->attr.comm)
2191 atomic_dec(&nr_comm_events);
2192 if (event->attr.task)
2193 atomic_dec(&nr_task_events);
2194 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2195 put_callchain_buffers();
2198 if (event->buffer) {
2199 perf_buffer_put(event->buffer);
2200 event->buffer = NULL;
2203 if (event->destroy)
2204 event->destroy(event);
2206 if (event->ctx)
2207 put_ctx(event->ctx);
2209 call_rcu(&event->rcu_head, free_event_rcu);
2212 int perf_event_release_kernel(struct perf_event *event)
2214 struct perf_event_context *ctx = event->ctx;
2217 * Remove from the PMU, can't get re-enabled since we got
2218 * here because the last ref went.
2220 perf_event_disable(event);
2222 WARN_ON_ONCE(ctx->parent_ctx);
2224 * There are two ways this annotation is useful:
2226 * 1) there is a lock recursion from perf_event_exit_task
2227 * see the comment there.
2229 * 2) there is a lock-inversion with mmap_sem through
2230 * perf_event_read_group(), which takes faults while
2231 * holding ctx->mutex, however this is called after
2232 * the last filedesc died, so there is no possibility
2233 * to trigger the AB-BA case.
2235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2236 raw_spin_lock_irq(&ctx->lock);
2237 perf_group_detach(event);
2238 list_del_event(event, ctx);
2239 raw_spin_unlock_irq(&ctx->lock);
2240 mutex_unlock(&ctx->mutex);
2242 free_event(event);
2244 return 0;
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2249 * Called when the last reference to the file is gone.
2251 static int perf_release(struct inode *inode, struct file *file)
2253 struct perf_event *event = file->private_data;
2254 struct task_struct *owner;
2256 file->private_data = NULL;
2258 rcu_read_lock();
2259 owner = ACCESS_ONCE(event->owner);
2261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2262 * !owner it means the list deletion is complete and we can indeed
2263 * free this event, otherwise we need to serialize on
2264 * owner->perf_event_mutex.
2266 smp_read_barrier_depends();
2267 if (owner) {
2269 * Since delayed_put_task_struct() also drops the last
2270 * task reference we can safely take a new reference
2271 * while holding the rcu_read_lock().
2273 get_task_struct(owner);
2275 rcu_read_unlock();
2277 if (owner) {
2278 mutex_lock(&owner->perf_event_mutex);
2280 * We have to re-check the event->owner field, if it is cleared
2281 * we raced with perf_event_exit_task(), acquiring the mutex
2282 * ensured they're done, and we can proceed with freeing the
2283 * event.
2285 if (event->owner)
2286 list_del_init(&event->owner_entry);
2287 mutex_unlock(&owner->perf_event_mutex);
2288 put_task_struct(owner);
2291 return perf_event_release_kernel(event);
2294 static int perf_event_read_size(struct perf_event *event)
2296 int entry = sizeof(u64); /* value */
2297 int size = 0;
2298 int nr = 1;
2300 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2301 size += sizeof(u64);
2303 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2304 size += sizeof(u64);
2306 if (event->attr.read_format & PERF_FORMAT_ID)
2307 entry += sizeof(u64);
2309 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2310 nr += event->group_leader->nr_siblings;
2311 size += sizeof(u64);
2314 size += entry * nr;
2316 return size;
2319 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2321 struct perf_event *child;
2322 u64 total = 0;
2324 *enabled = 0;
2325 *running = 0;
2327 mutex_lock(&event->child_mutex);
2328 total += perf_event_read(event);
2329 *enabled += event->total_time_enabled +
2330 atomic64_read(&event->child_total_time_enabled);
2331 *running += event->total_time_running +
2332 atomic64_read(&event->child_total_time_running);
2334 list_for_each_entry(child, &event->child_list, child_list) {
2335 total += perf_event_read(child);
2336 *enabled += child->total_time_enabled;
2337 *running += child->total_time_running;
2339 mutex_unlock(&event->child_mutex);
2341 return total;
2343 EXPORT_SYMBOL_GPL(perf_event_read_value);
2345 static int perf_event_read_group(struct perf_event *event,
2346 u64 read_format, char __user *buf)
2348 struct perf_event *leader = event->group_leader, *sub;
2349 int n = 0, size = 0, ret = -EFAULT;
2350 struct perf_event_context *ctx = leader->ctx;
2351 u64 values[5];
2352 u64 count, enabled, running;
2354 mutex_lock(&ctx->mutex);
2355 count = perf_event_read_value(leader, &enabled, &running);
2357 values[n++] = 1 + leader->nr_siblings;
2358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2359 values[n++] = enabled;
2360 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2361 values[n++] = running;
2362 values[n++] = count;
2363 if (read_format & PERF_FORMAT_ID)
2364 values[n++] = primary_event_id(leader);
2366 size = n * sizeof(u64);
2368 if (copy_to_user(buf, values, size))
2369 goto unlock;
2371 ret = size;
2373 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2374 n = 0;
2376 values[n++] = perf_event_read_value(sub, &enabled, &running);
2377 if (read_format & PERF_FORMAT_ID)
2378 values[n++] = primary_event_id(sub);
2380 size = n * sizeof(u64);
2382 if (copy_to_user(buf + ret, values, size)) {
2383 ret = -EFAULT;
2384 goto unlock;
2387 ret += size;
2389 unlock:
2390 mutex_unlock(&ctx->mutex);
2392 return ret;
2395 static int perf_event_read_one(struct perf_event *event,
2396 u64 read_format, char __user *buf)
2398 u64 enabled, running;
2399 u64 values[4];
2400 int n = 0;
2402 values[n++] = perf_event_read_value(event, &enabled, &running);
2403 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2404 values[n++] = enabled;
2405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2406 values[n++] = running;
2407 if (read_format & PERF_FORMAT_ID)
2408 values[n++] = primary_event_id(event);
2410 if (copy_to_user(buf, values, n * sizeof(u64)))
2411 return -EFAULT;
2413 return n * sizeof(u64);
2417 * Read the performance event - simple non blocking version for now
2419 static ssize_t
2420 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2422 u64 read_format = event->attr.read_format;
2423 int ret;
2426 * Return end-of-file for a read on a event that is in
2427 * error state (i.e. because it was pinned but it couldn't be
2428 * scheduled on to the CPU at some point).
2430 if (event->state == PERF_EVENT_STATE_ERROR)
2431 return 0;
2433 if (count < perf_event_read_size(event))
2434 return -ENOSPC;
2436 WARN_ON_ONCE(event->ctx->parent_ctx);
2437 if (read_format & PERF_FORMAT_GROUP)
2438 ret = perf_event_read_group(event, read_format, buf);
2439 else
2440 ret = perf_event_read_one(event, read_format, buf);
2442 return ret;
2445 static ssize_t
2446 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2448 struct perf_event *event = file->private_data;
2450 return perf_read_hw(event, buf, count);
2453 static unsigned int perf_poll(struct file *file, poll_table *wait)
2455 struct perf_event *event = file->private_data;
2456 struct perf_buffer *buffer;
2457 unsigned int events = POLL_HUP;
2459 rcu_read_lock();
2460 buffer = rcu_dereference(event->buffer);
2461 if (buffer)
2462 events = atomic_xchg(&buffer->poll, 0);
2463 rcu_read_unlock();
2465 poll_wait(file, &event->waitq, wait);
2467 return events;
2470 static void perf_event_reset(struct perf_event *event)
2472 (void)perf_event_read(event);
2473 local64_set(&event->count, 0);
2474 perf_event_update_userpage(event);
2478 * Holding the top-level event's child_mutex means that any
2479 * descendant process that has inherited this event will block
2480 * in sync_child_event if it goes to exit, thus satisfying the
2481 * task existence requirements of perf_event_enable/disable.
2483 static void perf_event_for_each_child(struct perf_event *event,
2484 void (*func)(struct perf_event *))
2486 struct perf_event *child;
2488 WARN_ON_ONCE(event->ctx->parent_ctx);
2489 mutex_lock(&event->child_mutex);
2490 func(event);
2491 list_for_each_entry(child, &event->child_list, child_list)
2492 func(child);
2493 mutex_unlock(&event->child_mutex);
2496 static void perf_event_for_each(struct perf_event *event,
2497 void (*func)(struct perf_event *))
2499 struct perf_event_context *ctx = event->ctx;
2500 struct perf_event *sibling;
2502 WARN_ON_ONCE(ctx->parent_ctx);
2503 mutex_lock(&ctx->mutex);
2504 event = event->group_leader;
2506 perf_event_for_each_child(event, func);
2507 func(event);
2508 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2509 perf_event_for_each_child(event, func);
2510 mutex_unlock(&ctx->mutex);
2513 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2515 struct perf_event_context *ctx = event->ctx;
2516 int ret = 0;
2517 u64 value;
2519 if (!event->attr.sample_period)
2520 return -EINVAL;
2522 if (copy_from_user(&value, arg, sizeof(value)))
2523 return -EFAULT;
2525 if (!value)
2526 return -EINVAL;
2528 raw_spin_lock_irq(&ctx->lock);
2529 if (event->attr.freq) {
2530 if (value > sysctl_perf_event_sample_rate) {
2531 ret = -EINVAL;
2532 goto unlock;
2535 event->attr.sample_freq = value;
2536 } else {
2537 event->attr.sample_period = value;
2538 event->hw.sample_period = value;
2540 unlock:
2541 raw_spin_unlock_irq(&ctx->lock);
2543 return ret;
2546 static const struct file_operations perf_fops;
2548 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2550 struct file *file;
2552 file = fget_light(fd, fput_needed);
2553 if (!file)
2554 return ERR_PTR(-EBADF);
2556 if (file->f_op != &perf_fops) {
2557 fput_light(file, *fput_needed);
2558 *fput_needed = 0;
2559 return ERR_PTR(-EBADF);
2562 return file->private_data;
2565 static int perf_event_set_output(struct perf_event *event,
2566 struct perf_event *output_event);
2567 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2569 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2571 struct perf_event *event = file->private_data;
2572 void (*func)(struct perf_event *);
2573 u32 flags = arg;
2575 switch (cmd) {
2576 case PERF_EVENT_IOC_ENABLE:
2577 func = perf_event_enable;
2578 break;
2579 case PERF_EVENT_IOC_DISABLE:
2580 func = perf_event_disable;
2581 break;
2582 case PERF_EVENT_IOC_RESET:
2583 func = perf_event_reset;
2584 break;
2586 case PERF_EVENT_IOC_REFRESH:
2587 return perf_event_refresh(event, arg);
2589 case PERF_EVENT_IOC_PERIOD:
2590 return perf_event_period(event, (u64 __user *)arg);
2592 case PERF_EVENT_IOC_SET_OUTPUT:
2594 struct perf_event *output_event = NULL;
2595 int fput_needed = 0;
2596 int ret;
2598 if (arg != -1) {
2599 output_event = perf_fget_light(arg, &fput_needed);
2600 if (IS_ERR(output_event))
2601 return PTR_ERR(output_event);
2604 ret = perf_event_set_output(event, output_event);
2605 if (output_event)
2606 fput_light(output_event->filp, fput_needed);
2608 return ret;
2611 case PERF_EVENT_IOC_SET_FILTER:
2612 return perf_event_set_filter(event, (void __user *)arg);
2614 default:
2615 return -ENOTTY;
2618 if (flags & PERF_IOC_FLAG_GROUP)
2619 perf_event_for_each(event, func);
2620 else
2621 perf_event_for_each_child(event, func);
2623 return 0;
2626 int perf_event_task_enable(void)
2628 struct perf_event *event;
2630 mutex_lock(&current->perf_event_mutex);
2631 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2632 perf_event_for_each_child(event, perf_event_enable);
2633 mutex_unlock(&current->perf_event_mutex);
2635 return 0;
2638 int perf_event_task_disable(void)
2640 struct perf_event *event;
2642 mutex_lock(&current->perf_event_mutex);
2643 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2644 perf_event_for_each_child(event, perf_event_disable);
2645 mutex_unlock(&current->perf_event_mutex);
2647 return 0;
2650 #ifndef PERF_EVENT_INDEX_OFFSET
2651 # define PERF_EVENT_INDEX_OFFSET 0
2652 #endif
2654 static int perf_event_index(struct perf_event *event)
2656 if (event->hw.state & PERF_HES_STOPPED)
2657 return 0;
2659 if (event->state != PERF_EVENT_STATE_ACTIVE)
2660 return 0;
2662 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2666 * Callers need to ensure there can be no nesting of this function, otherwise
2667 * the seqlock logic goes bad. We can not serialize this because the arch
2668 * code calls this from NMI context.
2670 void perf_event_update_userpage(struct perf_event *event)
2672 struct perf_event_mmap_page *userpg;
2673 struct perf_buffer *buffer;
2675 rcu_read_lock();
2676 buffer = rcu_dereference(event->buffer);
2677 if (!buffer)
2678 goto unlock;
2680 userpg = buffer->user_page;
2683 * Disable preemption so as to not let the corresponding user-space
2684 * spin too long if we get preempted.
