powerpc: Turn get/set_hard_smp_proccessor_id into inlines
[linux-2.6/mini2440.git] / net / sched / sch_tbf.c
blob7d3b7ff3bf07fbb1af0de7cab8a5056a37254937
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
25 /* Simple Token Bucket Filter.
26 =======================================
28 SOURCE.
29 -------
31 None.
33 Description.
34 ------------
36 A data flow obeys TBF with rate R and depth B, if for any
37 time interval t_i...t_f the number of transmitted bits
38 does not exceed B + R*(t_f-t_i).
40 Packetized version of this definition:
41 The sequence of packets of sizes s_i served at moments t_i
42 obeys TBF, if for any i<=k:
44 s_i+....+s_k <= B + R*(t_k - t_i)
46 Algorithm.
47 ----------
49 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 N(t+delta) = min{B/R, N(t) + delta}
53 If the first packet in queue has length S, it may be
54 transmitted only at the time t_* when S/R <= N(t_*),
55 and in this case N(t) jumps:
57 N(t_* + 0) = N(t_* - 0) - S/R.
61 Actually, QoS requires two TBF to be applied to a data stream.
62 One of them controls steady state burst size, another
63 one with rate P (peak rate) and depth M (equal to link MTU)
64 limits bursts at a smaller time scale.
66 It is easy to see that P>R, and B>M. If P is infinity, this double
67 TBF is equivalent to a single one.
69 When TBF works in reshaping mode, latency is estimated as:
71 lat = max ((L-B)/R, (L-M)/P)
74 NOTES.
75 ------
77 If TBF throttles, it starts a watchdog timer, which will wake it up
78 when it is ready to transmit.
79 Note that the minimal timer resolution is 1/HZ.
80 If no new packets arrive during this period,
81 or if the device is not awaken by EOI for some previous packet,
82 TBF can stop its activity for 1/HZ.
85 This means, that with depth B, the maximal rate is
87 R_crit = B*HZ
89 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 Note that the peak rate TBF is much more tough: with MTU 1500
92 P_crit = 150Kbytes/sec. So, if you need greater peak
93 rates, use alpha with HZ=1000 :-)
95 With classful TBF, limit is just kept for backwards compatibility.
96 It is passed to the default bfifo qdisc - if the inner qdisc is
97 changed the limit is not effective anymore.
100 struct tbf_sched_data
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 u32 mtu;
106 u32 max_size;
107 struct qdisc_rate_table *R_tab;
108 struct qdisc_rate_table *P_tab;
110 /* Variables */
111 long tokens; /* Current number of B tokens */
112 long ptokens; /* Current number of P tokens */
113 psched_time_t t_c; /* Time check-point */
114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog; /* Watchdog timer */
118 #define L2T(q,L) qdisc_l2t((q)->R_tab,L)
119 #define L2T_P(q,L) qdisc_l2t((q)->P_tab,L)
121 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
123 struct tbf_sched_data *q = qdisc_priv(sch);
124 int ret;
126 if (qdisc_pkt_len(skb) > q->max_size) {
127 sch->qstats.drops++;
128 #ifdef CONFIG_NET_CLS_ACT
129 if (sch->reshape_fail == NULL || sch->reshape_fail(skb, sch))
130 #endif
131 kfree_skb(skb);
133 return NET_XMIT_DROP;
136 ret = qdisc_enqueue(skb, q->qdisc);
137 if (ret != 0) {
138 if (net_xmit_drop_count(ret))
139 sch->qstats.drops++;
140 return ret;
143 sch->q.qlen++;
144 sch->bstats.bytes += qdisc_pkt_len(skb);
145 sch->bstats.packets++;
146 return 0;
149 static int tbf_requeue(struct sk_buff *skb, struct Qdisc* sch)
151 struct tbf_sched_data *q = qdisc_priv(sch);
152 int ret;
154 if ((ret = q->qdisc->ops->requeue(skb, q->qdisc)) == 0) {
155 sch->q.qlen++;
156 sch->qstats.requeues++;
159 return ret;
162 static unsigned int tbf_drop(struct Qdisc* sch)
164 struct tbf_sched_data *q = qdisc_priv(sch);
165 unsigned int len = 0;
167 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
168 sch->q.qlen--;
169 sch->qstats.drops++;
171 return len;
174 static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
176 struct tbf_sched_data *q = qdisc_priv(sch);
177 struct sk_buff *skb;
179 skb = q->qdisc->dequeue(q->qdisc);
181 if (skb) {
182 psched_time_t now;
183 long toks;
184 long ptoks = 0;
185 unsigned int len = qdisc_pkt_len(skb);
187 now = psched_get_time();
188 toks = psched_tdiff_bounded(now, q->t_c, q->buffer);
190 if (q->P_tab) {
191 ptoks = toks + q->ptokens;
192 if (ptoks > (long)q->mtu)
193 ptoks = q->mtu;
194 ptoks -= L2T_P(q, len);
196 toks += q->tokens;
197 if (toks > (long)q->buffer)
198 toks = q->buffer;
199 toks -= L2T(q, len);
201 if ((toks|ptoks) >= 0) {
202 q->t_c = now;
203 q->tokens = toks;
204 q->ptokens = ptoks;
205 sch->q.qlen--;
206 sch->flags &= ~TCQ_F_THROTTLED;
207 return skb;
210 qdisc_watchdog_schedule(&q->watchdog,
211 now + max_t(long, -toks, -ptoks));
213 /* Maybe we have a shorter packet in the queue,
214 which can be sent now. It sounds cool,
215 but, however, this is wrong in principle.
