usbcore: remove unused bandwith-related code
[linux-2.6/mini2440.git] / include / linux / usb.h
blob3b08ab39550f10b1f2c600df4686f3e987365398
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
11 #ifdef __KERNEL__
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
24 struct usb_device;
25 struct usb_driver;
27 /*-------------------------------------------------------------------------*/
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
39 * And there might be other descriptors mixed in with those.
41 * Devices may also have class-specific or vendor-specific descriptors.
44 struct ep_device;
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
56 * USB requests are always queued to a given endpoint, identified by a
57 * descriptor within an active interface in a given USB configuration.
59 struct usb_host_endpoint {
60 struct usb_endpoint_descriptor desc;
61 struct list_head urb_list;
62 void *hcpriv;
63 struct ep_device *ep_dev; /* For sysfs info */
65 unsigned char *extra; /* Extra descriptors */
66 int extralen;
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 struct usb_interface_descriptor desc;
73 /* array of desc.bNumEndpoint endpoints associated with this
74 * interface setting. these will be in no particular order.
76 struct usb_host_endpoint *endpoint;
78 char *string; /* iInterface string, if present */
79 unsigned char *extra; /* Extra descriptors */
80 int extralen;
83 enum usb_interface_condition {
84 USB_INTERFACE_UNBOUND = 0,
85 USB_INTERFACE_BINDING,
86 USB_INTERFACE_BOUND,
87 USB_INTERFACE_UNBINDING,
90 /**
91 * struct usb_interface - what usb device drivers talk to
92 * @altsetting: array of interface structures, one for each alternate
93 * setting that may be selected. Each one includes a set of
94 * endpoint configurations. They will be in no particular order.
95 * @num_altsetting: number of altsettings defined.
96 * @cur_altsetting: the current altsetting.
97 * @driver: the USB driver that is bound to this interface.
98 * @minor: the minor number assigned to this interface, if this
99 * interface is bound to a driver that uses the USB major number.
100 * If this interface does not use the USB major, this field should
101 * be unused. The driver should set this value in the probe()
102 * function of the driver, after it has been assigned a minor
103 * number from the USB core by calling usb_register_dev().
104 * @condition: binding state of the interface: not bound, binding
105 * (in probe()), bound to a driver, or unbinding (in disconnect())
106 * @is_active: flag set when the interface is bound and not suspended.
107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108 * capability during autosuspend.
109 * @dev: driver model's view of this device
110 * @usb_dev: if an interface is bound to the USB major, this will point
111 * to the sysfs representation for that device.
112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113 * allowed unless the counter is 0.
115 * USB device drivers attach to interfaces on a physical device. Each
116 * interface encapsulates a single high level function, such as feeding
117 * an audio stream to a speaker or reporting a change in a volume control.
118 * Many USB devices only have one interface. The protocol used to talk to
119 * an interface's endpoints can be defined in a usb "class" specification,
120 * or by a product's vendor. The (default) control endpoint is part of
121 * every interface, but is never listed among the interface's descriptors.
123 * The driver that is bound to the interface can use standard driver model
124 * calls such as dev_get_drvdata() on the dev member of this structure.
126 * Each interface may have alternate settings. The initial configuration
127 * of a device sets altsetting 0, but the device driver can change
128 * that setting using usb_set_interface(). Alternate settings are often
129 * used to control the the use of periodic endpoints, such as by having
130 * different endpoints use different amounts of reserved USB bandwidth.
131 * All standards-conformant USB devices that use isochronous endpoints
132 * will use them in non-default settings.
134 * The USB specification says that alternate setting numbers must run from
135 * 0 to one less than the total number of alternate settings. But some
136 * devices manage to mess this up, and the structures aren't necessarily
137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
138 * look up an alternate setting in the altsetting array based on its number.
140 struct usb_interface {
141 /* array of alternate settings for this interface,
142 * stored in no particular order */
143 struct usb_host_interface *altsetting;
145 struct usb_host_interface *cur_altsetting; /* the currently
146 * active alternate setting */
147 unsigned num_altsetting; /* number of alternate settings */
149 int minor; /* minor number this interface is
150 * bound to */
151 enum usb_interface_condition condition; /* state of binding */
152 unsigned is_active:1; /* the interface is not suspended */
153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
155 struct device dev; /* interface specific device info */
156 struct device *usb_dev; /* pointer to the usb class's device, if any */
157 int pm_usage_cnt; /* usage counter for autosuspend */
159 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
160 #define interface_to_usbdev(intf) \
161 container_of(intf->dev.parent, struct usb_device, dev)
163 static inline void *usb_get_intfdata (struct usb_interface *intf)
165 return dev_get_drvdata (&intf->dev);
168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
170 dev_set_drvdata(&intf->dev, data);
173 struct usb_interface *usb_get_intf(struct usb_interface *intf);
174 void usb_put_intf(struct usb_interface *intf);
176 /* this maximum is arbitrary */
177 #define USB_MAXINTERFACES 32
180 * struct usb_interface_cache - long-term representation of a device interface
181 * @num_altsetting: number of altsettings defined.
182 * @ref: reference counter.
183 * @altsetting: variable-length array of interface structures, one for
184 * each alternate setting that may be selected. Each one includes a
185 * set of endpoint configurations. They will be in no particular order.
187 * These structures persist for the lifetime of a usb_device, unlike
188 * struct usb_interface (which persists only as long as its configuration
189 * is installed). The altsetting arrays can be accessed through these
190 * structures at any time, permitting comparison of configurations and
191 * providing support for the /proc/bus/usb/devices pseudo-file.
193 struct usb_interface_cache {
194 unsigned num_altsetting; /* number of alternate settings */
195 struct kref ref; /* reference counter */
197 /* variable-length array of alternate settings for this interface,
198 * stored in no particular order */
199 struct usb_host_interface altsetting[0];
201 #define ref_to_usb_interface_cache(r) \
202 container_of(r, struct usb_interface_cache, ref)
203 #define altsetting_to_usb_interface_cache(a) \
204 container_of(a, struct usb_interface_cache, altsetting[0])
207 * struct usb_host_config - representation of a device's configuration
208 * @desc: the device's configuration descriptor.
