Btrfs: remove btrfs_init_path
[linux-2.6/mini2440.git] / fs / btrfs / ctree.c
blobc8f4c540cc2c4b47f19fe5da0713b233177bfc4a
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
41 struct btrfs_path *btrfs_alloc_path(void)
43 struct btrfs_path *path;
44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 if (path)
46 path->reada = 1;
47 return path;
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 if (p->nodes[i] && p->locks[i])
59 btrfs_set_lock_blocking(p->nodes[i]);
64 * reset all the locked nodes in the patch to spinning locks.
66 noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
68 int i;
69 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
70 if (p->nodes[i] && p->locks[i])
71 btrfs_clear_lock_blocking(p->nodes[i]);
75 /* this also releases the path */
76 void btrfs_free_path(struct btrfs_path *p)
78 btrfs_release_path(NULL, p);
79 kmem_cache_free(btrfs_path_cachep, p);
83 * path release drops references on the extent buffers in the path
84 * and it drops any locks held by this path
86 * It is safe to call this on paths that no locks or extent buffers held.
88 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
90 int i;
92 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
93 p->slots[i] = 0;
94 if (!p->nodes[i])
95 continue;
96 if (p->locks[i]) {
97 btrfs_tree_unlock(p->nodes[i]);
98 p->locks[i] = 0;
100 free_extent_buffer(p->nodes[i]);
101 p->nodes[i] = NULL;
106 * safely gets a reference on the root node of a tree. A lock
107 * is not taken, so a concurrent writer may put a different node
108 * at the root of the tree. See btrfs_lock_root_node for the
109 * looping required.
111 * The extent buffer returned by this has a reference taken, so
112 * it won't disappear. It may stop being the root of the tree
113 * at any time because there are no locks held.
115 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
117 struct extent_buffer *eb;
118 spin_lock(&root->node_lock);
119 eb = root->node;
120 extent_buffer_get(eb);
121 spin_unlock(&root->node_lock);
122 return eb;
125 /* loop around taking references on and locking the root node of the
126 * tree until you end up with a lock on the root. A locked buffer
127 * is returned, with a reference held.
129 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
131 struct extent_buffer *eb;
133 while (1) {
134 eb = btrfs_root_node(root);
135 btrfs_tree_lock(eb);
137 spin_lock(&root->node_lock);
138 if (eb == root->node) {
139 spin_unlock(&root->node_lock);
140 break;
142 spin_unlock(&root->node_lock);
144 btrfs_tree_unlock(eb);
145 free_extent_buffer(eb);
147 return eb;
150 /* cowonly root (everything not a reference counted cow subvolume), just get
151 * put onto a simple dirty list. transaction.c walks this to make sure they
152 * get properly updated on disk.
154 static void add_root_to_dirty_list(struct btrfs_root *root)
156 if (root->track_dirty && list_empty(&root->dirty_list)) {
157 list_add(&root->dirty_list,
158 &root->fs_info->dirty_cowonly_roots);
163 * used by snapshot creation to make a copy of a root for a tree with
164 * a given objectid. The buffer with the new root node is returned in
165 * cow_ret, and this func returns zero on success or a negative error code.
167 int btrfs_copy_root(struct btrfs_trans_handle *trans,
168 struct btrfs_root *root,
169 struct extent_buffer *buf,
170 struct extent_buffer **cow_ret, u64 new_root_objectid)
172 struct extent_buffer *cow;
173 u32 nritems;
174 int ret = 0;
175 int level;
176 struct btrfs_root *new_root;
178 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
179 if (!new_root)
180 return -ENOMEM;
182 memcpy(new_root, root, sizeof(*new_root));
183 new_root->root_key.objectid = new_root_objectid;
185 WARN_ON(root->ref_cows && trans->transid !=
186 root->fs_info->running_transaction->transid);
187 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
189 level = btrfs_header_level(buf);
190 nritems = btrfs_header_nritems(buf);
192 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
193 new_root_objectid, trans->transid,
194 level, buf->start, 0);
195 if (IS_ERR(cow)) {
196 kfree(new_root);
197 return PTR_ERR(cow);
200 copy_extent_buffer(cow, buf, 0, 0, cow->len);
201 btrfs_set_header_bytenr(cow, cow->start);
202 btrfs_set_header_generation(cow, trans->transid);
203 btrfs_set_header_owner(cow, new_root_objectid);
204 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
206 write_extent_buffer(cow, root->fs_info->fsid,
207 (unsigned long)btrfs_header_fsid(cow),
208 BTRFS_FSID_SIZE);
210 WARN_ON(btrfs_header_generation(buf) > trans->transid);
211 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
212 kfree(new_root);
214 if (ret)
215 return ret;
217 btrfs_mark_buffer_dirty(cow);
218 *cow_ret = cow;
219 return 0;
223 * does the dirty work in cow of a single block. The parent block (if
224 * supplied) is updated to point to the new cow copy. The new buffer is marked
225 * dirty and returned locked. If you modify the block it needs to be marked
226 * dirty again.
228 * search_start -- an allocation hint for the new block
230 * empty_size -- a hint that you plan on doing more cow. This is the size in
231 * bytes the allocator should try to find free next to the block it returns.
232 * This is just a hint and may be ignored by the allocator.
234 * prealloc_dest -- if you have already reserved a destination for the cow,
235 * this uses that block instead of allocating a new one.
236 * btrfs_alloc_reserved_extent is used to finish the allocation.
238 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer *parent, int parent_slot,
242 struct extent_buffer **cow_ret,
243 u64 search_start, u64 empty_size,
244 u64 prealloc_dest)
246 u64 parent_start;
247 struct extent_buffer *cow;
248 u32 nritems;
249 int ret = 0;
250 int level;
251 int unlock_orig = 0;
253 if (*cow_ret == buf)
254 unlock_orig = 1;
256 WARN_ON(!btrfs_tree_locked(buf));
258 if (parent)
259 parent_start = parent->start;
260 else
261 parent_start = 0;
263 WARN_ON(root->ref_cows && trans->transid !=
264 root->fs_info->running_transaction->transid);
265 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
267 level = btrfs_header_level(buf);
268 nritems = btrfs_header_nritems(buf);
270 if (prealloc_dest) {
271 struct btrfs_key ins;
273 ins.objectid = prealloc_dest;
274 ins.offset = buf->len;
275 ins.type = BTRFS_EXTENT_ITEM_KEY;
277 ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
278 root->root_key.objectid,
279 trans->transid, level, &ins);
280 BUG_ON(ret);
281 cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
282 buf->len);
283 } else {
284 cow = btrfs_alloc_free_block(trans, root, buf->len,
285 parent_start,
286 root->root_key.objectid,
287 trans->transid, level,
288 search_start, empty_size);
290 if (IS_ERR(cow))
291 return PTR_ERR(cow);
293 /* cow is set to blocking by btrfs_init_new_buffer */
295 copy_extent_buffer(cow, buf, 0, 0, cow->len);
296 btrfs_set_header_bytenr(cow, cow->start);
297 btrfs_set_header_generation(cow, trans->transid);
298 btrfs_set_header_owner(cow, root->root_key.objectid);
299 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
301 write_extent_buffer(cow, root->fs_info->fsid,
302 (unsigned long)btrfs_header_fsid(cow),
303 BTRFS_FSID_SIZE);
305 WARN_ON(btrfs_header_generation(buf) > trans->transid);
306 if (btrfs_header_generation(buf) != trans->transid) {
307 u32 nr_extents;
308 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
309 if (ret)
310 return ret;
312 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
313 WARN_ON(ret);
314 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
316 * There are only two places that can drop reference to
317 * tree blocks owned by living reloc trees, one is here,
318 * the other place is btrfs_drop_subtree. In both places,
319 * we check reference count while tree block is locked.
320 * Furthermore, if reference count is one, it won't get
321 * increased by someone else.
323 u32 refs;
324 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
325 buf->len, &refs);
326 BUG_ON(ret);
327 if (refs == 1) {
328 ret = btrfs_update_ref(trans, root, buf, cow,
329 0, nritems);
330 clean_tree_block(trans, root, buf);
331 } else {
332 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
334 BUG_ON(ret);
335 } else {
336 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
337 if (ret)
338 return ret;
339 clean_tree_block(trans, root, buf);
342 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
343 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
344 WARN_ON(ret);
347 if (buf == root->node) {
348 WARN_ON(parent && parent != buf);
350 spin_lock(&root->node_lock);
351 root->node = cow;
352 extent_buffer_get(cow);
353 spin_unlock(&root->node_lock);
355 if (buf != root->commit_root) {
356 btrfs_free_extent(trans, root, buf->start,
357 buf->len, buf->start,
358 root->root_key.objectid,
359 btrfs_header_generation(buf),
360 level, 1);
362 free_extent_buffer(buf);
363 add_root_to_dirty_list(root);
364 } else {
365 btrfs_set_node_blockptr(parent, parent_slot,
366 cow->start);
367 WARN_ON(trans->transid == 0);
368 btrfs_set_node_ptr_generation(parent, parent_slot,
369 trans->transid);
370 btrfs_mark_buffer_dirty(parent);
371 WARN_ON(btrfs_header_generation(parent) != trans->transid);
372 btrfs_free_extent(trans, root, buf->start, buf->len,
373 parent_start, btrfs_header_owner(parent),
374 btrfs_header_generation(parent), level, 1);
376 if (unlock_orig)
377 btrfs_tree_unlock(buf);
378 free_extent_buffer(buf);
379 btrfs_mark_buffer_dirty(cow);
380 *cow_ret = cow;
381 return 0;
385 * cows a single block, see __btrfs_cow_block for the real work.
386 * This version of it has extra checks so that a block isn't cow'd more than
387 * once per transaction, as long as it hasn't been written yet
389 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
390 struct btrfs_root *root, struct extent_buffer *buf,
391 struct extent_buffer *parent, int parent_slot,
392 struct extent_buffer **cow_ret, u64 prealloc_dest)
394 u64 search_start;
395 int ret;
397 if (trans->transaction != root->fs_info->running_transaction) {
398 printk(KERN_CRIT "trans %llu running %llu\n",
399 (unsigned long long)trans->transid,
400 (unsigned long long)
401 root->fs_info->running_transaction->transid);
402 WARN_ON(1);
404 if (trans->transid != root->fs_info->generation) {
405 printk(KERN_CRIT "trans %llu running %llu\n",
406 (unsigned long long)trans->transid,
407 (unsigned long long)root->fs_info->generation);
408 WARN_ON(1);
411 if (btrfs_header_generation(buf) == trans->transid &&
412 btrfs_header_owner(buf) == root->root_key.objectid &&
413 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
414 *cow_ret = buf;
415 WARN_ON(prealloc_dest);
416 return 0;
419 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
421 if (parent)
422 btrfs_set_lock_blocking(parent);
423 btrfs_set_lock_blocking(buf);
425 ret = __btrfs_cow_block(trans, root, buf, parent,
426 parent_slot, cow_ret, search_start, 0,
427 prealloc_dest);
428 return ret;
432 * helper function for defrag to decide if two blocks pointed to by a
433 * node are actually close by
435 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 if (blocknr < other && other - (blocknr + blocksize) < 32768)
438 return 1;
439 if (blocknr > other && blocknr - (other + blocksize) < 32768)
440 return 1;
441 return 0;
445 * compare two keys in a memcmp fashion
447 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 struct btrfs_key k1;
451 btrfs_disk_key_to_cpu(&k1, disk);
453 if (k1.objectid > k2->objectid)
454 return 1;
455 if (k1.objectid < k2->objectid)
456 return -1;
457 if (k1.type > k2->type)
458 return 1;
459 if (k1.type < k2->type)
460 return -1;
461 if (k1.offset > k2->offset)
462 return 1;
463 if (k1.offset < k2->offset)
464 return -1;
465 return 0;
469 * same as comp_keys only with two btrfs_key's
471 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 if (k1->objectid > k2->objectid)
474 return 1;
475 if (k1->objectid < k2->objectid)
476 return -1;
477 if (k1->type > k2->type)
478 return 1;
479 if (k1->type < k2->type)
480 return -1;
481 if (k1->offset > k2->offset)
482 return 1;
483 if (k1->offset < k2->offset)
484 return -1;
485 return 0;
489 * this is used by the defrag code to go through all the
490 * leaves pointed to by a node and reallocate them so that
491 * disk order is close to key order
493 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
494 struct btrfs_root *root, struct extent_buffer *parent,
495 int start_slot, int cache_only, u64 *last_ret,
496 struct btrfs_key *progress)
498 struct extent_buffer *cur;
499 u64 blocknr;
500 u64 gen;
501 u64 search_start = *last_ret;
502 u64 last_block = 0;
503 u64 other;
504 u32 parent_nritems;
505 int end_slot;
506 int i;
507 int err = 0;
508 int parent_level;
509 int uptodate;
510 u32 blocksize;
511 int progress_passed = 0;
512 struct btrfs_disk_key disk_key;
514 parent_level = btrfs_header_level(parent);
515 if (cache_only && parent_level != 1)
516 return 0;
518 if (trans->transaction != root->fs_info->running_transaction)
519 WARN_ON(1);
520 if (trans->transid != root->fs_info->generation)
521 WARN_ON(1);
523 parent_nritems = btrfs_header_nritems(parent);
524 blocksize = btrfs_level_size(root, parent_level - 1);
525 end_slot = parent_nritems;
527 if (parent_nritems == 1)
528 return 0;
530 btrfs_set_lock_blocking(parent);
532 for (i = start_slot; i < end_slot; i++) {
533 int close = 1;
535 if (!parent->map_token) {
536 map_extent_buffer(parent,
537 btrfs_node_key_ptr_offset(i),
538 sizeof(struct btrfs_key_ptr),
539 &parent->map_token, &parent->kaddr,
540 &parent->map_start, &parent->map_len,
541 KM_USER1);
543 btrfs_node_key(parent, &disk_key, i);
544 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
545 continue;
547 progress_passed = 1;
548 blocknr = btrfs_node_blockptr(parent, i);
549 gen = btrfs_node_ptr_generation(parent, i);
550 if (last_block == 0)
551 last_block = blocknr;
553 if (i > 0) {
554 other = btrfs_node_blockptr(parent, i - 1);
555 close = close_blocks(blocknr, other, blocksize);
557 if (!close && i < end_slot - 2) {
558 other = btrfs_node_blockptr(parent, i + 1);
559 close = close_blocks(blocknr, other, blocksize);
561 if (close) {
562 last_block = blocknr;
563 continue;
565 if (parent->map_token) {
566 unmap_extent_buffer(parent, parent->map_token,
567 KM_USER1);
568 parent->map_token = NULL;
571 cur = btrfs_find_tree_block(root, blocknr, blocksize);
572 if (cur)
573 uptodate = btrfs_buffer_uptodate(cur, gen);
574 else
575 uptodate = 0;
576 if (!cur || !uptodate) {
577 if (cache_only) {
578 free_extent_buffer(cur);
579 continue;
581 if (!cur) {
582 cur = read_tree_block(root, blocknr,
583 blocksize, gen);
584 } else if (!uptodate) {
585 btrfs_read_buffer(cur, gen);
588 if (search_start == 0)
589 search_start = last_block;
591 btrfs_tree_lock(cur);
592 btrfs_set_lock_blocking(cur);
593 err = __btrfs_cow_block(trans, root, cur, parent, i,
594 &cur, search_start,
595 min(16 * blocksize,
596 (end_slot - i) * blocksize), 0);
597 if (err) {
598 btrfs_tree_unlock(cur);
599 free_extent_buffer(cur);
600 break;
602 search_start = cur->start;
603 last_block = cur->start;
604 *last_ret = search_start;
605 btrfs_tree_unlock(cur);
606 free_extent_buffer(cur);
608 if (parent->map_token) {
609 unmap_extent_buffer(parent, parent->map_token,
610 KM_USER1);
611 parent->map_token = NULL;
613 return err;
617 * The leaf data grows from end-to-front in the node.