216 We MUST NOT reorder packets under these circumstances.
218 Really, if we split the flow into independent
219 subflows, it would be a very good solution.
220 This is the main idea of all FQ algorithms
221 (cf. CSZ, HPFQ, HFSC)
224 if (q->qdisc->ops->requeue(skb, q->qdisc) != NET_XMIT_SUCCESS) {
225 /* When requeue fails skb is dropped */
226 qdisc_tree_decrease_qlen(q->qdisc, 1);
227 sch->qstats.drops++;
230 sch->qstats.overlimits++;
232 return NULL;
235 static void tbf_reset(struct Qdisc* sch)
237 struct tbf_sched_data *q = qdisc_priv(sch);
239 qdisc_reset(q->qdisc);
240 sch->q.qlen = 0;
241 q->t_c = psched_get_time();
242 q->tokens = q->buffer;
243 q->ptokens = q->mtu;
244 qdisc_watchdog_cancel(&q->watchdog);
247 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
248 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
249 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
250 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
253 static int tbf_change(struct Qdisc* sch, struct nlattr *opt)
255 int err;
256 struct tbf_sched_data *q = qdisc_priv(sch);
257 struct nlattr *tb[TCA_TBF_PTAB + 1];
258 struct tc_tbf_qopt *qopt;
259 struct qdisc_rate_table *rtab = NULL;
260 struct qdisc_rate_table *ptab = NULL;
261 struct Qdisc *child = NULL;
262 int max_size,n;
264 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
265 if (err < 0)
266 return err;
268 err = -EINVAL;
269 if (tb[TCA_TBF_PARMS] == NULL)
270 goto done;
272 qopt = nla_data(tb[TCA_TBF_PARMS]);
273 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
274 if (rtab == NULL)
275 goto done;
277 if (qopt->peakrate.rate) {
278 if (qopt->peakrate.rate > qopt->rate.rate)
279 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
280 if (ptab == NULL)
281 goto done;
284 for (n = 0; n < 256; n++)
285 if (rtab->data[n] > qopt->buffer) break;
286 max_size = (n << qopt->rate.cell_log)-1;
287 if (ptab) {
288 int size;
290 for (n = 0; n < 256; n++)
291 if (ptab->data[n] > qopt->mtu) break;
292 size = (n << qopt->peakrate.cell_log)-1;
293 if (size < max_size) max_size = size;
295 if (max_size < 0)
296 goto done;
298 if (qopt->limit > 0) {
299 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
300 if (IS_ERR(child)) {
301 err = PTR_ERR(child);
302 goto done;
306 sch_tree_lock(sch);
307 if (child) {
308 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
309 qdisc_destroy(xchg(&q->qdisc, child));
311 q->limit = qopt->limit;
312 q->mtu = qopt->mtu;
313 q->max_size = max_size;
314 q->buffer = qopt->buffer;
315 q->tokens = q->buffer;
316 q->ptokens = q->mtu;
317 rtab = xchg(&q->R_tab, rtab);
318 ptab = xchg(&q->P_tab, ptab);
319 sch_tree_unlock(sch);
320 err = 0;
321 done:
322 if (rtab)
323 qdisc_put_rtab(rtab);
324 if (ptab)
325 qdisc_put_rtab(ptab);
326 return err;
329 static int tbf_init(struct Qdisc* sch, struct nlattr *opt)
331 struct tbf_sched_data *q = qdisc_priv(sch);
333 if (opt == NULL)
334 return -EINVAL;
336 q->t_c = psched_get_time();
337 qdisc_watchdog_init(&q->watchdog, sch);
338 q->qdisc = &noop_qdisc;
340 return tbf_change(sch, opt);
343 static void tbf_destroy(struct Qdisc *sch)
345 struct tbf_sched_data *q = qdisc_priv(sch);
347 qdisc_watchdog_cancel(&q->watchdog);
