e1000: Fix AMT losing connectivity when switching VLAN in passive mode
[linux-2.6/linux-loongson.git] / drivers / net / e1000 / e1000_main.c
blob0109cc72746c0720f7030dca884502529b82d7b2
1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 /* Change Log
32 * 6.3.9 12/16/2005
33 * o incorporate fix for recycled skbs from IBM LTC
34 * 6.3.7 11/18/2005
35 * o Honor eeprom setting for enabling/disabling Wake On Lan
36 * 6.3.5 11/17/2005
37 * o Fix memory leak in rx ring handling for PCI Express adapters
38 * 6.3.4 11/8/05
39 * o Patch from Jesper Juhl to remove redundant NULL checks for kfree
40 * 6.3.2 9/20/05
41 * o Render logic that sets/resets DRV_LOAD as inline functions to
42 * avoid code replication. If f/w is AMT then set DRV_LOAD only when
43 * network interface is open.
44 * o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
45 * o Adjust PBA partioning for Jumbo frames using MTU size and not
46 * rx_buffer_len
47 * 6.3.1 9/19/05
48 * o Use adapter->tx_timeout_factor in Tx Hung Detect logic
49 (e1000_clean_tx_irq)
50 * o Support for 8086:10B5 device (Quad Port)
51 * 6.2.14 9/15/05
52 * o In AMT enabled configurations, set/reset DRV_LOAD bit on interface
53 * open/close
54 * 6.2.13 9/14/05
55 * o Invoke e1000_check_mng_mode only for 8257x controllers since it
56 * accesses the FWSM that is not supported in other controllers
57 * 6.2.12 9/9/05
58 * o Add support for device id E1000_DEV_ID_82546GB_QUAD_COPPER
59 * o set RCTL:SECRC only for controllers newer than 82543.
60 * o When the n/w interface comes down reset DRV_LOAD bit to notify f/w.
61 * This code was moved from e1000_remove to e1000_close
62 * 6.2.10 9/6/05
63 * o Fix error in updating RDT in el1000_alloc_rx_buffers[_ps] -- one off.
64 * o Enable fc by default on 82573 controllers (do not read eeprom)
65 * o Fix rx_errors statistic not to include missed_packet_count
66 * o Fix rx_dropped statistic not to include missed_packet_count
67 (Padraig Brady)
68 * 6.2.9 8/30/05
69 * o Remove call to update statistics from the controller ib e1000_get_stats
70 * 6.2.8 8/30/05
71 * o Improved algorithm for rx buffer allocation/rdt update
72 * o Flow control watermarks relative to rx PBA size
73 * o Simplified 'Tx Hung' detect logic
74 * 6.2.7 8/17/05
75 * o Report rx buffer allocation failures and tx timeout counts in stats
76 * 6.2.6 8/16/05
77 * o Implement workaround for controller erratum -- linear non-tso packet
78 * following a TSO gets written back prematurely
79 * 6.2.5 8/15/05
80 * o Set netdev->tx_queue_len based on link speed/duplex settings.
81 * o Fix net_stats.rx_fifo_errors <p@draigBrady.com>
82 * o Do not power off PHY if SoL/IDER session is active
83 * 6.2.4 8/10/05
84 * o Fix loopback test setup/cleanup for 82571/3 controllers
85 * o Fix parsing of outgoing packets (e1000_transfer_dhcp_info) to treat
86 * all packets as raw
87 * o Prevent operations that will cause the PHY to be reset if SoL/IDER
88 * sessions are active and log a message
89 * 6.2.2 7/21/05
90 * o used fixed size descriptors for all MTU sizes, reduces memory load
91 * 6.1.2 4/13/05
92 * o Fixed ethtool diagnostics
93 * o Enabled flow control to take default eeprom settings
94 * o Added stats_lock around e1000_read_phy_reg commands to avoid concurrent
95 * calls, one from mii_ioctl and other from within update_stats while
96 * processing MIIREG ioctl.
99 char e1000_driver_name[] = "e1000";
100 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
101 #ifndef CONFIG_E1000_NAPI
102 #define DRIVERNAPI
103 #else
104 #define DRIVERNAPI "-NAPI"
105 #endif
106 #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
107 char e1000_driver_version[] = DRV_VERSION;
108 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
110 /* e1000_pci_tbl - PCI Device ID Table
112 * Last entry must be all 0s
114 * Macro expands to...
115 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
117 static struct pci_device_id e1000_pci_tbl[] = {
118 INTEL_E1000_ETHERNET_DEVICE(0x1000),
119 INTEL_E1000_ETHERNET_DEVICE(0x1001),
120 INTEL_E1000_ETHERNET_DEVICE(0x1004),
121 INTEL_E1000_ETHERNET_DEVICE(0x1008),
122 INTEL_E1000_ETHERNET_DEVICE(0x1009),
123 INTEL_E1000_ETHERNET_DEVICE(0x100C),
124 INTEL_E1000_ETHERNET_DEVICE(0x100D),
125 INTEL_E1000_ETHERNET_DEVICE(0x100E),
126 INTEL_E1000_ETHERNET_DEVICE(0x100F),
127 INTEL_E1000_ETHERNET_DEVICE(0x1010),
128 INTEL_E1000_ETHERNET_DEVICE(0x1011),
129 INTEL_E1000_ETHERNET_DEVICE(0x1012),
130 INTEL_E1000_ETHERNET_DEVICE(0x1013),
131 INTEL_E1000_ETHERNET_DEVICE(0x1014),
132 INTEL_E1000_ETHERNET_DEVICE(0x1015),
133 INTEL_E1000_ETHERNET_DEVICE(0x1016),
134 INTEL_E1000_ETHERNET_DEVICE(0x1017),
135 INTEL_E1000_ETHERNET_DEVICE(0x1018),
136 INTEL_E1000_ETHERNET_DEVICE(0x1019),
137 INTEL_E1000_ETHERNET_DEVICE(0x101A),
138 INTEL_E1000_ETHERNET_DEVICE(0x101D),
139 INTEL_E1000_ETHERNET_DEVICE(0x101E),
140 INTEL_E1000_ETHERNET_DEVICE(0x1026),
141 INTEL_E1000_ETHERNET_DEVICE(0x1027),
142 INTEL_E1000_ETHERNET_DEVICE(0x1028),
143 INTEL_E1000_ETHERNET_DEVICE(0x105E),
144 INTEL_E1000_ETHERNET_DEVICE(0x105F),
145 INTEL_E1000_ETHERNET_DEVICE(0x1060),
146 INTEL_E1000_ETHERNET_DEVICE(0x1075),
147 INTEL_E1000_ETHERNET_DEVICE(0x1076),
148 INTEL_E1000_ETHERNET_DEVICE(0x1077),
149 INTEL_E1000_ETHERNET_DEVICE(0x1078),
150 INTEL_E1000_ETHERNET_DEVICE(0x1079),
151 INTEL_E1000_ETHERNET_DEVICE(0x107A),
152 INTEL_E1000_ETHERNET_DEVICE(0x107B),
153 INTEL_E1000_ETHERNET_DEVICE(0x107C),
154 INTEL_E1000_ETHERNET_DEVICE(0x107D),
155 INTEL_E1000_ETHERNET_DEVICE(0x107E),
156 INTEL_E1000_ETHERNET_DEVICE(0x107F),
157 INTEL_E1000_ETHERNET_DEVICE(0x108A),
158 INTEL_E1000_ETHERNET_DEVICE(0x108B),
159 INTEL_E1000_ETHERNET_DEVICE(0x108C),
160 INTEL_E1000_ETHERNET_DEVICE(0x1099),
161 INTEL_E1000_ETHERNET_DEVICE(0x109A),
162 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
163 /* required last entry */
164 {0,}
167 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
169 int e1000_up(struct e1000_adapter *adapter);
170 void e1000_down(struct e1000_adapter *adapter);
171 void e1000_reset(struct e1000_adapter *adapter);
172 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
173 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
174 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
175 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
176 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
177 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
178 struct e1000_tx_ring *txdr);
179 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
180 struct e1000_rx_ring *rxdr);
181 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
182 struct e1000_tx_ring *tx_ring);
183 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring);
185 void e1000_update_stats(struct e1000_adapter *adapter);
187 /* Local Function Prototypes */
189 static int e1000_init_module(void);
190 static void e1000_exit_module(void);
191 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
192 static void __devexit e1000_remove(struct pci_dev *pdev);
193 static int e1000_alloc_queues(struct e1000_adapter *adapter);
194 static int e1000_sw_init(struct e1000_adapter *adapter);
195 static int e1000_open(struct net_device *netdev);
196 static int e1000_close(struct net_device *netdev);
197 static void e1000_configure_tx(struct e1000_adapter *adapter);
198 static void e1000_configure_rx(struct e1000_adapter *adapter);
199 static void e1000_setup_rctl(struct e1000_adapter *adapter);
200 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
201 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
202 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
203 struct e1000_tx_ring *tx_ring);
204 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
205 struct e1000_rx_ring *rx_ring);
206 static void e1000_set_multi(struct net_device *netdev);
207 static void e1000_update_phy_info(unsigned long data);
208 static void e1000_watchdog(unsigned long data);
209 static void e1000_watchdog_task(struct e1000_adapter *adapter);
210 static void e1000_82547_tx_fifo_stall(unsigned long data);
211 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
212 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
213 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
214 static int e1000_set_mac(struct net_device *netdev, void *p);
215 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
216 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
217 struct e1000_tx_ring *tx_ring);
218 #ifdef CONFIG_E1000_NAPI
219 static int e1000_clean(struct net_device *poll_dev, int *budget);
220 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
221 struct e1000_rx_ring *rx_ring,
222 int *work_done, int work_to_do);
223 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
224 struct e1000_rx_ring *rx_ring,
225 int *work_done, int work_to_do);
226 #else
227 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
228 struct e1000_rx_ring *rx_ring);
229 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
230 struct e1000_rx_ring *rx_ring);
231 #endif
232 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
233 struct e1000_rx_ring *rx_ring,
234 int cleaned_count);
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct e1000_rx_ring *rx_ring,
237 int cleaned_count);
238 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
239 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
240 int cmd);
241 void e1000_set_ethtool_ops(struct net_device *netdev);
242 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
243 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
244 static void e1000_tx_timeout(struct net_device *dev);
245 static void e1000_tx_timeout_task(struct net_device *dev);
246 static void e1000_smartspeed(struct e1000_adapter *adapter);
247 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
248 struct sk_buff *skb);
250 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
251 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
252 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
253 static void e1000_restore_vlan(struct e1000_adapter *adapter);
255 #ifdef CONFIG_PM
256 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
257 static int e1000_resume(struct pci_dev *pdev);
258 #endif
260 #ifdef CONFIG_NET_POLL_CONTROLLER
261 /* for netdump / net console */
262 static void e1000_netpoll (struct net_device *netdev);
263 #endif
266 /* Exported from other modules */
268 extern void e1000_check_options(struct e1000_adapter *adapter);
270 static struct pci_driver e1000_driver = {
271 .name = e1000_driver_name,
272 .id_table = e1000_pci_tbl,
273 .probe = e1000_probe,
274 .remove = __devexit_p(e1000_remove),
275 /* Power Managment Hooks */
276 #ifdef CONFIG_PM
277 .suspend = e1000_suspend,
278 .resume = e1000_resume
279 #endif
282 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
283 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
284 MODULE_LICENSE("GPL");
285 MODULE_VERSION(DRV_VERSION);
287 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
288 module_param(debug, int, 0);
289 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
292 * e1000_init_module - Driver Registration Routine
294 * e1000_init_module is the first routine called when the driver is
295 * loaded. All it does is register with the PCI subsystem.
298 static int __init
299 e1000_init_module(void)
301 int ret;
302 printk(KERN_INFO "%s - version %s\n",
303 e1000_driver_string, e1000_driver_version);
305 printk(KERN_INFO "%s\n", e1000_copyright);
307 ret = pci_module_init(&e1000_driver);
309 return ret;
312 module_init(e1000_init_module);
315 * e1000_exit_module - Driver Exit Cleanup Routine
317 * e1000_exit_module is called just before the driver is removed
318 * from memory.