2686 preempt_disable();
2687 ++userpg->lock;
2688 barrier();
2689 userpg->index = perf_event_index(event);
2690 userpg->offset = perf_event_count(event);
2691 if (event->state == PERF_EVENT_STATE_ACTIVE)
2692 userpg->offset -= local64_read(&event->hw.prev_count);
2694 userpg->time_enabled = event->total_time_enabled +
2695 atomic64_read(&event->child_total_time_enabled);
2697 userpg->time_running = event->total_time_running +
2698 atomic64_read(&event->child_total_time_running);
2700 barrier();
2701 ++userpg->lock;
2702 preempt_enable();
2703 unlock:
2704 rcu_read_unlock();
2707 static unsigned long perf_data_size(struct perf_buffer *buffer);
2709 static void
2710 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2712 long max_size = perf_data_size(buffer);
2714 if (watermark)
2715 buffer->watermark = min(max_size, watermark);
2717 if (!buffer->watermark)
2718 buffer->watermark = max_size / 2;
2720 if (flags & PERF_BUFFER_WRITABLE)
2721 buffer->writable = 1;
2723 atomic_set(&buffer->refcount, 1);
2726 #ifndef CONFIG_PERF_USE_VMALLOC
2729 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2732 static struct page *
2733 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2735 if (pgoff > buffer->nr_pages)
2736 return NULL;
2738 if (pgoff == 0)
2739 return virt_to_page(buffer->user_page);
2741 return virt_to_page(buffer->data_pages[pgoff - 1]);
2744 static void *perf_mmap_alloc_page(int cpu)
2746 struct page *page;
2747 int node;
2749 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2750 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2751 if (!page)
2752 return NULL;
2754 return page_address(page);
2757 static struct perf_buffer *
2758 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2760 struct perf_buffer *buffer;
2761 unsigned long size;
2762 int i;
2764 size = sizeof(struct perf_buffer);
2765 size += nr_pages * sizeof(void *);
2767 buffer = kzalloc(size, GFP_KERNEL);
2768 if (!buffer)
2769 goto fail;
2771 buffer->user_page = perf_mmap_alloc_page(cpu);
2772 if (!buffer->user_page)
2773 goto fail_user_page;
2775 for (i = 0; i < nr_pages; i++) {
2776 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2777 if (!buffer->data_pages[i])
2778 goto fail_data_pages;
2781 buffer->nr_pages = nr_pages;
2783 perf_buffer_init(buffer, watermark, flags);
2785 return buffer;
2787 fail_data_pages:
2788 for (i--; i >= 0; i--)
2789 free_page((unsigned long)buffer->data_pages[i]);
2791 free_page((unsigned long)buffer->user_page);
2793 fail_user_page:
2794 kfree(buffer);
2796 fail:
2797 return NULL;
2800 static void perf_mmap_free_page(unsigned long addr)
2802 struct page *page = virt_to_page((void *)addr);
2804 page->mapping = NULL;
2805 __free_page(page);
2808 static void perf_buffer_free(struct perf_buffer *buffer)
2810 int i;
2812 perf_mmap_free_page((unsigned long)buffer->user_page);
2813 for (i = 0; i < buffer->nr_pages; i++)
2814 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2815 kfree(buffer);
2818 static inline int page_order(struct perf_buffer *buffer)
2820 return 0;
2823 #else
2826 * Back perf_mmap() with vmalloc memory.
2828 * Required for architectures that have d-cache aliasing issues.
2831 static inline int page_order(struct perf_buffer *buffer)
2833 return buffer->page_order;
2836 static struct page *
2837 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2839 if (pgoff > (1UL << page_order(buffer)))
2840 return NULL;
2842 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2845 static void perf_mmap_unmark_page(void *addr)
2847 struct page *page = vmalloc_to_page(addr);
2849 page->mapping = NULL;
2852 static void perf_buffer_free_work(struct work_struct *work)
2854 struct perf_buffer *buffer;
2855 void *base;
2856 int i, nr;
2858 buffer = container_of(work, struct perf_buffer, work);
2859 nr = 1 << page_order(buffer);
2861 base = buffer->user_page;
2862 for (i = 0; i < nr + 1; i++)
2863 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2865 vfree(base);
2866 kfree(buffer);
2869 static void perf_buffer_free(struct perf_buffer *buffer)
2871 schedule_work(&buffer->work);
2874 static struct perf_buffer *
2875 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2877 struct perf_buffer *buffer;
2878 unsigned long size;
2879 void *all_buf;
2881 size = sizeof(struct perf_buffer);
2882 size += sizeof(void *);
2884 buffer = kzalloc(size, GFP_KERNEL);
2885 if (!buffer)
2886 goto fail;
2888 INIT_WORK(&buffer->work, perf_buffer_free_work);
2890 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2891 if (!all_buf)
2892 goto fail_all_buf;
2894 buffer->user_page = all_buf;
2895 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2896 buffer->page_order = ilog2(nr_pages);
2897 buffer->nr_pages = 1;
2899 perf_buffer_init(buffer, watermark, flags);
2901 return buffer;
2903 fail_all_buf:
2904 kfree(buffer);
2906 fail:
2907 return NULL;
2910 #endif
2912 static unsigned long perf_data_size(struct perf_buffer *buffer)
2914 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2917 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2919 struct perf_event *event = vma->vm_file->private_data;
2920 struct perf_buffer *buffer;
2921 int ret = VM_FAULT_SIGBUS;
2923 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2924 if (vmf->pgoff == 0)
2925 ret = 0;
2926 return ret;
2929 rcu_read_lock();
2930 buffer = rcu_dereference(event->buffer);
2931 if (!buffer)
2932 goto unlock;
2934 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2935 goto unlock;
2937 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2938 if (!vmf->page)
2939 goto unlock;
2941 get_page(vmf->page);
2942 vmf->page->mapping = vma->vm_file->f_mapping;
2943 vmf->page->index = vmf->pgoff;
2945 ret = 0;
2946 unlock:
2947 rcu_read_unlock();
2949 return ret;
2952 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2954 struct perf_buffer *buffer;
2956 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2957 perf_buffer_free(buffer);
2960 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2962 struct perf_buffer *buffer;
2964 rcu_read_lock();
2965 buffer = rcu_dereference(event->buffer);
2966 if (buffer) {
2967 if (!atomic_inc_not_zero(&buffer->refcount))
2968 buffer = NULL;
2970 rcu_read_unlock();
2972 return buffer;
2975 static void perf_buffer_put(struct perf_buffer *buffer)
2977 if (!atomic_dec_and_test(&buffer->refcount))
2978 return;
2980 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2983 static void perf_mmap_open(struct vm_area_struct *vma)
2985 struct perf_event *event = vma->vm_file->private_data;
2987 atomic_inc(&event->mmap_count);
2990 static void perf_mmap_close(struct vm_area_struct *vma)
2992 struct perf_event *event = vma->vm_file->private_data;
2994 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2995 unsigned long size = perf_data_size(event->buffer);
2996 struct user_struct *user = event->mmap_user;
2997 struct perf_buffer *buffer = event->buffer;
2999 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3000 vma->vm_mm->locked_vm -= event->mmap_locked;
3001 rcu_assign_pointer(event->buffer, NULL);
3002 mutex_unlock(&event->mmap_mutex);
3004 perf_buffer_put(buffer);
3005 free_uid(user);
3009 static const struct vm_operations_struct perf_mmap_vmops = {
3010 .open = perf_mmap_open,
3011 .close = perf_mmap_close,
3012 .fault = perf_mmap_fault,
3013 .page_mkwrite = perf_mmap_fault,
3016 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3018 struct perf_event *event = file->private_data;
3019 unsigned long user_locked, user_lock_limit;
3020 struct user_struct *user = current_user();
3021 unsigned long locked, lock_limit;
3022 struct perf_buffer *buffer;
3023 unsigned long vma_size;
3024 unsigned long nr_pages;
3025 long user_extra, extra;
3026 int ret = 0, flags = 0;
3029 * Don't allow mmap() of inherited per-task counters. This would
3030 * create a performance issue due to all children writing to the
3031 * same buffer.
3033 if (event->cpu == -1 && event->attr.inherit)
3034 return -EINVAL;
3036 if (!(vma->vm_flags & VM_SHARED))
3037 return -EINVAL;
3039 vma_size = vma->vm_end - vma->vm_start;
3040 nr_pages = (vma_size / PAGE_SIZE) - 1;
3043 * If we have buffer pages ensure they're a power-of-two number, so we
3044 * can do bitmasks instead of modulo.
3046 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3047 return -EINVAL;
3049 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3050 return -EINVAL;
3052 if (vma->vm_pgoff != 0)
3053 return -EINVAL;
3055 WARN_ON_ONCE(event->ctx->parent_ctx);
3056 mutex_lock(&event->mmap_mutex);
3057 if (event->buffer) {
3058 if (event->buffer->nr_pages == nr_pages)
3059 atomic_inc(&event->buffer->refcount);
3060 else
3061 ret = -EINVAL;
3062 goto unlock;
3065 user_extra = nr_pages + 1;
3066 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3069 * Increase the limit linearly with more CPUs:
3071 user_lock_limit *= num_online_cpus();
3073 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3075 extra = 0;
3076 if (user_locked > user_lock_limit)
3077 extra = user_locked - user_lock_limit;
3079 lock_limit = rlimit(RLIMIT_MEMLOCK);
3080 lock_limit >>= PAGE_SHIFT;
3081 locked = vma->vm_mm->locked_vm + extra;
3083 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3084 !capable(CAP_IPC_LOCK)) {
3085 ret = -EPERM;
3086 goto unlock;
3089 WARN_ON(event->buffer);
3091 if (vma->vm_flags & VM_WRITE)
3092 flags |= PERF_BUFFER_WRITABLE;
3094 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3095 event->cpu, flags);
3096 if (!buffer) {
3097 ret = -ENOMEM;
3098 goto unlock;
3100 rcu_assign_pointer(event->buffer, buffer);
3102 atomic_long_add(user_extra, &user->locked_vm);
3103 event->mmap_locked = extra;
3104 event->mmap_user = get_current_user();
3105 vma->vm_mm->locked_vm += event->mmap_locked;
3107 unlock:
3108 if (!ret)
3109 atomic_inc(&event->mmap_count);
3110 mutex_unlock(&event->mmap_mutex);
3112 vma->vm_flags |= VM_RESERVED;
3113 vma->vm_ops = &perf_mmap_vmops;
3115 return ret;
3118 static int perf_fasync(int fd, struct file *filp, int on)
3120 struct inode *inode = filp->f_path.dentry->d_inode;
3121 struct perf_event *event = filp->private_data;
3122 int retval;
3124 mutex_lock(&inode->i_mutex);
3125 retval = fasync_helper(fd, filp, on, &event->fasync);
3126 mutex_unlock(&inode->i_mutex);
3128 if (retval < 0)
3129 return retval;
3131 return 0;
3134 static const struct file_operations perf_fops = {
3135 .llseek = no_llseek,
3136 .release = perf_release,
3137 .read = perf_read,
3138 .poll = perf_poll,
3139 .unlocked_ioctl = perf_ioctl,
3140 .compat_ioctl = perf_ioctl,
3141 .mmap = perf_mmap,
3142 .fasync = perf_fasync,
3146 * Perf event wakeup
3148 * If there's data, ensure we set the poll() state and publish everything
3149 * to user-space before waking everybody up.
3152 void perf_event_wakeup(struct perf_event *event)
3154 wake_up_all(&event->waitq);
3156 if (event->pending_kill) {
3157 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3158 event->pending_kill = 0;
3162 static void perf_pending_event(struct irq_work *entry)
3164 struct perf_event *event = container_of(entry,
3165 struct perf_event, pending);
3167 if (event->pending_disable) {
3168 event->pending_disable = 0;
3169 __perf_event_disable(event);
3172 if (event->pending_wakeup) {
3173 event->pending_wakeup = 0;
3174 perf_event_wakeup(event);
3179 * We assume there is only KVM supporting the callbacks.
3180 * Later on, we might change it to a list if there is
3181 * another virtualization implementation supporting the callbacks.
3183 struct perf_guest_info_callbacks *perf_guest_cbs;
3185 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3187 perf_guest_cbs = cbs;
3188 return 0;
3190 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3192 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3194 perf_guest_cbs = NULL;
3195 return 0;
3197 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3200 * Output
3202 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3203 unsigned long offset, unsigned long head)
3205 unsigned long mask;
3207 if (!buffer->writable)
3208 return true;
3210 mask = perf_data_size(buffer) - 1;
3212 offset = (offset - tail) & mask;
3213 head = (head - tail) & mask;
3215 if ((int)(head - offset) < 0)
3216 return false;
3218 return true;
3221 static void perf_output_wakeup(struct perf_output_handle *handle)
3223 atomic_set(&handle->buffer->poll, POLL_IN);
3225 if (handle->nmi) {
3226 handle->event->pending_wakeup = 1;
3227 irq_work_queue(&handle->event->pending);
3228 } else
3229 perf_event_wakeup(handle->event);
3233 * We need to ensure a later event_id doesn't publish a head when a former
3234 * event isn't done writing. However since we need to deal with NMIs we
3235 * cannot fully serialize things.
3237 * We only publish the head (and generate a wakeup) when the outer-most
3238 * event completes.