209 * @string: pointer to the cached version of the iConfiguration string, if
210 * present for this configuration.
211 * @interface: array of pointers to usb_interface structures, one for each
212 * interface in the configuration. The number of interfaces is stored
213 * in desc.bNumInterfaces. These pointers are valid only while the
214 * the configuration is active.
215 * @intf_cache: array of pointers to usb_interface_cache structures, one
216 * for each interface in the configuration. These structures exist
217 * for the entire life of the device.
218 * @extra: pointer to buffer containing all extra descriptors associated
219 * with this configuration (those preceding the first interface
220 * descriptor).
221 * @extralen: length of the extra descriptors buffer.
223 * USB devices may have multiple configurations, but only one can be active
224 * at any time. Each encapsulates a different operational environment;
225 * for example, a dual-speed device would have separate configurations for
226 * full-speed and high-speed operation. The number of configurations
227 * available is stored in the device descriptor as bNumConfigurations.
229 * A configuration can contain multiple interfaces. Each corresponds to
230 * a different function of the USB device, and all are available whenever
231 * the configuration is active. The USB standard says that interfaces
232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
233 * of devices get this wrong. In addition, the interface array is not
234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
235 * look up an interface entry based on its number.
237 * Device drivers should not attempt to activate configurations. The choice
238 * of which configuration to install is a policy decision based on such
239 * considerations as available power, functionality provided, and the user's
240 * desires (expressed through userspace tools). However, drivers can call
241 * usb_reset_configuration() to reinitialize the current configuration and
242 * all its interfaces.
244 struct usb_host_config {
245 struct usb_config_descriptor desc;
247 char *string; /* iConfiguration string, if present */
248 /* the interfaces associated with this configuration,
249 * stored in no particular order */
250 struct usb_interface *interface[USB_MAXINTERFACES];
252 /* Interface information available even when this is not the
253 * active configuration */
254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
256 unsigned char *extra; /* Extra descriptors */
257 int extralen;
260 int __usb_get_extra_descriptor(char *buffer, unsigned size,
261 unsigned char type, void **ptr);
262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
264 type,(void**)ptr)
266 /* ----------------------------------------------------------------------- */
268 /* USB device number allocation bitmap */
269 struct usb_devmap {
270 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
274 * Allocated per bus (tree of devices) we have:
276 struct usb_bus {
277 struct device *controller; /* host/master side hardware */
278 int busnum; /* Bus number (in order of reg) */
279 char *bus_name; /* stable id (PCI slot_name etc) */
280 u8 uses_dma; /* Does the host controller use DMA? */
281 u8 otg_port; /* 0, or number of OTG/HNP port */
282 unsigned is_b_host:1; /* true during some HNP roleswitches */
283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
285 int devnum_next; /* Next open device number in
286 * round-robin allocation */
288 struct usb_devmap devmap; /* device address allocation map */
289 struct usb_device *root_hub; /* Root hub */
290 struct list_head bus_list; /* list of busses */
292 int bandwidth_allocated; /* on this bus: how much of the time
293 * reserved for periodic (intr/iso)
294 * requests is used, on average?
295 * Units: microseconds/frame.
296 * Limits: Full/low speed reserve 90%,
297 * while high speed reserves 80%.
299 int bandwidth_int_reqs; /* number of Interrupt requests */
300 int bandwidth_isoc_reqs; /* number of Isoc. requests */
302 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
304 struct class_device *class_dev; /* class device for this bus */
306 #if defined(CONFIG_USB_MON)
307 struct mon_bus *mon_bus; /* non-null when associated */
308 int monitored; /* non-zero when monitored */
309 #endif
312 /* ----------------------------------------------------------------------- */
314 /* This is arbitrary.
315 * From USB 2.0 spec Table 11-13, offset 7, a hub can
316 * have up to 255 ports. The most yet reported is 10.
318 * Current Wireless USB host hardware (Intel i1480 for example) allows
319 * up to 22 devices to connect. Upcoming hardware might raise that
320 * limit. Because the arrays need to add a bit for hub status data, we
321 * do 31, so plus one evens out to four bytes.
323 #define USB_MAXCHILDREN (31)
325 struct usb_tt;
328 * struct usb_device - kernel's representation of a USB device
330 * FIXME: Write the kerneldoc!
332 * Usbcore drivers should not set usbdev->state directly. Instead use
333 * usb_set_device_state().
335 struct usb_device {
336 int devnum; /* Address on USB bus */
337 char devpath [16]; /* Use in messages: /port/port/... */
338 enum usb_device_state state; /* configured, not attached, etc */
339 enum usb_device_speed speed; /* high/full/low (or error) */
341 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
342 int ttport; /* device port on that tt hub */
344 unsigned int toggle[2]; /* one bit for each endpoint
345 * ([0] = IN, [1] = OUT) */
347 struct usb_device *parent; /* our hub, unless we're the root */
348 struct usb_bus *bus; /* Bus we're part of */
349 struct usb_host_endpoint ep0;
351 struct device dev; /* Generic device interface */
353 struct usb_device_descriptor descriptor;/* Descriptor */
354 struct usb_host_config *config; /* All of the configs */
356 struct usb_host_config *actconfig;/* the active configuration */
357 struct usb_host_endpoint *ep_in[16];
358 struct usb_host_endpoint *ep_out[16];
360 char **rawdescriptors; /* Raw descriptors for each config */
362 unsigned short bus_mA; /* Current available from the bus */
363 u8 portnum; /* Parent port number (origin 1) */
364 u8 level; /* Number of USB hub ancestors */
366 unsigned discon_suspended:1; /* Disconnected while suspended */
367 unsigned have_langid:1; /* whether string_langid is valid */
368 int string_langid; /* language ID for strings */
370 /* static strings from the device */
371 char *product; /* iProduct string, if present */
372 char *manufacturer; /* iManufacturer string, if present */
373 char *serial; /* iSerialNumber string, if present */
375 struct list_head filelist;
376 struct device *usbfs_dev;
377 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
380 * Child devices - these can be either new devices
381 * (if this is a hub device), or different instances
382 * of this same device.