618 * this returns the address of the start of the last item,
619 * which is the stop of the leaf data stack
621 static inline unsigned int leaf_data_end(struct btrfs_root *root,
622 struct extent_buffer *leaf)
624 u32 nr = btrfs_header_nritems(leaf);
625 if (nr == 0)
626 return BTRFS_LEAF_DATA_SIZE(root);
627 return btrfs_item_offset_nr(leaf, nr - 1);
631 * extra debugging checks to make sure all the items in a key are
632 * well formed and in the proper order
634 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
635 int level)
637 struct extent_buffer *parent = NULL;
638 struct extent_buffer *node = path->nodes[level];
639 struct btrfs_disk_key parent_key;
640 struct btrfs_disk_key node_key;
641 int parent_slot;
642 int slot;
643 struct btrfs_key cpukey;
644 u32 nritems = btrfs_header_nritems(node);
646 if (path->nodes[level + 1])
647 parent = path->nodes[level + 1];
649 slot = path->slots[level];
650 BUG_ON(nritems == 0);
651 if (parent) {
652 parent_slot = path->slots[level + 1];
653 btrfs_node_key(parent, &parent_key, parent_slot);
654 btrfs_node_key(node, &node_key, 0);
655 BUG_ON(memcmp(&parent_key, &node_key,
656 sizeof(struct btrfs_disk_key)));
657 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
658 btrfs_header_bytenr(node));
660 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
661 if (slot != 0) {
662 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
663 btrfs_node_key(node, &node_key, slot);
664 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666 if (slot < nritems - 1) {
667 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
668 btrfs_node_key(node, &node_key, slot);
669 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671 return 0;
675 * extra checking to make sure all the items in a leaf are
676 * well formed and in the proper order
678 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
679 int level)
681 struct extent_buffer *leaf = path->nodes[level];
682 struct extent_buffer *parent = NULL;
683 int parent_slot;
684 struct btrfs_key cpukey;
685 struct btrfs_disk_key parent_key;
686 struct btrfs_disk_key leaf_key;
687 int slot = path->slots[0];
689 u32 nritems = btrfs_header_nritems(leaf);
691 if (path->nodes[level + 1])
692 parent = path->nodes[level + 1];
694 if (nritems == 0)
695 return 0;
697 if (parent) {
698 parent_slot = path->slots[level + 1];
699 btrfs_node_key(parent, &parent_key, parent_slot);
700 btrfs_item_key(leaf, &leaf_key, 0);
702 BUG_ON(memcmp(&parent_key, &leaf_key,
703 sizeof(struct btrfs_disk_key)));
704 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
705 btrfs_header_bytenr(leaf));
707 if (slot != 0 && slot < nritems - 1) {
708 btrfs_item_key(leaf, &leaf_key, slot);
709 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
710 if (comp_keys(&leaf_key, &cpukey) <= 0) {
711 btrfs_print_leaf(root, leaf);
712 printk(KERN_CRIT "slot %d offset bad key\n", slot);
713 BUG_ON(1);
715 if (btrfs_item_offset_nr(leaf, slot - 1) !=
716 btrfs_item_end_nr(leaf, slot)) {
717 btrfs_print_leaf(root, leaf);
718 printk(KERN_CRIT "slot %d offset bad\n", slot);
719 BUG_ON(1);
722 if (slot < nritems - 1) {
723 btrfs_item_key(leaf, &leaf_key, slot);
724 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
725 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
726 if (btrfs_item_offset_nr(leaf, slot) !=
727 btrfs_item_end_nr(leaf, slot + 1)) {
728 btrfs_print_leaf(root, leaf);
729 printk(KERN_CRIT "slot %d offset bad\n", slot);
730 BUG_ON(1);
733 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
734 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
735 return 0;
738 static noinline int check_block(struct btrfs_root *root,
739 struct btrfs_path *path, int level)
741 return 0;
742 if (level == 0)
743 return check_leaf(root, path, level);
744 return check_node(root, path, level);
748 * search for key in the extent_buffer. The items start at offset p,
749 * and they are item_size apart. There are 'max' items in p.
751 * the slot in the array is returned via slot, and it points to
752 * the place where you would insert key if it is not found in
753 * the array.
755 * slot may point to max if the key is bigger than all of the keys
757 static noinline int generic_bin_search(struct extent_buffer *eb,
758 unsigned long p,
759 int item_size, struct btrfs_key *key,
760 int max, int *slot)
762 int low = 0;
763 int high = max;
764 int mid;
765 int ret;
766 struct btrfs_disk_key *tmp = NULL;
767 struct btrfs_disk_key unaligned;
768 unsigned long offset;
769 char *map_token = NULL;
770 char *kaddr = NULL;
771 unsigned long map_start = 0;
772 unsigned long map_len = 0;
773 int err;
775 while (low < high) {
776 mid = (low + high) / 2;
777 offset = p + mid * item_size;
779 if (!map_token || offset < map_start ||
780 (offset + sizeof(struct btrfs_disk_key)) >
781 map_start + map_len) {
782 if (map_token) {
783 unmap_extent_buffer(eb, map_token, KM_USER0);
784 map_token = NULL;
787 err = map_private_extent_buffer(eb, offset,
788 sizeof(struct btrfs_disk_key),
789 &map_token, &kaddr,
790 &map_start, &map_len, KM_USER0);
792 if (!err) {
793 tmp = (struct btrfs_disk_key *)(kaddr + offset -
794 map_start);
795 } else {
796 read_extent_buffer(eb, &unaligned,
797 offset, sizeof(unaligned));
798 tmp = &unaligned;
801 } else {
802 tmp = (struct btrfs_disk_key *)(kaddr + offset -
803 map_start);
805 ret = comp_keys(tmp, key);
807 if (ret < 0)
808 low = mid + 1;
809 else if (ret > 0)
810 high = mid;
811 else {
812 *slot = mid;
813 if (map_token)
814 unmap_extent_buffer(eb, map_token, KM_USER0);
815 return 0;
818 *slot = low;
819 if (map_token)
820 unmap_extent_buffer(eb, map_token, KM_USER0);
821 return 1;
825 * simple bin_search frontend that does the right thing for
826 * leaves vs nodes
828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
829 int level, int *slot)
831 if (level == 0) {
832 return generic_bin_search(eb,
833 offsetof(struct btrfs_leaf, items),
834 sizeof(struct btrfs_item),
835 key, btrfs_header_nritems(eb),
836 slot);
837 } else {
838 return generic_bin_search(eb,
839 offsetof(struct btrfs_node, ptrs),
840 sizeof(struct btrfs_key_ptr),
841 key, btrfs_header_nritems(eb),
842 slot);
844 return -1;
847 /* given a node and slot number, this reads the blocks it points to. The
848 * extent buffer is returned with a reference taken (but unlocked).
849 * NULL is returned on error.
851 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
852 struct extent_buffer *parent, int slot)
854 int level = btrfs_header_level(parent);
855 if (slot < 0)
856 return NULL;
857 if (slot >= btrfs_header_nritems(parent))
858 return NULL;
860 BUG_ON(level == 0);
862 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
863 btrfs_level_size(root, level - 1),
864 btrfs_node_ptr_generation(parent, slot));
868 * node level balancing, used to make sure nodes are in proper order for
869 * item deletion. We balance from the top down, so we have to make sure
870 * that a deletion won't leave an node completely empty later on.
872 static noinline int balance_level(struct btrfs_trans_handle *trans,
873 struct btrfs_root *root,
874 struct btrfs_path *path, int level)
876 struct extent_buffer *right = NULL;
877 struct extent_buffer *mid;
878 struct extent_buffer *left = NULL;
879 struct extent_buffer *parent = NULL;
880 int ret = 0;
881 int wret;
882 int pslot;
883 int orig_slot = path->slots[level];
884 int err_on_enospc = 0;
885 u64 orig_ptr;
887 if (level == 0)
888 return 0;
890 mid = path->nodes[level];
892 WARN_ON(!path->locks[level]);
893 WARN_ON(btrfs_header_generation(mid) != trans->transid);
895 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897 if (level < BTRFS_MAX_LEVEL - 1)
898 parent = path->nodes[level + 1];
899 pslot = path->slots[level + 1];
902 * deal with the case where there is only one pointer in the root
903 * by promoting the node below to a root
905 if (!parent) {
906 struct extent_buffer *child;
908 if (btrfs_header_nritems(mid) != 1)
909 return 0;
911 /* promote the child to a root */
912 child = read_node_slot(root, mid, 0);
913 BUG_ON(!child);
914 btrfs_tree_lock(child);
915 btrfs_set_lock_blocking(child);
916 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
917 BUG_ON(ret);
919 spin_lock(&root->node_lock);
920 root->node = child;
921 spin_unlock(&root->node_lock);
923 ret = btrfs_update_extent_ref(trans, root, child->start,
924 mid->start, child->start,
925 root->root_key.objectid,
926 trans->transid, level - 1);
927 BUG_ON(ret);
929 add_root_to_dirty_list(root);
930 btrfs_tree_unlock(child);
932 path->locks[level] = 0;
933 path->nodes[level] = NULL;
934 clean_tree_block(trans, root, mid);
935 btrfs_tree_unlock(mid);
936 /* once for the path */
937 free_extent_buffer(mid);
938 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
939 mid->start, root->root_key.objectid,
940 btrfs_header_generation(mid),
941 level, 1);
942 /* once for the root ptr */
943 free_extent_buffer(mid);
944 return ret;
946 if (btrfs_header_nritems(mid) >
947 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
948 return 0;
950 if (btrfs_header_nritems(mid) < 2)
951 err_on_enospc = 1;
953 left = read_node_slot(root, parent, pslot - 1);
954 if (left) {
955 btrfs_tree_lock(left);
956 btrfs_set_lock_blocking(left);
957 wret = btrfs_cow_block(trans, root, left,
958 parent, pslot - 1, &left, 0);
959 if (wret) {
960 ret = wret;
961 goto enospc;
964 right = read_node_slot(root, parent, pslot + 1);
965 if (right) {
966 btrfs_tree_lock(right);
967 btrfs_set_lock_blocking(right);
968 wret = btrfs_cow_block(trans, root, right,
969 parent, pslot + 1, &right, 0);
970 if (wret) {
971 ret = wret;
972 goto enospc;
976 /* first, try to make some room in the middle buffer */
977 if (left) {
978 orig_slot += btrfs_header_nritems(left);
979 wret = push_node_left(trans, root, left, mid, 1);
980 if (wret < 0)
981 ret = wret;
982 if (btrfs_header_nritems(mid) < 2)
983 err_on_enospc = 1;
987 * then try to empty the right most buffer into the middle
989 if (right) {
990 wret = push_node_left(trans, root, mid, right, 1);
991 if (wret < 0 && wret != -ENOSPC)
992 ret = wret;
993 if (btrfs_header_nritems(right) == 0) {
994 u64 bytenr = right->start;
995 u64 generation = btrfs_header_generation(parent);
996 u32 blocksize = right->len;
998 clean_tree_block(trans, root, right);
999 btrfs_tree_unlock(right);
1000 free_extent_buffer(right);
1001 right = NULL;
1002 wret = del_ptr(trans, root, path, level + 1, pslot +
1004 if (wret)
1005 ret = wret;
1006 wret = btrfs_free_extent(trans, root, bytenr,
1007 blocksize, parent->start,
1008 btrfs_header_owner(parent),
1009 generation, level, 1);
1010 if (wret)
1011 ret = wret;
1012 } else {
1013 struct btrfs_disk_key right_key;
1014 btrfs_node_key(right, &right_key, 0);
1015 btrfs_set_node_key(parent, &right_key, pslot + 1);
1016 btrfs_mark_buffer_dirty(parent);
1019 if (btrfs_header_nritems(mid) == 1) {
1021 * we're not allowed to leave a node with one item in the
1022 * tree during a delete. A deletion from lower in the tree
1023 * could try to delete the only pointer in this node.
1024 * So, pull some keys from the left.
1025 * There has to be a left pointer at this point because
1026 * otherwise we would have pulled some pointers from the
1027 * right
1029 BUG_ON(!left);
1030 wret = balance_node_right(trans, root, mid, left);
1031 if (wret < 0) {
1032 ret = wret;
1033 goto enospc;
1035 if (wret == 1) {
1036 wret = push_node_left(trans, root, left, mid, 1);
1037 if (wret < 0)
1038 ret = wret;
1040 BUG_ON(wret == 1);
1042 if (btrfs_header_nritems(mid) == 0) {
1043 /* we've managed to empty the middle node, drop it */
1044 u64 root_gen = btrfs_header_generation(parent);
1045 u64 bytenr = mid->start;
1046 u32 blocksize = mid->len;
1048 clean_tree_block(trans, root, mid);
1049 btrfs_tree_unlock(mid);
1050 free_extent_buffer(mid);
1051 mid = NULL;
1052 wret = del_ptr(trans, root, path, level + 1, pslot);
1053 if (wret)
1054 ret = wret;
1055 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1056 parent->start,
1057 btrfs_header_owner(parent),
1058 root_gen, level, 1);
1059 if (wret)
1060 ret = wret;
1061 } else {
1062 /* update the parent key to reflect our changes */
1063 struct btrfs_disk_key mid_key;
1064 btrfs_node_key(mid, &mid_key, 0);
1065 btrfs_set_node_key(parent, &mid_key, pslot);
1066 btrfs_mark_buffer_dirty(parent);
1069 /* update the path */
1070 if (left) {
1071 if (btrfs_header_nritems(left) > orig_slot) {
1072 extent_buffer_get(left);
1073 /* left was locked after cow */
1074 path->nodes[level] = left;
1075 path->slots[level + 1] -= 1;
1076 path->slots[level] = orig_slot;
1077 if (mid) {
1078 btrfs_tree_unlock(mid);
1079 free_extent_buffer(mid);
1081 } else {
1082 orig_slot -= btrfs_header_nritems(left);
1083 path->slots[level] = orig_slot;
1086 /* double check we haven't messed things up */
1087 check_block(root, path, level);
1088 if (orig_ptr !=
1089 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1090 BUG();
1091 enospc:
1092 if (right) {
1093 btrfs_tree_unlock(right);
1094 free_extent_buffer(right);
1096 if (left) {
1097 if (path->nodes[level] != left)
1098 btrfs_tree_unlock(left);
1099 free_extent_buffer(left);
1101 return ret;
1104 /* Node balancing for insertion. Here we only split or push nodes around
1105 * when they are completely full. This is also done top down, so we
1106 * have to be pessimistic.
