ACPI: C-States: bm_activity improvements
[linux-2.6/linux-mips.git] / drivers / acpi / processor_idle.c
blobaf9f2afd72da458abb51bd520034b0fe2987dad4
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
48 #define ACPI_PROCESSOR_COMPONENT 0x01000000
49 #define ACPI_PROCESSOR_CLASS "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
51 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void) __read_mostly;
58 module_param(max_cstate, uint, 0644);
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68 * reduce history for more aggressive entry into C3
70 static unsigned int bm_history __read_mostly =
71 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74 Power Management
75 -------------------------------------------------------------------------- */
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
81 * To skip this limit, boot/load with a large max_cstate limit.
83 static int set_max_cstate(struct dmi_system_id *id)
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 max_cstate = (long)id->driver_data;
94 return 0;
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98 callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100 { set_max_cstate, "IBM ThinkPad R40e", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
103 { set_max_cstate, "IBM ThinkPad R40e", {
104 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
105 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
106 { set_max_cstate, "IBM ThinkPad R40e", {
107 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
108 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
109 { set_max_cstate, "IBM ThinkPad R40e", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
111 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
112 { set_max_cstate, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
115 { set_max_cstate, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
118 { set_max_cstate, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
121 { set_max_cstate, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
124 { set_max_cstate, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
127 { set_max_cstate, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
145 { set_max_cstate, "Medion 41700", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
147 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
148 { set_max_cstate, "Clevo 5600D", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
150 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
151 (void *)2},
155 static inline u32 ticks_elapsed(u32 t1, u32 t2)
157 if (t2 >= t1)
158 return (t2 - t1);
159 else if (!acpi_fadt.tmr_val_ext)
160 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
161 else
162 return ((0xFFFFFFFF - t1) + t2);
165 static void
166 acpi_processor_power_activate(struct acpi_processor *pr,
167 struct acpi_processor_cx *new)
169 struct acpi_processor_cx *old;
171 if (!pr || !new)
172 return;
174 old = pr->power.state;
176 if (old)
177 old->promotion.count = 0;
178 new->demotion.count = 0;
180 /* Cleanup from old state. */
181 if (old) {
182 switch (old->type) {
183 case ACPI_STATE_C3:
184 /* Disable bus master reload */
185 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
186 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
187 ACPI_MTX_DO_NOT_LOCK);
188 break;
192 /* Prepare to use new state. */
193 switch (new->type) {
194 case ACPI_STATE_C3:
195 /* Enable bus master reload */
196 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
197 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
198 ACPI_MTX_DO_NOT_LOCK);
199 break;
202 pr->power.state = new;
204 return;
207 static void acpi_safe_halt(void)
209 current_thread_info()->status &= ~TS_POLLING;
210 smp_mb__after_clear_bit();
211 if (!need_resched())
212 safe_halt();
213 current_thread_info()->status |= TS_POLLING;
216 static atomic_t c3_cpu_count;
218 static void acpi_processor_idle(void)
220 struct acpi_processor *pr = NULL;
221 struct acpi_processor_cx *cx = NULL;
222 struct acpi_processor_cx *next_state = NULL;
223 int sleep_ticks = 0;
224 u32 t1, t2 = 0;
226 pr = processors[smp_processor_id()];
227 if (!pr)
228 return;
231 * Interrupts must be disabled during bus mastering calculations and
232 * for C2/C3 transitions.
234 local_irq_disable();
237 * Check whether we truly need to go idle, or should
238 * reschedule:
240 if (unlikely(need_resched())) {
241 local_irq_enable();
242 return;
245 cx = pr->power.state;
246 if (!cx) {
247 if (pm_idle_save)
248 pm_idle_save();
249 else
250 acpi_safe_halt();
251 return;
255 * Check BM Activity
256 * -----------------
257 * Check for bus mastering activity (if required), record, and check
258 * for demotion.
260 if (pr->flags.bm_check) {
261 u32 bm_status = 0;
262 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
264 if (diff > 31)
265 diff = 31;
267 pr->power.bm_activity <<= diff;
269 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
270 &bm_status, ACPI_MTX_DO_NOT_LOCK);
271 if (bm_status) {
272 pr->power.bm_activity |= 0x1;
273 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
274 1, ACPI_MTX_DO_NOT_LOCK);
277 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
278 * the true state of bus mastering activity; forcing us to
279 * manually check the BMIDEA bit of each IDE channel.