384 * Each instance needs its own set of data structures.
387 int maxchild; /* Number of ports if hub */
388 struct usb_device *children[USB_MAXCHILDREN];
390 int pm_usage_cnt; /* usage counter for autosuspend */
391 #ifdef CONFIG_PM
392 struct delayed_work autosuspend; /* for delayed autosuspends */
393 struct mutex pm_mutex; /* protects PM operations */
395 unsigned auto_pm:1; /* autosuspend/resume in progress */
396 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
397 #endif
399 #define to_usb_device(d) container_of(d, struct usb_device, dev)
401 extern struct usb_device *usb_get_dev(struct usb_device *dev);
402 extern void usb_put_dev(struct usb_device *dev);
404 /* USB device locking */
405 #define usb_lock_device(udev) down(&(udev)->dev.sem)
406 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
407 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
408 extern int usb_lock_device_for_reset(struct usb_device *udev,
409 const struct usb_interface *iface);
411 /* USB port reset for device reinitialization */
412 extern int usb_reset_device(struct usb_device *dev);
413 extern int usb_reset_composite_device(struct usb_device *dev,
414 struct usb_interface *iface);
416 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
418 /* USB autosuspend and autoresume */
419 #ifdef CONFIG_USB_SUSPEND
420 extern int usb_autopm_set_interface(struct usb_interface *intf);
421 extern int usb_autopm_get_interface(struct usb_interface *intf);
422 extern void usb_autopm_put_interface(struct usb_interface *intf);
424 static inline void usb_autopm_enable(struct usb_interface *intf)
426 intf->pm_usage_cnt = 0;
427 usb_autopm_set_interface(intf);
430 static inline void usb_autopm_disable(struct usb_interface *intf)
432 intf->pm_usage_cnt = 1;
433 usb_autopm_set_interface(intf);
436 #else
438 static inline int usb_autopm_set_interface(struct usb_interface *intf)
439 { return 0; }
441 static inline int usb_autopm_get_interface(struct usb_interface *intf)
442 { return 0; }
444 static inline void usb_autopm_put_interface(struct usb_interface *intf)
446 static inline void usb_autopm_enable(struct usb_interface *intf)
448 static inline void usb_autopm_disable(struct usb_interface *intf)
450 #endif
452 /*-------------------------------------------------------------------------*/
454 /* for drivers using iso endpoints */
455 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
457 /* used these for multi-interface device registration */
458 extern int usb_driver_claim_interface(struct usb_driver *driver,
459 struct usb_interface *iface, void* priv);
462 * usb_interface_claimed - returns true iff an interface is claimed
463 * @iface: the interface being checked
465 * Returns true (nonzero) iff the interface is claimed, else false (zero).
466 * Callers must own the driver model's usb bus readlock. So driver
467 * probe() entries don't need extra locking, but other call contexts
468 * may need to explicitly claim that lock.
471 static inline int usb_interface_claimed(struct usb_interface *iface) {
472 return (iface->dev.driver != NULL);
475 extern void usb_driver_release_interface(struct usb_driver *driver,
476 struct usb_interface *iface);
477 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
478 const struct usb_device_id *id);
479 extern int usb_match_one_id(struct usb_interface *interface,
480 const struct usb_device_id *id);
482 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
483 int minor);
484 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
485 unsigned ifnum);
486 extern struct usb_host_interface *usb_altnum_to_altsetting(
487 const struct usb_interface *intf, unsigned int altnum);
491 * usb_make_path - returns stable device path in the usb tree
492 * @dev: the device whose path is being constructed
493 * @buf: where to put the string
494 * @size: how big is "buf"?
496 * Returns length of the string (> 0) or negative if size was too small.
498 * This identifier is intended to be "stable", reflecting physical paths in
499 * hardware such as physical bus addresses for host controllers or ports on
500 * USB hubs. That makes it stay the same until systems are physically
501 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
502 * controllers. Adding and removing devices, including virtual root hubs
503 * in host controller driver modules, does not change these path identifers;
504 * neither does rebooting or re-enumerating. These are more useful identifiers
505 * than changeable ("unstable") ones like bus numbers or device addresses.
507 * With a partial exception for devices connected to USB 2.0 root hubs, these
508 * identifiers are also predictable. So long as the device tree isn't changed,
509 * plugging any USB device into a given hub port always gives it the same path.
510 * Because of the use of "companion" controllers, devices connected to ports on
511 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
512 * high speed, and a different one if they are full or low speed.
514 static inline int usb_make_path (struct usb_device *dev, char *buf,
515 size_t size)
517 int actual;
518 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
519 dev->devpath);
520 return (actual >= (int)size) ? -1 : actual;
523 /*-------------------------------------------------------------------------*/
526 * usb_endpoint_dir_in - check if the endpoint has IN direction
527 * @epd: endpoint to be checked
529 * Returns true if the endpoint is of type IN, otherwise it returns false.
531 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
533 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
537 * usb_endpoint_dir_out - check if the endpoint has OUT direction
538 * @epd: endpoint to be checked
540 * Returns true if the endpoint is of type OUT, otherwise it returns false.
542 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
544 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
548 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
549 * @epd: endpoint to be checked
551 * Returns true if the endpoint is of type bulk, otherwise it returns false.
553 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
555 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
556 USB_ENDPOINT_XFER_BULK);
560 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
561 * @epd: endpoint to be checked
563 * Returns true if the endpoint is of type control, otherwise it returns false.