321 static void __exit
322 e1000_exit_module(void)
324 pci_unregister_driver(&e1000_driver);
327 module_exit(e1000_exit_module);
330 * e1000_irq_disable - Mask off interrupt generation on the NIC
331 * @adapter: board private structure
334 static inline void
335 e1000_irq_disable(struct e1000_adapter *adapter)
337 atomic_inc(&adapter->irq_sem);
338 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
339 E1000_WRITE_FLUSH(&adapter->hw);
340 synchronize_irq(adapter->pdev->irq);
344 * e1000_irq_enable - Enable default interrupt generation settings
345 * @adapter: board private structure
348 static inline void
349 e1000_irq_enable(struct e1000_adapter *adapter)
351 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
352 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
353 E1000_WRITE_FLUSH(&adapter->hw);
357 static void
358 e1000_update_mng_vlan(struct e1000_adapter *adapter)
360 struct net_device *netdev = adapter->netdev;
361 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
362 uint16_t old_vid = adapter->mng_vlan_id;
363 if (adapter->vlgrp) {
364 if (!adapter->vlgrp->vlan_devices[vid]) {
365 if (adapter->hw.mng_cookie.status &
366 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
367 e1000_vlan_rx_add_vid(netdev, vid);
368 adapter->mng_vlan_id = vid;
369 } else
370 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
372 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
373 (vid != old_vid) &&
374 !adapter->vlgrp->vlan_devices[old_vid])
375 e1000_vlan_rx_kill_vid(netdev, old_vid);
376 } else
377 adapter->mng_vlan_id = vid;
382 * e1000_release_hw_control - release control of the h/w to f/w
383 * @adapter: address of board private structure
385 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
386 * For ASF and Pass Through versions of f/w this means that the
387 * driver is no longer loaded. For AMT version (only with 82573) i
388 * of the f/w this means that the netowrk i/f is closed.
392 static inline void
393 e1000_release_hw_control(struct e1000_adapter *adapter)
395 uint32_t ctrl_ext;
396 uint32_t swsm;
398 /* Let firmware taken over control of h/w */
399 switch (adapter->hw.mac_type) {
400 case e1000_82571:
401 case e1000_82572:
402 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
403 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
404 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 case e1000_82573:
407 swsm = E1000_READ_REG(&adapter->hw, SWSM);
408 E1000_WRITE_REG(&adapter->hw, SWSM,
409 swsm & ~E1000_SWSM_DRV_LOAD);
410 default:
411 break;
416 * e1000_get_hw_control - get control of the h/w from f/w
417 * @adapter: address of board private structure
419 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
420 * For ASF and Pass Through versions of f/w this means that
421 * the driver is loaded. For AMT version (only with 82573)
422 * of the f/w this means that the netowrk i/f is open.
426 static inline void
427 e1000_get_hw_control(struct e1000_adapter *adapter)
429 uint32_t ctrl_ext;
430 uint32_t swsm;
431 /* Let firmware know the driver has taken over */
432 switch (adapter->hw.mac_type) {
433 case e1000_82571:
434 case e1000_82572:
435 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438 break;
439 case e1000_82573:
440 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441 E1000_WRITE_REG(&adapter->hw, SWSM,
442 swsm | E1000_SWSM_DRV_LOAD);
443 break;
444 default:
445 break;
450 e1000_up(struct e1000_adapter *adapter)
452 struct net_device *netdev = adapter->netdev;
453 int i, err;
455 /* hardware has been reset, we need to reload some things */
457 /* Reset the PHY if it was previously powered down */
458 if (adapter->hw.media_type == e1000_media_type_copper) {
459 uint16_t mii_reg;
460 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
461 if (mii_reg & MII_CR_POWER_DOWN)
462 e1000_phy_reset(&adapter->hw);
465 e1000_set_multi(netdev);
467 e1000_restore_vlan(adapter);
469 e1000_configure_tx(adapter);
470 e1000_setup_rctl(adapter);
471 e1000_configure_rx(adapter);
472 /* call E1000_DESC_UNUSED which always leaves
473 * at least 1 descriptor unused to make sure
474 * next_to_use != next_to_clean */
475 for (i = 0; i < adapter->num_rx_queues; i++) {
476 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
477 adapter->alloc_rx_buf(adapter, ring,
478 E1000_DESC_UNUSED(ring));
481 #ifdef CONFIG_PCI_MSI
482 if (adapter->hw.mac_type > e1000_82547_rev_2) {
483 adapter->have_msi = TRUE;
484 if ((err = pci_enable_msi(adapter->pdev))) {
485 DPRINTK(PROBE, ERR,
486 "Unable to allocate MSI interrupt Error: %d\n", err);
487 adapter->have_msi = FALSE;
490 #endif
491 if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
492 SA_SHIRQ | SA_SAMPLE_RANDOM,
493 netdev->name, netdev))) {
494 DPRINTK(PROBE, ERR,
495 "Unable to allocate interrupt Error: %d\n", err);
496 return err;
499 adapter->tx_queue_len = netdev->tx_queue_len;
501 mod_timer(&adapter->watchdog_timer, jiffies);
503 #ifdef CONFIG_E1000_NAPI
504 netif_poll_enable(netdev);
505 #endif
506 e1000_irq_enable(adapter);
508 return 0;
511 void
512 e1000_down(struct e1000_adapter *adapter)
514 struct net_device *netdev = adapter->netdev;
515 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
516 e1000_check_mng_mode(&adapter->hw);
518 e1000_irq_disable(adapter);
520 free_irq(adapter->pdev->irq, netdev);
521 #ifdef CONFIG_PCI_MSI
522 if (adapter->hw.mac_type > e1000_82547_rev_2 &&
523 adapter->have_msi == TRUE)
524 pci_disable_msi(adapter->pdev);
525 #endif
526 del_timer_sync(&adapter->tx_fifo_stall_timer);
527 del_timer_sync(&adapter->watchdog_timer);
528 del_timer_sync(&adapter->phy_info_timer);
530 #ifdef CONFIG_E1000_NAPI
531 netif_poll_disable(netdev);
532 #endif
533 netdev->tx_queue_len = adapter->tx_queue_len;
534 adapter->link_speed = 0;
535 adapter->link_duplex = 0;
536 netif_carrier_off(netdev);
537 netif_stop_queue(netdev);
539 e1000_reset(adapter);
540 e1000_clean_all_tx_rings(adapter);
541 e1000_clean_all_rx_rings(adapter);
543 /* Power down the PHY so no link is implied when interface is down *
544 * The PHY cannot be powered down if any of the following is TRUE *
545 * (a) WoL is enabled
546 * (b) AMT is active
547 * (c) SoL/IDER session is active */
548 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
549 adapter->hw.media_type == e1000_media_type_copper &&
550 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
551 !mng_mode_enabled &&
552 !e1000_check_phy_reset_block(&adapter->hw)) {
553 uint16_t mii_reg;
554 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
555 mii_reg |= MII_CR_POWER_DOWN;
556 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
557 mdelay(1);
561 void
562 e1000_reset(struct e1000_adapter *adapter)
564 uint32_t pba, manc;
565 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
567 /* Repartition Pba for greater than 9k mtu
568 * To take effect CTRL.RST is required.
571 switch (adapter->hw.mac_type) {
572 case e1000_82547:
573 case e1000_82547_rev_2:
574 pba = E1000_PBA_30K;
575 break;
576 case e1000_82571:
577 case e1000_82572:
578 pba = E1000_PBA_38K;
579 break;
580 case e1000_82573:
581 pba = E1000_PBA_12K;
582 break;
583 default:
584 pba = E1000_PBA_48K;
585 break;
588 if ((adapter->hw.mac_type != e1000_82573) &&
589 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
590 pba -= 8; /* allocate more FIFO for Tx */
593 if (adapter->hw.mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
601 E1000_WRITE_REG(&adapter->hw, PBA, pba);
603 /* flow control settings */
604 /* Set the FC high water mark to 90% of the FIFO size.
605 * Required to clear last 3 LSB */
606 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
608 adapter->hw.fc_high_water = fc_high_water_mark;
609 adapter->hw.fc_low_water = fc_high_water_mark - 8;
610 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
611 adapter->hw.fc_send_xon = 1;
612 adapter->hw.fc = adapter->hw.original_fc;
614 /* Allow time for pending master requests to run */
615 e1000_reset_hw(&adapter->hw);
616 if (adapter->hw.mac_type >= e1000_82544)
617 E1000_WRITE_REG(&adapter->hw, WUC, 0);
618 if (e1000_init_hw(&adapter->hw))
619 DPRINTK(PROBE, ERR, "Hardware Error\n");
620 e1000_update_mng_vlan(adapter);
621 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
622 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
624 e1000_reset_adaptive(&adapter->hw);
625 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
626 if (adapter->en_mng_pt) {
627 manc = E1000_READ_REG(&adapter->hw, MANC);
628 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
629 E1000_WRITE_REG(&adapter->hw, MANC, manc);
634 * e1000_probe - Device Initialization Routine
635 * @pdev: PCI device information struct
636 * @ent: entry in e1000_pci_tbl
638 * Returns 0 on success, negative on failure
640 * e1000_probe initializes an adapter identified by a pci_dev structure.
641 * The OS initialization, configuring of the adapter private structure,
642 * and a hardware reset occur.