1108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_path *path, int level)
1112 struct extent_buffer *right = NULL;
1113 struct extent_buffer *mid;
1114 struct extent_buffer *left = NULL;
1115 struct extent_buffer *parent = NULL;
1116 int ret = 0;
1117 int wret;
1118 int pslot;
1119 int orig_slot = path->slots[level];
1120 u64 orig_ptr;
1122 if (level == 0)
1123 return 1;
1125 mid = path->nodes[level];
1126 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1127 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1129 if (level < BTRFS_MAX_LEVEL - 1)
1130 parent = path->nodes[level + 1];
1131 pslot = path->slots[level + 1];
1133 if (!parent)
1134 return 1;
1136 left = read_node_slot(root, parent, pslot - 1);
1138 /* first, try to make some room in the middle buffer */
1139 if (left) {
1140 u32 left_nr;
1142 btrfs_tree_lock(left);
1143 btrfs_set_lock_blocking(left);
1145 left_nr = btrfs_header_nritems(left);
1146 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1147 wret = 1;
1148 } else {
1149 ret = btrfs_cow_block(trans, root, left, parent,
1150 pslot - 1, &left, 0);
1151 if (ret)
1152 wret = 1;
1153 else {
1154 wret = push_node_left(trans, root,
1155 left, mid, 0);
1158 if (wret < 0)
1159 ret = wret;
1160 if (wret == 0) {
1161 struct btrfs_disk_key disk_key;
1162 orig_slot += left_nr;
1163 btrfs_node_key(mid, &disk_key, 0);
1164 btrfs_set_node_key(parent, &disk_key, pslot);
1165 btrfs_mark_buffer_dirty(parent);
1166 if (btrfs_header_nritems(left) > orig_slot) {
1167 path->nodes[level] = left;
1168 path->slots[level + 1] -= 1;
1169 path->slots[level] = orig_slot;
1170 btrfs_tree_unlock(mid);
1171 free_extent_buffer(mid);
1172 } else {
1173 orig_slot -=
1174 btrfs_header_nritems(left);
1175 path->slots[level] = orig_slot;
1176 btrfs_tree_unlock(left);
1177 free_extent_buffer(left);
1179 return 0;
1181 btrfs_tree_unlock(left);
1182 free_extent_buffer(left);
1184 right = read_node_slot(root, parent, pslot + 1);
1187 * then try to empty the right most buffer into the middle
1189 if (right) {
1190 u32 right_nr;
1192 btrfs_tree_lock(right);
1193 btrfs_set_lock_blocking(right);
1195 right_nr = btrfs_header_nritems(right);
1196 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1197 wret = 1;
1198 } else {
1199 ret = btrfs_cow_block(trans, root, right,
1200 parent, pslot + 1,
1201 &right, 0);
1202 if (ret)
1203 wret = 1;
1204 else {
1205 wret = balance_node_right(trans, root,
1206 right, mid);
1209 if (wret < 0)
1210 ret = wret;
1211 if (wret == 0) {
1212 struct btrfs_disk_key disk_key;
1214 btrfs_node_key(right, &disk_key, 0);
1215 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1216 btrfs_mark_buffer_dirty(parent);
1218 if (btrfs_header_nritems(mid) <= orig_slot) {
1219 path->nodes[level] = right;
1220 path->slots[level + 1] += 1;
1221 path->slots[level] = orig_slot -
1222 btrfs_header_nritems(mid);
1223 btrfs_tree_unlock(mid);
1224 free_extent_buffer(mid);
1225 } else {
1226 btrfs_tree_unlock(right);
1227 free_extent_buffer(right);
1229 return 0;
1231 btrfs_tree_unlock(right);
1232 free_extent_buffer(right);
1234 return 1;
1238 * readahead one full node of leaves, finding things that are close
1239 * to the block in 'slot', and triggering ra on them.
1241 static noinline void reada_for_search(struct btrfs_root *root,
1242 struct btrfs_path *path,
1243 int level, int slot, u64 objectid)
1245 struct extent_buffer *node;
1246 struct btrfs_disk_key disk_key;
1247 u32 nritems;
1248 u64 search;
1249 u64 target;
1250 u64 nread = 0;
1251 int direction = path->reada;
1252 struct extent_buffer *eb;
1253 u32 nr;
1254 u32 blocksize;
1255 u32 nscan = 0;
1257 if (level != 1)
1258 return;
1260 if (!path->nodes[level])
1261 return;
1263 node = path->nodes[level];
1265 search = btrfs_node_blockptr(node, slot);
1266 blocksize = btrfs_level_size(root, level - 1);
1267 eb = btrfs_find_tree_block(root, search, blocksize);
1268 if (eb) {
1269 free_extent_buffer(eb);
1270 return;
1273 target = search;
1275 nritems = btrfs_header_nritems(node);
1276 nr = slot;
1277 while (1) {
1278 if (direction < 0) {
1279 if (nr == 0)
1280 break;
1281 nr--;
1282 } else if (direction > 0) {
1283 nr++;
1284 if (nr >= nritems)
1285 break;
1287 if (path->reada < 0 && objectid) {
1288 btrfs_node_key(node, &disk_key, nr);
1289 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1290 break;
1292 search = btrfs_node_blockptr(node, nr);
1293 if ((search <= target && target - search <= 65536) ||
1294 (search > target && search - target <= 65536)) {
1295 readahead_tree_block(root, search, blocksize,
1296 btrfs_node_ptr_generation(node, nr));
1297 nread += blocksize;
1299 nscan++;
1300 if ((nread > 65536 || nscan > 32))
1301 break;
1306 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1307 * cache
1309 static noinline int reada_for_balance(struct btrfs_root *root,
1310 struct btrfs_path *path, int level)
1312 int slot;
1313 int nritems;
1314 struct extent_buffer *parent;
1315 struct extent_buffer *eb;
1316 u64 gen;
1317 u64 block1 = 0;
1318 u64 block2 = 0;
1319 int ret = 0;
1320 int blocksize;
1322 parent = path->nodes[level - 1];
1323 if (!parent)
1324 return 0;
1326 nritems = btrfs_header_nritems(parent);
1327 slot = path->slots[level];
1328 blocksize = btrfs_level_size(root, level);
1330 if (slot > 0) {
1331 block1 = btrfs_node_blockptr(parent, slot - 1);
1332 gen = btrfs_node_ptr_generation(parent, slot - 1);
1333 eb = btrfs_find_tree_block(root, block1, blocksize);
1334 if (eb && btrfs_buffer_uptodate(eb, gen))
1335 block1 = 0;
1336 free_extent_buffer(eb);
1338 if (slot < nritems) {
1339 block2 = btrfs_node_blockptr(parent, slot + 1);
1340 gen = btrfs_node_ptr_generation(parent, slot + 1);
1341 eb = btrfs_find_tree_block(root, block2, blocksize);
1342 if (eb && btrfs_buffer_uptodate(eb, gen))
1343 block2 = 0;
1344 free_extent_buffer(eb);
1346 if (block1 || block2) {
1347 ret = -EAGAIN;
1348 btrfs_release_path(root, path);
1349 if (block1)
1350 readahead_tree_block(root, block1, blocksize, 0);
1351 if (block2)
1352 readahead_tree_block(root, block2, blocksize, 0);
1354 if (block1) {
1355 eb = read_tree_block(root, block1, blocksize, 0);
1356 free_extent_buffer(eb);
1358 if (block1) {
1359 eb = read_tree_block(root, block2, blocksize, 0);
1360 free_extent_buffer(eb);
1363 return ret;
1368 * when we walk down the tree, it is usually safe to unlock the higher layers
1369 * in the tree. The exceptions are when our path goes through slot 0, because
1370 * operations on the tree might require changing key pointers higher up in the
1371 * tree.
1373 * callers might also have set path->keep_locks, which tells this code to keep
1374 * the lock if the path points to the last slot in the block. This is part of
1375 * walking through the tree, and selecting the next slot in the higher block.
1377 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1378 * if lowest_unlock is 1, level 0 won't be unlocked
1380 static noinline void unlock_up(struct btrfs_path *path, int level,
1381 int lowest_unlock)
1383 int i;
1384 int skip_level = level;
1385 int no_skips = 0;
1386 struct extent_buffer *t;
1388 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1389 if (!path->nodes[i])
1390 break;
1391 if (!path->locks[i])
1392 break;
1393 if (!no_skips && path->slots[i] == 0) {
1394 skip_level = i + 1;
1395 continue;
1397 if (!no_skips && path->keep_locks) {
1398 u32 nritems;
1399 t = path->nodes[i];
1400 nritems = btrfs_header_nritems(t);
1401 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1402 skip_level = i + 1;
1403 continue;
1406 if (skip_level < i && i >= lowest_unlock)
1407 no_skips = 1;
1409 t = path->nodes[i];
1410 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1411 btrfs_tree_unlock(t);
1412 path->locks[i] = 0;
1418 * This releases any locks held in the path starting at level and
1419 * going all the way up to the root.
1421 * btrfs_search_slot will keep the lock held on higher nodes in a few
1422 * corner cases, such as COW of the block at slot zero in the node. This
1423 * ignores those rules, and it should only be called when there are no
1424 * more updates to be done higher up in the tree.
1426 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1428 int i;
1430 if (path->keep_locks || path->lowest_level)
1431 return;
1433 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1434 if (!path->nodes[i])
1435 continue;
1436 if (!path->locks[i])
1437 continue;
1438 btrfs_tree_unlock(path->nodes[i]);
1439 path->locks[i] = 0;
1444 * look for key in the tree. path is filled in with nodes along the way
1445 * if key is found, we return zero and you can find the item in the leaf
1446 * level of the path (level 0)
1448 * If the key isn't found, the path points to the slot where it should
1449 * be inserted, and 1 is returned. If there are other errors during the
1450 * search a negative error number is returned.
1452 * if ins_len > 0, nodes and leaves will be split as we walk down the
1453 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1454 * possible)
1456 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1457 *root, struct btrfs_key *key, struct btrfs_path *p, int
1458 ins_len, int cow)
1460 struct extent_buffer *b;
1461 struct extent_buffer *tmp;
1462 int slot;
1463 int ret;
1464 int level;
1465 int should_reada = p->reada;
1466 int lowest_unlock = 1;
1467 int blocksize;
1468 u8 lowest_level = 0;
1469 u64 blocknr;
1470 u64 gen;
1471 struct btrfs_key prealloc_block;
1473 lowest_level = p->lowest_level;
1474 WARN_ON(lowest_level && ins_len > 0);
1475 WARN_ON(p->nodes[0] != NULL);
1477 if (ins_len < 0)
1478 lowest_unlock = 2;
1480 prealloc_block.objectid = 0;
1482 again:
1483 if (p->skip_locking)
1484 b = btrfs_root_node(root);
1485 else
1486 b = btrfs_lock_root_node(root);
1488 while (b) {
1489 level = btrfs_header_level(b);
1492 * setup the path here so we can release it under lock
1493 * contention with the cow code
1495 p->nodes[level] = b;
1496 if (!p->skip_locking)
1497 p->locks[level] = 1;
1499 if (cow) {
1500 int wret;
1502 /* is a cow on this block not required */
1503 if (btrfs_header_generation(b) == trans->transid &&
1504 btrfs_header_owner(b) == root->root_key.objectid &&
1505 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1506 goto cow_done;
1509 /* ok, we have to cow, is our old prealloc the right
1510 * size?
1512 if (prealloc_block.objectid &&
1513 prealloc_block.offset != b->len) {
1514 btrfs_release_path(root, p);
1515 btrfs_free_reserved_extent(root,
1516 prealloc_block.objectid,
1517 prealloc_block.offset);
1518 prealloc_block.objectid = 0;
1519 goto again;
1523 * for higher level blocks, try not to allocate blocks
1524 * with the block and the parent locks held.
1526 if (level > 0 && !prealloc_block.objectid) {
1527 u32 size = b->len;
1528 u64 hint = b->start;
1530 btrfs_release_path(root, p);
1531 ret = btrfs_reserve_extent(trans, root,
1532 size, size, 0,
1533 hint, (u64)-1,
1534 &prealloc_block, 0);
1535 BUG_ON(ret);
1536 goto again;
1539 btrfs_set_path_blocking(p);
1541 wret = btrfs_cow_block(trans, root, b,
1542 p->nodes[level + 1],
1543 p->slots[level + 1],
1544 &b, prealloc_block.objectid);
1545 prealloc_block.objectid = 0;
1546 if (wret) {
1547 free_extent_buffer(b);
1548 ret = wret;
1549 goto done;
1552 cow_done:
1553 BUG_ON(!cow && ins_len);
1554 if (level != btrfs_header_level(b))
1555 WARN_ON(1);
1556 level = btrfs_header_level(b);
1558 p->nodes[level] = b;
1559 if (!p->skip_locking)
1560 p->locks[level] = 1;
1562 btrfs_clear_path_blocking(p);
1565 * we have a lock on b and as long as we aren't changing
1566 * the tree, there is no way to for the items in b to change.
1567 * It is safe to drop the lock on our parent before we
1568 * go through the expensive btree search on b.
1570 * If cow is true, then we might be changing slot zero,
1571 * which may require changing the parent. So, we can't
1572 * drop the lock until after we know which slot we're
1573 * operating on.