565 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
567 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
568 USB_ENDPOINT_XFER_CONTROL);
572 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
573 * @epd: endpoint to be checked
575 * Returns true if the endpoint is of type interrupt, otherwise it returns
576 * false.
578 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
580 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
581 USB_ENDPOINT_XFER_INT);
585 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
586 * @epd: endpoint to be checked
588 * Returns true if the endpoint is of type isochronous, otherwise it returns
589 * false.
591 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
593 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
594 USB_ENDPOINT_XFER_ISOC);
598 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
599 * @epd: endpoint to be checked
601 * Returns true if the endpoint has bulk transfer type and IN direction,
602 * otherwise it returns false.
604 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
606 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
610 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
611 * @epd: endpoint to be checked
613 * Returns true if the endpoint has bulk transfer type and OUT direction,
614 * otherwise it returns false.
616 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
618 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
622 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
623 * @epd: endpoint to be checked
625 * Returns true if the endpoint has interrupt transfer type and IN direction,
626 * otherwise it returns false.
628 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
630 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
634 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
635 * @epd: endpoint to be checked
637 * Returns true if the endpoint has interrupt transfer type and OUT direction,
638 * otherwise it returns false.
640 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
642 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
646 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
647 * @epd: endpoint to be checked
649 * Returns true if the endpoint has isochronous transfer type and IN direction,
650 * otherwise it returns false.
652 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
654 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
658 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
659 * @epd: endpoint to be checked
661 * Returns true if the endpoint has isochronous transfer type and OUT direction,
662 * otherwise it returns false.
664 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
666 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
669 /*-------------------------------------------------------------------------*/
671 #define USB_DEVICE_ID_MATCH_DEVICE \
672 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
673 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
674 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
675 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
676 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
677 #define USB_DEVICE_ID_MATCH_DEV_INFO \
678 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
679 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
680 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
681 #define USB_DEVICE_ID_MATCH_INT_INFO \
682 (USB_DEVICE_ID_MATCH_INT_CLASS | \
683 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
684 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
687 * USB_DEVICE - macro used to describe a specific usb device
688 * @vend: the 16 bit USB Vendor ID
689 * @prod: the 16 bit USB Product ID
691 * This macro is used to create a struct usb_device_id that matches a
692 * specific device.
694 #define USB_DEVICE(vend,prod) \
695 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
696 .idProduct = (prod)
698 * USB_DEVICE_VER - macro used to describe a specific usb device with a
699 * version range
700 * @vend: the 16 bit USB Vendor ID
701 * @prod: the 16 bit USB Product ID
702 * @lo: the bcdDevice_lo value
703 * @hi: the bcdDevice_hi value
705 * This macro is used to create a struct usb_device_id that matches a
706 * specific device, with a version range.
708 #define USB_DEVICE_VER(vend,prod,lo,hi) \
709 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
710 .idVendor = (vend), .idProduct = (prod), \
711 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
714 * USB_DEVICE_INFO - macro used to describe a class of usb devices
715 * @cl: bDeviceClass value
716 * @sc: bDeviceSubClass value
717 * @pr: bDeviceProtocol value
719 * This macro is used to create a struct usb_device_id that matches a
720 * specific class of devices.
722 #define USB_DEVICE_INFO(cl,sc,pr) \
723 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
724 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
727 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
728 * @cl: bInterfaceClass value
729 * @sc: bInterfaceSubClass value
730 * @pr: bInterfaceProtocol value
732 * This macro is used to create a struct usb_device_id that matches a
733 * specific class of interfaces.
735 #define USB_INTERFACE_INFO(cl,sc,pr) \
736 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
737 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
739 /* ----------------------------------------------------------------------- */
741 /* Stuff for dynamic usb ids */
742 struct usb_dynids {
743 spinlock_t lock;
744 struct list_head list;
747 struct usb_dynid {
748 struct list_head node;
749 struct usb_device_id id;
752 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
753 struct device_driver *driver,
754 const char *buf, size_t count);
757 * struct usbdrv_wrap - wrapper for driver-model structure
758 * @driver: The driver-model core driver structure.
759 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
761 struct usbdrv_wrap {
762 struct device_driver driver;
763 int for_devices;
767 * struct usb_driver - identifies USB interface driver to usbcore
768 * @name: The driver name should be unique among USB drivers,
769 * and should normally be the same as the module name.
770 * @probe: Called to see if the driver is willing to manage a particular
771 * interface on a device. If it is, probe returns zero and uses
772 * dev_set_drvdata() to associate driver-specific data with the
773 * interface. It may also use usb_set_interface() to specify the
774 * appropriate altsetting. If unwilling to manage the interface,
775 * return a negative errno value.
776 * @disconnect: Called when the interface is no longer accessible, usually
777 * because its device has been (or is being) disconnected or the
778 * driver module is being unloaded.
779 * @ioctl: Used for drivers that want to talk to userspace through
780 * the "usbfs" filesystem. This lets devices provide ways to
781 * expose information to user space regardless of where they
782 * do (or don't) show up otherwise in the filesystem.
783 * @suspend: Called when the device is going to be suspended by the system.
784 * @resume: Called when the device is being resumed by the system.
785 * @pre_reset: Called by usb_reset_composite_device() when the device
786 * is about to be reset.
787 * @post_reset: Called by usb_reset_composite_device() after the device
788 * has been reset.
789 * @id_table: USB drivers use ID table to support hotplugging.
790 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
791 * or your driver's probe function will never get called.
792 * @dynids: used internally to hold the list of dynamically added device
793 * ids for this driver.
794 * @drvwrap: Driver-model core structure wrapper.
795 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
796 * added to this driver by preventing the sysfs file from being created.
797 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
798 * for interfaces bound to this driver.
800 * USB interface drivers must provide a name, probe() and disconnect()
801 * methods, and an id_table. Other driver fields are optional.