281 else if (errata.piix4.bmisx) {
282 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
283 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
284 pr->power.bm_activity |= 0x1;
287 pr->power.bm_check_timestamp = jiffies;
290 * Apply bus mastering demotion policy. Automatically demote
291 * to avoid a faulty transition. Note that the processor
292 * won't enter a low-power state during this call (to this
293 * funciton) but should upon the next.
295 * TBD: A better policy might be to fallback to the demotion
296 * state (use it for this quantum only) istead of
297 * demoting -- and rely on duration as our sole demotion
298 * qualification. This may, however, introduce DMA
299 * issues (e.g. floppy DMA transfer overrun/underrun).
301 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
302 local_irq_enable();
303 next_state = cx->demotion.state;
304 goto end;
308 #ifdef CONFIG_HOTPLUG_CPU
310 * Check for P_LVL2_UP flag before entering C2 and above on
311 * an SMP system. We do it here instead of doing it at _CST/P_LVL
312 * detection phase, to work cleanly with logical CPU hotplug.
314 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
315 !pr->flags.has_cst && !acpi_fadt.plvl2_up)
316 cx = &pr->power.states[ACPI_STATE_C1];
317 #endif
320 * Sleep:
321 * ------
322 * Invoke the current Cx state to put the processor to sleep.
324 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
325 current_thread_info()->status &= ~TS_POLLING;
326 smp_mb__after_clear_bit();
327 if (need_resched()) {
328 current_thread_info()->status |= TS_POLLING;
329 local_irq_enable();
330 return;
334 switch (cx->type) {
336 case ACPI_STATE_C1:
338 * Invoke C1.
339 * Use the appropriate idle routine, the one that would
340 * be used without acpi C-states.
342 if (pm_idle_save)
343 pm_idle_save();
344 else
345 acpi_safe_halt();
348 * TBD: Can't get time duration while in C1, as resumes
349 * go to an ISR rather than here. Need to instrument
350 * base interrupt handler.
352 sleep_ticks = 0xFFFFFFFF;
353 break;
355 case ACPI_STATE_C2:
356 /* Get start time (ticks) */
357 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
358 /* Invoke C2 */
359 inb(cx->address);
360 /* Dummy op - must do something useless after P_LVL2 read */
361 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
362 /* Get end time (ticks) */
363 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
365 #ifdef CONFIG_GENERIC_TIME
366 /* TSC halts in C2, so notify users */
367 mark_tsc_unstable();
368 #endif
369 /* Re-enable interrupts */
370 local_irq_enable();
371 current_thread_info()->status |= TS_POLLING;
372 /* Compute time (ticks) that we were actually asleep */
373 sleep_ticks =
374 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
375 break;
377 case ACPI_STATE_C3:
379 if (pr->flags.bm_check) {
380 if (atomic_inc_return(&c3_cpu_count) ==
381 num_online_cpus()) {
383 * All CPUs are trying to go to C3
384 * Disable bus master arbitration
386 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
387 ACPI_MTX_DO_NOT_LOCK);
389 } else {
390 /* SMP with no shared cache... Invalidate cache */
391 ACPI_FLUSH_CPU_CACHE();
394 /* Get start time (ticks) */
395 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
396 /* Invoke C3 */
397 inb(cx->address);
398 /* Dummy op - must do something useless after P_LVL3 read */
399 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
400 /* Get end time (ticks) */
401 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
402 if (pr->flags.bm_check) {
403 /* Enable bus master arbitration */
404 atomic_dec(&c3_cpu_count);
405 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
406 ACPI_MTX_DO_NOT_LOCK);
409 #ifdef CONFIG_GENERIC_TIME
410 /* TSC halts in C3, so notify users */
411 mark_tsc_unstable();
412 #endif
413 /* Re-enable interrupts */
414 local_irq_enable();
415 current_thread_info()->status |= TS_POLLING;
416 /* Compute time (ticks) that we were actually asleep */
417 sleep_ticks =
418 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
419 break;
421 default:
422 local_irq_enable();
423 return;
425 cx->usage++;
426 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
427 cx->time += sleep_ticks;
429 next_state = pr->power.state;
431 #ifdef CONFIG_HOTPLUG_CPU
432 /* Don't do promotion/demotion */
433 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
434 !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
435 next_state = cx;
436 goto end;
438 #endif
441 * Promotion?