3240 static void perf_output_get_handle(struct perf_output_handle *handle)
3242 struct perf_buffer *buffer = handle->buffer;
3244 preempt_disable();
3245 local_inc(&buffer->nest);
3246 handle->wakeup = local_read(&buffer->wakeup);
3249 static void perf_output_put_handle(struct perf_output_handle *handle)
3251 struct perf_buffer *buffer = handle->buffer;
3252 unsigned long head;
3254 again:
3255 head = local_read(&buffer->head);
3258 * IRQ/NMI can happen here, which means we can miss a head update.
3261 if (!local_dec_and_test(&buffer->nest))
3262 goto out;
3265 * Publish the known good head. Rely on the full barrier implied
3266 * by atomic_dec_and_test() order the buffer->head read and this
3267 * write.
3269 buffer->user_page->data_head = head;
3272 * Now check if we missed an update, rely on the (compiler)
3273 * barrier in atomic_dec_and_test() to re-read buffer->head.
3275 if (unlikely(head != local_read(&buffer->head))) {
3276 local_inc(&buffer->nest);
3277 goto again;
3280 if (handle->wakeup != local_read(&buffer->wakeup))
3281 perf_output_wakeup(handle);
3283 out:
3284 preempt_enable();
3287 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3288 const void *buf, unsigned int len)
3290 do {
3291 unsigned long size = min_t(unsigned long, handle->size, len);
3293 memcpy(handle->addr, buf, size);
3295 len -= size;
3296 handle->addr += size;
3297 buf += size;
3298 handle->size -= size;
3299 if (!handle->size) {
3300 struct perf_buffer *buffer = handle->buffer;
3302 handle->page++;
3303 handle->page &= buffer->nr_pages - 1;
3304 handle->addr = buffer->data_pages[handle->page];
3305 handle->size = PAGE_SIZE << page_order(buffer);
3307 } while (len);
3310 int perf_output_begin(struct perf_output_handle *handle,
3311 struct perf_event *event, unsigned int size,
3312 int nmi, int sample)
3314 struct perf_buffer *buffer;
3315 unsigned long tail, offset, head;
3316 int have_lost;
3317 struct {
3318 struct perf_event_header header;
3319 u64 id;
3320 u64 lost;
3321 } lost_event;
3323 rcu_read_lock();
3325 * For inherited events we send all the output towards the parent.
3327 if (event->parent)
3328 event = event->parent;
3330 buffer = rcu_dereference(event->buffer);
3331 if (!buffer)
3332 goto out;
3334 handle->buffer = buffer;
3335 handle->event = event;
3336 handle->nmi = nmi;
3337 handle->sample = sample;
3339 if (!buffer->nr_pages)
3340 goto out;
3342 have_lost = local_read(&buffer->lost);
3343 if (have_lost)
3344 size += sizeof(lost_event);
3346 perf_output_get_handle(handle);
3348 do {
3350 * Userspace could choose to issue a mb() before updating the
3351 * tail pointer. So that all reads will be completed before the
3352 * write is issued.
3354 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3355 smp_rmb();
3356 offset = head = local_read(&buffer->head);
3357 head += size;
3358 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3359 goto fail;
3360 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3362 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3363 local_add(buffer->watermark, &buffer->wakeup);
3365 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3366 handle->page &= buffer->nr_pages - 1;
3367 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3368 handle->addr = buffer->data_pages[handle->page];
3369 handle->addr += handle->size;
3370 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3372 if (have_lost) {
3373 lost_event.header.type = PERF_RECORD_LOST;
3374 lost_event.header.misc = 0;
3375 lost_event.header.size = sizeof(lost_event);
3376 lost_event.id = event->id;
3377 lost_event.lost = local_xchg(&buffer->lost, 0);
3379 perf_output_put(handle, lost_event);
3382 return 0;
3384 fail:
3385 local_inc(&buffer->lost);
3386 perf_output_put_handle(handle);
3387 out:
3388 rcu_read_unlock();
3390 return -ENOSPC;
3393 void perf_output_end(struct perf_output_handle *handle)
3395 struct perf_event *event = handle->event;
3396 struct perf_buffer *buffer = handle->buffer;
3398 int wakeup_events = event->attr.wakeup_events;
3400 if (handle->sample && wakeup_events) {
3401 int events = local_inc_return(&buffer->events);
3402 if (events >= wakeup_events) {
3403 local_sub(wakeup_events, &buffer->events);
3404 local_inc(&buffer->wakeup);
3408 perf_output_put_handle(handle);
3409 rcu_read_unlock();
3412 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3415 * only top level events have the pid namespace they were created in
3417 if (event->parent)
3418 event = event->parent;
3420 return task_tgid_nr_ns(p, event->ns);
3423 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3426 * only top level events have the pid namespace they were created in
3428 if (event->parent)
3429 event = event->parent;
3431 return task_pid_nr_ns(p, event->ns);
3434 static void perf_output_read_one(struct perf_output_handle *handle,
3435 struct perf_event *event,
3436 u64 enabled, u64 running)
3438 u64 read_format = event->attr.read_format;
3439 u64 values[4];
3440 int n = 0;
3442 values[n++] = perf_event_count(event);
3443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3444 values[n++] = enabled +
3445 atomic64_read(&event->child_total_time_enabled);
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3448 values[n++] = running +
3449 atomic64_read(&event->child_total_time_running);
3451 if (read_format & PERF_FORMAT_ID)
3452 values[n++] = primary_event_id(event);
3454 perf_output_copy(handle, values, n * sizeof(u64));
3458 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3460 static void perf_output_read_group(struct perf_output_handle *handle,
3461 struct perf_event *event,
3462 u64 enabled, u64 running)
3464 struct perf_event *leader = event->group_leader, *sub;
3465 u64 read_format = event->attr.read_format;
3466 u64 values[5];
3467 int n = 0;
3469 values[n++] = 1 + leader->nr_siblings;
3471 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3472 values[n++] = enabled;
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3475 values[n++] = running;
3477 if (leader != event)
3478 leader->pmu->read(leader);
3480 values[n++] = perf_event_count(leader);
3481 if (read_format & PERF_FORMAT_ID)
3482 values[n++] = primary_event_id(leader);
3484 perf_output_copy(handle, values, n * sizeof(u64));
3486 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3487 n = 0;
3489 if (sub != event)
3490 sub->pmu->read(sub);
3492 values[n++] = perf_event_count(sub);
3493 if (read_format & PERF_FORMAT_ID)
3494 values[n++] = primary_event_id(sub);
3496 perf_output_copy(handle, values, n * sizeof(u64));
3500 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3501 PERF_FORMAT_TOTAL_TIME_RUNNING)
3503 static void perf_output_read(struct perf_output_handle *handle,
3504 struct perf_event *event)
3506 u64 enabled = 0, running = 0, now, ctx_time;
3507 u64 read_format = event->attr.read_format;
3510 * compute total_time_enabled, total_time_running
3511 * based on snapshot values taken when the event
3512 * was last scheduled in.
3514 * we cannot simply called update_context_time()
3515 * because of locking issue as we are called in
3516 * NMI context
3518 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3519 now = perf_clock();
3520 ctx_time = event->shadow_ctx_time + now;
3521 enabled = ctx_time - event->tstamp_enabled;
3522 running = ctx_time - event->tstamp_running;
3525 if (event->attr.read_format & PERF_FORMAT_GROUP)
3526 perf_output_read_group(handle, event, enabled, running);
3527 else
3528 perf_output_read_one(handle, event, enabled, running);
3531 void perf_output_sample(struct perf_output_handle *handle,
3532 struct perf_event_header *header,
3533 struct perf_sample_data *data,
3534 struct perf_event *event)
3536 u64 sample_type = data->type;
3538 perf_output_put(handle, *header);
3540 if (sample_type & PERF_SAMPLE_IP)
3541 perf_output_put(handle, data->ip);
3543 if (sample_type & PERF_SAMPLE_TID)
3544 perf_output_put(handle, data->tid_entry);
3546 if (sample_type & PERF_SAMPLE_TIME)
3547 perf_output_put(handle, data->time);
3549 if (sample_type & PERF_SAMPLE_ADDR)
3550 perf_output_put(handle, data->addr);
3552 if (sample_type & PERF_SAMPLE_ID)
3553 perf_output_put(handle, data->id);
3555 if (sample_type & PERF_SAMPLE_STREAM_ID)
3556 perf_output_put(handle, data->stream_id);
3558 if (sample_type & PERF_SAMPLE_CPU)
3559 perf_output_put(handle, data->cpu_entry);
3561 if (sample_type & PERF_SAMPLE_PERIOD)
3562 perf_output_put(handle, data->period);
3564 if (sample_type & PERF_SAMPLE_READ)
3565 perf_output_read(handle, event);
3567 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3568 if (data->callchain) {
3569 int size = 1;
3571 if (data->callchain)
3572 size += data->callchain->nr;
3574 size *= sizeof(u64);
3576 perf_output_copy(handle, data->callchain, size);
3577 } else {
3578 u64 nr = 0;
3579 perf_output_put(handle, nr);
3583 if (sample_type & PERF_SAMPLE_RAW) {
3584 if (data->raw) {
3585 perf_output_put(handle, data->raw->size);
3586 perf_output_copy(handle, data->raw->data,
3587 data->raw->size);
3588 } else {
3589 struct {
3590 u32 size;
3591 u32 data;
3592 } raw = {
3593 .size = sizeof(u32),
3594 .data = 0,
3596 perf_output_put(handle, raw);
3601 void perf_prepare_sample(struct perf_event_header *header,
3602 struct perf_sample_data *data,
3603 struct perf_event *event,
3604 struct pt_regs *regs)
3606 u64 sample_type = event->attr.sample_type;
3608 data->type = sample_type;
3610 header->type = PERF_RECORD_SAMPLE;
3611 header->size = sizeof(*header);
3613 header->misc = 0;
3614 header->misc |= perf_misc_flags(regs);
3616 if (sample_type & PERF_SAMPLE_IP) {
3617 data->ip = perf_instruction_pointer(regs);
3619 header->size += sizeof(data->ip);
3622 if (sample_type & PERF_SAMPLE_TID) {
3623 /* namespace issues */
3624 data->tid_entry.pid = perf_event_pid(event, current);
3625 data->tid_entry.tid = perf_event_tid(event, current);
3627 header->size += sizeof(data->tid_entry);
3630 if (sample_type & PERF_SAMPLE_TIME) {
3631 data->time = perf_clock();
3633 header->size += sizeof(data->time);
3636 if (sample_type & PERF_SAMPLE_ADDR)
3637 header->size += sizeof(data->addr);
3639 if (sample_type & PERF_SAMPLE_ID) {
3640 data->id = primary_event_id(event);
3642 header->size += sizeof(data->id);
3645 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3646 data->stream_id = event->id;
3648 header->size += sizeof(data->stream_id);
3651 if (sample_type & PERF_SAMPLE_CPU) {
3652 data->cpu_entry.cpu = raw_smp_processor_id();
3653 data->cpu_entry.reserved = 0;
3655 header->size += sizeof(data->cpu_entry);
3658 if (sample_type & PERF_SAMPLE_PERIOD)
3659 header->size += sizeof(data->period);
3661 if (sample_type & PERF_SAMPLE_READ)
3662 header->size += perf_event_read_size(event);
3664 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3665 int size = 1;
3667 data->callchain = perf_callchain(regs);
3669 if (data->callchain)
3670 size += data->callchain->nr;
3672 header->size += size * sizeof(u64);
3675 if (sample_type & PERF_SAMPLE_RAW) {
3676 int size = sizeof(u32);
3678 if (data->raw)
3679 size += data->raw->size;
3680 else
3681 size += sizeof(u32);
3683 WARN_ON_ONCE(size & (sizeof(u64)-1));
3684 header->size += size;
3688 static void perf_event_output(struct perf_event *event, int nmi,
3689 struct perf_sample_data *data,
3690 struct pt_regs *regs)
3692 struct perf_output_handle handle;
3693 struct perf_event_header header;
3695 /* protect the callchain buffers */
3696 rcu_read_lock();
3698 perf_prepare_sample(&header, data, event, regs);
3700 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3701 goto exit;
3703 perf_output_sample(&handle, &header, data, event);
3705 perf_output_end(&handle);
3707 exit:
3708 rcu_read_unlock();
3712 * read event_id
3715 struct perf_read_event {
3716 struct perf_event_header header;
3718 u32 pid;
3719 u32 tid;
3722 static void
3723 perf_event_read_event(struct perf_event *event,
3724 struct task_struct *task)
3726 struct perf_output_handle handle;
3727 struct perf_read_event read_event = {
3728 .header = {
3729 .type = PERF_RECORD_READ,
3730 .misc = 0,
3731 .size = sizeof(read_event) + perf_event_read_size(event),
3733 .pid = perf_event_pid(event, task),
3734 .tid = perf_event_tid(event, task),
3736 int ret;
3738 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3739 if (ret)
3740 return;
3742 perf_output_put(&handle, read_event);
3743 perf_output_read(&handle, event);
3745 perf_output_end(&handle);
3749 * task tracking -- fork/exit
3751 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3754 struct perf_task_event {
3755 struct task_struct *task;
3756 struct perf_event_context *task_ctx;
3758 struct {
3759 struct perf_event_header header;
3761 u32 pid;
3762 u32 ppid;
3763 u32 tid;
3764 u32 ptid;
3765 u64 time;
3766 } event_id;
3769 static void perf_event_task_output(struct perf_event *event,
3770 struct perf_task_event *task_event)
3772 struct perf_output_handle handle;