803 * The id_table is used in hotplugging. It holds a set of descriptors,
804 * and specialized data may be associated with each entry. That table
805 * is used by both user and kernel mode hotplugging support.
807 * The probe() and disconnect() methods are called in a context where
808 * they can sleep, but they should avoid abusing the privilege. Most
809 * work to connect to a device should be done when the device is opened,
810 * and undone at the last close. The disconnect code needs to address
811 * concurrency issues with respect to open() and close() methods, as
812 * well as forcing all pending I/O requests to complete (by unlinking
813 * them as necessary, and blocking until the unlinks complete).
815 struct usb_driver {
816 const char *name;
818 int (*probe) (struct usb_interface *intf,
819 const struct usb_device_id *id);
821 void (*disconnect) (struct usb_interface *intf);
823 int (*ioctl) (struct usb_interface *intf, unsigned int code,
824 void *buf);
826 int (*suspend) (struct usb_interface *intf, pm_message_t message);
827 int (*resume) (struct usb_interface *intf);
829 void (*pre_reset) (struct usb_interface *intf);
830 void (*post_reset) (struct usb_interface *intf);
832 const struct usb_device_id *id_table;
834 struct usb_dynids dynids;
835 struct usbdrv_wrap drvwrap;
836 unsigned int no_dynamic_id:1;
837 unsigned int supports_autosuspend:1;
839 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
842 * struct usb_device_driver - identifies USB device driver to usbcore
843 * @name: The driver name should be unique among USB drivers,
844 * and should normally be the same as the module name.
845 * @probe: Called to see if the driver is willing to manage a particular
846 * device. If it is, probe returns zero and uses dev_set_drvdata()
847 * to associate driver-specific data with the device. If unwilling
848 * to manage the device, return a negative errno value.
849 * @disconnect: Called when the device is no longer accessible, usually
850 * because it has been (or is being) disconnected or the driver's
851 * module is being unloaded.
852 * @suspend: Called when the device is going to be suspended by the system.
853 * @resume: Called when the device is being resumed by the system.
854 * @drvwrap: Driver-model core structure wrapper.
855 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
856 * for devices bound to this driver.
858 * USB drivers must provide all the fields listed above except drvwrap.
860 struct usb_device_driver {
861 const char *name;
863 int (*probe) (struct usb_device *udev);
864 void (*disconnect) (struct usb_device *udev);
866 int (*suspend) (struct usb_device *udev, pm_message_t message);
867 int (*resume) (struct usb_device *udev);
868 struct usbdrv_wrap drvwrap;
869 unsigned int supports_autosuspend:1;
871 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
872 drvwrap.driver)
874 extern struct bus_type usb_bus_type;
877 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
878 * @name: the usb class device name for this driver. Will show up in sysfs.
879 * @fops: pointer to the struct file_operations of this driver.
880 * @minor_base: the start of the minor range for this driver.
882 * This structure is used for the usb_register_dev() and
883 * usb_unregister_dev() functions, to consolidate a number of the
884 * parameters used for them.
886 struct usb_class_driver {
887 char *name;
888 const struct file_operations *fops;
889 int minor_base;
893 * use these in module_init()/module_exit()
894 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
896 extern int usb_register_driver(struct usb_driver *, struct module *);
897 static inline int usb_register(struct usb_driver *driver)
899 return usb_register_driver(driver, THIS_MODULE);
901 extern void usb_deregister(struct usb_driver *);
903 extern int usb_register_device_driver(struct usb_device_driver *,
904 struct module *);
905 extern void usb_deregister_device_driver(struct usb_device_driver *);
907 extern int usb_register_dev(struct usb_interface *intf,
908 struct usb_class_driver *class_driver);
909 extern void usb_deregister_dev(struct usb_interface *intf,
910 struct usb_class_driver *class_driver);
912 extern int usb_disabled(void);
914 /* ----------------------------------------------------------------------- */
917 * URB support, for asynchronous request completions
921 * urb->transfer_flags:
923 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
924 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
925 * ignored */
926 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
927 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
928 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
929 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
930 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
931 * needed */
933 struct usb_iso_packet_descriptor {
934 unsigned int offset;
935 unsigned int length; /* expected length */
936 unsigned int actual_length;
937 unsigned int status;
940 struct urb;
942 typedef void (*usb_complete_t)(struct urb *);
945 * struct urb - USB Request Block
946 * @urb_list: For use by current owner of the URB.
947 * @pipe: Holds endpoint number, direction, type, and more.
948 * Create these values with the eight macros available;
949 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
950 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
951 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
952 * numbers range from zero to fifteen. Note that "in" endpoint two
953 * is a different endpoint (and pipe) from "out" endpoint two.
954 * The current configuration controls the existence, type, and
955 * maximum packet size of any given endpoint.
956 * @dev: Identifies the USB device to perform the request.
957 * @status: This is read in non-iso completion functions to get the
958 * status of the particular request. ISO requests only use it
959 * to tell whether the URB was unlinked; detailed status for
960 * each frame is in the fields of the iso_frame-desc.
961 * @transfer_flags: A variety of flags may be used to affect how URB
962 * submission, unlinking, or operation are handled. Different
963 * kinds of URB can use different flags.
964 * @transfer_buffer: This identifies the buffer to (or from) which
965 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
966 * is set). This buffer must be suitable for DMA; allocate it with
967 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
968 * of this buffer will be modified. This buffer is used for the data
969 * stage of control transfers.
970 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
971 * the device driver is saying that it provided this DMA address,
972 * which the host controller driver should use in preference to the
973 * transfer_buffer.
974 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
975 * be broken up into chunks according to the current maximum packet
976 * size for the endpoint, which is a function of the configuration
977 * and is encoded in the pipe. When the length is zero, neither
978 * transfer_buffer nor transfer_dma is used.
979 * @actual_length: This is read in non-iso completion functions, and
980 * it tells how many bytes (out of transfer_buffer_length) were
981 * transferred. It will normally be the same as requested, unless
982 * either an error was reported or a short read was performed.