442 * ----------
443 * Track the number of longs (time asleep is greater than threshold)
444 * and promote when the count threshold is reached. Note that bus
445 * mastering activity may prevent promotions.
446 * Do not promote above max_cstate.
448 if (cx->promotion.state &&
449 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
450 if (sleep_ticks > cx->promotion.threshold.ticks) {
451 cx->promotion.count++;
452 cx->demotion.count = 0;
453 if (cx->promotion.count >=
454 cx->promotion.threshold.count) {
455 if (pr->flags.bm_check) {
456 if (!
457 (pr->power.bm_activity & cx->
458 promotion.threshold.bm)) {
459 next_state =
460 cx->promotion.state;
461 goto end;
463 } else {
464 next_state = cx->promotion.state;
465 goto end;
472 * Demotion?
473 * ---------
474 * Track the number of shorts (time asleep is less than time threshold)
475 * and demote when the usage threshold is reached.
477 if (cx->demotion.state) {
478 if (sleep_ticks < cx->demotion.threshold.ticks) {
479 cx->demotion.count++;
480 cx->promotion.count = 0;
481 if (cx->demotion.count >= cx->demotion.threshold.count) {
482 next_state = cx->demotion.state;
483 goto end;
488 end:
490 * Demote if current state exceeds max_cstate
492 if ((pr->power.state - pr->power.states) > max_cstate) {
493 if (cx->demotion.state)
494 next_state = cx->demotion.state;
498 * New Cx State?
499 * -------------
500 * If we're going to start using a new Cx state we must clean up
501 * from the previous and prepare to use the new.
503 if (next_state != pr->power.state)
504 acpi_processor_power_activate(pr, next_state);
507 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
509 unsigned int i;
510 unsigned int state_is_set = 0;
511 struct acpi_processor_cx *lower = NULL;
512 struct acpi_processor_cx *higher = NULL;
513 struct acpi_processor_cx *cx;
516 if (!pr)
517 return -EINVAL;
520 * This function sets the default Cx state policy (OS idle handler).
521 * Our scheme is to promote quickly to C2 but more conservatively
522 * to C3. We're favoring C2 for its characteristics of low latency
523 * (quick response), good power savings, and ability to allow bus
524 * mastering activity. Note that the Cx state policy is completely
525 * customizable and can be altered dynamically.
528 /* startup state */
529 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
530 cx = &pr->power.states[i];
531 if (!cx->valid)
532 continue;
534 if (!state_is_set)
535 pr->power.state = cx;
536 state_is_set++;
537 break;
540 if (!state_is_set)
541 return -ENODEV;
543 /* demotion */
544 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
545 cx = &pr->power.states[i];
546 if (!cx->valid)
547 continue;
549 if (lower) {
550 cx->demotion.state = lower;
551 cx->demotion.threshold.ticks = cx->latency_ticks;
552 cx->demotion.threshold.count = 1;
553 if (cx->type == ACPI_STATE_C3)
554 cx->demotion.threshold.bm = bm_history;
557 lower = cx;
560 /* promotion */
561 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
562 cx = &pr->power.states[i];
563 if (!cx->valid)
564 continue;
566 if (higher) {
567 cx->promotion.state = higher;
568 cx->promotion.threshold.ticks = cx->latency_ticks;
569 if (cx->type >= ACPI_STATE_C2)
570 cx->promotion.threshold.count = 4;
571 else
572 cx->promotion.threshold.count = 10;
573 if (higher->type == ACPI_STATE_C3)
574 cx->promotion.threshold.bm = bm_history;
577 higher = cx;
580 return 0;
583 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
586 if (!pr)
587 return -EINVAL;
589 if (!pr->pblk)
590 return -ENODEV;
592 /* if info is obtained from pblk/fadt, type equals state */
593 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
594 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
596 #ifndef CONFIG_HOTPLUG_CPU
598 * Check for P_LVL2_UP flag before entering C2 and above on
599 * an SMP system.