3773 struct task_struct *task = task_event->task;
3774 int size, ret;
3776 size = task_event->event_id.header.size;
3777 ret = perf_output_begin(&handle, event, size, 0, 0);
3779 if (ret)
3780 return;
3782 task_event->event_id.pid = perf_event_pid(event, task);
3783 task_event->event_id.ppid = perf_event_pid(event, current);
3785 task_event->event_id.tid = perf_event_tid(event, task);
3786 task_event->event_id.ptid = perf_event_tid(event, current);
3788 perf_output_put(&handle, task_event->event_id);
3790 perf_output_end(&handle);
3793 static int perf_event_task_match(struct perf_event *event)
3795 if (event->state < PERF_EVENT_STATE_INACTIVE)
3796 return 0;
3798 if (event->cpu != -1 && event->cpu != smp_processor_id())
3799 return 0;
3801 if (event->attr.comm || event->attr.mmap ||
3802 event->attr.mmap_data || event->attr.task)
3803 return 1;
3805 return 0;
3808 static void perf_event_task_ctx(struct perf_event_context *ctx,
3809 struct perf_task_event *task_event)
3811 struct perf_event *event;
3813 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3814 if (perf_event_task_match(event))
3815 perf_event_task_output(event, task_event);
3819 static void perf_event_task_event(struct perf_task_event *task_event)
3821 struct perf_cpu_context *cpuctx;
3822 struct perf_event_context *ctx;
3823 struct pmu *pmu;
3824 int ctxn;
3826 rcu_read_lock();
3827 list_for_each_entry_rcu(pmu, &pmus, entry) {
3828 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3829 perf_event_task_ctx(&cpuctx->ctx, task_event);
3831 ctx = task_event->task_ctx;
3832 if (!ctx) {
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto next;
3836 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3838 if (ctx)
3839 perf_event_task_ctx(ctx, task_event);
3840 next:
3841 put_cpu_ptr(pmu->pmu_cpu_context);
3843 rcu_read_unlock();
3846 static void perf_event_task(struct task_struct *task,
3847 struct perf_event_context *task_ctx,
3848 int new)
3850 struct perf_task_event task_event;
3852 if (!atomic_read(&nr_comm_events) &&
3853 !atomic_read(&nr_mmap_events) &&
3854 !atomic_read(&nr_task_events))
3855 return;
3857 task_event = (struct perf_task_event){
3858 .task = task,
3859 .task_ctx = task_ctx,
3860 .event_id = {
3861 .header = {
3862 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3863 .misc = 0,
3864 .size = sizeof(task_event.event_id),
3866 /* .pid */
3867 /* .ppid */
3868 /* .tid */
3869 /* .ptid */
3870 .time = perf_clock(),
3874 perf_event_task_event(&task_event);
3877 void perf_event_fork(struct task_struct *task)
3879 perf_event_task(task, NULL, 1);
3883 * comm tracking
3886 struct perf_comm_event {
3887 struct task_struct *task;
3888 char *comm;
3889 int comm_size;
3891 struct {
3892 struct perf_event_header header;
3894 u32 pid;
3895 u32 tid;
3896 } event_id;
3899 static void perf_event_comm_output(struct perf_event *event,
3900 struct perf_comm_event *comm_event)
3902 struct perf_output_handle handle;
3903 int size = comm_event->event_id.header.size;
3904 int ret = perf_output_begin(&handle, event, size, 0, 0);
3906 if (ret)
3907 return;
3909 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3910 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3912 perf_output_put(&handle, comm_event->event_id);
3913 perf_output_copy(&handle, comm_event->comm,
3914 comm_event->comm_size);
3915 perf_output_end(&handle);
3918 static int perf_event_comm_match(struct perf_event *event)
3920 if (event->state < PERF_EVENT_STATE_INACTIVE)
3921 return 0;
3923 if (event->cpu != -1 && event->cpu != smp_processor_id())
3924 return 0;
3926 if (event->attr.comm)
3927 return 1;
3929 return 0;
3932 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3933 struct perf_comm_event *comm_event)
3935 struct perf_event *event;
3937 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3938 if (perf_event_comm_match(event))
3939 perf_event_comm_output(event, comm_event);
3943 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3945 struct perf_cpu_context *cpuctx;
3946 struct perf_event_context *ctx;
3947 char comm[TASK_COMM_LEN];
3948 unsigned int size;
3949 struct pmu *pmu;
3950 int ctxn;
3952 memset(comm, 0, sizeof(comm));
3953 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3954 size = ALIGN(strlen(comm)+1, sizeof(u64));
3956 comm_event->comm = comm;
3957 comm_event->comm_size = size;
3959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3961 rcu_read_lock();
3962 list_for_each_entry_rcu(pmu, &pmus, entry) {
3963 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3964 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3966 ctxn = pmu->task_ctx_nr;
3967 if (ctxn < 0)
3968 goto next;
3970 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3971 if (ctx)
3972 perf_event_comm_ctx(ctx, comm_event);
3973 next:
3974 put_cpu_ptr(pmu->pmu_cpu_context);
3976 rcu_read_unlock();
3979 void perf_event_comm(struct task_struct *task)
3981 struct perf_comm_event comm_event;
3982 struct perf_event_context *ctx;
3983 int ctxn;
3985 for_each_task_context_nr(ctxn) {
3986 ctx = task->perf_event_ctxp[ctxn];
3987 if (!ctx)
3988 continue;
3990 perf_event_enable_on_exec(ctx);
3993 if (!atomic_read(&nr_comm_events))
3994 return;
3996 comm_event = (struct perf_comm_event){
3997 .task = task,
3998 /* .comm */
3999 /* .comm_size */
4000 .event_id = {
4001 .header = {
4002 .type = PERF_RECORD_COMM,
4003 .misc = 0,
4004 /* .size */
4006 /* .pid */
4007 /* .tid */
4011 perf_event_comm_event(&comm_event);
4015 * mmap tracking
4018 struct perf_mmap_event {
4019 struct vm_area_struct *vma;
4021 const char *file_name;
4022 int file_size;
4024 struct {
4025 struct perf_event_header header;
4027 u32 pid;
4028 u32 tid;
4029 u64 start;
4030 u64 len;
4031 u64 pgoff;
4032 } event_id;
4035 static void perf_event_mmap_output(struct perf_event *event,
4036 struct perf_mmap_event *mmap_event)
4038 struct perf_output_handle handle;
4039 int size = mmap_event->event_id.header.size;
4040 int ret = perf_output_begin(&handle, event, size, 0, 0);
4042 if (ret)
4043 return;
4045 mmap_event->event_id.pid = perf_event_pid(event, current);
4046 mmap_event->event_id.tid = perf_event_tid(event, current);
4048 perf_output_put(&handle, mmap_event->event_id);
4049 perf_output_copy(&handle, mmap_event->file_name,
4050 mmap_event->file_size);
4051 perf_output_end(&handle);
4054 static int perf_event_mmap_match(struct perf_event *event,
4055 struct perf_mmap_event *mmap_event,
4056 int executable)
4058 if (event->state < PERF_EVENT_STATE_INACTIVE)
4059 return 0;
4061 if (event->cpu != -1 && event->cpu != smp_processor_id())
4062 return 0;
4064 if ((!executable && event->attr.mmap_data) ||
4065 (executable && event->attr.mmap))
4066 return 1;
4068 return 0;
4071 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4072 struct perf_mmap_event *mmap_event,
4073 int executable)
4075 struct perf_event *event;
4077 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4078 if (perf_event_mmap_match(event, mmap_event, executable))
4079 perf_event_mmap_output(event, mmap_event);
4083 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4085 struct perf_cpu_context *cpuctx;
4086 struct perf_event_context *ctx;
4087 struct vm_area_struct *vma = mmap_event->vma;
4088 struct file *file = vma->vm_file;
4089 unsigned int size;
4090 char tmp[16];
4091 char *buf = NULL;
4092 const char *name;
4093 struct pmu *pmu;
4094 int ctxn;
4096 memset(tmp, 0, sizeof(tmp));
4098 if (file) {
4100 * d_path works from the end of the buffer backwards, so we
4101 * need to add enough zero bytes after the string to handle
4102 * the 64bit alignment we do later.
4104 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4105 if (!buf) {
4106 name = strncpy(tmp, "//enomem", sizeof(tmp));
4107 goto got_name;
4109 name = d_path(&file->f_path, buf, PATH_MAX);
4110 if (IS_ERR(name)) {
4111 name = strncpy(tmp, "//toolong", sizeof(tmp));
4112 goto got_name;
4114 } else {
4115 if (arch_vma_name(mmap_event->vma)) {
4116 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4117 sizeof(tmp));
4118 goto got_name;
4121 if (!vma->vm_mm) {
4122 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4123 goto got_name;
4124 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4125 vma->vm_end >= vma->vm_mm->brk) {
4126 name = strncpy(tmp, "[heap]", sizeof(tmp));
4127 goto got_name;
4128 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4129 vma->vm_end >= vma->vm_mm->start_stack) {
4130 name = strncpy(tmp, "[stack]", sizeof(tmp));
4131 goto got_name;
4134 name = strncpy(tmp, "//anon", sizeof(tmp));
4135 goto got_name;
4138 got_name:
4139 size = ALIGN(strlen(name)+1, sizeof(u64));
4141 mmap_event->file_name = name;
4142 mmap_event->file_size = size;
4144 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4146 rcu_read_lock();
4147 list_for_each_entry_rcu(pmu, &pmus, entry) {
4148 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4149 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4150 vma->vm_flags & VM_EXEC);
4152 ctxn = pmu->task_ctx_nr;
4153 if (ctxn < 0)
4154 goto next;
4156 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4157 if (ctx) {
4158 perf_event_mmap_ctx(ctx, mmap_event,
4159 vma->vm_flags & VM_EXEC);
4161 next:
4162 put_cpu_ptr(pmu->pmu_cpu_context);
4164 rcu_read_unlock();
4166 kfree(buf);
4169 void perf_event_mmap(struct vm_area_struct *vma)
4171 struct perf_mmap_event mmap_event;
4173 if (!atomic_read(&nr_mmap_events))
4174 return;
4176 mmap_event = (struct perf_mmap_event){
4177 .vma = vma,
4178 /* .file_name */
4179 /* .file_size */
4180 .event_id = {
4181 .header = {
4182 .type = PERF_RECORD_MMAP,
4183 .misc = PERF_RECORD_MISC_USER,
4184 /* .size */
4186 /* .pid */
4187 /* .tid */
4188 .start = vma->vm_start,
4189 .len = vma->vm_end - vma->vm_start,
4190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4194 perf_event_mmap_event(&mmap_event);
4198 * IRQ throttle logging
4201 static void perf_log_throttle(struct perf_event *event, int enable)
4203 struct perf_output_handle handle;
4204 int ret;
4206 struct {
4207 struct perf_event_header header;
4208 u64 time;
4209 u64 id;
4210 u64 stream_id;
4211 } throttle_event = {
4212 .header = {
4213 .type = PERF_RECORD_THROTTLE,
4214 .misc = 0,
4215 .size = sizeof(throttle_event),
4217 .time = perf_clock(),
4218 .id = primary_event_id(event),
4219 .stream_id = event->id,
4222 if (enable)
4223 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4225 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4226 if (ret)
4227 return;
4229 perf_output_put(&handle, throttle_event);
4230 perf_output_end(&handle);
4234 * Generic event overflow handling, sampling.
4237 static int __perf_event_overflow(struct perf_event *event, int nmi,
4238 int throttle, struct perf_sample_data *data,
4239 struct pt_regs *regs)
4241 int events = atomic_read(&event->event_limit);
4242 struct hw_perf_event *hwc = &event->hw;
4243 int ret = 0;
4245 if (!throttle) {
4246 hwc->interrupts++;
4247 } else {
4248 if (hwc->interrupts != MAX_INTERRUPTS) {
4249 hwc->interrupts++;
4250 if (HZ * hwc->interrupts >
4251 (u64)sysctl_perf_event_sample_rate) {
4252 hwc->interrupts = MAX_INTERRUPTS;
4253 perf_log_throttle(event, 0);
4254 ret = 1;
4256 } else {
4258 * Keep re-disabling events even though on the previous
4259 * pass we disabled it - just in case we raced with a
4260 * sched-in and the event got enabled again:
4262 ret = 1;
4266 if (event->attr.freq) {
4267 u64 now = perf_clock();
4268 s64 delta = now - hwc->freq_time_stamp;
4270 hwc->freq_time_stamp = now;
4272 if (delta > 0 && delta < 2*TICK_NSEC)
4273 perf_adjust_period(event, delta, hwc->last_period);
4277 * XXX event_limit might not quite work as expected on inherited
4278 * events
4281 event->pending_kill = POLL_IN;
4282 if (events && atomic_dec_and_test(&event->event_limit)) {
4283 ret = 1;
4284 event->pending_kill = POLL_HUP;
4285 if (nmi) {
4286 event->pending_disable = 1;
4287 irq_work_queue(&event->pending);
4288 } else
4289 perf_event_disable(event);
4292 if (event->overflow_handler)
4293 event->overflow_handler(event, nmi, data, regs);
4294 else
4295 perf_event_output(event, nmi, data, regs);
4297 return ret;
4300 int perf_event_overflow(struct perf_event *event, int nmi,
4301 struct perf_sample_data *data,
4302 struct pt_regs *regs)
4304 return __perf_event_overflow(event, nmi, 1, data, regs);
4308 * Generic software event infrastructure
4311 struct swevent_htable {
4312 struct swevent_hlist *swevent_hlist;
4313 struct mutex hlist_mutex;
4314 int hlist_refcount;
4316 /* Recursion avoidance in each contexts */
4317 int recursion[PERF_NR_CONTEXTS];
4320 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4323 * We directly increment event->count and keep a second value in
4324 * event->hw.period_left to count intervals. This period event
4325 * is kept in the range [-sample_period, 0] so that we can use the
4326 * sign as trigger.