1575 if (!cow)
1576 btrfs_unlock_up_safe(p, level + 1);
1578 ret = check_block(root, p, level);
1579 if (ret) {
1580 ret = -1;
1581 goto done;
1584 ret = bin_search(b, key, level, &slot);
1586 if (level != 0) {
1587 if (ret && slot > 0)
1588 slot -= 1;
1589 p->slots[level] = slot;
1590 if ((p->search_for_split || ins_len > 0) &&
1591 btrfs_header_nritems(b) >=
1592 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1593 int sret;
1595 sret = reada_for_balance(root, p, level);
1596 if (sret)
1597 goto again;
1599 btrfs_set_path_blocking(p);
1600 sret = split_node(trans, root, p, level);
1601 btrfs_clear_path_blocking(p);
1603 BUG_ON(sret > 0);
1604 if (sret) {
1605 ret = sret;
1606 goto done;
1608 b = p->nodes[level];
1609 slot = p->slots[level];
1610 } else if (ins_len < 0 &&
1611 btrfs_header_nritems(b) <
1612 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1613 int sret;
1615 sret = reada_for_balance(root, p, level);
1616 if (sret)
1617 goto again;
1619 btrfs_set_path_blocking(p);
1620 sret = balance_level(trans, root, p, level);
1621 btrfs_clear_path_blocking(p);
1623 if (sret) {
1624 ret = sret;
1625 goto done;
1627 b = p->nodes[level];
1628 if (!b) {
1629 btrfs_release_path(NULL, p);
1630 goto again;
1632 slot = p->slots[level];
1633 BUG_ON(btrfs_header_nritems(b) == 1);
1635 unlock_up(p, level, lowest_unlock);
1637 /* this is only true while dropping a snapshot */
1638 if (level == lowest_level) {
1639 ret = 0;
1640 goto done;
1643 blocknr = btrfs_node_blockptr(b, slot);
1644 gen = btrfs_node_ptr_generation(b, slot);
1645 blocksize = btrfs_level_size(root, level - 1);
1647 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1648 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1649 b = tmp;
1650 } else {
1652 * reduce lock contention at high levels
1653 * of the btree by dropping locks before
1654 * we read.
1656 if (level > 0) {
1657 btrfs_release_path(NULL, p);
1658 if (tmp)
1659 free_extent_buffer(tmp);
1660 if (should_reada)
1661 reada_for_search(root, p,
1662 level, slot,
1663 key->objectid);
1665 tmp = read_tree_block(root, blocknr,
1666 blocksize, gen);
1667 if (tmp)
1668 free_extent_buffer(tmp);
1669 goto again;
1670 } else {
1671 btrfs_set_path_blocking(p);
1672 if (tmp)
1673 free_extent_buffer(tmp);
1674 if (should_reada)
1675 reada_for_search(root, p,
1676 level, slot,
1677 key->objectid);
1678 b = read_node_slot(root, b, slot);
1681 if (!p->skip_locking) {
1682 int lret;
1684 btrfs_clear_path_blocking(p);
1685 lret = btrfs_try_spin_lock(b);
1687 if (!lret) {
1688 btrfs_set_path_blocking(p);
1689 btrfs_tree_lock(b);
1690 btrfs_clear_path_blocking(p);
1693 } else {
1694 p->slots[level] = slot;
1695 if (ins_len > 0 &&
1696 btrfs_leaf_free_space(root, b) < ins_len) {
1697 int sret;
1699 btrfs_set_path_blocking(p);
1700 sret = split_leaf(trans, root, key,
1701 p, ins_len, ret == 0);
1702 btrfs_clear_path_blocking(p);
1704 BUG_ON(sret > 0);
1705 if (sret) {
1706 ret = sret;
1707 goto done;
1710 if (!p->search_for_split)
1711 unlock_up(p, level, lowest_unlock);
1712 goto done;
1715 ret = 1;
1716 done:
1718 * we don't really know what they plan on doing with the path
1719 * from here on, so for now just mark it as blocking
1721 btrfs_set_path_blocking(p);
1722 if (prealloc_block.objectid) {
1723 btrfs_free_reserved_extent(root,
1724 prealloc_block.objectid,
1725 prealloc_block.offset);
1727 return ret;
1730 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_key *node_keys,
1733 u64 *nodes, int lowest_level)
1735 struct extent_buffer *eb;
1736 struct extent_buffer *parent;
1737 struct btrfs_key key;
1738 u64 bytenr;
1739 u64 generation;
1740 u32 blocksize;
1741 int level;
1742 int slot;
1743 int key_match;
1744 int ret;
1746 eb = btrfs_lock_root_node(root);
1747 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1748 BUG_ON(ret);
1750 btrfs_set_lock_blocking(eb);
1752 parent = eb;
1753 while (1) {
1754 level = btrfs_header_level(parent);
1755 if (level == 0 || level <= lowest_level)
1756 break;
1758 ret = bin_search(parent, &node_keys[lowest_level], level,
1759 &slot);
1760 if (ret && slot > 0)
1761 slot--;
1763 bytenr = btrfs_node_blockptr(parent, slot);
1764 if (nodes[level - 1] == bytenr)
1765 break;
1767 blocksize = btrfs_level_size(root, level - 1);
1768 generation = btrfs_node_ptr_generation(parent, slot);
1769 btrfs_node_key_to_cpu(eb, &key, slot);
1770 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1772 if (generation == trans->transid) {
1773 eb = read_tree_block(root, bytenr, blocksize,
1774 generation);
1775 btrfs_tree_lock(eb);
1776 btrfs_set_lock_blocking(eb);
1780 * if node keys match and node pointer hasn't been modified
1781 * in the running transaction, we can merge the path. for
1782 * blocks owened by reloc trees, the node pointer check is
1783 * skipped, this is because these blocks are fully controlled
1784 * by the space balance code, no one else can modify them.
1786 if (!nodes[level - 1] || !key_match ||
1787 (generation == trans->transid &&
1788 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1789 if (level == 1 || level == lowest_level + 1) {
1790 if (generation == trans->transid) {
1791 btrfs_tree_unlock(eb);
1792 free_extent_buffer(eb);
1794 break;
1797 if (generation != trans->transid) {
1798 eb = read_tree_block(root, bytenr, blocksize,
1799 generation);
1800 btrfs_tree_lock(eb);
1801 btrfs_set_lock_blocking(eb);
1804 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1805 &eb, 0);
1806 BUG_ON(ret);
1808 if (root->root_key.objectid ==
1809 BTRFS_TREE_RELOC_OBJECTID) {
1810 if (!nodes[level - 1]) {
1811 nodes[level - 1] = eb->start;
1812 memcpy(&node_keys[level - 1], &key,
1813 sizeof(node_keys[0]));
1814 } else {
1815 WARN_ON(1);
1819 btrfs_tree_unlock(parent);
1820 free_extent_buffer(parent);
1821 parent = eb;
1822 continue;
1825 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1826 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1827 btrfs_mark_buffer_dirty(parent);
1829 ret = btrfs_inc_extent_ref(trans, root,
1830 nodes[level - 1],
1831 blocksize, parent->start,
1832 btrfs_header_owner(parent),
1833 btrfs_header_generation(parent),
1834 level - 1);
1835 BUG_ON(ret);
1838 * If the block was created in the running transaction,
1839 * it's possible this is the last reference to it, so we
1840 * should drop the subtree.
1842 if (generation == trans->transid) {
1843 ret = btrfs_drop_subtree(trans, root, eb, parent);
1844 BUG_ON(ret);
1845 btrfs_tree_unlock(eb);
1846 free_extent_buffer(eb);
1847 } else {
1848 ret = btrfs_free_extent(trans, root, bytenr,
1849 blocksize, parent->start,
1850 btrfs_header_owner(parent),
1851 btrfs_header_generation(parent),
1852 level - 1, 1);
1853 BUG_ON(ret);
1855 break;
1857 btrfs_tree_unlock(parent);
1858 free_extent_buffer(parent);
1859 return 0;
1863 * adjust the pointers going up the tree, starting at level
1864 * making sure the right key of each node is points to 'key'.
1865 * This is used after shifting pointers to the left, so it stops
1866 * fixing up pointers when a given leaf/node is not in slot 0 of the
1867 * higher levels
1869 * If this fails to write a tree block, it returns -1, but continues
1870 * fixing up the blocks in ram so the tree is consistent.
1872 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root, struct btrfs_path *path,
1874 struct btrfs_disk_key *key, int level)
1876 int i;
1877 int ret = 0;
1878 struct extent_buffer *t;
1880 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1881 int tslot = path->slots[i];
1882 if (!path->nodes[i])
1883 break;
1884 t = path->nodes[i];
1885 btrfs_set_node_key(t, key, tslot);
1886 btrfs_mark_buffer_dirty(path->nodes[i]);
1887 if (tslot != 0)
1888 break;
1890 return ret;
1894 * update item key.
1896 * This function isn't completely safe. It's the caller's responsibility
1897 * that the new key won't break the order
1899 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1900 struct btrfs_root *root, struct btrfs_path *path,
1901 struct btrfs_key *new_key)
1903 struct btrfs_disk_key disk_key;
1904 struct extent_buffer *eb;
1905 int slot;
1907 eb = path->nodes[0];
1908 slot = path->slots[0];
1909 if (slot > 0) {
1910 btrfs_item_key(eb, &disk_key, slot - 1);
1911 if (comp_keys(&disk_key, new_key) >= 0)
1912 return -1;
1914 if (slot < btrfs_header_nritems(eb) - 1) {
1915 btrfs_item_key(eb, &disk_key, slot + 1);
1916 if (comp_keys(&disk_key, new_key) <= 0)
1917 return -1;
1920 btrfs_cpu_key_to_disk(&disk_key, new_key);
1921 btrfs_set_item_key(eb, &disk_key, slot);
1922 btrfs_mark_buffer_dirty(eb);
1923 if (slot == 0)
1924 fixup_low_keys(trans, root, path, &disk_key, 1);
1925 return 0;
1929 * try to push data from one node into the next node left in the
1930 * tree.
1932 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1933 * error, and > 0 if there was no room in the left hand block.
1935 static int push_node_left(struct btrfs_trans_handle *trans,
1936 struct btrfs_root *root, struct extent_buffer *dst,
1937 struct extent_buffer *src, int empty)
1939 int push_items = 0;
1940 int src_nritems;
1941 int dst_nritems;
1942 int ret = 0;
1944 src_nritems = btrfs_header_nritems(src);
1945 dst_nritems = btrfs_header_nritems(dst);
1946 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1947 WARN_ON(btrfs_header_generation(src) != trans->transid);
1948 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1950 if (!empty && src_nritems <= 8)
1951 return 1;
1953 if (push_items <= 0)
1954 return 1;
1956 if (empty) {
1957 push_items = min(src_nritems, push_items);
1958 if (push_items < src_nritems) {
1959 /* leave at least 8 pointers in the node if
1960 * we aren't going to empty it
1962 if (src_nritems - push_items < 8) {
1963 if (push_items <= 8)
1964 return 1;
1965 push_items -= 8;
1968 } else
1969 push_items = min(src_nritems - 8, push_items);
1971 copy_extent_buffer(dst, src,
1972 btrfs_node_key_ptr_offset(dst_nritems),
1973 btrfs_node_key_ptr_offset(0),
1974 push_items * sizeof(struct btrfs_key_ptr));
1976 if (push_items < src_nritems) {
1977 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1978 btrfs_node_key_ptr_offset(push_items),
1979 (src_nritems - push_items) *
1980 sizeof(struct btrfs_key_ptr));
1982 btrfs_set_header_nritems(src, src_nritems - push_items);
1983 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1984 btrfs_mark_buffer_dirty(src);
1985 btrfs_mark_buffer_dirty(dst);
1987 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1988 BUG_ON(ret);
1990 return ret;
1994 * try to push data from one node into the next node right in the
1995 * tree.
1997 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1998 * error, and > 0 if there was no room in the right hand block.
2000 * this will only push up to 1/2 the contents of the left node over
2002 static int balance_node_right(struct btrfs_trans_handle *trans,
2003 struct btrfs_root *root,
2004 struct extent_buffer *dst,
2005 struct extent_buffer *src)
2007 int push_items = 0;
2008 int max_push;
2009 int src_nritems;
2010 int dst_nritems;
2011 int ret = 0;
2013 WARN_ON(btrfs_header_generation(src) != trans->transid);
2014 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2016 src_nritems = btrfs_header_nritems(src);
2017 dst_nritems = btrfs_header_nritems(dst);
2018 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2019 if (push_items <= 0)
2020 return 1;
2022 if (src_nritems < 4)
2023 return 1;
2025 max_push = src_nritems / 2 + 1;
2026 /* don't try to empty the node */
2027 if (max_push >= src_nritems)
2028 return 1;
2030 if (max_push < push_items)
2031 push_items = max_push;
2033 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2034 btrfs_node_key_ptr_offset(0),
2035 (dst_nritems) *
2036 sizeof(struct btrfs_key_ptr));
2038 copy_extent_buffer(dst, src,
2039 btrfs_node_key_ptr_offset(0),
2040 btrfs_node_key_ptr_offset(src_nritems - push_items),
2041 push_items * sizeof(struct btrfs_key_ptr));
2043 btrfs_set_header_nritems(src, src_nritems - push_items);
2044 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2046 btrfs_mark_buffer_dirty(src);
2047 btrfs_mark_buffer_dirty(dst);
2049 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2050 BUG_ON(ret);
2052 return ret;
2056 * helper function to insert a new root level in the tree.
2057 * A new node is allocated, and a single item is inserted to
2058 * point to the existing root
2060 * returns zero on success or < 0 on failure.
2062 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_path *path, int level)
2066 u64 lower_gen;
2067 struct extent_buffer *lower;
2068 struct extent_buffer *c;
2069 struct extent_buffer *old;
2070 struct btrfs_disk_key lower_key;
2071 int ret;
2073 BUG_ON(path->nodes[level]);
2074 BUG_ON(path->nodes[level-1] != root->node);
2076 lower = path->nodes[level-1];
2077 if (level == 1)
2078 btrfs_item_key(lower, &lower_key, 0);
2079 else
2080 btrfs_node_key(lower, &lower_key, 0);
2082 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2083 root->root_key.objectid, trans->transid,
2084 level, root->node->start, 0);
2085 if (IS_ERR(c))
2086 return PTR_ERR(c);
2088 memset_extent_buffer(c, 0, 0, root->nodesize);
2089 btrfs_set_header_nritems(c, 1);
2090 btrfs_set_header_level(c, level);
2091 btrfs_set_header_bytenr(c, c->start);
2092 btrfs_set_header_generation(c, trans->transid);
2093 btrfs_set_header_owner(c, root->root_key.objectid);
2095 write_extent_buffer(c, root->fs_info->fsid,
2096 (unsigned long)btrfs_header_fsid(c),
2097 BTRFS_FSID_SIZE);
2099 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2100 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2101 BTRFS_UUID_SIZE);
2103 btrfs_set_node_key(c, &lower_key, 0);
2104 btrfs_set_node_blockptr(c, 0, lower->start);
2105 lower_gen = btrfs_header_generation(lower);
2106 WARN_ON(lower_gen != trans->transid);
2108 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2110 btrfs_mark_buffer_dirty(c);
2112 spin_lock(&root->node_lock);
2113 old = root->node;
2114 root->node = c;
2115 spin_unlock(&root->node_lock);
2117 ret = btrfs_update_extent_ref(trans, root, lower->start,
2118 lower->start, c->start,
2119 root->root_key.objectid,
2120 trans->transid, level - 1);
2121 BUG_ON(ret);
2123 /* the super has an extra ref to root->node */
2124 free_extent_buffer(old);
2126 add_root_to_dirty_list(root);
2127 extent_buffer_get(c);
2128 path->nodes[level] = c;
2129 path->locks[level] = 1;
2130 path->slots[level] = 0;
2131 return 0;
2135 * worker function to insert a single pointer in a node.