601 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
602 return -ENODEV;
603 #endif
605 /* determine C2 and C3 address from pblk */
606 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
607 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
609 /* determine latencies from FADT */
610 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
611 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
613 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
614 "lvl2[0x%08x] lvl3[0x%08x]\n",
615 pr->power.states[ACPI_STATE_C2].address,
616 pr->power.states[ACPI_STATE_C3].address));
618 return 0;
621 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
624 /* Zero initialize all the C-states info. */
625 memset(pr->power.states, 0, sizeof(pr->power.states));
627 /* set the first C-State to C1 */
628 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
630 /* the C0 state only exists as a filler in our array,
631 * and all processors need to support C1 */
632 pr->power.states[ACPI_STATE_C0].valid = 1;
633 pr->power.states[ACPI_STATE_C1].valid = 1;
635 return 0;
638 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
640 acpi_status status = 0;
641 acpi_integer count;
642 int current_count;
643 int i;
644 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
645 union acpi_object *cst;
648 if (nocst)
649 return -ENODEV;
651 current_count = 1;
653 /* Zero initialize C2 onwards and prepare for fresh CST lookup */
654 for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
655 memset(&(pr->power.states[i]), 0,
656 sizeof(struct acpi_processor_cx));
658 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
659 if (ACPI_FAILURE(status)) {
660 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
661 return -ENODEV;
664 cst = (union acpi_object *)buffer.pointer;
666 /* There must be at least 2 elements */
667 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
668 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
669 status = -EFAULT;
670 goto end;
673 count = cst->package.elements[0].integer.value;
675 /* Validate number of power states. */
676 if (count < 1 || count != cst->package.count - 1) {
677 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
678 status = -EFAULT;
679 goto end;
682 /* Tell driver that at least _CST is supported. */
683 pr->flags.has_cst = 1;
685 for (i = 1; i <= count; i++) {
686 union acpi_object *element;
687 union acpi_object *obj;
688 struct acpi_power_register *reg;
689 struct acpi_processor_cx cx;
691 memset(&cx, 0, sizeof(cx));
693 element = (union acpi_object *)&(cst->package.elements[i]);
694 if (element->type != ACPI_TYPE_PACKAGE)
695 continue;
697 if (element->package.count != 4)
698 continue;
700 obj = (union acpi_object *)&(element->package.elements[0]);
702 if (obj->type != ACPI_TYPE_BUFFER)
703 continue;
705 reg = (struct acpi_power_register *)obj->buffer.pointer;
707 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
708 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
709 continue;
711 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
712 0 : reg->address;
714 /* There should be an easy way to extract an integer... */
715 obj = (union acpi_object *)&(element->package.elements[1]);
716 if (obj->type != ACPI_TYPE_INTEGER)
717 continue;
719 cx.type = obj->integer.value;
721 if ((cx.type != ACPI_STATE_C1) &&
722 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
723 continue;
725 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
726 continue;
728 obj = (union acpi_object *)&(element->package.elements[2]);
729 if (obj->type != ACPI_TYPE_INTEGER)
730 continue;
732 cx.latency = obj->integer.value;
734 obj = (union acpi_object *)&(element->package.elements[3]);
735 if (obj->type != ACPI_TYPE_INTEGER)
736 continue;
738 cx.power = obj->integer.value;
740 current_count++;
741 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
744 * We support total ACPI_PROCESSOR_MAX_POWER - 1
745 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
747 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
748 printk(KERN_WARNING
749 "Limiting number of power states to max (%d)\n",
750 ACPI_PROCESSOR_MAX_POWER);
751 printk(KERN_WARNING
752 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
753 break;
757 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
758 current_count));
760 /* Validate number of power states discovered */
761 if (current_count < 2)
762 status = -EFAULT;
764 end:
765 acpi_os_free(buffer.pointer);
767 return status;
770 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
773 if (!cx->address)
774 return;
777 * C2 latency must be less than or equal to 100
778 * microseconds.
780 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
781 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
782 "latency too large [%d]\n", cx->latency));
783 return;
787 * Otherwise we've met all of our C2 requirements.
788 * Normalize the C2 latency to expidite policy
790 cx->valid = 1;
791 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
793 return;
796 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
797 struct acpi_processor_cx *cx)
799 static int bm_check_flag;
802 if (!cx->address)
803 return;
806 * C3 latency must be less than or equal to 1000
807 * microseconds.
809 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
810 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
811 "latency too large [%d]\n", cx->latency));
812 return;
816 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
817 * DMA transfers are used by any ISA device to avoid livelock.
818 * Note that we could disable Type-F DMA (as recommended by
819 * the erratum), but this is known to disrupt certain ISA
820 * devices thus we take the conservative approach.