4329 static u64 perf_swevent_set_period(struct perf_event *event)
4331 struct hw_perf_event *hwc = &event->hw;
4332 u64 period = hwc->last_period;
4333 u64 nr, offset;
4334 s64 old, val;
4336 hwc->last_period = hwc->sample_period;
4338 again:
4339 old = val = local64_read(&hwc->period_left);
4340 if (val < 0)
4341 return 0;
4343 nr = div64_u64(period + val, period);
4344 offset = nr * period;
4345 val -= offset;
4346 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4347 goto again;
4349 return nr;
4352 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4353 int nmi, struct perf_sample_data *data,
4354 struct pt_regs *regs)
4356 struct hw_perf_event *hwc = &event->hw;
4357 int throttle = 0;
4359 data->period = event->hw.last_period;
4360 if (!overflow)
4361 overflow = perf_swevent_set_period(event);
4363 if (hwc->interrupts == MAX_INTERRUPTS)
4364 return;
4366 for (; overflow; overflow--) {
4367 if (__perf_event_overflow(event, nmi, throttle,
4368 data, regs)) {
4370 * We inhibit the overflow from happening when
4371 * hwc->interrupts == MAX_INTERRUPTS.
4373 break;
4375 throttle = 1;
4379 static void perf_swevent_event(struct perf_event *event, u64 nr,
4380 int nmi, struct perf_sample_data *data,
4381 struct pt_regs *regs)
4383 struct hw_perf_event *hwc = &event->hw;
4385 local64_add(nr, &event->count);
4387 if (!regs)
4388 return;
4390 if (!hwc->sample_period)
4391 return;
4393 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4394 return perf_swevent_overflow(event, 1, nmi, data, regs);
4396 if (local64_add_negative(nr, &hwc->period_left))
4397 return;
4399 perf_swevent_overflow(event, 0, nmi, data, regs);
4402 static int perf_exclude_event(struct perf_event *event,
4403 struct pt_regs *regs)
4405 if (event->hw.state & PERF_HES_STOPPED)
4406 return 0;
4408 if (regs) {
4409 if (event->attr.exclude_user && user_mode(regs))
4410 return 1;
4412 if (event->attr.exclude_kernel && !user_mode(regs))
4413 return 1;
4416 return 0;
4419 static int perf_swevent_match(struct perf_event *event,
4420 enum perf_type_id type,
4421 u32 event_id,
4422 struct perf_sample_data *data,
4423 struct pt_regs *regs)
4425 if (event->attr.type != type)
4426 return 0;
4428 if (event->attr.config != event_id)
4429 return 0;
4431 if (perf_exclude_event(event, regs))
4432 return 0;
4434 return 1;
4437 static inline u64 swevent_hash(u64 type, u32 event_id)
4439 u64 val = event_id | (type << 32);
4441 return hash_64(val, SWEVENT_HLIST_BITS);
4444 static inline struct hlist_head *
4445 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4447 u64 hash = swevent_hash(type, event_id);
4449 return &hlist->heads[hash];
4452 /* For the read side: events when they trigger */
4453 static inline struct hlist_head *
4454 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4456 struct swevent_hlist *hlist;
4458 hlist = rcu_dereference(swhash->swevent_hlist);
4459 if (!hlist)
4460 return NULL;
4462 return __find_swevent_head(hlist, type, event_id);
4465 /* For the event head insertion and removal in the hlist */
4466 static inline struct hlist_head *
4467 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4469 struct swevent_hlist *hlist;
4470 u32 event_id = event->attr.config;
4471 u64 type = event->attr.type;
4474 * Event scheduling is always serialized against hlist allocation
4475 * and release. Which makes the protected version suitable here.
4476 * The context lock guarantees that.
4478 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4479 lockdep_is_held(&event->ctx->lock));
4480 if (!hlist)
4481 return NULL;
4483 return __find_swevent_head(hlist, type, event_id);
4486 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4487 u64 nr, int nmi,
4488 struct perf_sample_data *data,
4489 struct pt_regs *regs)
4491 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4492 struct perf_event *event;
4493 struct hlist_node *node;
4494 struct hlist_head *head;
4496 rcu_read_lock();
4497 head = find_swevent_head_rcu(swhash, type, event_id);
4498 if (!head)
4499 goto end;
4501 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4502 if (perf_swevent_match(event, type, event_id, data, regs))
4503 perf_swevent_event(event, nr, nmi, data, regs);
4505 end:
4506 rcu_read_unlock();
4509 int perf_swevent_get_recursion_context(void)
4511 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4513 return get_recursion_context(swhash->recursion);
4515 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4517 void inline perf_swevent_put_recursion_context(int rctx)
4519 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4521 put_recursion_context(swhash->recursion, rctx);
4524 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4525 struct pt_regs *regs, u64 addr)
4527 struct perf_sample_data data;
4528 int rctx;
4530 preempt_disable_notrace();
4531 rctx = perf_swevent_get_recursion_context();
4532 if (rctx < 0)
4533 return;
4535 perf_sample_data_init(&data, addr);
4537 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4539 perf_swevent_put_recursion_context(rctx);
4540 preempt_enable_notrace();
4543 static void perf_swevent_read(struct perf_event *event)
4547 static int perf_swevent_add(struct perf_event *event, int flags)
4549 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4550 struct hw_perf_event *hwc = &event->hw;
4551 struct hlist_head *head;
4553 if (hwc->sample_period) {
4554 hwc->last_period = hwc->sample_period;
4555 perf_swevent_set_period(event);
4558 hwc->state = !(flags & PERF_EF_START);
4560 head = find_swevent_head(swhash, event);
4561 if (WARN_ON_ONCE(!head))
4562 return -EINVAL;
4564 hlist_add_head_rcu(&event->hlist_entry, head);
4566 return 0;
4569 static void perf_swevent_del(struct perf_event *event, int flags)
4571 hlist_del_rcu(&event->hlist_entry);
4574 static void perf_swevent_start(struct perf_event *event, int flags)
4576 event->hw.state = 0;
4579 static void perf_swevent_stop(struct perf_event *event, int flags)
4581 event->hw.state = PERF_HES_STOPPED;
4584 /* Deref the hlist from the update side */
4585 static inline struct swevent_hlist *
4586 swevent_hlist_deref(struct swevent_htable *swhash)
4588 return rcu_dereference_protected(swhash->swevent_hlist,
4589 lockdep_is_held(&swhash->hlist_mutex));
4592 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4594 struct swevent_hlist *hlist;
4596 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4597 kfree(hlist);
4600 static void swevent_hlist_release(struct swevent_htable *swhash)
4602 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4604 if (!hlist)
4605 return;
4607 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4608 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4611 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4615 mutex_lock(&swhash->hlist_mutex);
4617 if (!--swhash->hlist_refcount)
4618 swevent_hlist_release(swhash);
4620 mutex_unlock(&swhash->hlist_mutex);
4623 static void swevent_hlist_put(struct perf_event *event)
4625 int cpu;
4627 if (event->cpu != -1) {
4628 swevent_hlist_put_cpu(event, event->cpu);
4629 return;
4632 for_each_possible_cpu(cpu)
4633 swevent_hlist_put_cpu(event, cpu);
4636 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4638 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4639 int err = 0;
4641 mutex_lock(&swhash->hlist_mutex);
4643 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4644 struct swevent_hlist *hlist;
4646 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4647 if (!hlist) {
4648 err = -ENOMEM;
4649 goto exit;
4651 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4653 swhash->hlist_refcount++;
4654 exit:
4655 mutex_unlock(&swhash->hlist_mutex);
4657 return err;
4660 static int swevent_hlist_get(struct perf_event *event)
4662 int err;
4663 int cpu, failed_cpu;
4665 if (event->cpu != -1)
4666 return swevent_hlist_get_cpu(event, event->cpu);
4668 get_online_cpus();
4669 for_each_possible_cpu(cpu) {
4670 err = swevent_hlist_get_cpu(event, cpu);
4671 if (err) {
4672 failed_cpu = cpu;
4673 goto fail;
4676 put_online_cpus();
4678 return 0;
4679 fail:
4680 for_each_possible_cpu(cpu) {
4681 if (cpu == failed_cpu)
4682 break;
4683 swevent_hlist_put_cpu(event, cpu);
4686 put_online_cpus();
4687 return err;
4690 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4692 static void sw_perf_event_destroy(struct perf_event *event)
4694 u64 event_id = event->attr.config;
4696 WARN_ON(event->parent);
4698 jump_label_dec(&perf_swevent_enabled[event_id]);
4699 swevent_hlist_put(event);
4702 static int perf_swevent_init(struct perf_event *event)
4704 int event_id = event->attr.config;
4706 if (event->attr.type != PERF_TYPE_SOFTWARE)
4707 return -ENOENT;
4709 switch (event_id) {
4710 case PERF_COUNT_SW_CPU_CLOCK:
4711 case PERF_COUNT_SW_TASK_CLOCK:
4712 return -ENOENT;
4714 default:
4715 break;
4718 if (event_id > PERF_COUNT_SW_MAX)
4719 return -ENOENT;
4721 if (!event->parent) {
4722 int err;
4724 err = swevent_hlist_get(event);
4725 if (err)
4726 return err;
4728 jump_label_inc(&perf_swevent_enabled[event_id]);
4729 event->destroy = sw_perf_event_destroy;
4732 return 0;
4735 static struct pmu perf_swevent = {
4736 .task_ctx_nr = perf_sw_context,
4738 .event_init = perf_swevent_init,
4739 .add = perf_swevent_add,
4740 .del = perf_swevent_del,
4741 .start = perf_swevent_start,
4742 .stop = perf_swevent_stop,
4743 .read = perf_swevent_read,
4746 #ifdef CONFIG_EVENT_TRACING
4748 static int perf_tp_filter_match(struct perf_event *event,
4749 struct perf_sample_data *data)
4751 void *record = data->raw->data;
4753 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4754 return 1;
4755 return 0;
4758 static int perf_tp_event_match(struct perf_event *event,
4759 struct perf_sample_data *data,
4760 struct pt_regs *regs)
4763 * All tracepoints are from kernel-space.
4765 if (event->attr.exclude_kernel)
4766 return 0;
4768 if (!perf_tp_filter_match(event, data))
4769 return 0;
4771 return 1;
4774 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4775 struct pt_regs *regs, struct hlist_head *head, int rctx)
4777 struct perf_sample_data data;
4778 struct perf_event *event;
4779 struct hlist_node *node;
4781 struct perf_raw_record raw = {
4782 .size = entry_size,
4783 .data = record,
4786 perf_sample_data_init(&data, addr);
4787 data.raw = &raw;
4789 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4790 if (perf_tp_event_match(event, &data, regs))
4791 perf_swevent_event(event, count, 1, &data, regs);
4794 perf_swevent_put_recursion_context(rctx);
4796 EXPORT_SYMBOL_GPL(perf_tp_event);
4798 static void tp_perf_event_destroy(struct perf_event *event)
4800 perf_trace_destroy(event);
4803 static int perf_tp_event_init(struct perf_event *event)
4805 int err;
4807 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4808 return -ENOENT;
4811 * Raw tracepoint data is a severe data leak, only allow root to
4812 * have these.