2136 * the node should have enough room for the pointer already
2138 * slot and level indicate where you want the key to go, and
2139 * blocknr is the block the key points to.
2141 * returns zero on success and < 0 on any error
2143 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2144 *root, struct btrfs_path *path, struct btrfs_disk_key
2145 *key, u64 bytenr, int slot, int level)
2147 struct extent_buffer *lower;
2148 int nritems;
2150 BUG_ON(!path->nodes[level]);
2151 lower = path->nodes[level];
2152 nritems = btrfs_header_nritems(lower);
2153 if (slot > nritems)
2154 BUG();
2155 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2156 BUG();
2157 if (slot != nritems) {
2158 memmove_extent_buffer(lower,
2159 btrfs_node_key_ptr_offset(slot + 1),
2160 btrfs_node_key_ptr_offset(slot),
2161 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2163 btrfs_set_node_key(lower, key, slot);
2164 btrfs_set_node_blockptr(lower, slot, bytenr);
2165 WARN_ON(trans->transid == 0);
2166 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2167 btrfs_set_header_nritems(lower, nritems + 1);
2168 btrfs_mark_buffer_dirty(lower);
2169 return 0;
2173 * split the node at the specified level in path in two.
2174 * The path is corrected to point to the appropriate node after the split
2176 * Before splitting this tries to make some room in the node by pushing
2177 * left and right, if either one works, it returns right away.
2179 * returns 0 on success and < 0 on failure
2181 static noinline int split_node(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *root,
2183 struct btrfs_path *path, int level)
2185 struct extent_buffer *c;
2186 struct extent_buffer *split;
2187 struct btrfs_disk_key disk_key;
2188 int mid;
2189 int ret;
2190 int wret;
2191 u32 c_nritems;
2193 c = path->nodes[level];
2194 WARN_ON(btrfs_header_generation(c) != trans->transid);
2195 if (c == root->node) {
2196 /* trying to split the root, lets make a new one */
2197 ret = insert_new_root(trans, root, path, level + 1);
2198 if (ret)
2199 return ret;
2200 } else {
2201 ret = push_nodes_for_insert(trans, root, path, level);
2202 c = path->nodes[level];
2203 if (!ret && btrfs_header_nritems(c) <
2204 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2205 return 0;
2206 if (ret < 0)
2207 return ret;
2210 c_nritems = btrfs_header_nritems(c);
2212 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2213 path->nodes[level + 1]->start,
2214 root->root_key.objectid,
2215 trans->transid, level, c->start, 0);
2216 if (IS_ERR(split))
2217 return PTR_ERR(split);
2219 btrfs_set_header_flags(split, btrfs_header_flags(c));
2220 btrfs_set_header_level(split, btrfs_header_level(c));
2221 btrfs_set_header_bytenr(split, split->start);
2222 btrfs_set_header_generation(split, trans->transid);
2223 btrfs_set_header_owner(split, root->root_key.objectid);
2224 btrfs_set_header_flags(split, 0);
2225 write_extent_buffer(split, root->fs_info->fsid,
2226 (unsigned long)btrfs_header_fsid(split),
2227 BTRFS_FSID_SIZE);
2228 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2229 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2230 BTRFS_UUID_SIZE);
2232 mid = (c_nritems + 1) / 2;
2234 copy_extent_buffer(split, c,
2235 btrfs_node_key_ptr_offset(0),
2236 btrfs_node_key_ptr_offset(mid),
2237 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2238 btrfs_set_header_nritems(split, c_nritems - mid);
2239 btrfs_set_header_nritems(c, mid);
2240 ret = 0;
2242 btrfs_mark_buffer_dirty(c);
2243 btrfs_mark_buffer_dirty(split);
2245 btrfs_node_key(split, &disk_key, 0);
2246 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2247 path->slots[level + 1] + 1,
2248 level + 1);
2249 if (wret)
2250 ret = wret;
2252 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2253 BUG_ON(ret);
2255 if (path->slots[level] >= mid) {
2256 path->slots[level] -= mid;
2257 btrfs_tree_unlock(c);
2258 free_extent_buffer(c);
2259 path->nodes[level] = split;
2260 path->slots[level + 1] += 1;
2261 } else {
2262 btrfs_tree_unlock(split);
2263 free_extent_buffer(split);
2265 return ret;
2269 * how many bytes are required to store the items in a leaf. start
2270 * and nr indicate which items in the leaf to check. This totals up the
2271 * space used both by the item structs and the item data
2273 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2275 int data_len;
2276 int nritems = btrfs_header_nritems(l);
2277 int end = min(nritems, start + nr) - 1;
2279 if (!nr)
2280 return 0;
2281 data_len = btrfs_item_end_nr(l, start);
2282 data_len = data_len - btrfs_item_offset_nr(l, end);
2283 data_len += sizeof(struct btrfs_item) * nr;
2284 WARN_ON(data_len < 0);
2285 return data_len;
2289 * The space between the end of the leaf items and
2290 * the start of the leaf data. IOW, how much room
2291 * the leaf has left for both items and data
2293 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2294 struct extent_buffer *leaf)
2296 int nritems = btrfs_header_nritems(leaf);
2297 int ret;
2298 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2299 if (ret < 0) {
2300 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2301 "used %d nritems %d\n",
2302 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2303 leaf_space_used(leaf, 0, nritems), nritems);
2305 return ret;
2309 * push some data in the path leaf to the right, trying to free up at
2310 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2312 * returns 1 if the push failed because the other node didn't have enough
2313 * room, 0 if everything worked out and < 0 if there were major errors.
2315 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2316 *root, struct btrfs_path *path, int data_size,
2317 int empty)
2319 struct extent_buffer *left = path->nodes[0];
2320 struct extent_buffer *right;
2321 struct extent_buffer *upper;
2322 struct btrfs_disk_key disk_key;
2323 int slot;
2324 u32 i;
2325 int free_space;
2326 int push_space = 0;
2327 int push_items = 0;
2328 struct btrfs_item *item;
2329 u32 left_nritems;
2330 u32 nr;
2331 u32 right_nritems;
2332 u32 data_end;
2333 u32 this_item_size;
2334 int ret;
2336 slot = path->slots[1];
2337 if (!path->nodes[1])
2338 return 1;
2340 upper = path->nodes[1];
2341 if (slot >= btrfs_header_nritems(upper) - 1)
2342 return 1;
2344 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2346 right = read_node_slot(root, upper, slot + 1);
2347 btrfs_tree_lock(right);
2348 btrfs_set_lock_blocking(right);
2350 free_space = btrfs_leaf_free_space(root, right);
2351 if (free_space < data_size)
2352 goto out_unlock;
2354 /* cow and double check */
2355 ret = btrfs_cow_block(trans, root, right, upper,
2356 slot + 1, &right, 0);
2357 if (ret)
2358 goto out_unlock;
2360 free_space = btrfs_leaf_free_space(root, right);
2361 if (free_space < data_size)
2362 goto out_unlock;
2364 left_nritems = btrfs_header_nritems(left);
2365 if (left_nritems == 0)
2366 goto out_unlock;
2368 if (empty)
2369 nr = 0;
2370 else
2371 nr = 1;
2373 if (path->slots[0] >= left_nritems)
2374 push_space += data_size;
2376 i = left_nritems - 1;
2377 while (i >= nr) {
2378 item = btrfs_item_nr(left, i);
2380 if (!empty && push_items > 0) {
2381 if (path->slots[0] > i)
2382 break;
2383 if (path->slots[0] == i) {
2384 int space = btrfs_leaf_free_space(root, left);
2385 if (space + push_space * 2 > free_space)
2386 break;
2390 if (path->slots[0] == i)
2391 push_space += data_size;
2393 if (!left->map_token) {
2394 map_extent_buffer(left, (unsigned long)item,
2395 sizeof(struct btrfs_item),
2396 &left->map_token, &left->kaddr,
2397 &left->map_start, &left->map_len,
2398 KM_USER1);
2401 this_item_size = btrfs_item_size(left, item);
2402 if (this_item_size + sizeof(*item) + push_space > free_space)
2403 break;
2405 push_items++;
2406 push_space += this_item_size + sizeof(*item);
2407 if (i == 0)
2408 break;
2409 i--;
2411 if (left->map_token) {
2412 unmap_extent_buffer(left, left->map_token, KM_USER1);
2413 left->map_token = NULL;
2416 if (push_items == 0)
2417 goto out_unlock;
2419 if (!empty && push_items == left_nritems)
2420 WARN_ON(1);
2422 /* push left to right */
2423 right_nritems = btrfs_header_nritems(right);
2425 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2426 push_space -= leaf_data_end(root, left);
2428 /* make room in the right data area */
2429 data_end = leaf_data_end(root, right);
2430 memmove_extent_buffer(right,
2431 btrfs_leaf_data(right) + data_end - push_space,
2432 btrfs_leaf_data(right) + data_end,
2433 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2435 /* copy from the left data area */
2436 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2437 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2438 btrfs_leaf_data(left) + leaf_data_end(root, left),
2439 push_space);
2441 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2442 btrfs_item_nr_offset(0),
2443 right_nritems * sizeof(struct btrfs_item));
2445 /* copy the items from left to right */
2446 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2447 btrfs_item_nr_offset(left_nritems - push_items),
2448 push_items * sizeof(struct btrfs_item));
2450 /* update the item pointers */
2451 right_nritems += push_items;
2452 btrfs_set_header_nritems(right, right_nritems);
2453 push_space = BTRFS_LEAF_DATA_SIZE(root);
2454 for (i = 0; i < right_nritems; i++) {
2455 item = btrfs_item_nr(right, i);
2456 if (!right->map_token) {
2457 map_extent_buffer(right, (unsigned long)item,
2458 sizeof(struct btrfs_item),
2459 &right->map_token, &right->kaddr,
2460 &right->map_start, &right->map_len,
2461 KM_USER1);
2463 push_space -= btrfs_item_size(right, item);
2464 btrfs_set_item_offset(right, item, push_space);
2467 if (right->map_token) {
2468 unmap_extent_buffer(right, right->map_token, KM_USER1);
2469 right->map_token = NULL;
2471 left_nritems -= push_items;
2472 btrfs_set_header_nritems(left, left_nritems);
2474 if (left_nritems)
2475 btrfs_mark_buffer_dirty(left);
2476 btrfs_mark_buffer_dirty(right);
2478 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2479 BUG_ON(ret);
2481 btrfs_item_key(right, &disk_key, 0);
2482 btrfs_set_node_key(upper, &disk_key, slot + 1);
2483 btrfs_mark_buffer_dirty(upper);
2485 /* then fixup the leaf pointer in the path */
2486 if (path->slots[0] >= left_nritems) {
2487 path->slots[0] -= left_nritems;
2488 if (btrfs_header_nritems(path->nodes[0]) == 0)
2489 clean_tree_block(trans, root, path->nodes[0]);
2490 btrfs_tree_unlock(path->nodes[0]);
2491 free_extent_buffer(path->nodes[0]);
2492 path->nodes[0] = right;
2493 path->slots[1] += 1;
2494 } else {
2495 btrfs_tree_unlock(right);
2496 free_extent_buffer(right);
2498 return 0;
2500 out_unlock:
2501 btrfs_tree_unlock(right);
2502 free_extent_buffer(right);
2503 return 1;
2507 * push some data in the path leaf to the left, trying to free up at
2508 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2510 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2511 *root, struct btrfs_path *path, int data_size,
2512 int empty)
2514 struct btrfs_disk_key disk_key;
2515 struct extent_buffer *right = path->nodes[0];
2516 struct extent_buffer *left;
2517 int slot;
2518 int i;
2519 int free_space;
2520 int push_space = 0;
2521 int push_items = 0;
2522 struct btrfs_item *item;
2523 u32 old_left_nritems;
2524 u32 right_nritems;
2525 u32 nr;
2526 int ret = 0;
2527 int wret;
2528 u32 this_item_size;
2529 u32 old_left_item_size;
2531 slot = path->slots[1];
2532 if (slot == 0)
2533 return 1;
2534 if (!path->nodes[1])
2535 return 1;
2537 right_nritems = btrfs_header_nritems(right);
2538 if (right_nritems == 0)
2539 return 1;
2541 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2543 left = read_node_slot(root, path->nodes[1], slot - 1);
2544 btrfs_tree_lock(left);
2545 btrfs_set_lock_blocking(left);
2547 free_space = btrfs_leaf_free_space(root, left);
2548 if (free_space < data_size) {
2549 ret = 1;
2550 goto out;
2553 /* cow and double check */
2554 ret = btrfs_cow_block(trans, root, left,
2555 path->nodes[1], slot - 1, &left, 0);
2556 if (ret) {
2557 /* we hit -ENOSPC, but it isn't fatal here */
2558 ret = 1;
2559 goto out;
2562 free_space = btrfs_leaf_free_space(root, left);
2563 if (free_space < data_size) {
2564 ret = 1;
2565 goto out;
2568 if (empty)
2569 nr = right_nritems;
2570 else
2571 nr = right_nritems - 1;
2573 for (i = 0; i < nr; i++) {
2574 item = btrfs_item_nr(right, i);
2575 if (!right->map_token) {
2576 map_extent_buffer(right, (unsigned long)item,
2577 sizeof(struct btrfs_item),
2578 &right->map_token, &right->kaddr,
2579 &right->map_start, &right->map_len,
2580 KM_USER1);
2583 if (!empty && push_items > 0) {
2584 if (path->slots[0] < i)
2585 break;
2586 if (path->slots[0] == i) {
2587 int space = btrfs_leaf_free_space(root, right);
2588 if (space + push_space * 2 > free_space)
2589 break;
2593 if (path->slots[0] == i)
2594 push_space += data_size;
2596 this_item_size = btrfs_item_size(right, item);
2597 if (this_item_size + sizeof(*item) + push_space > free_space)
2598 break;
2600 push_items++;
2601 push_space += this_item_size + sizeof(*item);
2604 if (right->map_token) {
2605 unmap_extent_buffer(right, right->map_token, KM_USER1);
2606 right->map_token = NULL;
2609 if (push_items == 0) {
2610 ret = 1;
2611 goto out;
2613 if (!empty && push_items == btrfs_header_nritems(right))
2614 WARN_ON(1);
2616 /* push data from right to left */
2617 copy_extent_buffer(left, right,
2618 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2619 btrfs_item_nr_offset(0),
2620 push_items * sizeof(struct btrfs_item));
2622 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2623 btrfs_item_offset_nr(right, push_items - 1);
2625 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2626 leaf_data_end(root, left) - push_space,
2627 btrfs_leaf_data(right) +
2628 btrfs_item_offset_nr(right, push_items - 1),
2629 push_space);
2630 old_left_nritems = btrfs_header_nritems(left);
2631 BUG_ON(old_left_nritems <= 0);
2633 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2634 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2635 u32 ioff;
2637 item = btrfs_item_nr(left, i);
2638 if (!left->map_token) {
2639 map_extent_buffer(left, (unsigned long)item,
2640 sizeof(struct btrfs_item),
2641 &left->map_token, &left->kaddr,
2642 &left->map_start, &left->map_len,
2643 KM_USER1);
2646 ioff = btrfs_item_offset(left, item);
2647 btrfs_set_item_offset(left, item,
2648 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2650 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2651 if (left->map_token) {
2652 unmap_extent_buffer(left, left->map_token, KM_USER1);
2653 left->map_token = NULL;
2656 /* fixup right node */
2657 if (push_items > right_nritems) {
2658 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2659 right_nritems);
2660 WARN_ON(1);
2663 if (push_items < right_nritems) {
2664 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2665 leaf_data_end(root, right);
2666 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2667 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2668 btrfs_leaf_data(right) +
2669 leaf_data_end(root, right), push_space);
2671 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2672 btrfs_item_nr_offset(push_items),
2673 (btrfs_header_nritems(right) - push_items) *
2674 sizeof(struct btrfs_item));
2676 right_nritems -= push_items;
2677 btrfs_set_header_nritems(right, right_nritems);
2678 push_space = BTRFS_LEAF_DATA_SIZE(root);
2679 for (i = 0; i < right_nritems; i++) {
2680 item = btrfs_item_nr(right, i);
2682 if (!right->map_token) {
2683 map_extent_buffer(right, (unsigned long)item,
2684 sizeof(struct btrfs_item),
2685 &right->map_token, &right->kaddr,
2686 &right->map_start, &right->map_len,
2687 KM_USER1);
2690 push_space = push_space - btrfs_item_size(right, item);
2691 btrfs_set_item_offset(right, item, push_space);
2693 if (right->map_token) {
2694 unmap_extent_buffer(right, right->map_token, KM_USER1);
2695 right->map_token = NULL;
2698 btrfs_mark_buffer_dirty(left);
2699 if (right_nritems)
2700 btrfs_mark_buffer_dirty(right);
2702 ret = btrfs_update_ref(trans, root, right, left,
2703 old_left_nritems, push_items);
2704 BUG_ON(ret);
2706 btrfs_item_key(right, &disk_key, 0);
2707 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2708 if (wret)
2709 ret = wret;
2711 /* then fixup the leaf pointer in the path */
2712 if (path->slots[0] < push_items) {
2713 path->slots[0] += old_left_nritems;
2714 if (btrfs_header_nritems(path->nodes[0]) == 0)
2715 clean_tree_block(trans, root, path->nodes[0]);
2716 btrfs_tree_unlock(path->nodes[0]);
2717 free_extent_buffer(path->nodes[0]);
2718 path->nodes[0] = left;
2719 path->slots[1] -= 1;
2720 } else {
2721 btrfs_tree_unlock(left);
2722 free_extent_buffer(left);
2723 path->slots[0] -= push_items;
2725 BUG_ON(path->slots[0] < 0);
2726 return ret;
2727 out:
2728 btrfs_tree_unlock(left);
2729 free_extent_buffer(left);
2730 return ret;
2734 * split the path's leaf in two, making sure there is at least data_size
2735 * available for the resulting leaf level of the path.