822 else if (errata.piix4.fdma) {
823 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
824 "C3 not supported on PIIX4 with Type-F DMA\n"));
825 return;
828 /* All the logic here assumes flags.bm_check is same across all CPUs */
829 if (!bm_check_flag) {
830 /* Determine whether bm_check is needed based on CPU */
831 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
832 bm_check_flag = pr->flags.bm_check;
833 } else {
834 pr->flags.bm_check = bm_check_flag;
837 if (pr->flags.bm_check) {
838 /* bus mastering control is necessary */
839 if (!pr->flags.bm_control) {
840 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
841 "C3 support requires bus mastering control\n"));
842 return;
844 } else {
846 * WBINVD should be set in fadt, for C3 state to be
847 * supported on when bm_check is not required.
849 if (acpi_fadt.wb_invd != 1) {
850 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
851 "Cache invalidation should work properly"
852 " for C3 to be enabled on SMP systems\n"));
853 return;
855 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
856 0, ACPI_MTX_DO_NOT_LOCK);
860 * Otherwise we've met all of our C3 requirements.
861 * Normalize the C3 latency to expidite policy. Enable
862 * checking of bus mastering status (bm_check) so we can
863 * use this in our C3 policy
865 cx->valid = 1;
866 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
868 return;
871 static int acpi_processor_power_verify(struct acpi_processor *pr)
873 unsigned int i;
874 unsigned int working = 0;
876 #ifdef ARCH_APICTIMER_STOPS_ON_C3
877 int timer_broadcast = 0;
878 cpumask_t mask = cpumask_of_cpu(pr->id);
879 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
880 #endif
882 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
883 struct acpi_processor_cx *cx = &pr->power.states[i];
885 switch (cx->type) {
886 case ACPI_STATE_C1:
887 cx->valid = 1;
888 break;
890 case ACPI_STATE_C2:
891 acpi_processor_power_verify_c2(cx);
892 #ifdef ARCH_APICTIMER_STOPS_ON_C3
893 /* Some AMD systems fake C3 as C2, but still
894 have timer troubles */
895 if (cx->valid &&
896 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
897 timer_broadcast++;
898 #endif
899 break;
901 case ACPI_STATE_C3:
902 acpi_processor_power_verify_c3(pr, cx);
903 #ifdef ARCH_APICTIMER_STOPS_ON_C3
904 if (cx->valid)
905 timer_broadcast++;
906 #endif
907 break;
910 if (cx->valid)
911 working++;
914 #ifdef ARCH_APICTIMER_STOPS_ON_C3
915 if (timer_broadcast)
916 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
917 #endif
919 return (working);
922 static int acpi_processor_get_power_info(struct acpi_processor *pr)
924 unsigned int i;
925 int result;
928 /* NOTE: the idle thread may not be running while calling
929 * this function */
931 /* Adding C1 state */
932 acpi_processor_get_power_info_default_c1(pr);
933 result = acpi_processor_get_power_info_cst(pr);
934 if (result == -ENODEV)
935 acpi_processor_get_power_info_fadt(pr);
937 pr->power.count = acpi_processor_power_verify(pr);
940 * Set Default Policy
941 * ------------------
942 * Now that we know which states are supported, set the default
943 * policy. Note that this policy can be changed dynamically
944 * (e.g. encourage deeper sleeps to conserve battery life when
945 * not on AC).