4814 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4815 perf_paranoid_tracepoint_raw() &&
4816 !capable(CAP_SYS_ADMIN))
4817 return -EPERM;
4819 err = perf_trace_init(event);
4820 if (err)
4821 return err;
4823 event->destroy = tp_perf_event_destroy;
4825 return 0;
4828 static struct pmu perf_tracepoint = {
4829 .task_ctx_nr = perf_sw_context,
4831 .event_init = perf_tp_event_init,
4832 .add = perf_trace_add,
4833 .del = perf_trace_del,
4834 .start = perf_swevent_start,
4835 .stop = perf_swevent_stop,
4836 .read = perf_swevent_read,
4839 static inline void perf_tp_register(void)
4841 perf_pmu_register(&perf_tracepoint);
4844 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4846 char *filter_str;
4847 int ret;
4849 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4850 return -EINVAL;
4852 filter_str = strndup_user(arg, PAGE_SIZE);
4853 if (IS_ERR(filter_str))
4854 return PTR_ERR(filter_str);
4856 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4858 kfree(filter_str);
4859 return ret;
4862 static void perf_event_free_filter(struct perf_event *event)
4864 ftrace_profile_free_filter(event);
4867 #else
4869 static inline void perf_tp_register(void)
4873 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4875 return -ENOENT;
4878 static void perf_event_free_filter(struct perf_event *event)
4882 #endif /* CONFIG_EVENT_TRACING */
4884 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4885 void perf_bp_event(struct perf_event *bp, void *data)
4887 struct perf_sample_data sample;
4888 struct pt_regs *regs = data;
4890 perf_sample_data_init(&sample, bp->attr.bp_addr);
4892 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4893 perf_swevent_event(bp, 1, 1, &sample, regs);
4895 #endif
4898 * hrtimer based swevent callback
4901 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4903 enum hrtimer_restart ret = HRTIMER_RESTART;
4904 struct perf_sample_data data;
4905 struct pt_regs *regs;
4906 struct perf_event *event;
4907 u64 period;
4909 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4910 event->pmu->read(event);
4912 perf_sample_data_init(&data, 0);
4913 data.period = event->hw.last_period;
4914 regs = get_irq_regs();
4916 if (regs && !perf_exclude_event(event, regs)) {
4917 if (!(event->attr.exclude_idle && current->pid == 0))
4918 if (perf_event_overflow(event, 0, &data, regs))
4919 ret = HRTIMER_NORESTART;
4922 period = max_t(u64, 10000, event->hw.sample_period);
4923 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4925 return ret;
4928 static void perf_swevent_start_hrtimer(struct perf_event *event)
4930 struct hw_perf_event *hwc = &event->hw;
4932 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4933 hwc->hrtimer.function = perf_swevent_hrtimer;
4934 if (hwc->sample_period) {
4935 s64 period = local64_read(&hwc->period_left);
4937 if (period) {
4938 if (period < 0)
4939 period = 10000;
4941 local64_set(&hwc->period_left, 0);
4942 } else {
4943 period = max_t(u64, 10000, hwc->sample_period);
4945 __hrtimer_start_range_ns(&hwc->hrtimer,
4946 ns_to_ktime(period), 0,
4947 HRTIMER_MODE_REL_PINNED, 0);
4951 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4953 struct hw_perf_event *hwc = &event->hw;
4955 if (hwc->sample_period) {
4956 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4957 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4959 hrtimer_cancel(&hwc->hrtimer);
4964 * Software event: cpu wall time clock
4967 static void cpu_clock_event_update(struct perf_event *event)
4969 s64 prev;
4970 u64 now;
4972 now = local_clock();
4973 prev = local64_xchg(&event->hw.prev_count, now);
4974 local64_add(now - prev, &event->count);
4977 static void cpu_clock_event_start(struct perf_event *event, int flags)
4979 local64_set(&event->hw.prev_count, local_clock());
4980 perf_swevent_start_hrtimer(event);
4983 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4985 perf_swevent_cancel_hrtimer(event);
4986 cpu_clock_event_update(event);
4989 static int cpu_clock_event_add(struct perf_event *event, int flags)
4991 if (flags & PERF_EF_START)
4992 cpu_clock_event_start(event, flags);
4994 return 0;
4997 static void cpu_clock_event_del(struct perf_event *event, int flags)
4999 cpu_clock_event_stop(event, flags);
5002 static void cpu_clock_event_read(struct perf_event *event)
5004 cpu_clock_event_update(event);
5007 static int cpu_clock_event_init(struct perf_event *event)
5009 if (event->attr.type != PERF_TYPE_SOFTWARE)
5010 return -ENOENT;
5012 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5013 return -ENOENT;
5015 return 0;
5018 static struct pmu perf_cpu_clock = {
5019 .task_ctx_nr = perf_sw_context,
5021 .event_init = cpu_clock_event_init,
5022 .add = cpu_clock_event_add,
5023 .del = cpu_clock_event_del,
5024 .start = cpu_clock_event_start,
5025 .stop = cpu_clock_event_stop,
5026 .read = cpu_clock_event_read,
5030 * Software event: task time clock
5033 static void task_clock_event_update(struct perf_event *event, u64 now)
5035 u64 prev;
5036 s64 delta;
5038 prev = local64_xchg(&event->hw.prev_count, now);
5039 delta = now - prev;
5040 local64_add(delta, &event->count);
5043 static void task_clock_event_start(struct perf_event *event, int flags)
5045 local64_set(&event->hw.prev_count, event->ctx->time);
5046 perf_swevent_start_hrtimer(event);
5049 static void task_clock_event_stop(struct perf_event *event, int flags)
5051 perf_swevent_cancel_hrtimer(event);
5052 task_clock_event_update(event, event->ctx->time);
5055 static int task_clock_event_add(struct perf_event *event, int flags)
5057 if (flags & PERF_EF_START)
5058 task_clock_event_start(event, flags);
5060 return 0;
5063 static void task_clock_event_del(struct perf_event *event, int flags)
5065 task_clock_event_stop(event, PERF_EF_UPDATE);
5068 static void task_clock_event_read(struct perf_event *event)
5070 u64 time;
5072 if (!in_nmi()) {
5073 update_context_time(event->ctx);
5074 time = event->ctx->time;
5075 } else {
5076 u64 now = perf_clock();
5077 u64 delta = now - event->ctx->timestamp;
5078 time = event->ctx->time + delta;
5081 task_clock_event_update(event, time);
5084 static int task_clock_event_init(struct perf_event *event)
5086 if (event->attr.type != PERF_TYPE_SOFTWARE)
5087 return -ENOENT;
5089 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5090 return -ENOENT;
5092 return 0;
5095 static struct pmu perf_task_clock = {
5096 .task_ctx_nr = perf_sw_context,
5098 .event_init = task_clock_event_init,
5099 .add = task_clock_event_add,
5100 .del = task_clock_event_del,
5101 .start = task_clock_event_start,
5102 .stop = task_clock_event_stop,
5103 .read = task_clock_event_read,
5106 static void perf_pmu_nop_void(struct pmu *pmu)
5110 static int perf_pmu_nop_int(struct pmu *pmu)
5112 return 0;
5115 static void perf_pmu_start_txn(struct pmu *pmu)
5117 perf_pmu_disable(pmu);
5120 static int perf_pmu_commit_txn(struct pmu *pmu)
5122 perf_pmu_enable(pmu);
5123 return 0;
5126 static void perf_pmu_cancel_txn(struct pmu *pmu)
5128 perf_pmu_enable(pmu);
5132 * Ensures all contexts with the same task_ctx_nr have the same
5133 * pmu_cpu_context too.
5135 static void *find_pmu_context(int ctxn)
5137 struct pmu *pmu;
5139 if (ctxn < 0)
5140 return NULL;
5142 list_for_each_entry(pmu, &pmus, entry) {
5143 if (pmu->task_ctx_nr == ctxn)
5144 return pmu->pmu_cpu_context;
5147 return NULL;
5150 static void free_pmu_context(void * __percpu cpu_context)
5152 struct pmu *pmu;
5154 mutex_lock(&pmus_lock);
5156 * Like a real lame refcount.
5158 list_for_each_entry(pmu, &pmus, entry) {
5159 if (pmu->pmu_cpu_context == cpu_context)
5160 goto out;
5163 free_percpu(cpu_context);
5164 out:
5165 mutex_unlock(&pmus_lock);
5168 int perf_pmu_register(struct pmu *pmu)
5170 int cpu, ret;
5172 mutex_lock(&pmus_lock);
5173 ret = -ENOMEM;
5174 pmu->pmu_disable_count = alloc_percpu(int);
5175 if (!pmu->pmu_disable_count)
5176 goto unlock;
5178 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5179 if (pmu->pmu_cpu_context)
5180 goto got_cpu_context;
5182 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5183 if (!pmu->pmu_cpu_context)
5184 goto free_pdc;
5186 for_each_possible_cpu(cpu) {
5187 struct perf_cpu_context *cpuctx;
5189 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5190 __perf_event_init_context(&cpuctx->ctx);
5191 cpuctx->ctx.type = cpu_context;
5192 cpuctx->ctx.pmu = pmu;
5193 cpuctx->jiffies_interval = 1;
5194 INIT_LIST_HEAD(&cpuctx->rotation_list);
5197 got_cpu_context:
5198 if (!pmu->start_txn) {
5199 if (pmu->pmu_enable) {
5201 * If we have pmu_enable/pmu_disable calls, install
5202 * transaction stubs that use that to try and batch
5203 * hardware accesses.
5205 pmu->start_txn = perf_pmu_start_txn;
5206 pmu->commit_txn = perf_pmu_commit_txn;
5207 pmu->cancel_txn = perf_pmu_cancel_txn;
5208 } else {
5209 pmu->start_txn = perf_pmu_nop_void;
5210 pmu->commit_txn = perf_pmu_nop_int;
5211 pmu->cancel_txn = perf_pmu_nop_void;
5215 if (!pmu->pmu_enable) {
5216 pmu->pmu_enable = perf_pmu_nop_void;
5217 pmu->pmu_disable = perf_pmu_nop_void;
5220 list_add_rcu(&pmu->entry, &pmus);
5221 ret = 0;
5222 unlock:
5223 mutex_unlock(&pmus_lock);
5225 return ret;
5227 free_pdc:
5228 free_percpu(pmu->pmu_disable_count);
5229 goto unlock;
5232 void perf_pmu_unregister(struct pmu *pmu)
5234 mutex_lock(&pmus_lock);
5235 list_del_rcu(&pmu->entry);
5236 mutex_unlock(&pmus_lock);
5239 * We dereference the pmu list under both SRCU and regular RCU, so
5240 * synchronize against both of those.
5242 synchronize_srcu(&pmus_srcu);
5243 synchronize_rcu();
5245 free_percpu(pmu->pmu_disable_count);
5246 free_pmu_context(pmu->pmu_cpu_context);
5249 struct pmu *perf_init_event(struct perf_event *event)
5251 struct pmu *pmu = NULL;
5252 int idx;
5254 idx = srcu_read_lock(&pmus_srcu);
5255 list_for_each_entry_rcu(pmu, &pmus, entry) {
5256 int ret = pmu->event_init(event);
5257 if (!ret)
5258 goto unlock;
5260 if (ret != -ENOENT) {
5261 pmu = ERR_PTR(ret);
5262 goto unlock;
5265 pmu = ERR_PTR(-ENOENT);
5266 unlock:
5267 srcu_read_unlock(&pmus_srcu, idx);
5269 return pmu;
5273 * Allocate and initialize a event structure
5275 static struct perf_event *
5276 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5277 struct task_struct *task,
5278 struct perf_event *group_leader,
5279 struct perf_event *parent_event,
5280 perf_overflow_handler_t overflow_handler)
5282 struct pmu *pmu;
5283 struct perf_event *event;
5284 struct hw_perf_event *hwc;
5285 long err;
5287 event = kzalloc(sizeof(*event), GFP_KERNEL);
5288 if (!event)
5289 return ERR_PTR(-ENOMEM);
5292 * Single events are their own group leaders, with an
5293 * empty sibling list:
5295 if (!group_leader)
5296 group_leader = event;
5298 mutex_init(&event->child_mutex);
5299 INIT_LIST_HEAD(&event->child_list);
5301 INIT_LIST_HEAD(&event->group_entry);
5302 INIT_LIST_HEAD(&event->event_entry);
5303 INIT_LIST_HEAD(&event->sibling_list);
5304 init_waitqueue_head(&event->waitq);
5305 init_irq_work(&event->pending, perf_pending_event);
5307 mutex_init(&event->mmap_mutex);
5309 event->cpu = cpu;
5310 event->attr = *attr;
5311 event->group_leader = group_leader;
5312 event->pmu = NULL;
5313 event->oncpu = -1;
5315 event->parent = parent_event;
5317 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5318 event->id = atomic64_inc_return(&perf_event_id);
5320 event->state = PERF_EVENT_STATE_INACTIVE;
5322 if (task) {
5323 event->attach_state = PERF_ATTACH_TASK;
5324 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5326 * hw_breakpoint is a bit difficult here..
5328 if (attr->type == PERF_TYPE_BREAKPOINT)
5329 event->hw.bp_target = task;
5330 #endif
5333 if (!overflow_handler && parent_event)
5334 overflow_handler = parent_event->overflow_handler;
5336 event->overflow_handler = overflow_handler;
5338 if (attr->disabled)
5339 event->state = PERF_EVENT_STATE_OFF;
5341 pmu = NULL;
5343 hwc = &event->hw;
5344 hwc->sample_period = attr->sample_period;
5345 if (attr->freq && attr->sample_freq)
5346 hwc->sample_period = 1;
5347 hwc->last_period = hwc->sample_period;
5349 local64_set(&hwc->period_left, hwc->sample_period);
5352 * we currently do not support PERF_FORMAT_GROUP on inherited events
5354 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5355 goto done;
5357 pmu = perf_init_event(event);
5359 done:
5360 err = 0;
5361 if (!pmu)
5362 err = -EINVAL;
5363 else if (IS_ERR(pmu))
5364 err = PTR_ERR(pmu);
5366 if (err) {
5367 if (event->ns)
5368 put_pid_ns(event->ns);
5369 kfree(event);
5370 return ERR_PTR(err);
5373 event->pmu = pmu;
5375 if (!event->parent) {
5376 if (event->attach_state & PERF_ATTACH_TASK)
5377 jump_label_inc(&perf_task_events);
5378 if (event->attr.mmap || event->attr.mmap_data)
5379 atomic_inc(&nr_mmap_events);
5380 if (event->attr.comm)
5381 atomic_inc(&nr_comm_events);
5382 if (event->attr.task)
5383 atomic_inc(&nr_task_events);
5384 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5385 err = get_callchain_buffers();
5386 if (err) {
5387 free_event(event);
5388 return ERR_PTR(err);
5393 return event;
5396 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5397 struct perf_event_attr *attr)
5399 u32 size;
5400 int ret;
5402 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5403 return -EFAULT;
5406 * zero the full structure, so that a short copy will be nice.