2737 * returns 0 if all went well and < 0 on failure.
2739 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2740 struct btrfs_root *root,
2741 struct btrfs_key *ins_key,
2742 struct btrfs_path *path, int data_size,
2743 int extend)
2745 struct extent_buffer *l;
2746 u32 nritems;
2747 int mid;
2748 int slot;
2749 struct extent_buffer *right;
2750 int data_copy_size;
2751 int rt_data_off;
2752 int i;
2753 int ret = 0;
2754 int wret;
2755 int double_split;
2756 int num_doubles = 0;
2757 struct btrfs_disk_key disk_key;
2759 /* first try to make some room by pushing left and right */
2760 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2761 wret = push_leaf_right(trans, root, path, data_size, 0);
2762 if (wret < 0)
2763 return wret;
2764 if (wret) {
2765 wret = push_leaf_left(trans, root, path, data_size, 0);
2766 if (wret < 0)
2767 return wret;
2769 l = path->nodes[0];
2771 /* did the pushes work? */
2772 if (btrfs_leaf_free_space(root, l) >= data_size)
2773 return 0;
2776 if (!path->nodes[1]) {
2777 ret = insert_new_root(trans, root, path, 1);
2778 if (ret)
2779 return ret;
2781 again:
2782 double_split = 0;
2783 l = path->nodes[0];
2784 slot = path->slots[0];
2785 nritems = btrfs_header_nritems(l);
2786 mid = (nritems + 1) / 2;
2788 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2789 path->nodes[1]->start,
2790 root->root_key.objectid,
2791 trans->transid, 0, l->start, 0);
2792 if (IS_ERR(right)) {
2793 BUG_ON(1);
2794 return PTR_ERR(right);
2797 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2798 btrfs_set_header_bytenr(right, right->start);
2799 btrfs_set_header_generation(right, trans->transid);
2800 btrfs_set_header_owner(right, root->root_key.objectid);
2801 btrfs_set_header_level(right, 0);
2802 write_extent_buffer(right, root->fs_info->fsid,
2803 (unsigned long)btrfs_header_fsid(right),
2804 BTRFS_FSID_SIZE);
2806 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2807 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2808 BTRFS_UUID_SIZE);
2809 if (mid <= slot) {
2810 if (nritems == 1 ||
2811 leaf_space_used(l, mid, nritems - mid) + data_size >
2812 BTRFS_LEAF_DATA_SIZE(root)) {
2813 if (slot >= nritems) {
2814 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2815 btrfs_set_header_nritems(right, 0);
2816 wret = insert_ptr(trans, root, path,
2817 &disk_key, right->start,
2818 path->slots[1] + 1, 1);
2819 if (wret)
2820 ret = wret;
2822 btrfs_tree_unlock(path->nodes[0]);
2823 free_extent_buffer(path->nodes[0]);
2824 path->nodes[0] = right;
2825 path->slots[0] = 0;
2826 path->slots[1] += 1;
2827 btrfs_mark_buffer_dirty(right);
2828 return ret;
2830 mid = slot;
2831 if (mid != nritems &&
2832 leaf_space_used(l, mid, nritems - mid) +
2833 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2834 double_split = 1;
2837 } else {
2838 if (leaf_space_used(l, 0, mid) + data_size >
2839 BTRFS_LEAF_DATA_SIZE(root)) {
2840 if (!extend && data_size && slot == 0) {
2841 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2842 btrfs_set_header_nritems(right, 0);
2843 wret = insert_ptr(trans, root, path,
2844 &disk_key,
2845 right->start,
2846 path->slots[1], 1);
2847 if (wret)
2848 ret = wret;
2849 btrfs_tree_unlock(path->nodes[0]);
2850 free_extent_buffer(path->nodes[0]);
2851 path->nodes[0] = right;
2852 path->slots[0] = 0;
2853 if (path->slots[1] == 0) {
2854 wret = fixup_low_keys(trans, root,
2855 path, &disk_key, 1);
2856 if (wret)
2857 ret = wret;
2859 btrfs_mark_buffer_dirty(right);
2860 return ret;
2861 } else if ((extend || !data_size) && slot == 0) {
2862 mid = 1;
2863 } else {
2864 mid = slot;
2865 if (mid != nritems &&
2866 leaf_space_used(l, mid, nritems - mid) +
2867 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2868 double_split = 1;
2873 nritems = nritems - mid;
2874 btrfs_set_header_nritems(right, nritems);
2875 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2877 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2878 btrfs_item_nr_offset(mid),
2879 nritems * sizeof(struct btrfs_item));
2881 copy_extent_buffer(right, l,
2882 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2883 data_copy_size, btrfs_leaf_data(l) +
2884 leaf_data_end(root, l), data_copy_size);
2886 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2887 btrfs_item_end_nr(l, mid);
2889 for (i = 0; i < nritems; i++) {
2890 struct btrfs_item *item = btrfs_item_nr(right, i);
2891 u32 ioff;
2893 if (!right->map_token) {
2894 map_extent_buffer(right, (unsigned long)item,
2895 sizeof(struct btrfs_item),
2896 &right->map_token, &right->kaddr,
2897 &right->map_start, &right->map_len,
2898 KM_USER1);
2901 ioff = btrfs_item_offset(right, item);
2902 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2905 if (right->map_token) {
2906 unmap_extent_buffer(right, right->map_token, KM_USER1);
2907 right->map_token = NULL;
2910 btrfs_set_header_nritems(l, mid);
2911 ret = 0;
2912 btrfs_item_key(right, &disk_key, 0);
2913 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2914 path->slots[1] + 1, 1);
2915 if (wret)
2916 ret = wret;
2918 btrfs_mark_buffer_dirty(right);
2919 btrfs_mark_buffer_dirty(l);
2920 BUG_ON(path->slots[0] != slot);
2922 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2923 BUG_ON(ret);
2925 if (mid <= slot) {
2926 btrfs_tree_unlock(path->nodes[0]);
2927 free_extent_buffer(path->nodes[0]);
2928 path->nodes[0] = right;
2929 path->slots[0] -= mid;
2930 path->slots[1] += 1;
2931 } else {
2932 btrfs_tree_unlock(right);
2933 free_extent_buffer(right);
2936 BUG_ON(path->slots[0] < 0);
2938 if (double_split) {
2939 BUG_ON(num_doubles != 0);
2940 num_doubles++;
2941 goto again;
2943 return ret;
2947 * This function splits a single item into two items,
2948 * giving 'new_key' to the new item and splitting the
2949 * old one at split_offset (from the start of the item).
2951 * The path may be released by this operation. After
2952 * the split, the path is pointing to the old item. The
2953 * new item is going to be in the same node as the old one.
2955 * Note, the item being split must be smaller enough to live alone on
2956 * a tree block with room for one extra struct btrfs_item
2958 * This allows us to split the item in place, keeping a lock on the
2959 * leaf the entire time.
2961 int btrfs_split_item(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root,
2963 struct btrfs_path *path,
2964 struct btrfs_key *new_key,
2965 unsigned long split_offset)
2967 u32 item_size;
2968 struct extent_buffer *leaf;
2969 struct btrfs_key orig_key;
2970 struct btrfs_item *item;
2971 struct btrfs_item *new_item;
2972 int ret = 0;
2973 int slot;
2974 u32 nritems;
2975 u32 orig_offset;
2976 struct btrfs_disk_key disk_key;
2977 char *buf;
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2981 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2982 goto split;
2984 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2985 btrfs_release_path(root, path);
2987 path->search_for_split = 1;
2988 path->keep_locks = 1;
2990 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2991 path->search_for_split = 0;
2993 /* if our item isn't there or got smaller, return now */
2994 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2995 path->slots[0])) {
2996 path->keep_locks = 0;
2997 return -EAGAIN;
3000 ret = split_leaf(trans, root, &orig_key, path,
3001 sizeof(struct btrfs_item), 1);
3002 path->keep_locks = 0;
3003 BUG_ON(ret);
3006 * make sure any changes to the path from split_leaf leave it
3007 * in a blocking state
3009 btrfs_set_path_blocking(path);
3011 leaf = path->nodes[0];
3012 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3014 split:
3015 item = btrfs_item_nr(leaf, path->slots[0]);
3016 orig_offset = btrfs_item_offset(leaf, item);
3017 item_size = btrfs_item_size(leaf, item);
3020 buf = kmalloc(item_size, GFP_NOFS);
3021 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3022 path->slots[0]), item_size);
3023 slot = path->slots[0] + 1;
3024 leaf = path->nodes[0];
3026 nritems = btrfs_header_nritems(leaf);
3028 if (slot != nritems) {
3029 /* shift the items */
3030 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3031 btrfs_item_nr_offset(slot),
3032 (nritems - slot) * sizeof(struct btrfs_item));
3036 btrfs_cpu_key_to_disk(&disk_key, new_key);
3037 btrfs_set_item_key(leaf, &disk_key, slot);
3039 new_item = btrfs_item_nr(leaf, slot);
3041 btrfs_set_item_offset(leaf, new_item, orig_offset);
3042 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3044 btrfs_set_item_offset(leaf, item,
3045 orig_offset + item_size - split_offset);
3046 btrfs_set_item_size(leaf, item, split_offset);
3048 btrfs_set_header_nritems(leaf, nritems + 1);
3050 /* write the data for the start of the original item */
3051 write_extent_buffer(leaf, buf,
3052 btrfs_item_ptr_offset(leaf, path->slots[0]),
3053 split_offset);
3055 /* write the data for the new item */
3056 write_extent_buffer(leaf, buf + split_offset,
3057 btrfs_item_ptr_offset(leaf, slot),
3058 item_size - split_offset);
3059 btrfs_mark_buffer_dirty(leaf);
3061 ret = 0;
3062 if (btrfs_leaf_free_space(root, leaf) < 0) {
3063 btrfs_print_leaf(root, leaf);
3064 BUG();
3066 kfree(buf);
3067 return ret;
3071 * make the item pointed to by the path smaller. new_size indicates
3072 * how small to make it, and from_end tells us if we just chop bytes
3073 * off the end of the item or if we shift the item to chop bytes off
3074 * the front.