983 * The URB_SHORT_NOT_OK transfer flag may be used to make such
984 * short reads be reported as errors.
985 * @setup_packet: Only used for control transfers, this points to eight bytes
986 * of setup data. Control transfers always start by sending this data
987 * to the device. Then transfer_buffer is read or written, if needed.
988 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
989 * device driver has provided this DMA address for the setup packet.
990 * The host controller driver should use this in preference to
991 * setup_packet.
992 * @start_frame: Returns the initial frame for isochronous transfers.
993 * @number_of_packets: Lists the number of ISO transfer buffers.
994 * @interval: Specifies the polling interval for interrupt or isochronous
995 * transfers. The units are frames (milliseconds) for for full and low
996 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
997 * @error_count: Returns the number of ISO transfers that reported errors.
998 * @context: For use in completion functions. This normally points to
999 * request-specific driver context.
1000 * @complete: Completion handler. This URB is passed as the parameter to the
1001 * completion function. The completion function may then do what
1002 * it likes with the URB, including resubmitting or freeing it.
1003 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1004 * collect the transfer status for each buffer.
1006 * This structure identifies USB transfer requests. URBs must be allocated by
1007 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1008 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1009 * are submitted using usb_submit_urb(), and pending requests may be canceled
1010 * using usb_unlink_urb() or usb_kill_urb().
1012 * Data Transfer Buffers:
1014 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1015 * taken from the general page pool. That is provided by transfer_buffer
1016 * (control requests also use setup_packet), and host controller drivers
1017 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1018 * mapping operations can be expensive on some platforms (perhaps using a dma
1019 * bounce buffer or talking to an IOMMU),
1020 * although they're cheap on commodity x86 and ppc hardware.
1022 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1023 * which tell the host controller driver that no such mapping is needed since
1024 * the device driver is DMA-aware. For example, a device driver might
1025 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1026 * When these transfer flags are provided, host controller drivers will
1027 * attempt to use the dma addresses found in the transfer_dma and/or
1028 * setup_dma fields rather than determining a dma address themselves. (Note
1029 * that transfer_buffer and setup_packet must still be set because not all
1030 * host controllers use DMA, nor do virtual root hubs).
1032 * Initialization:
1034 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1035 * zero), and complete fields. All URBs must also initialize
1036 * transfer_buffer and transfer_buffer_length. They may provide the
1037 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1038 * to be treated as errors; that flag is invalid for write requests.
1040 * Bulk URBs may
1041 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1042 * should always terminate with a short packet, even if it means adding an
1043 * extra zero length packet.
1045 * Control URBs must provide a setup_packet. The setup_packet and
1046 * transfer_buffer may each be mapped for DMA or not, independently of
1047 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1048 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1049 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1051 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1052 * or, for highspeed devices, 125 microsecond units)
1053 * to poll for transfers. After the URB has been submitted, the interval
1054 * field reflects how the transfer was actually scheduled.
1055 * The polling interval may be more frequent than requested.
1056 * For example, some controllers have a maximum interval of 32 milliseconds,
1057 * while others support intervals of up to 1024 milliseconds.
1058 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1059 * endpoints, as well as high speed interrupt endpoints, the encoding of
1060 * the transfer interval in the endpoint descriptor is logarithmic.
1061 * Device drivers must convert that value to linear units themselves.)
1063 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1064 * the host controller to schedule the transfer as soon as bandwidth
1065 * utilization allows, and then set start_frame to reflect the actual frame
1066 * selected during submission. Otherwise drivers must specify the start_frame
1067 * and handle the case where the transfer can't begin then. However, drivers
1068 * won't know how bandwidth is currently allocated, and while they can
1069 * find the current frame using usb_get_current_frame_number () they can't
1070 * know the range for that frame number. (Ranges for frame counter values
1071 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1073 * Isochronous URBs have a different data transfer model, in part because
1074 * the quality of service is only "best effort". Callers provide specially
1075 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1076 * at the end. Each such packet is an individual ISO transfer. Isochronous
1077 * URBs are normally queued, submitted by drivers to arrange that
1078 * transfers are at least double buffered, and then explicitly resubmitted
1079 * in completion handlers, so
1080 * that data (such as audio or video) streams at as constant a rate as the
1081 * host controller scheduler can support.
1083 * Completion Callbacks:
1085 * The completion callback is made in_interrupt(), and one of the first
1086 * things that a completion handler should do is check the status field.
1087 * The status field is provided for all URBs. It is used to report
1088 * unlinked URBs, and status for all non-ISO transfers. It should not
1089 * be examined before the URB is returned to the completion handler.
1091 * The context field is normally used to link URBs back to the relevant
1092 * driver or request state.
1094 * When the completion callback is invoked for non-isochronous URBs, the
1095 * actual_length field tells how many bytes were transferred. This field
1096 * is updated even when the URB terminated with an error or was unlinked.
1098 * ISO transfer status is reported in the status and actual_length fields
1099 * of the iso_frame_desc array, and the number of errors is reported in
1100 * error_count. Completion callbacks for ISO transfers will normally
1101 * (re)submit URBs to ensure a constant transfer rate.
1103 * Note that even fields marked "public" should not be touched by the driver
1104 * when the urb is owned by the hcd, that is, since the call to
1105 * usb_submit_urb() till the entry into the completion routine.