645 static int __devinit
646 e1000_probe(struct pci_dev *pdev,
647 const struct pci_device_id *ent)
649 struct net_device *netdev;
650 struct e1000_adapter *adapter;
651 unsigned long mmio_start, mmio_len;
653 static int cards_found = 0;
654 int i, err, pci_using_dac;
655 uint16_t eeprom_data;
656 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
657 if ((err = pci_enable_device(pdev)))
658 return err;
660 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
661 pci_using_dac = 1;
662 } else {
663 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
664 E1000_ERR("No usable DMA configuration, aborting\n");
665 return err;
667 pci_using_dac = 0;
670 if ((err = pci_request_regions(pdev, e1000_driver_name)))
671 return err;
673 pci_set_master(pdev);
675 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
676 if (!netdev) {
677 err = -ENOMEM;
678 goto err_alloc_etherdev;
681 SET_MODULE_OWNER(netdev);
682 SET_NETDEV_DEV(netdev, &pdev->dev);
684 pci_set_drvdata(pdev, netdev);
685 adapter = netdev_priv(netdev);
686 adapter->netdev = netdev;
687 adapter->pdev = pdev;
688 adapter->hw.back = adapter;
689 adapter->msg_enable = (1 << debug) - 1;
691 mmio_start = pci_resource_start(pdev, BAR_0);
692 mmio_len = pci_resource_len(pdev, BAR_0);
694 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
695 if (!adapter->hw.hw_addr) {
696 err = -EIO;
697 goto err_ioremap;
700 for (i = BAR_1; i <= BAR_5; i++) {
701 if (pci_resource_len(pdev, i) == 0)
702 continue;
703 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
704 adapter->hw.io_base = pci_resource_start(pdev, i);
705 break;
709 netdev->open = &e1000_open;
710 netdev->stop = &e1000_close;
711 netdev->hard_start_xmit = &e1000_xmit_frame;
712 netdev->get_stats = &e1000_get_stats;
713 netdev->set_multicast_list = &e1000_set_multi;
714 netdev->set_mac_address = &e1000_set_mac;
715 netdev->change_mtu = &e1000_change_mtu;
716 netdev->do_ioctl = &e1000_ioctl;
717 e1000_set_ethtool_ops(netdev);
718 netdev->tx_timeout = &e1000_tx_timeout;
719 netdev->watchdog_timeo = 5 * HZ;
720 #ifdef CONFIG_E1000_NAPI
721 netdev->poll = &e1000_clean;
722 netdev->weight = 64;
723 #endif
724 netdev->vlan_rx_register = e1000_vlan_rx_register;
725 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
726 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
727 #ifdef CONFIG_NET_POLL_CONTROLLER
728 netdev->poll_controller = e1000_netpoll;
729 #endif
730 strcpy(netdev->name, pci_name(pdev));
732 netdev->mem_start = mmio_start;
733 netdev->mem_end = mmio_start + mmio_len;
734 netdev->base_addr = adapter->hw.io_base;
736 adapter->bd_number = cards_found;
738 /* setup the private structure */
740 if ((err = e1000_sw_init(adapter)))
741 goto err_sw_init;
743 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
744 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
746 if (adapter->hw.mac_type >= e1000_82543) {
747 netdev->features = NETIF_F_SG |
748 NETIF_F_HW_CSUM |
749 NETIF_F_HW_VLAN_TX |
750 NETIF_F_HW_VLAN_RX |
751 NETIF_F_HW_VLAN_FILTER;
754 #ifdef NETIF_F_TSO
755 if ((adapter->hw.mac_type >= e1000_82544) &&
756 (adapter->hw.mac_type != e1000_82547))
757 netdev->features |= NETIF_F_TSO;
759 #ifdef NETIF_F_TSO_IPV6
760 if (adapter->hw.mac_type > e1000_82547_rev_2)
761 netdev->features |= NETIF_F_TSO_IPV6;
762 #endif
763 #endif
764 if (pci_using_dac)
765 netdev->features |= NETIF_F_HIGHDMA;
767 /* hard_start_xmit is safe against parallel locking */
768 netdev->features |= NETIF_F_LLTX;
770 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
772 /* before reading the EEPROM, reset the controller to
773 * put the device in a known good starting state */
775 e1000_reset_hw(&adapter->hw);
777 /* make sure the EEPROM is good */
779 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
780 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
781 err = -EIO;
782 goto err_eeprom;
785 /* copy the MAC address out of the EEPROM */
787 if (e1000_read_mac_addr(&adapter->hw))
788 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
789 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
790 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
792 if (!is_valid_ether_addr(netdev->perm_addr)) {
793 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
794 err = -EIO;
795 goto err_eeprom;
798 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
800 e1000_get_bus_info(&adapter->hw);
802 init_timer(&adapter->tx_fifo_stall_timer);
803 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
804 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
806 init_timer(&adapter->watchdog_timer);
807 adapter->watchdog_timer.function = &e1000_watchdog;
808 adapter->watchdog_timer.data = (unsigned long) adapter;
810 INIT_WORK(&adapter->watchdog_task,
811 (void (*)(void *))e1000_watchdog_task, adapter);
813 init_timer(&adapter->phy_info_timer);
814 adapter->phy_info_timer.function = &e1000_update_phy_info;
815 adapter->phy_info_timer.data = (unsigned long) adapter;
817 INIT_WORK(&adapter->tx_timeout_task,
818 (void (*)(void *))e1000_tx_timeout_task, netdev);
820 /* we're going to reset, so assume we have no link for now */
822 netif_carrier_off(netdev);
823 netif_stop_queue(netdev);
825 e1000_check_options(adapter);
827 /* Initial Wake on LAN setting
828 * If APM wake is enabled in the EEPROM,
829 * enable the ACPI Magic Packet filter
832 switch (adapter->hw.mac_type) {
833 case e1000_82542_rev2_0:
834 case e1000_82542_rev2_1:
835 case e1000_82543:
836 break;
837 case e1000_82544:
838 e1000_read_eeprom(&adapter->hw,
839 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
840 eeprom_apme_mask = E1000_EEPROM_82544_APM;
841 break;
842 case e1000_82546:
843 case e1000_82546_rev_3:
844 case e1000_82571:
845 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
846 e1000_read_eeprom(&adapter->hw,
847 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
848 break;
850 /* Fall Through */
851 default:
852 e1000_read_eeprom(&adapter->hw,
853 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
854 break;
856 if (eeprom_data & eeprom_apme_mask)
857 adapter->wol |= E1000_WUFC_MAG;
859 /* print bus type/speed/width info */
861 struct e1000_hw *hw = &adapter->hw;
862 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
863 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
864 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
865 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
866 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
867 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
868 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
869 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
870 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
871 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
872 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
873 "32-bit"));
876 for (i = 0; i < 6; i++)
877 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
879 /* reset the hardware with the new settings */
880 e1000_reset(adapter);
882 /* If the controller is 82573 and f/w is AMT, do not set
883 * DRV_LOAD until the interface is up. For all other cases,
884 * let the f/w know that the h/w is now under the control
885 * of the driver. */
886 if (adapter->hw.mac_type != e1000_82573 ||
887 !e1000_check_mng_mode(&adapter->hw))
888 e1000_get_hw_control(adapter);
890 strcpy(netdev->name, "eth%d");
891 if ((err = register_netdev(netdev)))
892 goto err_register;
894 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
896 cards_found++;
897 return 0;
899 err_register:
900 err_sw_init:
901 err_eeprom:
902 iounmap(adapter->hw.hw_addr);
903 err_ioremap:
904 free_netdev(netdev);
905 err_alloc_etherdev:
906 pci_release_regions(pdev);
907 return err;
911 * e1000_remove - Device Removal Routine
912 * @pdev: PCI device information struct
914 * e1000_remove is called by the PCI subsystem to alert the driver
915 * that it should release a PCI device. The could be caused by a
916 * Hot-Plug event, or because the driver is going to be removed from
917 * memory.
920 static void __devexit
921 e1000_remove(struct pci_dev *pdev)
923 struct net_device *netdev = pci_get_drvdata(pdev);
924 struct e1000_adapter *adapter = netdev_priv(netdev);
925 uint32_t manc;
926 #ifdef CONFIG_E1000_NAPI
927 int i;
928 #endif
930 flush_scheduled_work();
932 if (adapter->hw.mac_type >= e1000_82540 &&
933 adapter->hw.media_type == e1000_media_type_copper) {
934 manc = E1000_READ_REG(&adapter->hw, MANC);
935 if (manc & E1000_MANC_SMBUS_EN) {
936 manc |= E1000_MANC_ARP_EN;
937 E1000_WRITE_REG(&adapter->hw, MANC, manc);
941 /* Release control of h/w to f/w. If f/w is AMT enabled, this
942 * would have already happened in close and is redundant. */
943 e1000_release_hw_control(adapter);
945 unregister_netdev(netdev);
946 #ifdef CONFIG_E1000_NAPI
947 for (i = 0; i < adapter->num_rx_queues; i++)
948 __dev_put(&adapter->polling_netdev[i]);
949 #endif
951 if (!e1000_check_phy_reset_block(&adapter->hw))
952 e1000_phy_hw_reset(&adapter->hw);
954 kfree(adapter->tx_ring);
955 kfree(adapter->rx_ring);
956 #ifdef CONFIG_E1000_NAPI
957 kfree(adapter->polling_netdev);
958 #endif
960 iounmap(adapter->hw.hw_addr);
961 pci_release_regions(pdev);
963 free_netdev(netdev);
965 pci_disable_device(pdev);
969 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
970 * @adapter: board private structure to initialize
972 * e1000_sw_init initializes the Adapter private data structure.
973 * Fields are initialized based on PCI device information and
974 * OS network device settings (MTU size).
977 static int __devinit
978 e1000_sw_init(struct e1000_adapter *adapter)
980 struct e1000_hw *hw = &adapter->hw;
981 struct net_device *netdev = adapter->netdev;
982 struct pci_dev *pdev = adapter->pdev;
983 #ifdef CONFIG_E1000_NAPI
984 int i;
985 #endif
987 /* PCI config space info */
989 hw->vendor_id = pdev->vendor;
990 hw->device_id = pdev->device;
991 hw->subsystem_vendor_id = pdev->subsystem_vendor;
992 hw->subsystem_id = pdev->subsystem_device;
994 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
996 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
998 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
999 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
1000 hw->max_frame_size = netdev->mtu +
1001 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1002 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1004 /* identify the MAC */
1006 if (e1000_set_mac_type(hw)) {
1007 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1008 return -EIO;
1011 /* initialize eeprom parameters */
1013 if (e1000_init_eeprom_params(hw)) {
1014 E1000_ERR("EEPROM initialization failed\n");
1015 return -EIO;
1018 switch (hw->mac_type) {
1019 default:
1020 break;
1021 case e1000_82541:
1022 case e1000_82547:
1023 case e1000_82541_rev_2:
1024 case e1000_82547_rev_2:
1025 hw->phy_init_script = 1;
1026 break;
1029 e1000_set_media_type(hw);
1031 hw->wait_autoneg_complete = FALSE;
1032 hw->tbi_compatibility_en = TRUE;
1033 hw->adaptive_ifs = TRUE;
1035 /* Copper options */
1037 if (hw->media_type == e1000_media_type_copper) {
1038 hw->mdix = AUTO_ALL_MODES;
1039 hw->disable_polarity_correction = FALSE;
1040 hw->master_slave = E1000_MASTER_SLAVE;
1043 adapter->num_tx_queues = 1;
1044 adapter->num_rx_queues = 1;
1046 if (e1000_alloc_queues(adapter)) {
1047 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1048 return -ENOMEM;
1051 #ifdef CONFIG_E1000_NAPI
1052 for (i = 0; i < adapter->num_rx_queues; i++) {
1053 adapter->polling_netdev[i].priv = adapter;
1054 adapter->polling_netdev[i].poll = &e1000_clean;
1055 adapter->polling_netdev[i].weight = 64;
1056 dev_hold(&adapter->polling_netdev[i]);
1057 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1059 spin_lock_init(&adapter->tx_queue_lock);
1060 #endif
1062 atomic_set(&adapter->irq_sem, 1);
1063 spin_lock_init(&adapter->stats_lock);
1065 return 0;
1069 * e1000_alloc_queues - Allocate memory for all rings
1070 * @adapter: board private structure to initialize
1072 * We allocate one ring per queue at run-time since we don't know the
1073 * number of queues at compile-time. The polling_netdev array is
1074 * intended for Multiqueue, but should work fine with a single queue.
1077 static int __devinit
1078 e1000_alloc_queues(struct e1000_adapter *adapter)
1080 int size;
1082 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1083 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1084 if (!adapter->tx_ring)
1085 return -ENOMEM;
1086 memset(adapter->tx_ring, 0, size);
1088 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1089 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1090 if (!adapter->rx_ring) {
1091 kfree(adapter->tx_ring);
1092 return -ENOMEM;
1094 memset(adapter->rx_ring, 0, size);
1096 #ifdef CONFIG_E1000_NAPI
1097 size = sizeof(struct net_device) * adapter->num_rx_queues;
1098 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1099 if (!adapter->polling_netdev) {
1100 kfree(adapter->tx_ring);
1101 kfree(adapter->rx_ring);
1102 return -ENOMEM;
1104 memset(adapter->polling_netdev, 0, size);
1105 #endif
1107 return E1000_SUCCESS;
1111 * e1000_open - Called when a network interface is made active
1112 * @netdev: network interface device structure
1114 * Returns 0 on success, negative value on failure
1116 * The open entry point is called when a network interface is made
1117 * active by the system (IFF_UP). At this point all resources needed
1118 * for transmit and receive operations are allocated, the interrupt
1119 * handler is registered with the OS, the watchdog timer is started,
1120 * and the stack is notified that the interface is ready.
1123 static int
1124 e1000_open(struct net_device *netdev)
1126 struct e1000_adapter *adapter = netdev_priv(netdev);
1127 int err;
1129 /* allocate transmit descriptors */
1131 if ((err = e1000_setup_all_tx_resources(adapter)))
1132 goto err_setup_tx;
1134 /* allocate receive descriptors */
1136 if ((err = e1000_setup_all_rx_resources(adapter)))
1137 goto err_setup_rx;
1139 if ((err = e1000_up(adapter)))
1140 goto err_up;
1141 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1142 if ((adapter->hw.mng_cookie.status &
1143 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1144 e1000_update_mng_vlan(adapter);
1147 /* If AMT is enabled, let the firmware know that the network
1148 * interface is now open */
1149 if (adapter->hw.mac_type == e1000_82573 &&
1150 e1000_check_mng_mode(&adapter->hw))
1151 e1000_get_hw_control(adapter);
1153 return E1000_SUCCESS;
1155 err_up:
1156 e1000_free_all_rx_resources(adapter);
1157 err_setup_rx:
1158 e1000_free_all_tx_resources(adapter);
1159 err_setup_tx:
1160 e1000_reset(adapter);
1162 return err;
1166 * e1000_close - Disables a network interface
1167 * @netdev: network interface device structure
1169 * Returns 0, this is not allowed to fail
1171 * The close entry point is called when an interface is de-activated
1172 * by the OS. The hardware is still under the drivers control, but
1173 * needs to be disabled. A global MAC reset is issued to stop the
1174 * hardware, and all transmit and receive resources are freed.