3076 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root,
3078 struct btrfs_path *path,
3079 u32 new_size, int from_end)
3081 int ret = 0;
3082 int slot;
3083 int slot_orig;
3084 struct extent_buffer *leaf;
3085 struct btrfs_item *item;
3086 u32 nritems;
3087 unsigned int data_end;
3088 unsigned int old_data_start;
3089 unsigned int old_size;
3090 unsigned int size_diff;
3091 int i;
3093 slot_orig = path->slots[0];
3094 leaf = path->nodes[0];
3095 slot = path->slots[0];
3097 old_size = btrfs_item_size_nr(leaf, slot);
3098 if (old_size == new_size)
3099 return 0;
3101 nritems = btrfs_header_nritems(leaf);
3102 data_end = leaf_data_end(root, leaf);
3104 old_data_start = btrfs_item_offset_nr(leaf, slot);
3106 size_diff = old_size - new_size;
3108 BUG_ON(slot < 0);
3109 BUG_ON(slot >= nritems);
3112 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3114 /* first correct the data pointers */
3115 for (i = slot; i < nritems; i++) {
3116 u32 ioff;
3117 item = btrfs_item_nr(leaf, i);
3119 if (!leaf->map_token) {
3120 map_extent_buffer(leaf, (unsigned long)item,
3121 sizeof(struct btrfs_item),
3122 &leaf->map_token, &leaf->kaddr,
3123 &leaf->map_start, &leaf->map_len,
3124 KM_USER1);
3127 ioff = btrfs_item_offset(leaf, item);
3128 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3131 if (leaf->map_token) {
3132 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3133 leaf->map_token = NULL;
3136 /* shift the data */
3137 if (from_end) {
3138 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3139 data_end + size_diff, btrfs_leaf_data(leaf) +
3140 data_end, old_data_start + new_size - data_end);
3141 } else {
3142 struct btrfs_disk_key disk_key;
3143 u64 offset;
3145 btrfs_item_key(leaf, &disk_key, slot);
3147 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3148 unsigned long ptr;
3149 struct btrfs_file_extent_item *fi;
3151 fi = btrfs_item_ptr(leaf, slot,
3152 struct btrfs_file_extent_item);
3153 fi = (struct btrfs_file_extent_item *)(
3154 (unsigned long)fi - size_diff);
3156 if (btrfs_file_extent_type(leaf, fi) ==
3157 BTRFS_FILE_EXTENT_INLINE) {
3158 ptr = btrfs_item_ptr_offset(leaf, slot);
3159 memmove_extent_buffer(leaf, ptr,
3160 (unsigned long)fi,
3161 offsetof(struct btrfs_file_extent_item,
3162 disk_bytenr));
3166 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3167 data_end + size_diff, btrfs_leaf_data(leaf) +
3168 data_end, old_data_start - data_end);
3170 offset = btrfs_disk_key_offset(&disk_key);
3171 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3172 btrfs_set_item_key(leaf, &disk_key, slot);
3173 if (slot == 0)
3174 fixup_low_keys(trans, root, path, &disk_key, 1);
3177 item = btrfs_item_nr(leaf, slot);
3178 btrfs_set_item_size(leaf, item, new_size);
3179 btrfs_mark_buffer_dirty(leaf);
3181 ret = 0;
3182 if (btrfs_leaf_free_space(root, leaf) < 0) {
3183 btrfs_print_leaf(root, leaf);
3184 BUG();
3186 return ret;
3190 * make the item pointed to by the path bigger, data_size is the new size.
3192 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *root, struct btrfs_path *path,
3194 u32 data_size)
3196 int ret = 0;
3197 int slot;
3198 int slot_orig;
3199 struct extent_buffer *leaf;
3200 struct btrfs_item *item;
3201 u32 nritems;
3202 unsigned int data_end;
3203 unsigned int old_data;
3204 unsigned int old_size;
3205 int i;
3207 slot_orig = path->slots[0];
3208 leaf = path->nodes[0];
3210 nritems = btrfs_header_nritems(leaf);
3211 data_end = leaf_data_end(root, leaf);
3213 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3214 btrfs_print_leaf(root, leaf);
3215 BUG();
3217 slot = path->slots[0];
3218 old_data = btrfs_item_end_nr(leaf, slot);
3220 BUG_ON(slot < 0);
3221 if (slot >= nritems) {
3222 btrfs_print_leaf(root, leaf);
3223 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3224 slot, nritems);
3225 BUG_ON(1);
3229 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3231 /* first correct the data pointers */
3232 for (i = slot; i < nritems; i++) {
3233 u32 ioff;
3234 item = btrfs_item_nr(leaf, i);
3236 if (!leaf->map_token) {
3237 map_extent_buffer(leaf, (unsigned long)item,
3238 sizeof(struct btrfs_item),
3239 &leaf->map_token, &leaf->kaddr,
3240 &leaf->map_start, &leaf->map_len,
3241 KM_USER1);
3243 ioff = btrfs_item_offset(leaf, item);
3244 btrfs_set_item_offset(leaf, item, ioff - data_size);
3247 if (leaf->map_token) {
3248 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3249 leaf->map_token = NULL;
3252 /* shift the data */
3253 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3254 data_end - data_size, btrfs_leaf_data(leaf) +
3255 data_end, old_data - data_end);
3257 data_end = old_data;
3258 old_size = btrfs_item_size_nr(leaf, slot);
3259 item = btrfs_item_nr(leaf, slot);
3260 btrfs_set_item_size(leaf, item, old_size + data_size);
3261 btrfs_mark_buffer_dirty(leaf);
3263 ret = 0;
3264 if (btrfs_leaf_free_space(root, leaf) < 0) {
3265 btrfs_print_leaf(root, leaf);
3266 BUG();
3268 return ret;
3272 * Given a key and some data, insert items into the tree.
3273 * This does all the path init required, making room in the tree if needed.
3274 * Returns the number of keys that were inserted.
3276 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3277 struct btrfs_root *root,
3278 struct btrfs_path *path,
3279 struct btrfs_key *cpu_key, u32 *data_size,
3280 int nr)
3282 struct extent_buffer *leaf;
3283 struct btrfs_item *item;
3284 int ret = 0;
3285 int slot;
3286 int i;
3287 u32 nritems;
3288 u32 total_data = 0;
3289 u32 total_size = 0;
3290 unsigned int data_end;
3291 struct btrfs_disk_key disk_key;
3292 struct btrfs_key found_key;
3294 for (i = 0; i < nr; i++) {
3295 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3296 BTRFS_LEAF_DATA_SIZE(root)) {
3297 break;
3298 nr = i;
3300 total_data += data_size[i];
3301 total_size += data_size[i] + sizeof(struct btrfs_item);
3303 BUG_ON(nr == 0);
3305 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3306 if (ret == 0)
3307 return -EEXIST;
3308 if (ret < 0)
3309 goto out;
3311 leaf = path->nodes[0];
3313 nritems = btrfs_header_nritems(leaf);
3314 data_end = leaf_data_end(root, leaf);
3316 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3317 for (i = nr; i >= 0; i--) {
3318 total_data -= data_size[i];
3319 total_size -= data_size[i] + sizeof(struct btrfs_item);
3320 if (total_size < btrfs_leaf_free_space(root, leaf))
3321 break;
3323 nr = i;
3326 slot = path->slots[0];
3327 BUG_ON(slot < 0);
3329 if (slot != nritems) {
3330 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3332 item = btrfs_item_nr(leaf, slot);
3333 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3335 /* figure out how many keys we can insert in here */
3336 total_data = data_size[0];
3337 for (i = 1; i < nr; i++) {
3338 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3339 break;
3340 total_data += data_size[i];
3342 nr = i;
3344 if (old_data < data_end) {
3345 btrfs_print_leaf(root, leaf);
3346 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3347 slot, old_data, data_end);
3348 BUG_ON(1);
3351 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3353 /* first correct the data pointers */
3354 WARN_ON(leaf->map_token);
3355 for (i = slot; i < nritems; i++) {
3356 u32 ioff;
3358 item = btrfs_item_nr(leaf, i);
3359 if (!leaf->map_token) {
3360 map_extent_buffer(leaf, (unsigned long)item,
3361 sizeof(struct btrfs_item),
3362 &leaf->map_token, &leaf->kaddr,
3363 &leaf->map_start, &leaf->map_len,
3364 KM_USER1);
3367 ioff = btrfs_item_offset(leaf, item);
3368 btrfs_set_item_offset(leaf, item, ioff - total_data);
3370 if (leaf->map_token) {
3371 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3372 leaf->map_token = NULL;
3375 /* shift the items */
3376 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3377 btrfs_item_nr_offset(slot),
3378 (nritems - slot) * sizeof(struct btrfs_item));
3380 /* shift the data */
3381 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3382 data_end - total_data, btrfs_leaf_data(leaf) +
3383 data_end, old_data - data_end);
3384 data_end = old_data;
3385 } else {
3387 * this sucks but it has to be done, if we are inserting at
3388 * the end of the leaf only insert 1 of the items, since we
3389 * have no way of knowing whats on the next leaf and we'd have
3390 * to drop our current locks to figure it out
3392 nr = 1;
3395 /* setup the item for the new data */
3396 for (i = 0; i < nr; i++) {
3397 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3398 btrfs_set_item_key(leaf, &disk_key, slot + i);
3399 item = btrfs_item_nr(leaf, slot + i);
3400 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3401 data_end -= data_size[i];
3402 btrfs_set_item_size(leaf, item, data_size[i]);
3404 btrfs_set_header_nritems(leaf, nritems + nr);
3405 btrfs_mark_buffer_dirty(leaf);
3407 ret = 0;
3408 if (slot == 0) {
3409 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3410 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3413 if (btrfs_leaf_free_space(root, leaf) < 0) {
3414 btrfs_print_leaf(root, leaf);
3415 BUG();
3417 out:
3418 if (!ret)
3419 ret = nr;
3420 return ret;
3424 * Given a key and some data, insert items into the tree.
3425 * This does all the path init required, making room in the tree if needed.
3427 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3428 struct btrfs_root *root,
3429 struct btrfs_path *path,
3430 struct btrfs_key *cpu_key, u32 *data_size,
3431 int nr)
3433 struct extent_buffer *leaf;
3434 struct btrfs_item *item;
3435 int ret = 0;
3436 int slot;
3437 int slot_orig;
3438 int i;
3439 u32 nritems;
3440 u32 total_size = 0;
3441 u32 total_data = 0;
3442 unsigned int data_end;
3443 struct btrfs_disk_key disk_key;
3445 for (i = 0; i < nr; i++)
3446 total_data += data_size[i];
3448 total_size = total_data + (nr * sizeof(struct btrfs_item));
3449 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3450 if (ret == 0)
3451 return -EEXIST;
3452 if (ret < 0)
3453 goto out;
3455 slot_orig = path->slots[0];
3456 leaf = path->nodes[0];
3458 nritems = btrfs_header_nritems(leaf);
3459 data_end = leaf_data_end(root, leaf);
3461 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3462 btrfs_print_leaf(root, leaf);
3463 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3464 total_size, btrfs_leaf_free_space(root, leaf));
3465 BUG();
3468 slot = path->slots[0];
3469 BUG_ON(slot < 0);
3471 if (slot != nritems) {
3472 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3474 if (old_data < data_end) {
3475 btrfs_print_leaf(root, leaf);
3476 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3477 slot, old_data, data_end);
3478 BUG_ON(1);
3481 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3483 /* first correct the data pointers */
3484 WARN_ON(leaf->map_token);
3485 for (i = slot; i < nritems; i++) {
3486 u32 ioff;
3488 item = btrfs_item_nr(leaf, i);
3489 if (!leaf->map_token) {
3490 map_extent_buffer(leaf, (unsigned long)item,
3491 sizeof(struct btrfs_item),
3492 &leaf->map_token, &leaf->kaddr,
3493 &leaf->map_start, &leaf->map_len,
3494 KM_USER1);
3497 ioff = btrfs_item_offset(leaf, item);
3498 btrfs_set_item_offset(leaf, item, ioff - total_data);
3500 if (leaf->map_token) {
3501 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3502 leaf->map_token = NULL;
3505 /* shift the items */
3506 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3507 btrfs_item_nr_offset(slot),
3508 (nritems - slot) * sizeof(struct btrfs_item));
3510 /* shift the data */
3511 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3512 data_end - total_data, btrfs_leaf_data(leaf) +
3513 data_end, old_data - data_end);
3514 data_end = old_data;
3517 /* setup the item for the new data */
3518 for (i = 0; i < nr; i++) {
3519 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3520 btrfs_set_item_key(leaf, &disk_key, slot + i);
3521 item = btrfs_item_nr(leaf, slot + i);
3522 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3523 data_end -= data_size[i];
3524 btrfs_set_item_size(leaf, item, data_size[i]);
3526 btrfs_set_header_nritems(leaf, nritems + nr);
3527 btrfs_mark_buffer_dirty(leaf);
3529 ret = 0;
3530 if (slot == 0) {
3531 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3532 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3535 if (btrfs_leaf_free_space(root, leaf) < 0) {
3536 btrfs_print_leaf(root, leaf);
3537 BUG();
3539 out:
3540 btrfs_unlock_up_safe(path, 1);
3541 return ret;
3545 * Given a key and some data, insert an item into the tree.
3546 * This does all the path init required, making room in the tree if needed.
3548 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3549 *root, struct btrfs_key *cpu_key, void *data, u32
3550 data_size)
3552 int ret = 0;
3553 struct btrfs_path *path;
3554 struct extent_buffer *leaf;
3555 unsigned long ptr;
3557 path = btrfs_alloc_path();
3558 BUG_ON(!path);
3559 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3560 if (!ret) {
3561 leaf = path->nodes[0];
3562 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3563 write_extent_buffer(leaf, data, ptr, data_size);
3564 btrfs_mark_buffer_dirty(leaf);
3566 btrfs_free_path(path);
3567 return ret;
3571 * delete the pointer from a given node.
3573 * the tree should have been previously balanced so the deletion does not
3574 * empty a node.
3576 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3577 struct btrfs_path *path, int level, int slot)
3579 struct extent_buffer *parent = path->nodes[level];
3580 u32 nritems;
3581 int ret = 0;
3582 int wret;
3584 nritems = btrfs_header_nritems(parent);
3585 if (slot != nritems - 1) {
3586 memmove_extent_buffer(parent,
3587 btrfs_node_key_ptr_offset(slot),
3588 btrfs_node_key_ptr_offset(slot + 1),
3589 sizeof(struct btrfs_key_ptr) *
3590 (nritems - slot - 1));
3592 nritems--;
3593 btrfs_set_header_nritems(parent, nritems);
3594 if (nritems == 0 && parent == root->node) {
3595 BUG_ON(btrfs_header_level(root->node) != 1);
3596 /* just turn the root into a leaf and break */
3597 btrfs_set_header_level(root->node, 0);
3598 } else if (slot == 0) {
3599 struct btrfs_disk_key disk_key;
3601 btrfs_node_key(parent, &disk_key, 0);
3602 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3603 if (wret)
3604 ret = wret;
3606 btrfs_mark_buffer_dirty(parent);
3607 return ret;
3611 * a helper function to delete the leaf pointed to by path->slots[1] and
3612 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3613 * already know it, it is faster to have them pass it down than to
3614 * read it out of the node again.
3616 * This deletes the pointer in path->nodes[1] and frees the leaf
3617 * block extent. zero is returned if it all worked out, < 0 otherwise.
3619 * The path must have already been setup for deleting the leaf, including
3620 * all the proper balancing. path->nodes[1] must be locked.