1107 struct urb
1109 /* private: usb core and host controller only fields in the urb */
1110 struct kref kref; /* reference count of the URB */
1111 spinlock_t lock; /* lock for the URB */
1112 void *hcpriv; /* private data for host controller */
1113 atomic_t use_count; /* concurrent submissions counter */
1114 u8 reject; /* submissions will fail */
1116 /* public: documented fields in the urb that can be used by drivers */
1117 struct list_head urb_list; /* list head for use by the urb's
1118 * current owner */
1119 struct usb_device *dev; /* (in) pointer to associated device */
1120 unsigned int pipe; /* (in) pipe information */
1121 int status; /* (return) non-ISO status */
1122 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1123 void *transfer_buffer; /* (in) associated data buffer */
1124 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1125 int transfer_buffer_length; /* (in) data buffer length */
1126 int actual_length; /* (return) actual transfer length */
1127 unsigned char *setup_packet; /* (in) setup packet (control only) */
1128 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1129 int start_frame; /* (modify) start frame (ISO) */
1130 int number_of_packets; /* (in) number of ISO packets */
1131 int interval; /* (modify) transfer interval
1132 * (INT/ISO) */
1133 int error_count; /* (return) number of ISO errors */
1134 void *context; /* (in) context for completion */
1135 usb_complete_t complete; /* (in) completion routine */
1136 struct usb_iso_packet_descriptor iso_frame_desc[0];
1137 /* (in) ISO ONLY */
1140 /* ----------------------------------------------------------------------- */
1143 * usb_fill_control_urb - initializes a control urb
1144 * @urb: pointer to the urb to initialize.
1145 * @dev: pointer to the struct usb_device for this urb.
1146 * @pipe: the endpoint pipe
1147 * @setup_packet: pointer to the setup_packet buffer
1148 * @transfer_buffer: pointer to the transfer buffer
1149 * @buffer_length: length of the transfer buffer
1150 * @complete_fn: pointer to the usb_complete_t function
1151 * @context: what to set the urb context to.
1153 * Initializes a control urb with the proper information needed to submit
1154 * it to a device.
1156 static inline void usb_fill_control_urb (struct urb *urb,
1157 struct usb_device *dev,
1158 unsigned int pipe,
1159 unsigned char *setup_packet,
1160 void *transfer_buffer,
1161 int buffer_length,
1162 usb_complete_t complete_fn,
1163 void *context)
1165 spin_lock_init(&urb->lock);
1166 urb->dev = dev;
1167 urb->pipe = pipe;
1168 urb->setup_packet = setup_packet;
1169 urb->transfer_buffer = transfer_buffer;
1170 urb->transfer_buffer_length = buffer_length;
1171 urb->complete = complete_fn;
1172 urb->context = context;
1176 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1177 * @urb: pointer to the urb to initialize.
1178 * @dev: pointer to the struct usb_device for this urb.
1179 * @pipe: the endpoint pipe
1180 * @transfer_buffer: pointer to the transfer buffer
1181 * @buffer_length: length of the transfer buffer
1182 * @complete_fn: pointer to the usb_complete_t function
1183 * @context: what to set the urb context to.
1185 * Initializes a bulk urb with the proper information needed to submit it
1186 * to a device.
1188 static inline void usb_fill_bulk_urb (struct urb *urb,
1189 struct usb_device *dev,
1190 unsigned int pipe,
1191 void *transfer_buffer,
1192 int buffer_length,
1193 usb_complete_t complete_fn,
1194 void *context)
1196 spin_lock_init(&urb->lock);
1197 urb->dev = dev;
1198 urb->pipe = pipe;
1199 urb->transfer_buffer = transfer_buffer;
1200 urb->transfer_buffer_length = buffer_length;
1201 urb->complete = complete_fn;
1202 urb->context = context;
1206 * usb_fill_int_urb - macro to help initialize a interrupt urb
1207 * @urb: pointer to the urb to initialize.
1208 * @dev: pointer to the struct usb_device for this urb.
1209 * @pipe: the endpoint pipe
1210 * @transfer_buffer: pointer to the transfer buffer
1211 * @buffer_length: length of the transfer buffer
1212 * @complete_fn: pointer to the usb_complete_t function
1213 * @context: what to set the urb context to.
1214 * @interval: what to set the urb interval to, encoded like
1215 * the endpoint descriptor's bInterval value.
1217 * Initializes a interrupt urb with the proper information needed to submit
1218 * it to a device.
1219 * Note that high speed interrupt endpoints use a logarithmic encoding of
1220 * the endpoint interval, and express polling intervals in microframes
1221 * (eight per millisecond) rather than in frames (one per millisecond).
1223 static inline void usb_fill_int_urb (struct urb *urb,
1224 struct usb_device *dev,
1225 unsigned int pipe,
1226 void *transfer_buffer,
1227 int buffer_length,
1228 usb_complete_t complete_fn,
1229 void *context,
1230 int interval)
1232 spin_lock_init(&urb->lock);
1233 urb->dev = dev;
1234 urb->pipe = pipe;
1235 urb->transfer_buffer = transfer_buffer;
1236 urb->transfer_buffer_length = buffer_length;
1237 urb->complete = complete_fn;
1238 urb->context = context;
1239 if (dev->speed == USB_SPEED_HIGH)
1240 urb->interval = 1 << (interval - 1);
1241 else
1242 urb->interval = interval;
1243 urb->start_frame = -1;
1246 extern void usb_init_urb(struct urb *urb);
1247 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1248 extern void usb_free_urb(struct urb *urb);
1249 #define usb_put_urb usb_free_urb
1250 extern struct urb *usb_get_urb(struct urb *urb);
1251 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1252 extern int usb_unlink_urb(struct urb *urb);
1253 extern void usb_kill_urb(struct urb *urb);
1255 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1256 gfp_t mem_flags, dma_addr_t *dma);
1257 void usb_buffer_free (struct usb_device *dev, size_t size,
1258 void *addr, dma_addr_t dma);
1260 #if 0
1261 struct urb *usb_buffer_map (struct urb *urb);
1262 void usb_buffer_dmasync (struct urb *urb);
1263 void usb_buffer_unmap (struct urb *urb);
1264 #endif
1266 struct scatterlist;
1267 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1268 struct scatterlist *sg, int nents);
1269 #if 0
1270 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1271 struct scatterlist *sg, int n_hw_ents);
1272 #endif
1273 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1274 struct scatterlist *sg, int n_hw_ents);
1276 /*-------------------------------------------------------------------*
1277 * SYNCHRONOUS CALL SUPPORT *
1278 *-------------------------------------------------------------------*/
1280 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1281 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1282 void *data, __u16 size, int timeout);
1283 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1284 void *data, int len, int *actual_length, int timeout);
1285 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1286 void *data, int len, int *actual_length,
1287 int timeout);
1289 /* wrappers around usb_control_msg() for the most common standard requests */
1290 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1291 unsigned char descindex, void *buf, int size);
1292 extern int usb_get_status(struct usb_device *dev,
1293 int type, int target, void *data);
1294 extern int usb_string(struct usb_device *dev, int index,
1295 char *buf, size_t size);
1297 /* wrappers that also update important state inside usbcore */
1298 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1299 extern int usb_reset_configuration(struct usb_device *dev);
1300 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1302 /* this request isn't really synchronous, but it belongs with the others */
1303 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1306 * timeouts, in milliseconds, used for sending/receiving control messages
1307 * they typically complete within a few frames (msec) after they're issued
1308 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1309 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1311 #define USB_CTRL_GET_TIMEOUT 5000
1312 #define USB_CTRL_SET_TIMEOUT 5000
1316 * struct usb_sg_request - support for scatter/gather I/O
1317 * @status: zero indicates success, else negative errno
1318 * @bytes: counts bytes transferred.