5408 memset(attr, 0, sizeof(*attr));
5410 ret = get_user(size, &uattr->size);
5411 if (ret)
5412 return ret;
5414 if (size > PAGE_SIZE) /* silly large */
5415 goto err_size;
5417 if (!size) /* abi compat */
5418 size = PERF_ATTR_SIZE_VER0;
5420 if (size < PERF_ATTR_SIZE_VER0)
5421 goto err_size;
5424 * If we're handed a bigger struct than we know of,
5425 * ensure all the unknown bits are 0 - i.e. new
5426 * user-space does not rely on any kernel feature
5427 * extensions we dont know about yet.
5429 if (size > sizeof(*attr)) {
5430 unsigned char __user *addr;
5431 unsigned char __user *end;
5432 unsigned char val;
5434 addr = (void __user *)uattr + sizeof(*attr);
5435 end = (void __user *)uattr + size;
5437 for (; addr < end; addr++) {
5438 ret = get_user(val, addr);
5439 if (ret)
5440 return ret;
5441 if (val)
5442 goto err_size;
5444 size = sizeof(*attr);
5447 ret = copy_from_user(attr, uattr, size);
5448 if (ret)
5449 return -EFAULT;
5452 * If the type exists, the corresponding creation will verify
5453 * the attr->config.
5455 if (attr->type >= PERF_TYPE_MAX)
5456 return -EINVAL;
5458 if (attr->__reserved_1)
5459 return -EINVAL;
5461 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5462 return -EINVAL;
5464 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5465 return -EINVAL;
5467 out:
5468 return ret;
5470 err_size:
5471 put_user(sizeof(*attr), &uattr->size);
5472 ret = -E2BIG;
5473 goto out;
5476 static int
5477 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5479 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5480 int ret = -EINVAL;
5482 if (!output_event)
5483 goto set;
5485 /* don't allow circular references */
5486 if (event == output_event)
5487 goto out;
5490 * Don't allow cross-cpu buffers
5492 if (output_event->cpu != event->cpu)
5493 goto out;
5496 * If its not a per-cpu buffer, it must be the same task.
5498 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5499 goto out;
5501 set:
5502 mutex_lock(&event->mmap_mutex);
5503 /* Can't redirect output if we've got an active mmap() */
5504 if (atomic_read(&event->mmap_count))
5505 goto unlock;
5507 if (output_event) {
5508 /* get the buffer we want to redirect to */
5509 buffer = perf_buffer_get(output_event);
5510 if (!buffer)
5511 goto unlock;
5514 old_buffer = event->buffer;
5515 rcu_assign_pointer(event->buffer, buffer);
5516 ret = 0;
5517 unlock:
5518 mutex_unlock(&event->mmap_mutex);
5520 if (old_buffer)
5521 perf_buffer_put(old_buffer);
5522 out:
5523 return ret;
5527 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5529 * @attr_uptr: event_id type attributes for monitoring/sampling
5530 * @pid: target pid
5531 * @cpu: target cpu
5532 * @group_fd: group leader event fd
5534 SYSCALL_DEFINE5(perf_event_open,
5535 struct perf_event_attr __user *, attr_uptr,
5536 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5538 struct perf_event *group_leader = NULL, *output_event = NULL;
5539 struct perf_event *event, *sibling;
5540 struct perf_event_attr attr;
5541 struct perf_event_context *ctx;
5542 struct file *event_file = NULL;
5543 struct file *group_file = NULL;
5544 struct task_struct *task = NULL;
5545 struct pmu *pmu;
5546 int event_fd;
5547 int move_group = 0;
5548 int fput_needed = 0;
5549 int err;
5551 /* for future expandability... */
5552 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5553 return -EINVAL;
5555 err = perf_copy_attr(attr_uptr, &attr);
5556 if (err)
5557 return err;
5559 if (!attr.exclude_kernel) {
5560 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5561 return -EACCES;
5564 if (attr.freq) {
5565 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5566 return -EINVAL;
5569 event_fd = get_unused_fd_flags(O_RDWR);
5570 if (event_fd < 0)
5571 return event_fd;
5573 if (group_fd != -1) {
5574 group_leader = perf_fget_light(group_fd, &fput_needed);
5575 if (IS_ERR(group_leader)) {
5576 err = PTR_ERR(group_leader);
5577 goto err_fd;
5579 group_file = group_leader->filp;
5580 if (flags & PERF_FLAG_FD_OUTPUT)
5581 output_event = group_leader;
5582 if (flags & PERF_FLAG_FD_NO_GROUP)
5583 group_leader = NULL;
5586 if (pid != -1) {
5587 task = find_lively_task_by_vpid(pid);
5588 if (IS_ERR(task)) {
5589 err = PTR_ERR(task);
5590 goto err_group_fd;
5594 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5595 if (IS_ERR(event)) {
5596 err = PTR_ERR(event);
5597 goto err_task;
5601 * Special case software events and allow them to be part of
5602 * any hardware group.
5604 pmu = event->pmu;
5606 if (group_leader &&
5607 (is_software_event(event) != is_software_event(group_leader))) {
5608 if (is_software_event(event)) {
5610 * If event and group_leader are not both a software
5611 * event, and event is, then group leader is not.
5613 * Allow the addition of software events to !software
5614 * groups, this is safe because software events never
5615 * fail to schedule.
5617 pmu = group_leader->pmu;
5618 } else if (is_software_event(group_leader) &&
5619 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5621 * In case the group is a pure software group, and we
5622 * try to add a hardware event, move the whole group to
5623 * the hardware context.
5625 move_group = 1;
5630 * Get the target context (task or percpu):
5632 ctx = find_get_context(pmu, task, cpu);
5633 if (IS_ERR(ctx)) {
5634 err = PTR_ERR(ctx);
5635 goto err_alloc;
5639 * Look up the group leader (we will attach this event to it):
5641 if (group_leader) {
5642 err = -EINVAL;
5645 * Do not allow a recursive hierarchy (this new sibling
5646 * becoming part of another group-sibling):
5648 if (group_leader->group_leader != group_leader)
5649 goto err_context;
5651 * Do not allow to attach to a group in a different
5652 * task or CPU context:
5654 if (move_group) {
5655 if (group_leader->ctx->type != ctx->type)
5656 goto err_context;
5657 } else {
5658 if (group_leader->ctx != ctx)
5659 goto err_context;
5663 * Only a group leader can be exclusive or pinned
5665 if (attr.exclusive || attr.pinned)
5666 goto err_context;
5669 if (output_event) {
5670 err = perf_event_set_output(event, output_event);
5671 if (err)
5672 goto err_context;
5675 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5676 if (IS_ERR(event_file)) {
5677 err = PTR_ERR(event_file);
5678 goto err_context;
5681 if (move_group) {
5682 struct perf_event_context *gctx = group_leader->ctx;
5684 mutex_lock(&gctx->mutex);
5685 perf_event_remove_from_context(group_leader);
5686 list_for_each_entry(sibling, &group_leader->sibling_list,
5687 group_entry) {
5688 perf_event_remove_from_context(sibling);
5689 put_ctx(gctx);
5691 mutex_unlock(&gctx->mutex);
5692 put_ctx(gctx);
5695 event->filp = event_file;
5696 WARN_ON_ONCE(ctx->parent_ctx);
5697 mutex_lock(&ctx->mutex);
5699 if (move_group) {
5700 perf_install_in_context(ctx, group_leader, cpu);
5701 get_ctx(ctx);
5702 list_for_each_entry(sibling, &group_leader->sibling_list,
5703 group_entry) {
5704 perf_install_in_context(ctx, sibling, cpu);
5705 get_ctx(ctx);
5709 perf_install_in_context(ctx, event, cpu);
5710 ++ctx->generation;
5711 mutex_unlock(&ctx->mutex);
5713 event->owner = current;
5715 mutex_lock(&current->perf_event_mutex);
5716 list_add_tail(&event->owner_entry, &current->perf_event_list);
5717 mutex_unlock(&current->perf_event_mutex);
5720 * Drop the reference on the group_event after placing the
5721 * new event on the sibling_list. This ensures destruction
5722 * of the group leader will find the pointer to itself in
5723 * perf_group_detach().
5725 fput_light(group_file, fput_needed);
5726 fd_install(event_fd, event_file);
5727 return event_fd;
5729 err_context:
5730 put_ctx(ctx);
5731 err_alloc:
5732 free_event(event);
5733 err_task:
5734 if (task)
5735 put_task_struct(task);
5736 err_group_fd:
5737 fput_light(group_file, fput_needed);
5738 err_fd:
5739 put_unused_fd(event_fd);
5740 return err;
5744 * perf_event_create_kernel_counter
5746 * @attr: attributes of the counter to create
5747 * @cpu: cpu in which the counter is bound
5748 * @task: task to profile (NULL for percpu)
5750 struct perf_event *
5751 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5752 struct task_struct *task,
5753 perf_overflow_handler_t overflow_handler)
5755 struct perf_event_context *ctx;
5756 struct perf_event *event;
5757 int err;
5760 * Get the target context (task or percpu):
5763 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5764 if (IS_ERR(event)) {
5765 err = PTR_ERR(event);
5766 goto err;
5769 ctx = find_get_context(event->pmu, task, cpu);
5770 if (IS_ERR(ctx)) {
5771 err = PTR_ERR(ctx);
5772 goto err_free;
5775 event->filp = NULL;
5776 WARN_ON_ONCE(ctx->parent_ctx);
5777 mutex_lock(&ctx->mutex);
5778 perf_install_in_context(ctx, event, cpu);
5779 ++ctx->generation;
5780 mutex_unlock(&ctx->mutex);
5782 return event;
5784 err_free:
5785 free_event(event);
5786 err:
5787 return ERR_PTR(err);
5789 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5791 static void sync_child_event(struct perf_event *child_event,
5792 struct task_struct *child)
5794 struct perf_event *parent_event = child_event->parent;
5795 u64 child_val;
5797 if (child_event->attr.inherit_stat)
5798 perf_event_read_event(child_event, child);
5800 child_val = perf_event_count(child_event);
5803 * Add back the child's count to the parent's count:
5805 atomic64_add(child_val, &parent_event->child_count);
5806 atomic64_add(child_event->total_time_enabled,
5807 &parent_event->child_total_time_enabled);
5808 atomic64_add(child_event->total_time_running,
5809 &parent_event->child_total_time_running);
5812 * Remove this event from the parent's list
5814 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5815 mutex_lock(&parent_event->child_mutex);
5816 list_del_init(&child_event->child_list);
5817 mutex_unlock(&parent_event->child_mutex);
5820 * Release the parent event, if this was the last
5821 * reference to it.
5823 fput(parent_event->filp);
5826 static void
5827 __perf_event_exit_task(struct perf_event *child_event,
5828 struct perf_event_context *child_ctx,
5829 struct task_struct *child)
5831 struct perf_event *parent_event;
5833 perf_event_remove_from_context(child_event);
5835 parent_event = child_event->parent;
5837 * It can happen that parent exits first, and has events
5838 * that are still around due to the child reference. These
5839 * events need to be zapped - but otherwise linger.
5841 if (parent_event) {
5842 sync_child_event(child_event, child);
5843 free_event(child_event);
5847 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5849 struct perf_event *child_event, *tmp;
5850 struct perf_event_context *child_ctx;
5851 unsigned long flags;
5853 if (likely(!child->perf_event_ctxp[ctxn])) {
5854 perf_event_task(child, NULL, 0);
5855 return;
5858 local_irq_save(flags);
5860 * We can't reschedule here because interrupts are disabled,
5861 * and either child is current or it is a task that can't be
5862 * scheduled, so we are now safe from rescheduling changing
5863 * our context.
5865 child_ctx = child->perf_event_ctxp[ctxn];
5866 task_ctx_sched_out(child_ctx, EVENT_ALL);
5869 * Take the context lock here so that if find_get_context is
5870 * reading child->perf_event_ctxp, we wait until it has
5871 * incremented the context's refcount before we do put_ctx below.
5873 raw_spin_lock(&child_ctx->lock);
5874 child->perf_event_ctxp[ctxn] = NULL;
5876 * If this context is a clone; unclone it so it can't get
5877 * swapped to another process while we're removing all
5878 * the events from it.
5880 unclone_ctx(child_ctx);
5881 update_context_time(child_ctx);
5882 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5885 * Report the task dead after unscheduling the events so that we
5886 * won't get any samples after PERF_RECORD_EXIT. We can however still
5887 * get a few PERF_RECORD_READ events.
5889 perf_event_task(child, child_ctx, 0);
5892 * We can recurse on the same lock type through:
5894 * __perf_event_exit_task()
5895 * sync_child_event()
5896 * fput(parent_event->filp)
5897 * perf_release()
5898 * mutex_lock(&ctx->mutex)
5900 * But since its the parent context it won't be the same instance.