349 if (q->P_tab)
350 qdisc_put_rtab(q->P_tab);
351 if (q->R_tab)
352 qdisc_put_rtab(q->R_tab);
354 qdisc_destroy(q->qdisc);
357 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
359 struct tbf_sched_data *q = qdisc_priv(sch);
360 struct nlattr *nest;
361 struct tc_tbf_qopt opt;
363 nest = nla_nest_start(skb, TCA_OPTIONS);
364 if (nest == NULL)
365 goto nla_put_failure;
367 opt.limit = q->limit;
368 opt.rate = q->R_tab->rate;
369 if (q->P_tab)
370 opt.peakrate = q->P_tab->rate;
371 else
372 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
373 opt.mtu = q->mtu;
374 opt.buffer = q->buffer;
375 NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
377 nla_nest_end(skb, nest);
378 return skb->len;
380 nla_put_failure:
381 nla_nest_cancel(skb, nest);
382 return -1;
385 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
386 struct sk_buff *skb, struct tcmsg *tcm)
388 struct tbf_sched_data *q = qdisc_priv(sch);
390 if (cl != 1) /* only one class */
391 return -ENOENT;
393 tcm->tcm_handle |= TC_H_MIN(1);
394 tcm->tcm_info = q->qdisc->handle;
396 return 0;
399 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
400 struct Qdisc **old)
402 struct tbf_sched_data *q = qdisc_priv(sch);
404 if (new == NULL)
405 new = &noop_qdisc;
407 sch_tree_lock(sch);
408 *old = xchg(&q->qdisc, new);
409 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
410 qdisc_reset(*old);
411 sch_tree_unlock(sch);
413 return 0;
416 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
418 struct tbf_sched_data *q = qdisc_priv(sch);
419 return q->qdisc;
422 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
424 return 1;
427 static void tbf_put(struct Qdisc *sch, unsigned long arg)
431 static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
432 struct nlattr **tca, unsigned long *arg)
434 return -ENOSYS;
437 static int tbf_delete(struct Qdisc *sch, unsigned long arg)
439 return -ENOSYS;
442 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
444 if (!walker->stop) {
445 if (walker->count >= walker->skip)
446 if (walker->fn(sch, 1, walker) < 0) {
447 walker->stop = 1;
448 return;
450 walker->count++;
454 static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
456 return NULL;
459 static const struct Qdisc_class_ops tbf_class_ops =
461 .graft = tbf_graft,
462 .leaf = tbf_leaf,
463 .get = tbf_get,
464 .put = tbf_put,
465 .change = tbf_change_class,
466 .delete = tbf_delete,
467 .walk = tbf_walk,
468 .tcf_chain = tbf_find_tcf,
469 .dump = tbf_dump_class,
472 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
473 .next = NULL,
474 .cl_ops = &tbf_class_ops,
475 .id = "tbf",
476 .priv_size = sizeof(struct tbf_sched_data),
477 .enqueue = tbf_enqueue,
478 .dequeue = tbf_dequeue,
479 .requeue = tbf_requeue,
480 .drop = tbf_drop,
481 .init = tbf_init,
482 .reset = tbf_reset,
483 .destroy = tbf_destroy,
484 .change = tbf_change,
485 .dump = tbf_dump,
486 .owner = THIS_MODULE,
489 static int __init tbf_module_init(void)
491 return register_qdisc(&tbf_qdisc_ops);
494 static void __exit tbf_module_exit(void)
496 unregister_qdisc(&tbf_qdisc_ops);
498 module_init(tbf_module_init)
499 module_exit(tbf_module_exit)
500 MODULE_LICENSE("GPL");