1320 * These requests are initialized using usb_sg_init(), and then are used
1321 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1322 * members of the request object aren't for driver access.
1324 * The status and bytecount values are valid only after usb_sg_wait()
1325 * returns. If the status is zero, then the bytecount matches the total
1326 * from the request.
1328 * After an error completion, drivers may need to clear a halt condition
1329 * on the endpoint.
1331 struct usb_sg_request {
1332 int status;
1333 size_t bytes;
1336 * members below are private: to usbcore,
1337 * and are not provided for driver access!
1339 spinlock_t lock;
1341 struct usb_device *dev;
1342 int pipe;
1343 struct scatterlist *sg;
1344 int nents;
1346 int entries;
1347 struct urb **urbs;
1349 int count;
1350 struct completion complete;
1353 int usb_sg_init (
1354 struct usb_sg_request *io,
1355 struct usb_device *dev,
1356 unsigned pipe,
1357 unsigned period,
1358 struct scatterlist *sg,
1359 int nents,
1360 size_t length,
1361 gfp_t mem_flags
1363 void usb_sg_cancel (struct usb_sg_request *io);
1364 void usb_sg_wait (struct usb_sg_request *io);
1367 /* ----------------------------------------------------------------------- */
1370 * For various legacy reasons, Linux has a small cookie that's paired with
1371 * a struct usb_device to identify an endpoint queue. Queue characteristics
1372 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1373 * an unsigned int encoded as:
1375 * - direction: bit 7 (0 = Host-to-Device [Out],
1376 * 1 = Device-to-Host [In] ...
1377 * like endpoint bEndpointAddress)
1378 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1379 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1380 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1381 * 10 = control, 11 = bulk)
1383 * Given the device address and endpoint descriptor, pipes are redundant.
1386 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1387 /* (yet ... they're the values used by usbfs) */
1388 #define PIPE_ISOCHRONOUS 0
1389 #define PIPE_INTERRUPT 1
1390 #define PIPE_CONTROL 2
1391 #define PIPE_BULK 3
1393 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1394 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1396 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1397 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1399 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1400 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1401 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1402 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1403 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1405 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1406 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1407 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1408 #define usb_settoggle(dev, ep, out, bit) \
1409 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1410 ((bit) << (ep)))
1413 static inline unsigned int __create_pipe(struct usb_device *dev,
1414 unsigned int endpoint)
1416 return (dev->devnum << 8) | (endpoint << 15);
1419 /* Create various pipes... */
1420 #define usb_sndctrlpipe(dev,endpoint) \
1421 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1422 #define usb_rcvctrlpipe(dev,endpoint) \
1423 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1424 #define usb_sndisocpipe(dev,endpoint) \
1425 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1426 #define usb_rcvisocpipe(dev,endpoint) \
1427 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1428 #define usb_sndbulkpipe(dev,endpoint) \
1429 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1430 #define usb_rcvbulkpipe(dev,endpoint) \
1431 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1432 #define usb_sndintpipe(dev,endpoint) \
1433 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1434 #define usb_rcvintpipe(dev,endpoint) \
1435 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1437 /*-------------------------------------------------------------------------*/
1439 static inline __u16
1440 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1442 struct usb_host_endpoint *ep;
1443 unsigned epnum = usb_pipeendpoint(pipe);
1445 if (is_out) {
1446 WARN_ON(usb_pipein(pipe));
1447 ep = udev->ep_out[epnum];
1448 } else {
1449 WARN_ON(usb_pipeout(pipe));
1450 ep = udev->ep_in[epnum];
1452 if (!ep)
1453 return 0;
1455 /* NOTE: only 0x07ff bits are for packet size... */
1456 return le16_to_cpu(ep->desc.wMaxPacketSize);
1459 /* ----------------------------------------------------------------------- */
1461 /* Events from the usb core */
1462 #define USB_DEVICE_ADD 0x0001
1463 #define USB_DEVICE_REMOVE 0x0002
1464 #define USB_BUS_ADD 0x0003
1465 #define USB_BUS_REMOVE 0x0004
1466 extern void usb_register_notify(struct notifier_block *nb);
1467 extern void usb_unregister_notify(struct notifier_block *nb);
1469 #ifdef DEBUG
1470 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1471 __FILE__ , ## arg)
1472 #else
1473 #define dbg(format, arg...) do {} while (0)
1474 #endif
1476 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1477 __FILE__ , ## arg)
1478 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1479 __FILE__ , ## arg)
1480 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1481 __FILE__ , ## arg)
1484 #endif /* __KERNEL__ */
1486 #endif