5902 mutex_lock(&child_ctx->mutex);
5904 again:
5905 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5906 group_entry)
5907 __perf_event_exit_task(child_event, child_ctx, child);
5909 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5910 group_entry)
5911 __perf_event_exit_task(child_event, child_ctx, child);
5914 * If the last event was a group event, it will have appended all
5915 * its siblings to the list, but we obtained 'tmp' before that which
5916 * will still point to the list head terminating the iteration.
5918 if (!list_empty(&child_ctx->pinned_groups) ||
5919 !list_empty(&child_ctx->flexible_groups))
5920 goto again;
5922 mutex_unlock(&child_ctx->mutex);
5924 put_ctx(child_ctx);
5928 * When a child task exits, feed back event values to parent events.
5930 void perf_event_exit_task(struct task_struct *child)
5932 struct perf_event *event, *tmp;
5933 int ctxn;
5935 mutex_lock(&child->perf_event_mutex);
5936 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5937 owner_entry) {
5938 list_del_init(&event->owner_entry);
5941 * Ensure the list deletion is visible before we clear
5942 * the owner, closes a race against perf_release() where
5943 * we need to serialize on the owner->perf_event_mutex.
5945 smp_wmb();
5946 event->owner = NULL;
5948 mutex_unlock(&child->perf_event_mutex);
5950 for_each_task_context_nr(ctxn)
5951 perf_event_exit_task_context(child, ctxn);
5954 static void perf_free_event(struct perf_event *event,
5955 struct perf_event_context *ctx)
5957 struct perf_event *parent = event->parent;
5959 if (WARN_ON_ONCE(!parent))
5960 return;
5962 mutex_lock(&parent->child_mutex);
5963 list_del_init(&event->child_list);
5964 mutex_unlock(&parent->child_mutex);
5966 fput(parent->filp);
5968 perf_group_detach(event);
5969 list_del_event(event, ctx);
5970 free_event(event);
5974 * free an unexposed, unused context as created by inheritance by
5975 * perf_event_init_task below, used by fork() in case of fail.
5977 void perf_event_free_task(struct task_struct *task)
5979 struct perf_event_context *ctx;
5980 struct perf_event *event, *tmp;
5981 int ctxn;
5983 for_each_task_context_nr(ctxn) {
5984 ctx = task->perf_event_ctxp[ctxn];
5985 if (!ctx)
5986 continue;
5988 mutex_lock(&ctx->mutex);
5989 again:
5990 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5991 group_entry)
5992 perf_free_event(event, ctx);
5994 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5995 group_entry)
5996 perf_free_event(event, ctx);
5998 if (!list_empty(&ctx->pinned_groups) ||
5999 !list_empty(&ctx->flexible_groups))
6000 goto again;
6002 mutex_unlock(&ctx->mutex);
6004 put_ctx(ctx);
6008 void perf_event_delayed_put(struct task_struct *task)
6010 int ctxn;
6012 for_each_task_context_nr(ctxn)
6013 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6017 * inherit a event from parent task to child task:
6019 static struct perf_event *
6020 inherit_event(struct perf_event *parent_event,
6021 struct task_struct *parent,
6022 struct perf_event_context *parent_ctx,
6023 struct task_struct *child,
6024 struct perf_event *group_leader,
6025 struct perf_event_context *child_ctx)
6027 struct perf_event *child_event;
6028 unsigned long flags;
6031 * Instead of creating recursive hierarchies of events,
6032 * we link inherited events back to the original parent,
6033 * which has a filp for sure, which we use as the reference
6034 * count:
6036 if (parent_event->parent)
6037 parent_event = parent_event->parent;
6039 child_event = perf_event_alloc(&parent_event->attr,
6040 parent_event->cpu,
6041 child,
6042 group_leader, parent_event,
6043 NULL);
6044 if (IS_ERR(child_event))
6045 return child_event;
6046 get_ctx(child_ctx);
6049 * Make the child state follow the state of the parent event,
6050 * not its attr.disabled bit. We hold the parent's mutex,
6051 * so we won't race with perf_event_{en, dis}able_family.
6053 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6054 child_event->state = PERF_EVENT_STATE_INACTIVE;
6055 else
6056 child_event->state = PERF_EVENT_STATE_OFF;
6058 if (parent_event->attr.freq) {
6059 u64 sample_period = parent_event->hw.sample_period;
6060 struct hw_perf_event *hwc = &child_event->hw;
6062 hwc->sample_period = sample_period;
6063 hwc->last_period = sample_period;
6065 local64_set(&hwc->period_left, sample_period);
6068 child_event->ctx = child_ctx;
6069 child_event->overflow_handler = parent_event->overflow_handler;
6072 * Link it up in the child's context:
6074 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6075 add_event_to_ctx(child_event, child_ctx);
6076 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6079 * Get a reference to the parent filp - we will fput it
6080 * when the child event exits. This is safe to do because
6081 * we are in the parent and we know that the filp still
6082 * exists and has a nonzero count:
6084 atomic_long_inc(&parent_event->filp->f_count);
6087 * Link this into the parent event's child list
6089 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6090 mutex_lock(&parent_event->child_mutex);
6091 list_add_tail(&child_event->child_list, &parent_event->child_list);
6092 mutex_unlock(&parent_event->child_mutex);
6094 return child_event;
6097 static int inherit_group(struct perf_event *parent_event,
6098 struct task_struct *parent,
6099 struct perf_event_context *parent_ctx,
6100 struct task_struct *child,
6101 struct perf_event_context *child_ctx)
6103 struct perf_event *leader;
6104 struct perf_event *sub;
6105 struct perf_event *child_ctr;
6107 leader = inherit_event(parent_event, parent, parent_ctx,
6108 child, NULL, child_ctx);
6109 if (IS_ERR(leader))
6110 return PTR_ERR(leader);
6111 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6112 child_ctr = inherit_event(sub, parent, parent_ctx,
6113 child, leader, child_ctx);
6114 if (IS_ERR(child_ctr))
6115 return PTR_ERR(child_ctr);
6117 return 0;
6120 static int
6121 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6122 struct perf_event_context *parent_ctx,
6123 struct task_struct *child, int ctxn,
6124 int *inherited_all)
6126 int ret;
6127 struct perf_event_context *child_ctx;
6129 if (!event->attr.inherit) {
6130 *inherited_all = 0;
6131 return 0;
6134 child_ctx = child->perf_event_ctxp[ctxn];
6135 if (!child_ctx) {
6137 * This is executed from the parent task context, so
6138 * inherit events that have been marked for cloning.
6139 * First allocate and initialize a context for the
6140 * child.
6143 child_ctx = alloc_perf_context(event->pmu, child);
6144 if (!child_ctx)
6145 return -ENOMEM;
6147 child->perf_event_ctxp[ctxn] = child_ctx;
6150 ret = inherit_group(event, parent, parent_ctx,
6151 child, child_ctx);
6153 if (ret)
6154 *inherited_all = 0;
6156 return ret;
6160 * Initialize the perf_event context in task_struct
6162 int perf_event_init_context(struct task_struct *child, int ctxn)
6164 struct perf_event_context *child_ctx, *parent_ctx;
6165 struct perf_event_context *cloned_ctx;
6166 struct perf_event *event;
6167 struct task_struct *parent = current;
6168 int inherited_all = 1;
6169 unsigned long flags;
6170 int ret = 0;
6172 child->perf_event_ctxp[ctxn] = NULL;
6174 mutex_init(&child->perf_event_mutex);
6175 INIT_LIST_HEAD(&child->perf_event_list);
6177 if (likely(!parent->perf_event_ctxp[ctxn]))
6178 return 0;
6181 * If the parent's context is a clone, pin it so it won't get
6182 * swapped under us.
6184 parent_ctx = perf_pin_task_context(parent, ctxn);
6187 * No need to check if parent_ctx != NULL here; since we saw
6188 * it non-NULL earlier, the only reason for it to become NULL
6189 * is if we exit, and since we're currently in the middle of
6190 * a fork we can't be exiting at the same time.
6194 * Lock the parent list. No need to lock the child - not PID
6195 * hashed yet and not running, so nobody can access it.
6197 mutex_lock(&parent_ctx->mutex);
6200 * We dont have to disable NMIs - we are only looking at
6201 * the list, not manipulating it:
6203 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6204 ret = inherit_task_group(event, parent, parent_ctx,
6205 child, ctxn, &inherited_all);
6206 if (ret)
6207 break;
6211 * We can't hold ctx->lock when iterating the ->flexible_group list due
6212 * to allocations, but we need to prevent rotation because
6213 * rotate_ctx() will change the list from interrupt context.
6215 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6216 parent_ctx->rotate_disable = 1;
6217 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6219 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6220 ret = inherit_task_group(event, parent, parent_ctx,
6221 child, ctxn, &inherited_all);
6222 if (ret)
6223 break;
6226 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6227 parent_ctx->rotate_disable = 0;
6228 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6230 child_ctx = child->perf_event_ctxp[ctxn];
6232 if (child_ctx && inherited_all) {
6234 * Mark the child context as a clone of the parent
6235 * context, or of whatever the parent is a clone of.
6236 * Note that if the parent is a clone, it could get
6237 * uncloned at any point, but that doesn't matter
6238 * because the list of events and the generation
6239 * count can't have changed since we took the mutex.
6241 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6242 if (cloned_ctx) {
6243 child_ctx->parent_ctx = cloned_ctx;
6244 child_ctx->parent_gen = parent_ctx->parent_gen;
6245 } else {
6246 child_ctx->parent_ctx = parent_ctx;
6247 child_ctx->parent_gen = parent_ctx->generation;
6249 get_ctx(child_ctx->parent_ctx);
6252 mutex_unlock(&parent_ctx->mutex);
6254 perf_unpin_context(parent_ctx);
6256 return ret;
6260 * Initialize the perf_event context in task_struct
6262 int perf_event_init_task(struct task_struct *child)
6264 int ctxn, ret;
6266 for_each_task_context_nr(ctxn) {
6267 ret = perf_event_init_context(child, ctxn);
6268 if (ret)
6269 return ret;
6272 return 0;
6275 static void __init perf_event_init_all_cpus(void)
6277 struct swevent_htable *swhash;
6278 int cpu;
6280 for_each_possible_cpu(cpu) {
6281 swhash = &per_cpu(swevent_htable, cpu);
6282 mutex_init(&swhash->hlist_mutex);
6283 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6287 static void __cpuinit perf_event_init_cpu(int cpu)
6289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6291 mutex_lock(&swhash->hlist_mutex);
6292 if (swhash->hlist_refcount > 0) {
6293 struct swevent_hlist *hlist;
6295 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6296 WARN_ON(!hlist);
6297 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6299 mutex_unlock(&swhash->hlist_mutex);
6302 #ifdef CONFIG_HOTPLUG_CPU
6303 static void perf_pmu_rotate_stop(struct pmu *pmu)
6305 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6307 WARN_ON(!irqs_disabled());
6309 list_del_init(&cpuctx->rotation_list);
6312 static void __perf_event_exit_context(void *__info)
6314 struct perf_event_context *ctx = __info;
6315 struct perf_event *event, *tmp;
6317 perf_pmu_rotate_stop(ctx->pmu);
6319 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6320 __perf_event_remove_from_context(event);
6321 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6322 __perf_event_remove_from_context(event);
6325 static void perf_event_exit_cpu_context(int cpu)
6327 struct perf_event_context *ctx;
6328 struct pmu *pmu;
6329 int idx;
6331 idx = srcu_read_lock(&pmus_srcu);
6332 list_for_each_entry_rcu(pmu, &pmus, entry) {
6333 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6335 mutex_lock(&ctx->mutex);
6336 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6337 mutex_unlock(&ctx->mutex);
6339 srcu_read_unlock(&pmus_srcu, idx);
6342 static void perf_event_exit_cpu(int cpu)
6344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6346 mutex_lock(&swhash->hlist_mutex);
6347 swevent_hlist_release(swhash);
6348 mutex_unlock(&swhash->hlist_mutex);
6350 perf_event_exit_cpu_context(cpu);
6352 #else
6353 static inline void perf_event_exit_cpu(int cpu) { }
6354 #endif
6356 static int __cpuinit
6357 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6359 unsigned int cpu = (long)hcpu;
6361 switch (action & ~CPU_TASKS_FROZEN) {
6363 case CPU_UP_PREPARE:
6364 case CPU_DOWN_FAILED:
6365 perf_event_init_cpu(cpu);
6366 break;
6368 case CPU_UP_CANCELED:
6369 case CPU_DOWN_PREPARE:
6370 perf_event_exit_cpu(cpu);
6371 break;
6373 default:
6374 break;
6377 return NOTIFY_OK;
6380 void __init perf_event_init(void)
6382 int ret;
6384 perf_event_init_all_cpus();
6385 init_srcu_struct(&pmus_srcu);
6386 perf_pmu_register(&perf_swevent);
6387 perf_pmu_register(&perf_cpu_clock);
6388 perf_pmu_register(&perf_task_clock);
6389 perf_tp_register();
6390 perf_cpu_notifier(perf_cpu_notify);
6392 ret = init_hw_breakpoint();
6393 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);