947 result = acpi_processor_set_power_policy(pr);
948 if (result)
949 return result;
952 * if one state of type C2 or C3 is available, mark this
953 * CPU as being "idle manageable"
955 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
956 if (pr->power.states[i].valid) {
957 pr->power.count = i;
958 if (pr->power.states[i].type >= ACPI_STATE_C2)
959 pr->flags.power = 1;
963 return 0;
966 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
968 int result = 0;
971 if (!pr)
972 return -EINVAL;
974 if (nocst) {
975 return -ENODEV;
978 if (!pr->flags.power_setup_done)
979 return -ENODEV;
981 /* Fall back to the default idle loop */
982 pm_idle = pm_idle_save;
983 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
985 pr->flags.power = 0;
986 result = acpi_processor_get_power_info(pr);
987 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
988 pm_idle = acpi_processor_idle;
990 return result;
993 /* proc interface */
995 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
997 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
998 unsigned int i;
1001 if (!pr)
1002 goto end;
1004 seq_printf(seq, "active state: C%zd\n"
1005 "max_cstate: C%d\n"
1006 "bus master activity: %08x\n",
1007 pr->power.state ? pr->power.state - pr->power.states : 0,
1008 max_cstate, (unsigned)pr->power.bm_activity);
1010 seq_puts(seq, "states:\n");
1012 for (i = 1; i <= pr->power.count; i++) {
1013 seq_printf(seq, " %cC%d: ",
1014 (&pr->power.states[i] ==
1015 pr->power.state ? '*' : ' '), i);
1017 if (!pr->power.states[i].valid) {
1018 seq_puts(seq, "<not supported>\n");
1019 continue;
1022 switch (pr->power.states[i].type) {
1023 case ACPI_STATE_C1:
1024 seq_printf(seq, "type[C1] ");
1025 break;
1026 case ACPI_STATE_C2:
1027 seq_printf(seq, "type[C2] ");
1028 break;
1029 case ACPI_STATE_C3:
1030 seq_printf(seq, "type[C3] ");
1031 break;
1032 default:
1033 seq_printf(seq, "type[--] ");
1034 break;
1037 if (pr->power.states[i].promotion.state)
1038 seq_printf(seq, "promotion[C%zd] ",
1039 (pr->power.states[i].promotion.state -
1040 pr->power.states));
1041 else
1042 seq_puts(seq, "promotion[--] ");
1044 if (pr->power.states[i].demotion.state)
1045 seq_printf(seq, "demotion[C%zd] ",
1046 (pr->power.states[i].demotion.state -
1047 pr->power.states));
1048 else
1049 seq_puts(seq, "demotion[--] ");
1051 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1052 pr->power.states[i].latency,
1053 pr->power.states[i].usage,
1054 pr->power.states[i].time);
1057 end:
1058 return 0;
1061 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1063 return single_open(file, acpi_processor_power_seq_show,
1064 PDE(inode)->data);
1067 static struct file_operations acpi_processor_power_fops = {
1068 .open = acpi_processor_power_open_fs,
1069 .read = seq_read,
1070 .llseek = seq_lseek,
1071 .release = single_release,
1074 int acpi_processor_power_init(struct acpi_processor *pr,
1075 struct acpi_device *device)
1077 acpi_status status = 0;
1078 static int first_run;
1079 struct proc_dir_entry *entry = NULL;
1080 unsigned int i;
1083 if (!first_run) {
1084 dmi_check_system(processor_power_dmi_table);
1085 if (max_cstate < ACPI_C_STATES_MAX)
1086 printk(KERN_NOTICE
1087 "ACPI: processor limited to max C-state %d\n",
1088 max_cstate);
1089 first_run++;
1092 if (!pr)
1093 return -EINVAL;
1095 if (acpi_fadt.cst_cnt && !nocst) {
1096 status =
1097 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1098 if (ACPI_FAILURE(status)) {
1099 ACPI_EXCEPTION((AE_INFO, status,
1100 "Notifying BIOS of _CST ability failed"));
1104 acpi_processor_get_power_info(pr);
1107 * Install the idle handler if processor power management is supported.
1108 * Note that we use previously set idle handler will be used on
1109 * platforms that only support C1.
1111 if ((pr->flags.power) && (!boot_option_idle_override)) {
1112 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1113 for (i = 1; i <= pr->power.count; i++)
1114 if (pr->power.states[i].valid)
1115 printk(" C%d[C%d]", i,
1116 pr->power.states[i].type);
1117 printk(")\n");
1119 if (pr->id == 0) {
1120 pm_idle_save = pm_idle;
1121 pm_idle = acpi_processor_idle;
1125 /* 'power' [R] */
1126 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1127 S_IRUGO, acpi_device_dir(device));
1128 if (!entry)
1129 return -EIO;
1130 else {
1131 entry->proc_fops = &acpi_processor_power_fops;
1132 entry->data = acpi_driver_data(device);
1133 entry->owner = THIS_MODULE;
1136 pr->flags.power_setup_done = 1;
1138 return 0;
1141 int acpi_processor_power_exit(struct acpi_processor *pr,
1142 struct acpi_device *device)
1145 pr->flags.power_setup_done = 0;
1147 if (acpi_device_dir(device))
1148 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1149 acpi_device_dir(device));
1151 /* Unregister the idle handler when processor #0 is removed. */
1152 if (pr->id == 0) {
1153 pm_idle = pm_idle_save;
1156 * We are about to unload the current idle thread pm callback
1157 * (pm_idle), Wait for all processors to update cached/local
1158 * copies of pm_idle before proceeding.
1160 cpu_idle_wait();
1163 return 0;