HID: put usb_interface instead of usb_device into hid->dev to fix udevinfo breakage
[linux-2.6/mini2440.git] / include / asm-arm / cacheflush.h
blob5f531ea03059d003bab3e86643ed2580a36133cf
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/sched.h>
14 #include <linux/mm.h>
16 #include <asm/glue.h>
17 #include <asm/shmparam.h>
19 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
22 * Cache Model
23 * ===========
25 #undef _CACHE
26 #undef MULTI_CACHE
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 # define MULTI_CACHE 1
31 # else
32 # define _CACHE v3
33 # endif
34 #endif
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 # define MULTI_CACHE 1
39 # else
40 # define _CACHE v4
41 # endif
42 #endif
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 # define MULTI_CACHE 1
52 # else
53 # define _CACHE arm926
54 # endif
55 #endif
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 # define MULTI_CACHE 1
60 # else
61 # define _CACHE arm940
62 # endif
63 #endif
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 # define MULTI_CACHE 1
68 # else
69 # define _CACHE arm946
70 # endif
71 #endif
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 # define MULTI_CACHE 1
76 # else
77 # define _CACHE v4wb
78 # endif
79 #endif
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 # define MULTI_CACHE 1
84 # else
85 # define _CACHE xscale
86 # endif
87 #endif
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 # define MULTI_CACHE 1
92 # else
93 # define _CACHE xsc3
94 # endif
95 #endif
97 #if defined(CONFIG_CPU_V6)
98 //# ifdef _CACHE
99 # define MULTI_CACHE 1
100 //# else
101 //# define _CACHE v6
102 //# endif
103 #endif
105 #if !defined(_CACHE) && !defined(MULTI_CACHE)
106 #error Unknown cache maintainence model
107 #endif
110 * This flag is used to indicate that the page pointed to by a pte
111 * is dirty and requires cleaning before returning it to the user.
113 #define PG_dcache_dirty PG_arch_1
116 * MM Cache Management
117 * ===================
119 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
120 * implement these methods.
122 * Start addresses are inclusive and end addresses are exclusive;
123 * start addresses should be rounded down, end addresses up.
125 * See Documentation/cachetlb.txt for more information.
126 * Please note that the implementation of these, and the required
127 * effects are cache-type (VIVT/VIPT/PIPT) specific.
129 * flush_cache_kern_all()
131 * Unconditionally clean and invalidate the entire cache.
133 * flush_cache_user_mm(mm)
135 * Clean and invalidate all user space cache entries
136 * before a change of page tables.
138 * flush_cache_user_range(start, end, flags)
140 * Clean and invalidate a range of cache entries in the
141 * specified address space before a change of page tables.
142 * - start - user start address (inclusive, page aligned)
143 * - end - user end address (exclusive, page aligned)
144 * - flags - vma->vm_flags field
146 * coherent_kern_range(start, end)
148 * Ensure coherency between the Icache and the Dcache in the
149 * region described by start, end. If you have non-snooping
150 * Harvard caches, you need to implement this function.
151 * - start - virtual start address
152 * - end - virtual end address
154 * DMA Cache Coherency
155 * ===================
157 * dma_inv_range(start, end)
159 * Invalidate (discard) the specified virtual address range.
160 * May not write back any entries. If 'start' or 'end'
161 * are not cache line aligned, those lines must be written
162 * back.
163 * - start - virtual start address
164 * - end - virtual end address
166 * dma_clean_range(start, end)
168 * Clean (write back) the specified virtual address range.
169 * - start - virtual start address
170 * - end - virtual end address
172 * dma_flush_range(start, end)
174 * Clean and invalidate the specified virtual address range.
175 * - start - virtual start address
176 * - end - virtual end address
179 struct cpu_cache_fns {
180 void (*flush_kern_all)(void);
181 void (*flush_user_all)(void);
182 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
184 void (*coherent_kern_range)(unsigned long, unsigned long);
185 void (*coherent_user_range)(unsigned long, unsigned long);
186 void (*flush_kern_dcache_page)(void *);
188 void (*dma_inv_range)(unsigned long, unsigned long);
189 void (*dma_clean_range)(unsigned long, unsigned long);
190 void (*dma_flush_range)(unsigned long, unsigned long);
194 * Select the calling method
196 #ifdef MULTI_CACHE
198 extern struct cpu_cache_fns cpu_cache;
200 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
201 #define __cpuc_flush_user_all cpu_cache.flush_user_all
202 #define __cpuc_flush_user_range cpu_cache.flush_user_range
203 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
204 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
205 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
208 * These are private to the dma-mapping API. Do not use directly.
209 * Their sole purpose is to ensure that data held in the cache
210 * is visible to DMA, or data written by DMA to system memory is
211 * visible to the CPU.
213 #define dmac_inv_range cpu_cache.dma_inv_range
214 #define dmac_clean_range cpu_cache.dma_clean_range
215 #define dmac_flush_range cpu_cache.dma_flush_range
217 #else
219 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
220 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
221 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
222 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
223 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
224 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
226 extern void __cpuc_flush_kern_all(void);
227 extern void __cpuc_flush_user_all(void);
228 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
229 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
230 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
231 extern void __cpuc_flush_dcache_page(void *);
234 * These are private to the dma-mapping API. Do not use directly.