1177 static int
1178 e1000_close(struct net_device *netdev)
1180 struct e1000_adapter *adapter = netdev_priv(netdev);
1182 e1000_down(adapter);
1184 e1000_free_all_tx_resources(adapter);
1185 e1000_free_all_rx_resources(adapter);
1187 if ((adapter->hw.mng_cookie.status &
1188 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1189 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1192 /* If AMT is enabled, let the firmware know that the network
1193 * interface is now closed */
1194 if (adapter->hw.mac_type == e1000_82573 &&
1195 e1000_check_mng_mode(&adapter->hw))
1196 e1000_release_hw_control(adapter);
1198 return 0;
1202 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1203 * @adapter: address of board private structure
1204 * @start: address of beginning of memory
1205 * @len: length of memory
1207 static inline boolean_t
1208 e1000_check_64k_bound(struct e1000_adapter *adapter,
1209 void *start, unsigned long len)
1211 unsigned long begin = (unsigned long) start;
1212 unsigned long end = begin + len;
1214 /* First rev 82545 and 82546 need to not allow any memory
1215 * write location to cross 64k boundary due to errata 23 */
1216 if (adapter->hw.mac_type == e1000_82545 ||
1217 adapter->hw.mac_type == e1000_82546) {
1218 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1221 return TRUE;
1225 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1226 * @adapter: board private structure
1227 * @txdr: tx descriptor ring (for a specific queue) to setup
1229 * Return 0 on success, negative on failure
1232 static int
1233 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1234 struct e1000_tx_ring *txdr)
1236 struct pci_dev *pdev = adapter->pdev;
1237 int size;
1239 size = sizeof(struct e1000_buffer) * txdr->count;
1241 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1242 if (!txdr->buffer_info) {
1243 DPRINTK(PROBE, ERR,
1244 "Unable to allocate memory for the transmit descriptor ring\n");
1245 return -ENOMEM;
1247 memset(txdr->buffer_info, 0, size);
1249 /* round up to nearest 4K */
1251 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1252 E1000_ROUNDUP(txdr->size, 4096);
1254 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1255 if (!txdr->desc) {
1256 setup_tx_desc_die:
1257 vfree(txdr->buffer_info);
1258 DPRINTK(PROBE, ERR,
1259 "Unable to allocate memory for the transmit descriptor ring\n");
1260 return -ENOMEM;
1263 /* Fix for errata 23, can't cross 64kB boundary */
1264 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1265 void *olddesc = txdr->desc;
1266 dma_addr_t olddma = txdr->dma;
1267 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1268 "at %p\n", txdr->size, txdr->desc);
1269 /* Try again, without freeing the previous */
1270 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1271 /* Failed allocation, critical failure */
1272 if (!txdr->desc) {
1273 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1274 goto setup_tx_desc_die;
1277 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1278 /* give up */
1279 pci_free_consistent(pdev, txdr->size, txdr->desc,
1280 txdr->dma);
1281 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1282 DPRINTK(PROBE, ERR,
1283 "Unable to allocate aligned memory "
1284 "for the transmit descriptor ring\n");
1285 vfree(txdr->buffer_info);
1286 return -ENOMEM;
1287 } else {
1288 /* Free old allocation, new allocation was successful */
1289 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1292 memset(txdr->desc, 0, txdr->size);
1294 txdr->next_to_use = 0;
1295 txdr->next_to_clean = 0;
1296 spin_lock_init(&txdr->tx_lock);
1298 return 0;
1302 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1303 * (Descriptors) for all queues
1304 * @adapter: board private structure
1306 * If this function returns with an error, then it's possible one or
1307 * more of the rings is populated (while the rest are not). It is the
1308 * callers duty to clean those orphaned rings.
1310 * Return 0 on success, negative on failure
1314 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1316 int i, err = 0;
1318 for (i = 0; i < adapter->num_tx_queues; i++) {
1319 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1320 if (err) {
1321 DPRINTK(PROBE, ERR,
1322 "Allocation for Tx Queue %u failed\n", i);
1323 break;
1327 return err;
1331 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1332 * @adapter: board private structure
1334 * Configure the Tx unit of the MAC after a reset.
1337 static void
1338 e1000_configure_tx(struct e1000_adapter *adapter)
1340 uint64_t tdba;
1341 struct e1000_hw *hw = &adapter->hw;
1342 uint32_t tdlen, tctl, tipg, tarc;
1343 uint32_t ipgr1, ipgr2;
1345 /* Setup the HW Tx Head and Tail descriptor pointers */
1347 switch (adapter->num_tx_queues) {
1348 case 1:
1349 default:
1350 tdba = adapter->tx_ring[0].dma;
1351 tdlen = adapter->tx_ring[0].count *
1352 sizeof(struct e1000_tx_desc);
1353 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1354 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1355 E1000_WRITE_REG(hw, TDLEN, tdlen);
1356 E1000_WRITE_REG(hw, TDH, 0);
1357 E1000_WRITE_REG(hw, TDT, 0);
1358 adapter->tx_ring[0].tdh = E1000_TDH;
1359 adapter->tx_ring[0].tdt = E1000_TDT;
1360 break;
1363 /* Set the default values for the Tx Inter Packet Gap timer */
1365 if (hw->media_type == e1000_media_type_fiber ||
1366 hw->media_type == e1000_media_type_internal_serdes)
1367 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1368 else
1369 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1371 switch (hw->mac_type) {
1372 case e1000_82542_rev2_0:
1373 case e1000_82542_rev2_1:
1374 tipg = DEFAULT_82542_TIPG_IPGT;
1375 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1376 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1377 break;
1378 default:
1379 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1380 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1381 break;
1383 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1384 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1385 E1000_WRITE_REG(hw, TIPG, tipg);
1387 /* Set the Tx Interrupt Delay register */
1389 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1390 if (hw->mac_type >= e1000_82540)
1391 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1393 /* Program the Transmit Control Register */
1395 tctl = E1000_READ_REG(hw, TCTL);
1397 tctl &= ~E1000_TCTL_CT;
1398 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1399 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1401 E1000_WRITE_REG(hw, TCTL, tctl);
1403 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1404 tarc = E1000_READ_REG(hw, TARC0);
1405 tarc |= ((1 << 25) | (1 << 21));
1406 E1000_WRITE_REG(hw, TARC0, tarc);
1407 tarc = E1000_READ_REG(hw, TARC1);
1408 tarc |= (1 << 25);
1409 if (tctl & E1000_TCTL_MULR)
1410 tarc &= ~(1 << 28);
1411 else
1412 tarc |= (1 << 28);
1413 E1000_WRITE_REG(hw, TARC1, tarc);
1416 e1000_config_collision_dist(hw);
1418 /* Setup Transmit Descriptor Settings for eop descriptor */
1419 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1420 E1000_TXD_CMD_IFCS;
1422 if (hw->mac_type < e1000_82543)
1423 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1424 else
1425 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1427 /* Cache if we're 82544 running in PCI-X because we'll
1428 * need this to apply a workaround later in the send path. */
1429 if (hw->mac_type == e1000_82544 &&
1430 hw->bus_type == e1000_bus_type_pcix)
1431 adapter->pcix_82544 = 1;
1435 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1436 * @adapter: board private structure
1437 * @rxdr: rx descriptor ring (for a specific queue) to setup
1439 * Returns 0 on success, negative on failure
1442 static int
1443 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1444 struct e1000_rx_ring *rxdr)
1446 struct pci_dev *pdev = adapter->pdev;
1447 int size, desc_len;
1449 size = sizeof(struct e1000_buffer) * rxdr->count;
1450 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1451 if (!rxdr->buffer_info) {
1452 DPRINTK(PROBE, ERR,
1453 "Unable to allocate memory for the receive descriptor ring\n");
1454 return -ENOMEM;
1456 memset(rxdr->buffer_info, 0, size);
1458 size = sizeof(struct e1000_ps_page) * rxdr->count;
1459 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1460 if (!rxdr->ps_page) {
1461 vfree(rxdr->buffer_info);
1462 DPRINTK(PROBE, ERR,
1463 "Unable to allocate memory for the receive descriptor ring\n");
1464 return -ENOMEM;
1466 memset(rxdr->ps_page, 0, size);
1468 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1469 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1470 if (!rxdr->ps_page_dma) {
1471 vfree(rxdr->buffer_info);
1472 kfree(rxdr->ps_page);
1473 DPRINTK(PROBE, ERR,
1474 "Unable to allocate memory for the receive descriptor ring\n");
1475 return -ENOMEM;
1477 memset(rxdr->ps_page_dma, 0, size);
1479 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1480 desc_len = sizeof(struct e1000_rx_desc);
1481 else
1482 desc_len = sizeof(union e1000_rx_desc_packet_split);
1484 /* Round up to nearest 4K */
1486 rxdr->size = rxdr->count * desc_len;
1487 E1000_ROUNDUP(rxdr->size, 4096);
1489 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1491 if (!rxdr->desc) {
1492 DPRINTK(PROBE, ERR,
1493 "Unable to allocate memory for the receive descriptor ring\n");
1494 setup_rx_desc_die:
1495 vfree(rxdr->buffer_info);
1496 kfree(rxdr->ps_page);
1497 kfree(rxdr->ps_page_dma);
1498 return -ENOMEM;
1501 /* Fix for errata 23, can't cross 64kB boundary */
1502 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1503 void *olddesc = rxdr->desc;
1504 dma_addr_t olddma = rxdr->dma;
1505 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1506 "at %p\n", rxdr->size, rxdr->desc);
1507 /* Try again, without freeing the previous */
1508 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1509 /* Failed allocation, critical failure */
1510 if (!rxdr->desc) {
1511 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1512 DPRINTK(PROBE, ERR,
1513 "Unable to allocate memory "
1514 "for the receive descriptor ring\n");
1515 goto setup_rx_desc_die;
1518 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1519 /* give up */
1520 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1521 rxdr->dma);
1522 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1523 DPRINTK(PROBE, ERR,
1524 "Unable to allocate aligned memory "
1525 "for the receive descriptor ring\n");
1526 goto setup_rx_desc_die;
1527 } else {
1528 /* Free old allocation, new allocation was successful */
1529 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1532 memset(rxdr->desc, 0, rxdr->size);
1534 rxdr->next_to_clean = 0;
1535 rxdr->next_to_use = 0;
1537 return 0;
1541 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1542 * (Descriptors) for all queues
1543 * @adapter: board private structure
1545 * If this function returns with an error, then it's possible one or
1546 * more of the rings is populated (while the rest are not). It is the
1547 * callers duty to clean those orphaned rings.
1549 * Return 0 on success, negative on failure
1553 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1555 int i, err = 0;
1557 for (i = 0; i < adapter->num_rx_queues; i++) {
1558 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1559 if (err) {
1560 DPRINTK(PROBE, ERR,
1561 "Allocation for Rx Queue %u failed\n", i);
1562 break;
1566 return err;
1570 * e1000_setup_rctl - configure the receive control registers
1571 * @adapter: Board private structure
1573 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1574 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1575 static void
1576 e1000_setup_rctl(struct e1000_adapter *adapter)
1578 uint32_t rctl, rfctl;
1579 uint32_t psrctl = 0;
1580 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1581 uint32_t pages = 0;
1582 #endif
1584 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1586 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1588 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1589 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1590 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1592 if (adapter->hw.mac_type > e1000_82543)
1593 rctl |= E1000_RCTL_SECRC;
1595 if (adapter->hw.tbi_compatibility_on == 1)
1596 rctl |= E1000_RCTL_SBP;
1597 else
1598 rctl &= ~E1000_RCTL_SBP;
1600 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1601 rctl &= ~E1000_RCTL_LPE;
1602 else
1603 rctl |= E1000_RCTL_LPE;
1605 /* Setup buffer sizes */
1606 if (adapter->hw.mac_type >= e1000_82571) {
1607 /* We can now specify buffers in 1K increments.