3622 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3623 struct btrfs_root *root,
3624 struct btrfs_path *path, u64 bytenr)
3626 int ret;
3627 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3628 u64 parent_start = path->nodes[1]->start;
3629 u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3631 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3632 if (ret)
3633 return ret;
3636 * btrfs_free_extent is expensive, we want to make sure we
3637 * aren't holding any locks when we call it
3639 btrfs_unlock_up_safe(path, 0);
3641 ret = btrfs_free_extent(trans, root, bytenr,
3642 btrfs_level_size(root, 0),
3643 parent_start, parent_owner,
3644 root_gen, 0, 1);
3645 return ret;
3648 * delete the item at the leaf level in path. If that empties
3649 * the leaf, remove it from the tree
3651 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3652 struct btrfs_path *path, int slot, int nr)
3654 struct extent_buffer *leaf;
3655 struct btrfs_item *item;
3656 int last_off;
3657 int dsize = 0;
3658 int ret = 0;
3659 int wret;
3660 int i;
3661 u32 nritems;
3663 leaf = path->nodes[0];
3664 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3666 for (i = 0; i < nr; i++)
3667 dsize += btrfs_item_size_nr(leaf, slot + i);
3669 nritems = btrfs_header_nritems(leaf);
3671 if (slot + nr != nritems) {
3672 int data_end = leaf_data_end(root, leaf);
3674 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3675 data_end + dsize,
3676 btrfs_leaf_data(leaf) + data_end,
3677 last_off - data_end);
3679 for (i = slot + nr; i < nritems; i++) {
3680 u32 ioff;
3682 item = btrfs_item_nr(leaf, i);
3683 if (!leaf->map_token) {
3684 map_extent_buffer(leaf, (unsigned long)item,
3685 sizeof(struct btrfs_item),
3686 &leaf->map_token, &leaf->kaddr,
3687 &leaf->map_start, &leaf->map_len,
3688 KM_USER1);
3690 ioff = btrfs_item_offset(leaf, item);
3691 btrfs_set_item_offset(leaf, item, ioff + dsize);
3694 if (leaf->map_token) {
3695 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3696 leaf->map_token = NULL;
3699 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3700 btrfs_item_nr_offset(slot + nr),
3701 sizeof(struct btrfs_item) *
3702 (nritems - slot - nr));
3704 btrfs_set_header_nritems(leaf, nritems - nr);
3705 nritems -= nr;
3707 /* delete the leaf if we've emptied it */
3708 if (nritems == 0) {
3709 if (leaf == root->node) {
3710 btrfs_set_header_level(leaf, 0);
3711 } else {
3712 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3713 BUG_ON(ret);
3715 } else {
3716 int used = leaf_space_used(leaf, 0, nritems);
3717 if (slot == 0) {
3718 struct btrfs_disk_key disk_key;
3720 btrfs_item_key(leaf, &disk_key, 0);
3721 wret = fixup_low_keys(trans, root, path,
3722 &disk_key, 1);
3723 if (wret)
3724 ret = wret;
3727 /* delete the leaf if it is mostly empty */
3728 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3729 /* push_leaf_left fixes the path.
3730 * make sure the path still points to our leaf
3731 * for possible call to del_ptr below
3733 slot = path->slots[1];
3734 extent_buffer_get(leaf);
3736 wret = push_leaf_left(trans, root, path, 1, 1);
3737 if (wret < 0 && wret != -ENOSPC)
3738 ret = wret;
3740 if (path->nodes[0] == leaf &&
3741 btrfs_header_nritems(leaf)) {
3742 wret = push_leaf_right(trans, root, path, 1, 1);
3743 if (wret < 0 && wret != -ENOSPC)
3744 ret = wret;
3747 if (btrfs_header_nritems(leaf) == 0) {
3748 path->slots[1] = slot;
3749 ret = btrfs_del_leaf(trans, root, path,
3750 leaf->start);
3751 BUG_ON(ret);
3752 free_extent_buffer(leaf);
3753 } else {
3754 /* if we're still in the path, make sure
3755 * we're dirty. Otherwise, one of the
3756 * push_leaf functions must have already
3757 * dirtied this buffer
3759 if (path->nodes[0] == leaf)
3760 btrfs_mark_buffer_dirty(leaf);
3761 free_extent_buffer(leaf);
3763 } else {
3764 btrfs_mark_buffer_dirty(leaf);
3767 return ret;
3771 * search the tree again to find a leaf with lesser keys
3772 * returns 0 if it found something or 1 if there are no lesser leaves.
3773 * returns < 0 on io errors.
3775 * This may release the path, and so you may lose any locks held at the
3776 * time you call it.
3778 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3780 struct btrfs_key key;
3781 struct btrfs_disk_key found_key;
3782 int ret;
3784 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3786 if (key.offset > 0)
3787 key.offset--;
3788 else if (key.type > 0)
3789 key.type--;
3790 else if (key.objectid > 0)
3791 key.objectid--;
3792 else
3793 return 1;
3795 btrfs_release_path(root, path);
3796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3797 if (ret < 0)
3798 return ret;
3799 btrfs_item_key(path->nodes[0], &found_key, 0);
3800 ret = comp_keys(&found_key, &key);
3801 if (ret < 0)
3802 return 0;
3803 return 1;
3807 * A helper function to walk down the tree starting at min_key, and looking
3808 * for nodes or leaves that are either in cache or have a minimum
3809 * transaction id. This is used by the btree defrag code, and tree logging
3811 * This does not cow, but it does stuff the starting key it finds back
3812 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3813 * key and get a writable path.
3815 * This does lock as it descends, and path->keep_locks should be set
3816 * to 1 by the caller.
3818 * This honors path->lowest_level to prevent descent past a given level
3819 * of the tree.
3821 * min_trans indicates the oldest transaction that you are interested
3822 * in walking through. Any nodes or leaves older than min_trans are
3823 * skipped over (without reading them).
3825 * returns zero if something useful was found, < 0 on error and 1 if there
3826 * was nothing in the tree that matched the search criteria.
3828 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3829 struct btrfs_key *max_key,
3830 struct btrfs_path *path, int cache_only,
3831 u64 min_trans)
3833 struct extent_buffer *cur;
3834 struct btrfs_key found_key;
3835 int slot;
3836 int sret;
3837 u32 nritems;
3838 int level;
3839 int ret = 1;
3841 WARN_ON(!path->keep_locks);
3842 again:
3843 cur = btrfs_lock_root_node(root);
3844 level = btrfs_header_level(cur);
3845 WARN_ON(path->nodes[level]);
3846 path->nodes[level] = cur;
3847 path->locks[level] = 1;
3849 if (btrfs_header_generation(cur) < min_trans) {
3850 ret = 1;
3851 goto out;
3853 while (1) {
3854 nritems = btrfs_header_nritems(cur);
3855 level = btrfs_header_level(cur);
3856 sret = bin_search(cur, min_key, level, &slot);
3858 /* at the lowest level, we're done, setup the path and exit */
3859 if (level == path->lowest_level) {
3860 if (slot >= nritems)
3861 goto find_next_key;
3862 ret = 0;
3863 path->slots[level] = slot;
3864 btrfs_item_key_to_cpu(cur, &found_key, slot);
3865 goto out;
3867 if (sret && slot > 0)
3868 slot--;
3870 * check this node pointer against the cache_only and
3871 * min_trans parameters. If it isn't in cache or is too
3872 * old, skip to the next one.
3874 while (slot < nritems) {
3875 u64 blockptr;
3876 u64 gen;
3877 struct extent_buffer *tmp;
3878 struct btrfs_disk_key disk_key;
3880 blockptr = btrfs_node_blockptr(cur, slot);
3881 gen = btrfs_node_ptr_generation(cur, slot);
3882 if (gen < min_trans) {
3883 slot++;
3884 continue;
3886 if (!cache_only)
3887 break;
3889 if (max_key) {
3890 btrfs_node_key(cur, &disk_key, slot);
3891 if (comp_keys(&disk_key, max_key) >= 0) {
3892 ret = 1;
3893 goto out;
3897 tmp = btrfs_find_tree_block(root, blockptr,
3898 btrfs_level_size(root, level - 1));
3900 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3901 free_extent_buffer(tmp);
3902 break;
3904 if (tmp)
3905 free_extent_buffer(tmp);
3906 slot++;
3908 find_next_key:
3910 * we didn't find a candidate key in this node, walk forward
3911 * and find another one
3913 if (slot >= nritems) {
3914 path->slots[level] = slot;
3915 btrfs_set_path_blocking(path);
3916 sret = btrfs_find_next_key(root, path, min_key, level,
3917 cache_only, min_trans);
3918 if (sret == 0) {
3919 btrfs_release_path(root, path);
3920 goto again;
3921 } else {
3922 btrfs_clear_path_blocking(path);
3923 goto out;
3926 /* save our key for returning back */
3927 btrfs_node_key_to_cpu(cur, &found_key, slot);
3928 path->slots[level] = slot;
3929 if (level == path->lowest_level) {
3930 ret = 0;
3931 unlock_up(path, level, 1);
3932 goto out;
3934 btrfs_set_path_blocking(path);
3935 cur = read_node_slot(root, cur, slot);
3937 btrfs_tree_lock(cur);
3939 path->locks[level - 1] = 1;
3940 path->nodes[level - 1] = cur;
3941 unlock_up(path, level, 1);
3942 btrfs_clear_path_blocking(path);
3944 out:
3945 if (ret == 0)
3946 memcpy(min_key, &found_key, sizeof(found_key));
3947 btrfs_set_path_blocking(path);
3948 return ret;
3952 * this is similar to btrfs_next_leaf, but does not try to preserve
3953 * and fixup the path. It looks for and returns the next key in the
3954 * tree based on the current path and the cache_only and min_trans
3955 * parameters.
3957 * 0 is returned if another key is found, < 0 if there are any errors
3958 * and 1 is returned if there are no higher keys in the tree
3960 * path->keep_locks should be set to 1 on the search made before
3961 * calling this function.
3963 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3964 struct btrfs_key *key, int lowest_level,
3965 int cache_only, u64 min_trans)
3967 int level = lowest_level;
3968 int slot;
3969 struct extent_buffer *c;
3971 WARN_ON(!path->keep_locks);
3972 while (level < BTRFS_MAX_LEVEL) {
3973 if (!path->nodes[level])
3974 return 1;
3976 slot = path->slots[level] + 1;
3977 c = path->nodes[level];
3978 next:
3979 if (slot >= btrfs_header_nritems(c)) {
3980 level++;
3981 if (level == BTRFS_MAX_LEVEL)
3982 return 1;
3983 continue;
3985 if (level == 0)
3986 btrfs_item_key_to_cpu(c, key, slot);
3987 else {
3988 u64 blockptr = btrfs_node_blockptr(c, slot);
3989 u64 gen = btrfs_node_ptr_generation(c, slot);
3991 if (cache_only) {
3992 struct extent_buffer *cur;
3993 cur = btrfs_find_tree_block(root, blockptr,
3994 btrfs_level_size(root, level - 1));
3995 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
3996 slot++;
3997 if (cur)
3998 free_extent_buffer(cur);
3999 goto next;
4001 free_extent_buffer(cur);
4003 if (gen < min_trans) {
4004 slot++;
4005 goto next;
4007 btrfs_node_key_to_cpu(c, key, slot);
4009 return 0;
4011 return 1;
4015 * search the tree again to find a leaf with greater keys
4016 * returns 0 if it found something or 1 if there are no greater leaves.
4017 * returns < 0 on io errors.
4019 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4021 int slot;
4022 int level = 1;
4023 struct extent_buffer *c;
4024 struct extent_buffer *next = NULL;
4025 struct btrfs_key key;
4026 u32 nritems;
4027 int ret;
4029 nritems = btrfs_header_nritems(path->nodes[0]);
4030 if (nritems == 0)
4031 return 1;
4033 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4035 btrfs_release_path(root, path);
4036 path->keep_locks = 1;
4037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4038 path->keep_locks = 0;
4040 if (ret < 0)
4041 return ret;
4043 btrfs_set_path_blocking(path);
4044 nritems = btrfs_header_nritems(path->nodes[0]);
4046 * by releasing the path above we dropped all our locks. A balance
4047 * could have added more items next to the key that used to be
4048 * at the very end of the block. So, check again here and
4049 * advance the path if there are now more items available.
4051 if (nritems > 0 && path->slots[0] < nritems - 1) {
4052 path->slots[0]++;
4053 goto done;
4056 while (level < BTRFS_MAX_LEVEL) {
4057 if (!path->nodes[level])
4058 return 1;
4060 slot = path->slots[level] + 1;
4061 c = path->nodes[level];
4062 if (slot >= btrfs_header_nritems(c)) {
4063 level++;
4064 if (level == BTRFS_MAX_LEVEL)
4065 return 1;
4066 continue;
4069 if (next) {
4070 btrfs_tree_unlock(next);
4071 free_extent_buffer(next);
4074 /* the path was set to blocking above */
4075 if (level == 1 && (path->locks[1] || path->skip_locking) &&
4076 path->reada)
4077 reada_for_search(root, path, level, slot, 0);
4079 next = read_node_slot(root, c, slot);
4080 if (!path->skip_locking) {
4081 WARN_ON(!btrfs_tree_locked(c));
4082 btrfs_tree_lock(next);
4083 btrfs_set_lock_blocking(next);
4085 break;
4087 path->slots[level] = slot;
4088 while (1) {
4089 level--;
4090 c = path->nodes[level];
4091 if (path->locks[level])
4092 btrfs_tree_unlock(c);
4093 free_extent_buffer(c);
4094 path->nodes[level] = next;
4095 path->slots[level] = 0;
4096 if (!path->skip_locking)
4097 path->locks[level] = 1;
4098 if (!level)
4099 break;
4101 btrfs_set_path_blocking(path);
4102 if (level == 1 && path->locks[1] && path->reada)
4103 reada_for_search(root, path, level, slot, 0);
4104 next = read_node_slot(root, next, 0);
4105 if (!path->skip_locking) {
4106 WARN_ON(!btrfs_tree_locked(path->nodes[level]));
4107 btrfs_tree_lock(next);
4108 btrfs_set_lock_blocking(next);
4111 done:
4112 unlock_up(path, 0, 1);
4113 return 0;
4117 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4118 * searching until it gets past min_objectid or finds an item of 'type'
4120 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4122 int btrfs_previous_item(struct btrfs_root *root,
4123 struct btrfs_path *path, u64 min_objectid,
4124 int type)
4126 struct btrfs_key found_key;
4127 struct extent_buffer *leaf;
4128 u32 nritems;
4129 int ret;
4131 while (1) {
4132 if (path->slots[0] == 0) {
4133 btrfs_set_path_blocking(path);
4134 ret = btrfs_prev_leaf(root, path);
4135 if (ret != 0)
4136 return ret;
4137 } else {
4138 path->slots[0]--;
4140 leaf = path->nodes[0];
4141 nritems = btrfs_header_nritems(leaf);
4142 if (nritems == 0)
4143 return 1;
4144 if (path->slots[0] == nritems)
4145 path->slots[0]--;
4147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4148 if (found_key.type == type)
4149 return 0;
4150 if (found_key.objectid < min_objectid)
4151 break;
4152 if (found_key.objectid == min_objectid &&
4153 found_key.type < type)
4154 break;
4156 return 1;