235 * Their sole purpose is to ensure that data held in the cache
236 * is visible to DMA, or data written by DMA to system memory is
237 * visible to the CPU.
239 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
240 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
241 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
243 extern void dmac_inv_range(unsigned long, unsigned long);
244 extern void dmac_clean_range(unsigned long, unsigned long);
245 extern void dmac_flush_range(unsigned long, unsigned long);
247 #endif
250 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
251 * vmalloc, ioremap etc) in kernel space for pages. Since the
252 * direct-mappings of these pages may contain cached data, we need
253 * to do a full cache flush to ensure that writebacks don't corrupt
254 * data placed into these pages via the new mappings.
256 #define flush_cache_vmap(start, end) flush_cache_all()
257 #define flush_cache_vunmap(start, end) flush_cache_all()
260 * Copy user data from/to a page which is mapped into a different
261 * processes address space. Really, we want to allow our "user
262 * space" model to handle this.
264 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
265 do { \
266 memcpy(dst, src, len); \
267 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
268 } while (0)
270 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
271 do { \
272 memcpy(dst, src, len); \
273 } while (0)
276 * Convert calls to our calling convention.
278 #define flush_cache_all() __cpuc_flush_kern_all()
279 #ifndef CONFIG_CPU_CACHE_VIPT
280 static inline void flush_cache_mm(struct mm_struct *mm)
282 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
283 __cpuc_flush_user_all();
286 static inline void
287 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
289 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
290 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
291 vma->vm_flags);
294 static inline void
295 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
297 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
298 unsigned long addr = user_addr & PAGE_MASK;
299 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
303 static inline void
304 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
305 unsigned long uaddr, void *kaddr,
306 unsigned long len, int write)
308 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
309 unsigned long addr = (unsigned long)kaddr;
310 __cpuc_coherent_kern_range(addr, addr + len);
313 #else
314 extern void flush_cache_mm(struct mm_struct *mm);
315 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
316 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
317 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
318 unsigned long uaddr, void *kaddr,
319 unsigned long len, int write);
320 #endif
322 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
325 * flush_cache_user_range is used when we want to ensure that the
326 * Harvard caches are synchronised for the user space address range.
327 * This is used for the ARM private sys_cacheflush system call.
329 #define flush_cache_user_range(vma,start,end) \
330 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
333 * Perform necessary cache operations to ensure that data previously
334 * stored within this range of addresses can be executed by the CPU.
336 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
339 * Perform necessary cache operations to ensure that the TLB will
340 * see data written in the specified area.
342 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
345 * flush_dcache_page is used when the kernel has written to the page
346 * cache page at virtual address page->virtual.
348 * If this page isn't mapped (ie, page_mapping == NULL), or it might
349 * have userspace mappings, then we _must_ always clean + invalidate
350 * the dcache entries associated with the kernel mapping.
352 * Otherwise we can defer the operation, and clean the cache when we are
353 * about to change to user space. This is the same method as used on SPARC64.
354 * See update_mmu_cache for the user space part.
356 extern void flush_dcache_page(struct page *);
358 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
360 #define ARCH_HAS_FLUSH_ANON_PAGE
361 static inline void flush_anon_page(struct vm_area_struct *vma,
362 struct page *page, unsigned long vmaddr)
364 extern void __flush_anon_page(struct vm_area_struct *vma,
365 struct page *, unsigned long);
366 if (PageAnon(page))
367 __flush_anon_page(vma, page, vmaddr);
370 #define flush_dcache_mmap_lock(mapping) \
371 write_lock_irq(&(mapping)->tree_lock)
372 #define flush_dcache_mmap_unlock(mapping) \
373 write_unlock_irq(&(mapping)->tree_lock)
375 #define flush_icache_user_range(vma,page,addr,len) \
376 flush_dcache_page(page)
379 * We don't appear to need to do anything here. In fact, if we did, we'd
380 * duplicate cache flushing elsewhere performed by flush_dcache_page().
382 #define flush_icache_page(vma,page) do { } while (0)
384 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
385 #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
386 #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
387 #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
388 #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
390 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
392 #define cache_is_vivt() 1
393 #define cache_is_vipt() 0
394 #define cache_is_vipt_nonaliasing() 0
395 #define cache_is_vipt_aliasing() 0
397 #elif defined(CONFIG_CPU_CACHE_VIPT)
399 #define cache_is_vivt() 0
400 #define cache_is_vipt() 1
401 #define cache_is_vipt_nonaliasing() \
402 ({ \
403 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
404 __cacheid_vipt_nonaliasing(__val); \
407 #define cache_is_vipt_aliasing() \
408 ({ \
409 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
410 __cacheid_vipt_aliasing(__val); \
413 #else
415 #define cache_is_vivt() \
416 ({ \
417 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
418 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
421 #define cache_is_vipt() \
422 ({ \
423 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
424 __cacheid_present(__val) && __cacheid_vipt(__val); \
427 #define cache_is_vipt_nonaliasing() \
428 ({ \
429 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
430 __cacheid_present(__val) && \
431 __cacheid_vipt_nonaliasing(__val); \
434 #define cache_is_vipt_aliasing() \
435 ({ \
436 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
437 __cacheid_present(__val) && \
438 __cacheid_vipt_aliasing(__val); \
441 #endif
443 #endif