1608 * BSIZE and BSEX are ignored in this case. */
1609 rctl |= adapter->rx_buffer_len << 0x11;
1610 } else {
1611 rctl &= ~E1000_RCTL_SZ_4096;
1612 rctl |= E1000_RCTL_BSEX;
1613 switch (adapter->rx_buffer_len) {
1614 case E1000_RXBUFFER_2048:
1615 default:
1616 rctl |= E1000_RCTL_SZ_2048;
1617 rctl &= ~E1000_RCTL_BSEX;
1618 break;
1619 case E1000_RXBUFFER_4096:
1620 rctl |= E1000_RCTL_SZ_4096;
1621 break;
1622 case E1000_RXBUFFER_8192:
1623 rctl |= E1000_RCTL_SZ_8192;
1624 break;
1625 case E1000_RXBUFFER_16384:
1626 rctl |= E1000_RCTL_SZ_16384;
1627 break;
1631 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1632 /* 82571 and greater support packet-split where the protocol
1633 * header is placed in skb->data and the packet data is
1634 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1635 * In the case of a non-split, skb->data is linearly filled,
1636 * followed by the page buffers. Therefore, skb->data is
1637 * sized to hold the largest protocol header.
1639 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1640 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1641 PAGE_SIZE <= 16384)
1642 adapter->rx_ps_pages = pages;
1643 else
1644 adapter->rx_ps_pages = 0;
1645 #endif
1646 if (adapter->rx_ps_pages) {
1647 /* Configure extra packet-split registers */
1648 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1649 rfctl |= E1000_RFCTL_EXTEN;
1650 /* disable IPv6 packet split support */
1651 rfctl |= E1000_RFCTL_IPV6_DIS;
1652 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1654 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1656 psrctl |= adapter->rx_ps_bsize0 >>
1657 E1000_PSRCTL_BSIZE0_SHIFT;
1659 switch (adapter->rx_ps_pages) {
1660 case 3:
1661 psrctl |= PAGE_SIZE <<
1662 E1000_PSRCTL_BSIZE3_SHIFT;
1663 case 2:
1664 psrctl |= PAGE_SIZE <<
1665 E1000_PSRCTL_BSIZE2_SHIFT;
1666 case 1:
1667 psrctl |= PAGE_SIZE >>
1668 E1000_PSRCTL_BSIZE1_SHIFT;
1669 break;
1672 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1675 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1679 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1680 * @adapter: board private structure
1682 * Configure the Rx unit of the MAC after a reset.
1685 static void
1686 e1000_configure_rx(struct e1000_adapter *adapter)
1688 uint64_t rdba;
1689 struct e1000_hw *hw = &adapter->hw;
1690 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1692 if (adapter->rx_ps_pages) {
1693 rdlen = adapter->rx_ring[0].count *
1694 sizeof(union e1000_rx_desc_packet_split);
1695 adapter->clean_rx = e1000_clean_rx_irq_ps;
1696 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1697 } else {
1698 rdlen = adapter->rx_ring[0].count *
1699 sizeof(struct e1000_rx_desc);
1700 adapter->clean_rx = e1000_clean_rx_irq;
1701 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1704 /* disable receives while setting up the descriptors */
1705 rctl = E1000_READ_REG(hw, RCTL);
1706 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1708 /* set the Receive Delay Timer Register */
1709 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1711 if (hw->mac_type >= e1000_82540) {
1712 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1713 if (adapter->itr > 1)
1714 E1000_WRITE_REG(hw, ITR,
1715 1000000000 / (adapter->itr * 256));
1718 if (hw->mac_type >= e1000_82571) {
1719 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1720 /* Reset delay timers after every interrupt */
1721 ctrl_ext |= E1000_CTRL_EXT_CANC;
1722 #ifdef CONFIG_E1000_NAPI
1723 /* Auto-Mask interrupts upon ICR read. */
1724 ctrl_ext |= E1000_CTRL_EXT_IAME;
1725 #endif
1726 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1727 E1000_WRITE_REG(hw, IAM, ~0);
1728 E1000_WRITE_FLUSH(hw);
1731 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1732 * the Base and Length of the Rx Descriptor Ring */
1733 switch (adapter->num_rx_queues) {
1734 case 1:
1735 default:
1736 rdba = adapter->rx_ring[0].dma;
1737 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1738 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1739 E1000_WRITE_REG(hw, RDLEN, rdlen);
1740 E1000_WRITE_REG(hw, RDH, 0);
1741 E1000_WRITE_REG(hw, RDT, 0);
1742 adapter->rx_ring[0].rdh = E1000_RDH;
1743 adapter->rx_ring[0].rdt = E1000_RDT;
1744 break;
1747 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1748 if (hw->mac_type >= e1000_82543) {
1749 rxcsum = E1000_READ_REG(hw, RXCSUM);
1750 if (adapter->rx_csum == TRUE) {
1751 rxcsum |= E1000_RXCSUM_TUOFL;
1753 /* Enable 82571 IPv4 payload checksum for UDP fragments
1754 * Must be used in conjunction with packet-split. */
1755 if ((hw->mac_type >= e1000_82571) &&
1756 (adapter->rx_ps_pages)) {
1757 rxcsum |= E1000_RXCSUM_IPPCSE;
1759 } else {
1760 rxcsum &= ~E1000_RXCSUM_TUOFL;
1761 /* don't need to clear IPPCSE as it defaults to 0 */
1763 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1766 if (hw->mac_type == e1000_82573)
1767 E1000_WRITE_REG(hw, ERT, 0x0100);
1769 /* Enable Receives */
1770 E1000_WRITE_REG(hw, RCTL, rctl);
1774 * e1000_free_tx_resources - Free Tx Resources per Queue
1775 * @adapter: board private structure
1776 * @tx_ring: Tx descriptor ring for a specific queue
1778 * Free all transmit software resources
1781 static void
1782 e1000_free_tx_resources(struct e1000_adapter *adapter,
1783 struct e1000_tx_ring *tx_ring)
1785 struct pci_dev *pdev = adapter->pdev;
1787 e1000_clean_tx_ring(adapter, tx_ring);
1789 vfree(tx_ring->buffer_info);
1790 tx_ring->buffer_info = NULL;
1792 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1794 tx_ring->desc = NULL;
1798 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1799 * @adapter: board private structure
1801 * Free all transmit software resources
1804 void
1805 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1807 int i;
1809 for (i = 0; i < adapter->num_tx_queues; i++)
1810 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1813 static inline void
1814 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1815 struct e1000_buffer *buffer_info)
1817 if (buffer_info->dma) {
1818 pci_unmap_page(adapter->pdev,
1819 buffer_info->dma,
1820 buffer_info->length,
1821 PCI_DMA_TODEVICE);
1823 if (buffer_info->skb)
1824 dev_kfree_skb_any(buffer_info->skb);
1825 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1829 * e1000_clean_tx_ring - Free Tx Buffers
1830 * @adapter: board private structure
1831 * @tx_ring: ring to be cleaned
1834 static void
1835 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1836 struct e1000_tx_ring *tx_ring)
1838 struct e1000_buffer *buffer_info;
1839 unsigned long size;
1840 unsigned int i;
1842 /* Free all the Tx ring sk_buffs */
1844 for (i = 0; i < tx_ring->count; i++) {
1845 buffer_info = &tx_ring->buffer_info[i];
1846 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1849 size = sizeof(struct e1000_buffer) * tx_ring->count;
1850 memset(tx_ring->buffer_info, 0, size);
1852 /* Zero out the descriptor ring */
1854 memset(tx_ring->desc, 0, tx_ring->size);
1856 tx_ring->next_to_use = 0;
1857 tx_ring->next_to_clean = 0;
1858 tx_ring->last_tx_tso = 0;
1860 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1861 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1865 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1866 * @adapter: board private structure
1869 static void
1870 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1872 int i;
1874 for (i = 0; i < adapter->num_tx_queues; i++)
1875 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1879 * e1000_free_rx_resources - Free Rx Resources
1880 * @adapter: board private structure
1881 * @rx_ring: ring to clean the resources from
1883 * Free all receive software resources
1886 static void
1887 e1000_free_rx_resources(struct e1000_adapter *adapter,
1888 struct e1000_rx_ring *rx_ring)
1890 struct pci_dev *pdev = adapter->pdev;
1892 e1000_clean_rx_ring(adapter, rx_ring);
1894 vfree(rx_ring->buffer_info);
1895 rx_ring->buffer_info = NULL;
1896 kfree(rx_ring->ps_page);
1897 rx_ring->ps_page = NULL;
1898 kfree(rx_ring->ps_page_dma);
1899 rx_ring->ps_page_dma = NULL;
1901 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1903 rx_ring->desc = NULL;
1907 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1908 * @adapter: board private structure
1910 * Free all receive software resources
1913 void
1914 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1916 int i;
1918 for (i = 0; i < adapter->num_rx_queues; i++)
1919 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1923 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1924 * @adapter: board private structure
1925 * @rx_ring: ring to free buffers from
1928 static void
1929 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1930 struct e1000_rx_ring *rx_ring)
1932 struct e1000_buffer *buffer_info;
1933 struct e1000_ps_page *ps_page;
1934 struct e1000_ps_page_dma *ps_page_dma;
1935 struct pci_dev *pdev = adapter->pdev;
1936 unsigned long size;
1937 unsigned int i, j;
1939 /* Free all the Rx ring sk_buffs */
1940 for (i = 0; i < rx_ring->count; i++) {
1941 buffer_info = &rx_ring->buffer_info[i];
1942 if (buffer_info->skb) {
1943 pci_unmap_single(pdev,
1944 buffer_info->dma,
1945 buffer_info->length,
1946 PCI_DMA_FROMDEVICE);
1948 dev_kfree_skb(buffer_info->skb);
1949 buffer_info->skb = NULL;
1951 ps_page = &rx_ring->ps_page[i];
1952 ps_page_dma = &rx_ring->ps_page_dma[i];
1953 for (j = 0; j < adapter->rx_ps_pages; j++) {
1954 if (!ps_page->ps_page[j]) break;
1955 pci_unmap_page(pdev,
1956 ps_page_dma->ps_page_dma[j],
1957 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1958 ps_page_dma->ps_page_dma[j] = 0;
1959 put_page(ps_page->ps_page[j]);
1960 ps_page->ps_page[j] = NULL;
1964 size = sizeof(struct e1000_buffer) * rx_ring->count;
1965 memset(rx_ring->buffer_info, 0, size);
1966 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1967 memset(rx_ring->ps_page, 0, size);
1968 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1969 memset(rx_ring->ps_page_dma, 0, size);
1971 /* Zero out the descriptor ring */
1973 memset(rx_ring->desc, 0, rx_ring->size);
1975 rx_ring->next_to_clean = 0;
1976 rx_ring->next_to_use = 0;
1978 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1979 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1983 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1984 * @adapter: board private structure
1987 static void
1988 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1990 int i;
1992 for (i = 0; i < adapter->num_rx_queues; i++)
1993 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1996 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1997 * and memory write and invalidate disabled for certain operations
1999 static void
2000 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2002 struct net_device *netdev = adapter->netdev;
2003 uint32_t rctl;
2005 e1000_pci_clear_mwi(&adapter->hw);
2007 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2008 rctl |= E1000_RCTL_RST;
2009 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2010 E1000_WRITE_FLUSH(&adapter->hw);
2011 mdelay(5);
2013 if (netif_running(netdev))
2014 e1000_clean_all_rx_rings(adapter);
2017 static void
2018 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2020 struct net_device *netdev = adapter->netdev;
2021 uint32_t rctl;
2023 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2024 rctl &= ~E1000_RCTL_RST;
2025 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2026 E1000_WRITE_FLUSH(&adapter->hw);
2027 mdelay(5);
2029 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2030 e1000_pci_set_mwi(&adapter->hw);
2032 if (netif_running(netdev)) {
2033 /* No need to loop, because 82542 supports only 1 queue */
2034 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2035 e1000_configure_rx(adapter);
2036 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2041 * e1000_set_mac - Change the Ethernet Address of the NIC
2042 * @netdev: network interface device structure
2043 * @p: pointer to an address structure
2045 * Returns 0 on success, negative on failure
2048 static int
2049 e1000_set_mac(struct net_device *netdev, void *p)
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052 struct sockaddr *addr = p;
2054 if (!is_valid_ether_addr(addr->sa_data))
2055 return -EADDRNOTAVAIL;
2057 /* 82542 2.0 needs to be in reset to write receive address registers */
2059 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2060 e1000_enter_82542_rst(adapter);
2062 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2063 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2065 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2067 /* With 82571 controllers, LAA may be overwritten (with the default)
2068 * due to controller reset from the other port. */
2069 if (adapter->hw.mac_type == e1000_82571) {
2070 /* activate the work around */
2071 adapter->hw.laa_is_present = 1;
2073 /* Hold a copy of the LAA in RAR[14] This is done so that
2074 * between the time RAR[0] gets clobbered and the time it
2075 * gets fixed (in e1000_watchdog), the actual LAA is in one
2076 * of the RARs and no incoming packets directed to this port
2077 * are dropped. Eventaully the LAA will be in RAR[0] and
2078 * RAR[14] */
2079 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2080 E1000_RAR_ENTRIES - 1);
2083 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2084 e1000_leave_82542_rst(adapter);
2086 return 0;
2090 * e1000_set_multi - Multicast and Promiscuous mode set
2091 * @netdev: network interface device structure
2093 * The set_multi entry point is called whenever the multicast address
2094 * list or the network interface flags are updated. This routine is
2095 * responsible for configuring the hardware for proper multicast,
2096 * promiscuous mode, and all-multi behavior.
2099 static void
2100 e1000_set_multi(struct net_device *netdev)
2102 struct e1000_adapter *adapter = netdev_priv(netdev);
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct dev_mc_list *mc_ptr;
2105 uint32_t rctl;
2106 uint32_t hash_value;
2107 int i, rar_entries = E1000_RAR_ENTRIES;
2109 /* reserve RAR[14] for LAA over-write work-around */
2110 if (adapter->hw.mac_type == e1000_82571)
2111 rar_entries--;
2113 /* Check for Promiscuous and All Multicast modes */
2115 rctl = E1000_READ_REG(hw, RCTL);
2117 if (netdev->flags & IFF_PROMISC) {
2118 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2119 } else if (netdev->flags & IFF_ALLMULTI) {
2120 rctl |= E1000_RCTL_MPE;
2121 rctl &= ~E1000_RCTL_UPE;
2122 } else {
2123 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2126 E1000_WRITE_REG(hw, RCTL, rctl);
2128 /* 82542 2.0 needs to be in reset to write receive address registers */
2130 if (hw->mac_type == e1000_82542_rev2_0)
2131 e1000_enter_82542_rst(adapter);
2133 /* load the first 14 multicast address into the exact filters 1-14
2134 * RAR 0 is used for the station MAC adddress
2135 * if there are not 14 addresses, go ahead and clear the filters
2136 * -- with 82571 controllers only 0-13 entries are filled here
2138 mc_ptr = netdev->mc_list;
2140 for (i = 1; i < rar_entries; i++) {
2141 if (mc_ptr) {
2142 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2143 mc_ptr = mc_ptr->next;
2144 } else {
2145 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2146 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2150 /* clear the old settings from the multicast hash table */
2152 for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2153 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2155 /* load any remaining addresses into the hash table */
2157 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2158 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2159 e1000_mta_set(hw, hash_value);
2162 if (hw->mac_type == e1000_82542_rev2_0)
2163 e1000_leave_82542_rst(adapter);
2166 /* Need to wait a few seconds after link up to get diagnostic information from
2167 * the phy */
2169 static void
2170 e1000_update_phy_info(unsigned long data)
2172 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2173 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2177 * e1000_82547_tx_fifo_stall - Timer Call-back
2178 * @data: pointer to adapter cast into an unsigned long
2181 static void
2182 e1000_82547_tx_fifo_stall(unsigned long data)
2184 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2185 struct net_device *netdev = adapter->netdev;
2186 uint32_t tctl;
2188 if (atomic_read(&adapter->tx_fifo_stall)) {
2189 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2190 E1000_READ_REG(&adapter->hw, TDH)) &&
2191 (E1000_READ_REG(&adapter->hw, TDFT) ==
2192 E1000_READ_REG(&adapter->hw, TDFH)) &&
2193 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2194 E1000_READ_REG(&adapter->hw, TDFHS))) {
2195 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2196 E1000_WRITE_REG(&adapter->hw, TCTL,
2197 tctl & ~E1000_TCTL_EN);
2198 E1000_WRITE_REG(&adapter->hw, TDFT,
2199 adapter->tx_head_addr);
2200 E1000_WRITE_REG(&adapter->hw, TDFH,
2201 adapter->tx_head_addr);
2202 E1000_WRITE_REG(&adapter->hw, TDFTS,
2203 adapter->tx_head_addr);
2204 E1000_WRITE_REG(&adapter->hw, TDFHS,
2205 adapter->tx_head_addr);
2206 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2207 E1000_WRITE_FLUSH(&adapter->hw);
2209 adapter->tx_fifo_head = 0;
2210 atomic_set(&adapter->tx_fifo_stall, 0);
2211 netif_wake_queue(netdev);
2212 } else {
2213 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2219 * e1000_watchdog - Timer Call-back
2220 * @data: pointer to adapter cast into an unsigned long
2222 static void
2223 e1000_watchdog(unsigned long data)
2225 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2227 /* Do the rest outside of interrupt context */
2228 schedule_work(&adapter->watchdog_task);
2231 static void
2232 e1000_watchdog_task(struct e1000_adapter *adapter)
2234 struct net_device *netdev = adapter->netdev;
2235 struct e1000_tx_ring *txdr = adapter->tx_ring;
2236 uint32_t link;
2238 e1000_check_for_link(&adapter->hw);
2239 if (adapter->hw.mac_type == e1000_82573) {
2240 e1000_enable_tx_pkt_filtering(&adapter->hw);
2241 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2242 e1000_update_mng_vlan(adapter);
2245 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2246 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2247 link = !adapter->hw.serdes_link_down;
2248 else
2249 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2251 if (link) {
2252 if (!netif_carrier_ok(netdev)) {
2253 e1000_get_speed_and_duplex(&adapter->hw,
2254 &adapter->link_speed,
2255 &adapter->link_duplex);
2257 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2258 adapter->link_speed,
2259 adapter->link_duplex == FULL_DUPLEX ?
2260 "Full Duplex" : "Half Duplex");
2262 /* tweak tx_queue_len according to speed/duplex */
2263 netdev->tx_queue_len = adapter->tx_queue_len;
2264 adapter->tx_timeout_factor = 1;
2265 if (adapter->link_duplex == HALF_DUPLEX) {
2266 switch (adapter->link_speed) {
2267 case SPEED_10:
2268 netdev->tx_queue_len = 10;
2269 adapter->tx_timeout_factor = 8;
2270 break;
2271 case SPEED_100:
2272 netdev->tx_queue_len = 100;
2273 break;
2277 netif_carrier_on(netdev);
2278 netif_wake_queue(netdev);
2279 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2280 adapter->smartspeed = 0;
2282 } else {
2283 if (netif_carrier_ok(netdev)) {
2284 adapter->link_speed = 0;
2285 adapter->link_duplex = 0;
2286 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2287 netif_carrier_off(netdev);
2288 netif_stop_queue(netdev);
2289 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2292 e1000_smartspeed(adapter);
2295 e1000_update_stats(adapter);
2297 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2298 adapter->tpt_old = adapter->stats.tpt;
2299 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2300 adapter->colc_old = adapter->stats.colc;
2302 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2303 adapter->gorcl_old = adapter->stats.gorcl;
2304 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2305 adapter->gotcl_old = adapter->stats.gotcl;
2307 e1000_update_adaptive(&adapter->hw);
2309 if (!netif_carrier_ok(netdev)) {
2310 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2311 /* We've lost link, so the controller stops DMA,
2312 * but we've got queued Tx work that's never going
2313 * to get done, so reset controller to flush Tx.
2314 * (Do the reset outside of interrupt context). */
2315 schedule_work(&adapter->tx_timeout_task);
2319 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2320 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2321 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2322 * asymmetrical Tx or Rx gets ITR=8000; everyone
2323 * else is between 2000-8000. */
2324 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2325 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2326 adapter->gotcl - adapter->gorcl :
2327 adapter->gorcl - adapter->gotcl) / 10000;
2328 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2329 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2332 /* Cause software interrupt to ensure rx ring is cleaned */
2333 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2335 /* Force detection of hung controller every watchdog period */
2336 adapter->detect_tx_hung = TRUE;
2338 /* With 82571 controllers, LAA may be overwritten due to controller
2339 * reset from the other port. Set the appropriate LAA in RAR[0] */
2340 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2341 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2343 /* Reset the timer */
2344 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2347 #define E1000_TX_FLAGS_CSUM 0x00000001
2348 #define E1000_TX_FLAGS_VLAN 0x00000002
2349 #define E1000_TX_FLAGS_TSO 0x00000004
2350 #define E1000_TX_FLAGS_IPV4 0x00000008
2351 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2352 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2354 static inline int
2355 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2356 struct sk_buff *skb)
2358 #ifdef NETIF_F_TSO
2359 struct e1000_context_desc *context_desc;
2360 struct e1000_buffer *buffer_info;
2361 unsigned int i;
2362 uint32_t cmd_length = 0;
2363 uint16_t ipcse = 0, tucse, mss;
2364 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2365 int err;
2367 if (skb_shinfo(skb)->tso_size) {
2368 if (skb_header_cloned(skb)) {
2369 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2370 if (err)
2371 return err;
2374 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2375 mss = skb_shinfo(skb)->tso_size;
2376 if (skb->protocol == ntohs(ETH_P_IP)) {
2377 skb->nh.iph->tot_len = 0;
2378 skb->nh.iph->check = 0;
2379 skb->h.th->check =
2380 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2381 skb->nh.iph->daddr,
2383 IPPROTO_TCP,
2385 cmd_length = E1000_TXD_CMD_IP;
2386 ipcse = skb->h.raw - skb->data - 1;
2387 #ifdef NETIF_F_TSO_IPV6
2388 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2389 skb->nh.ipv6h->payload_len = 0;
2390 skb->h.th->check =
2391 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2392 &skb->nh.ipv6h->daddr,
2394 IPPROTO_TCP,
2396 ipcse = 0;
2397 #endif
2399 ipcss = skb->nh.raw - skb->data;
2400 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2401 tucss = skb->h.raw - skb->data;
2402 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2403 tucse = 0;
2405 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2406 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2408 i = tx_ring->next_to_use;
2409 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2410 buffer_info = &tx_ring->buffer_info[i];
2412 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2413 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2414 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2415 context_desc->upper_setup.tcp_fields.tucss = tucss;
2416 context_desc->upper_setup.tcp_fields.tucso = tucso;
2417 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2418 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2419 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2420 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2422 buffer_info->time_stamp = jiffies;
2424 if (++i == tx_ring->count) i = 0;
2425 tx_ring->next_to_use = i;
2427 return TRUE;
2429 #endif
2431 return FALSE;
2434 static inline boolean_t
2435 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2436 struct sk_buff *skb)
2438 struct e1000_context_desc *context_desc;
2439 struct e1000_buffer *buffer_info;
2440 unsigned int i;
2441 uint8_t css;
2443 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2444 css = skb->h.raw - skb->data;
2446 i = tx_ring->next_to_use;
2447 buffer_info = &tx_ring->buffer_info[i];
2448 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2450 context_desc->upper_setup.tcp_fields.tucss = css;
2451 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2452 context_desc->upper_setup.tcp_fields.tucse = 0;
2453 context_desc->tcp_seg_setup.data = 0;
2454 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2456 buffer_info->time_stamp = jiffies;
2458 if (unlikely(++i == tx_ring->count)) i = 0;
2459 tx_ring->next_to_use = i;
2461 return TRUE;
2464 return FALSE;
2467 #define E1000_MAX_TXD_PWR 12
2468 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2470 static inline int
2471 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2472 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2473 unsigned int nr_frags, unsigned int mss)
2475 struct e1000_buffer *buffer_info;
2476 unsigned int len = skb->len;
2477 unsigned int offset = 0, size, count = 0, i;
2478 unsigned int f;
2479 len -= skb->data_len;
2481 i = tx_ring->next_to_use;
2483 while (len) {
2484 buffer_info = &tx_ring->buffer_info[i];
2485 size = min(len, max_per_txd);
2486 #ifdef NETIF_F_TSO
2487 /* Workaround for Controller erratum --
2488 * descriptor for non-tso packet in a linear SKB that follows a
2489 * tso gets written back prematurely before the data is fully
2490 * DMAd to the controller */
2491 if (!skb->data_len && tx_ring->last_tx_tso &&
2492 !skb_shinfo(skb)->tso_size) {
2493 tx_ring->last_tx_tso = 0;
2494 size -= 4;
2497 /* Workaround for premature desc write-backs
2498 * in TSO mode. Append 4-byte sentinel desc */
2499 if (unlikely(mss && !nr_frags && size == len && size > 8))
2500 size -= 4;
2501 #endif
2502 /* work-around for errata 10 and it applies
2503 * to all controllers in PCI-X mode
2504 * The fix is to make sure that the first descriptor of a
2505 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2507 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2508 (size > 2015) && count == 0))
2509 size = 2015;
2511 /* Workaround for potential 82544 hang in PCI-X. Avoid
2512 * terminating buffers within evenly-aligned dwords. */
2513 if (unlikely(adapter->pcix_82544 &&
2514 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2515 size > 4))
2516 size -= 4;
2518 buffer_info->length = size;
2519 buffer_info->dma =
2520 pci_map_single(adapter->pdev,
2521 skb->data + offset,
2522 size,
2523 PCI_DMA_TODEVICE);
2524 buffer_info->time_stamp = jiffies;
2526 len -= size;
2527 offset += size;
2528 count++;
2529 if (unlikely(++i == tx_ring->count)) i = 0;
2532 for (f = 0; f < nr_frags; f++) {
2533 struct skb_frag_struct *frag;
2535 frag = &skb_shinfo(skb)->frags[f];
2536 len = frag->size;
2537 offset = frag->page_offset;
2539 while (len) {
2540 buffer_info = &tx_ring->buffer_info[i];
2541 size = min(len, max_per_txd);
2542 #ifdef NETIF_F_TSO
2543 /* Workaround for premature desc write-backs
2544 * in TSO mode. Append 4-byte sentinel desc */
2545 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2546 size -= 4;
2547 #endif
2548 /* Workaround for potential 82544 hang in PCI-X.
2549 * Avoid terminating buffers within evenly-aligned
2550 * dwords. */
2551 if (unlikely(adapter->pcix_82544 &&
2552 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2553 size > 4))
2554 size -= 4;
2556 buffer_info->length = size;
2557 buffer_info->dma =
2558 pci_map_page(adapter->pdev,
2559 frag->page,
2560 offset,
2561 size,
2562 PCI_DMA_TODEVICE);
2563 buffer_info->time_stamp = jiffies;
2565 len -= size;
2566 offset += size;
2567 count++;
2568 if (unlikely(++i == tx_ring->count)) i = 0;
2572 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2573 tx_ring->buffer_info[i].skb = skb;
2574 tx_ring->buffer_info[first].next_to_watch = i;
2576 return count;
2579 static inline void
2580 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2581 int tx_flags, int count)
2583 struct e1000_tx_desc *tx_desc = NULL;
2584 struct e1000_buffer *buffer_info;
2585 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2586 unsigned int i;
2588 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2589 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2590 E1000_TXD_CMD_TSE;
2591 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2593 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2594 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2597 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2598 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2599 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2602 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2603 txd_lower |= E1000_TXD_CMD_VLE;
2604 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2607 i = tx_ring->next_to_use;
2609 while (count--) {
2610 buffer_info = &tx_ring->buffer_info[i];
2611 tx_desc = E1000_TX_DESC(*tx_ring, i);
2612 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2613 tx_desc->lower.data =
2614 cpu_to_le32(txd_lower | buffer_info->length);
2615 tx_desc->upper.data = cpu_to_le32(txd_upper);
2616 if (unlikely(++i == tx_ring->count)) i = 0;
2619 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2621 /* Force memory writes to complete before letting h/w
2622 * know there are new descriptors to fetch. (Only
2623 * applicable for weak-ordered memory model archs,
2624 * such as IA-64). */
2625 wmb();
2627 tx_ring->next_to_use = i;
2628 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2632 * 82547 workaround to avoid controller hang in half-duplex environment.
2633 * The workaround is to avoid queuing a large packet that would span
2634 * the internal Tx FIFO ring boundary by notifying the stack to resend
2635 * the packet at a later time. This gives the Tx FIFO an opportunity to
2636 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2637 * to the beginning of the Tx FIFO.
2640 #define E1000_FIFO_HDR 0x10
2641 #define E1000_82547_PAD_LEN 0x3E0
2643 static inline int
2644 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2646 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2647 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2649 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2651 if (adapter->link_duplex != HALF_DUPLEX)
2652 goto no_fifo_stall_required;
2654 if (atomic_read(&adapter->tx_fifo_stall))
2655 return 1;
2657 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2658 atomic_set(&adapter->tx_fifo_stall, 1);
2659 return 1;
2662 no_fifo_stall_required:
2663 adapter->tx_fifo_head += skb_fifo_len;
2664 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2665 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2666 return 0;
2669 #define MINIMUM_DHCP_PACKET_SIZE 282
2670 static inline int
2671 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2673 struct e1000_hw *hw = &adapter->hw;
2674 uint16_t length, offset;
2675 if (vlan_tx_tag_present(skb)) {
2676 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2677 ( adapter->hw.mng_cookie.status &
2678 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2679 return 0;
2681 if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2682 struct ethhdr *eth = (struct ethhdr *) skb->data;
2683 if ((htons(ETH_P_IP) == eth->h_proto)) {
2684 const struct iphdr *ip =
2685 (struct iphdr *)((uint8_t *)skb->data+14);
2686 if (IPPROTO_UDP == ip->protocol) {
2687 struct udphdr *udp =
2688 (struct udphdr *)((uint8_t *)ip +
2689 (ip->ihl << 2));
2690 if (ntohs(udp->dest) == 67) {
2691 offset = (uint8_t *)udp + 8 - skb->data;
2692 length = skb->len - offset;
2694 return e1000_mng_write_dhcp_info(hw,
2695 (uint8_t *)udp + 8,
2696 length);
2701 return 0;
2704 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2705 static int
2706 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2708 struct e1000_adapter *adapter = netdev_priv(netdev);
2709 struct e1000_tx_ring *tx_ring;
2710 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2711 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2712 unsigned int tx_flags = 0;
2713 unsigned int len = skb->len;
2714 unsigned long flags;
2715 unsigned int nr_frags = 0;
2716 unsigned int mss = 0;
2717 int count = 0;
2718 int tso;
2719 unsigned int f;
2720 len -= skb->data_len;
2722 tx_ring = adapter->tx_ring;
2724 if (unlikely(skb->len <= 0)) {
2725 dev_kfree_skb_any(skb);
2726 return NETDEV_TX_OK;
2729 #ifdef NETIF_F_TSO
2730 mss = skb_shinfo(skb)->tso_size;
2731 /* The controller does a simple calculation to
2732 * make sure there is enough room in the FIFO before
2733 * initiating the DMA for each buffer. The calc is:
2734 * 4 = ceil(buffer len/mss). To make sure we don't
2735 * overrun the FIFO, adjust the max buffer len if mss
2736 * drops. */
2737 if (mss) {
2738 uint8_t hdr_len;
2739 max_per_txd = min(mss << 2, max_per_txd);
2740 max_txd_pwr = fls(max_per_txd) - 1;
2742 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2743 * points to just header, pull a few bytes of payload from
2744 * frags into skb->data */
2745 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2746 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2747 (adapter->hw.mac_type == e1000_82571 ||
2748 adapter->hw.mac_type == e1000_82572)) {
2749 unsigned int pull_size;
2750 pull_size = min((unsigned int)4, skb->data_len);
2751 if (!__pskb_pull_tail(skb, pull_size)) {
2752 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2753 dev_kfree_skb_any(skb);
2754 return -EFAULT;
2756 len = skb->len - skb->data_len;
2760 /* reserve a descriptor for the offload context */
2761 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2762 count++;
2763 count++;
2764 #else
2765 if (skb->ip_summed == CHECKSUM_HW)
2766 count++;
2767 #endif
2769 #ifdef NETIF_F_TSO
2770 /* Controller Erratum workaround */
2771 if (!skb->data_len && tx_ring->last_tx_tso &&
2772 !skb_shinfo(skb)->tso_size)
2773 count++;
2774 #endif
2776 count += TXD_USE_COUNT(len, max_txd_pwr);
2778 if (adapter->pcix_82544)
2779 count++;
2781 /* work-around for errata 10 and it applies to all controllers
2782 * in PCI-X mode, so add one more descriptor to the count
2784 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2785 (len > 2015)))
2786 count++;
2788 nr_frags = skb_shinfo(skb)->nr_frags;
2789 for (f = 0; f < nr_frags; f++)
2790 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2791 max_txd_pwr);
2792 if (adapter->pcix_82544)
2793 count += nr_frags;
2795 if (adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2796 e1000_transfer_dhcp_info(adapter, skb);
2798 local_irq_save(flags);
2799 if (!spin_trylock(&tx_ring->tx_lock)) {
2800 /* Collision - tell upper layer to requeue */
2801 local_irq_restore(flags);
2802 return NETDEV_TX_LOCKED;
2805 /* need: count + 2 desc gap to keep tail from touching
2806 * head, otherwise try next time */
2807 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2808 netif_stop_queue(netdev);
2809 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2810 return NETDEV_TX_BUSY;
2813 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2814 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2815 netif_stop_queue(netdev);
2816 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2817 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2818 return NETDEV_TX_BUSY;
2822 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2823 tx_flags |= E1000_TX_FLAGS_VLAN;
2824 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2827 first = tx_ring->next_to_use;
2829 tso = e1000_tso(adapter, tx_ring, skb);
2830 if (tso < 0) {
2831 dev_kfree_skb_any(skb);
2832 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2833 return NETDEV_TX_OK;
2836 if (likely(tso)) {
2837 tx_ring->last_tx_tso = 1;
2838 tx_flags |= E1000_TX_FLAGS_TSO;
2839 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2840 tx_flags |= E1000_TX_FLAGS_CSUM;
2842 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2843 * 82571 hardware supports TSO capabilities for IPv6 as well...
2844 * no longer assume, we must. */
2845 if (likely(skb->protocol == ntohs(ETH_P_IP)))
2846 tx_flags |= E1000_TX_FLAGS_IPV4;
2848 e1000_tx_queue(adapter, tx_ring, tx_flags,
2849 e1000_tx_map(adapter, tx_ring, skb, first,
2850 max_per_txd, nr_frags, mss));
2852 netdev->trans_start = jiffies;
2854 /* Make sure there is space in the ring for the next send. */
2855 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2856 netif_stop_queue(netdev);
2858 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2859 return NETDEV_TX_OK;
2863 * e1000_tx_timeout - Respond to a Tx Hang
2864 * @netdev: network interface device structure
2867 static void
2868 e1000_tx_timeout(struct net_device *netdev)
2870 struct e1000_adapter *adapter = netdev_priv(netdev);
2872 /* Do the reset outside of interrupt context */
2873 schedule_work(&adapter->tx_timeout_task);
2876 static void
2877 e1000_tx_timeout_task(struct net_device *netdev)
2879 struct e1000_adapter *adapter = netdev_priv(netdev);
2881 adapter->tx_timeout_count++;
2882 e1000_down(adapter);
2883 e1000_up(adapter);
2887 * e1000_get_stats - Get System Network Statistics
2888 * @netdev: network interface device structure
2890 * Returns the address of the device statistics structure.
2891 * The statistics are actually updated from the timer callback.
2894 static struct net_device_stats *
2895 e1000_get_stats(struct net_device *netdev)
2897 struct e1000_adapter *adapter = netdev_priv(netdev);
2899 /* only return the current stats */
2900 return &adapter->net_stats;
2904 * e1000_change_mtu - Change the Maximum Transfer Unit
2905 * @netdev: network interface device structure
2906 * @new_mtu: new value for maximum frame size
2908 * Returns 0 on success, negative on failure
2911 static int
2912 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2914 struct e1000_adapter *adapter = netdev_priv(netdev);
2915 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2917 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2918 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2919 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2920 return -EINVAL;
2923 /* Adapter-specific max frame size limits. */
2924 switch (adapter->hw.mac_type) {
2925 case e1000_82542_rev2_0:
2926 case e1000_82542_rev2_1:
2927 case e1000_82573:
2928 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2929 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2930 return -EINVAL;
2932 break;
2933 case e1000_82571:
2934 case e1000_82572:
2935 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2936 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2937 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2938 return -EINVAL;
2940 break;
2941 default:
2942 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2943 break;
2947 if (adapter->hw.mac_type > e1000_82547_rev_2) {
2948 adapter->rx_buffer_len = max_frame;
2949 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2950 } else {
2951 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2952 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2953 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2954 "on 82542\n");
2955 return -EINVAL;
2956 } else {
2957 if(max_frame <= E1000_RXBUFFER_2048)
2958 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2959 else if(max_frame <= E1000_RXBUFFER_4096)
2960 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2961 else if(max_frame <= E1000_RXBUFFER_8192)
2962 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2963 else if(max_frame <= E1000_RXBUFFER_16384)
2964 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2968 netdev->mtu = new_mtu;
2970 if (netif_running(netdev)) {
2971 e1000_down(adapter);
2972 e1000_up(adapter);
2975 adapter->hw.max_frame_size = max_frame;
2977 return 0;
2981 * e1000_update_stats - Update the board statistics counters
2982 * @adapter: board private structure
2985 void
2986 e1000_update_stats(struct e1000_adapter *adapter)
2988 struct e1000_hw *hw = &adapter->hw;
2989 unsigned long flags;
2990 uint16_t phy_tmp;
2992 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2994 spin_lock_irqsave(&adapter->stats_lock, flags);
2996 /* these counters are modified from e1000_adjust_tbi_stats,
2997 * called from the interrupt context, so they must only
2998 * be written while holding adapter->stats_lock
3001 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3002 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3003 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3004 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3005 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3006 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3007 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3008 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3009 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3010 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3011 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3012 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3013 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3015 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3016 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3017 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3018 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3019 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3020 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3021 adapter->stats.dc += E1000_READ_REG(hw, DC);
3022 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3023 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3024 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3025 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3026 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3027 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3028 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3029 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3030 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3031 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3032 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3033 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3034 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3035 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3036 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3037 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3038 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3039 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3040 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3041 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3042 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3043 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3044 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3045 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3046 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3047 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3048 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3050 /* used for adaptive IFS */
3052 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3053 adapter->stats.tpt += hw->tx_packet_delta;
3054 hw->collision_delta = E1000_READ_REG(hw, COLC);
3055 adapter->stats.colc += hw->collision_delta;
3057 if (hw->mac_type >= e1000_82543) {
3058 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3059 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3060 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3061 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3062 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3063 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3065 if (hw->mac_type > e1000_82547_rev_2) {
3066 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3067 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3068 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3069 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3070 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3071 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3072 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3073 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3074 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3077 /* Fill out the OS statistics structure */
3079 adapter->net_stats.rx_packets = adapter->stats.gprc;
3080 adapter->net_stats.tx_packets = adapter->stats.gptc;
3081 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3082 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3083 adapter->net_stats.multicast = adapter->stats.mprc;
3084 adapter->net_stats.collisions = adapter->stats.colc;
3086 /* Rx Errors */
3088 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3089 adapter->stats.crcerrs + adapter->stats.algnerrc +
3090 adapter->stats.rlec + adapter->stats.cexterr;
3091 adapter->net_stats.rx_dropped = 0;
3092 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3093 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3094 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3095 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3097 /* Tx Errors */
3099 adapter->net_stats.tx_errors = adapter->stats.ecol +
3100 adapter->stats.latecol;
3101 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3102 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3103 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3105 /* Tx Dropped needs to be maintained elsewhere */
3107 /* Phy Stats */
3109 if (hw->media_type == e1000_media_type_copper) {
3110 if ((adapter->link_speed == SPEED_1000) &&
3111 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3112 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3113 adapter->phy_stats.idle_errors += phy_tmp;
3116 if ((hw->mac_type <= e1000_82546) &&
3117 (hw->phy_type == e1000_phy_m88) &&
3118 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3119 adapter->phy_stats.receive_errors += phy_tmp;
3122 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3126 * e1000_intr - Interrupt Handler
3127 * @irq: interrupt number
3128 * @data: pointer to a network interface device structure
3129 * @pt_regs: CPU registers structure
3132 static irqreturn_t
3133 e1000_intr(int irq, void *data, struct pt_regs *regs)
3135 struct net_device *netdev = data;
3136 struct e1000_adapter *adapter = netdev_priv(netdev);
3137 struct e1000_hw *hw = &adapter->hw;
3138 uint32_t icr = E1000_READ_REG(hw, ICR);
3139 #ifndef CONFIG_E1000_NAPI
3140 int i;
3141 #else
3142 /* Interrupt Auto-Mask...upon reading ICR,
3143 * interrupts are masked. No need for the
3144 * IMC write, but it does mean we should
3145 * account for it ASAP. */
3146 if (likely(hw->mac_type >= e1000_82571))
3147 atomic_inc(&adapter->irq_sem);
3148 #endif
3150 if (unlikely(!icr)) {
3151 #ifdef CONFIG_E1000_NAPI
3152 if (hw->mac_type >= e1000_82571)
3153 e1000_irq_enable(adapter);
3154 #endif
3155 return IRQ_NONE; /* Not our interrupt */
3158 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3159 hw->get_link_status = 1;
3160 mod_timer(&adapter->watchdog_timer, jiffies);
3163 #ifdef CONFIG_E1000_NAPI
3164 if (unlikely(hw->mac_type < e1000_82571)) {
3165 atomic_inc(&adapter->irq_sem);
3166 E1000_WRITE_REG(hw, IMC, ~0);
3167 E1000_WRITE_FLUSH(hw);
3169 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3170 __netif_rx_schedule(&adapter->polling_netdev[0]);
3171 else
3172 e1000_irq_enable(adapter);
3173 #else
3174 /* Writing IMC and IMS is needed for 82547.
3175 * Due to Hub Link bus being occupied, an interrupt
3176 * de-assertion message is not able to be sent.
3177 * When an interrupt assertion message is generated later,
3178 * two messages are re-ordered and sent out.
3179 * That causes APIC to think 82547 is in de-assertion
3180 * state, while 82547 is in assertion state, resulting
3181 * in dead lock. Writing IMC forces 82547 into
3182 * de-assertion state.
3184 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3185 atomic_inc(&adapter->irq_sem);
3186 E1000_WRITE_REG(hw, IMC, ~0);
3189 for (i = 0; i < E1000_MAX_INTR; i++)
3190 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3191 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3192 break;
3194 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3195 e1000_irq_enable(adapter);
3197 #endif
3199 return IRQ_HANDLED;
3202 #ifdef CONFIG_E1000_NAPI
3204 * e1000_clean - NAPI Rx polling callback
3205 * @adapter: board private structure
3208 static int
3209 e1000_clean(struct net_device *poll_dev, int *budget)
3211 struct e1000_adapter *adapter;
3212 int work_to_do = min(*budget, poll_dev->quota);
3213 int tx_cleaned = 0, i = 0, work_done = 0;
3215 /* Must NOT use netdev_priv macro here. */
3216 adapter = poll_dev->priv;
3218 /* Keep link state information with original netdev */
3219 if (!netif_carrier_ok(adapter->netdev))
3220 goto quit_polling;
3222 while (poll_dev != &adapter->polling_netdev[i]) {
3223 i++;
3224 if (unlikely(i == adapter->num_rx_queues))
3225 BUG();
3228 if (likely(adapter->num_tx_queues == 1)) {
3229 /* e1000_clean is called per-cpu. This lock protects
3230 * tx_ring[0] from being cleaned by multiple cpus
3231 * simultaneously. A failure obtaining the lock means
3232 * tx_ring[0] is currently being cleaned anyway. */
3233 if (spin_trylock(&adapter->tx_queue_lock)) {
3234 tx_cleaned = e1000_clean_tx_irq(adapter,
3235 &adapter->tx_ring[0]);
3236 spin_unlock(&adapter->tx_queue_lock);
3238 } else
3239 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3241 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3242 &work_done, work_to_do);
3244 *budget -= work_done;
3245 poll_dev->quota -= work_done;
3247 /* If no Tx and not enough Rx work done, exit the polling mode */
3248 if ((!tx_cleaned && (work_done == 0)) ||
3249 !netif_running(adapter->netdev)) {
3250 quit_polling:
3251 netif_rx_complete(poll_dev);
3252 e1000_irq_enable(adapter);
3253 return 0;
3256 return 1;
3259 #endif
3261 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3262 * @adapter: board private structure
3265 static boolean_t
3266 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3267 struct e1000_tx_ring *tx_ring)
3269 struct net_device *netdev = adapter->netdev;
3270 struct e1000_tx_desc *tx_desc, *eop_desc;
3271 struct e1000_buffer *buffer_info;
3272 unsigned int i, eop;
3273 boolean_t cleaned = FALSE;
3275 i = tx_ring->next_to_clean;
3276 eop = tx_ring->buffer_info[i].next_to_watch;
3277 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3279 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3280 for (cleaned = FALSE; !cleaned; ) {
3281 tx_desc = E1000_TX_DESC(*tx_ring, i);
3282 buffer_info = &tx_ring->buffer_info[i];
3283 cleaned = (i == eop);
3285 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3286 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3288 if (unlikely(++i == tx_ring->count)) i = 0;
3292 eop = tx_ring->buffer_info[i].next_to_watch;
3293 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3296 tx_ring->next_to_clean = i;
3298 spin_lock(&tx_ring->tx_lock);
3300 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3301 netif_carrier_ok(netdev)))
3302 netif_wake_queue(netdev);
3304 spin_unlock(&tx_ring->tx_lock);
3306 if (adapter->detect_tx_hung) {
3307 /* Detect a transmit hang in hardware, this serializes the
3308 * check with the clearing of time_stamp and movement of i */
3309 adapter->detect_tx_hung = FALSE;
3310 if (tx_ring->buffer_info[eop].dma &&
3311 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3312 adapter->tx_timeout_factor * HZ)
3313 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3314 E1000_STATUS_TXOFF)) {
3316 /* detected Tx unit hang */
3317 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3318 " Tx Queue <%lu>\n"
3319 " TDH <%x>\n"
3320 " TDT <%x>\n"
3321 " next_to_use <%x>\n"
3322 " next_to_clean <%x>\n"
3323 "buffer_info[next_to_clean]\n"
3324 " time_stamp <%lx>\n"
3325 " next_to_watch <%x>\n"
3326 " jiffies <%lx>\n"
3327 " next_to_watch.status <%x>\n",
3328 (unsigned long)((tx_ring - adapter->tx_ring) /
3329 sizeof(struct e1000_tx_ring)),
3330 readl(adapter->hw.hw_addr + tx_ring->tdh),
3331 readl(adapter->hw.hw_addr + tx_ring->tdt),
3332 tx_ring->next_to_use,
3333 tx_ring->next_to_clean,
3334 tx_ring->buffer_info[eop].time_stamp,
3335 eop,
3336 jiffies,
3337 eop_desc->upper.fields.status);
3338 netif_stop_queue(netdev);
3341 return cleaned;
3345 * e1000_rx_checksum - Receive Checksum Offload for 82543
3346 * @adapter: board private structure
3347 * @status_err: receive descriptor status and error fields
3348 * @csum: receive descriptor csum field
3349 * @sk_buff: socket buffer with received data
3352 static inline void
3353 e1000_rx_checksum(struct e1000_adapter *adapter,
3354 uint32_t status_err, uint32_t csum,
3355 struct sk_buff *skb)
3357 uint16_t status = (uint16_t)status_err;
3358 uint8_t errors = (uint8_t)(status_err >> 24);
3359 skb->ip_summed = CHECKSUM_NONE;
3361 /* 82543 or newer only */
3362 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3363 /* Ignore Checksum bit is set */
3364 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3365 /* TCP/UDP checksum error bit is set */
3366 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3367 /* let the stack verify checksum errors */
3368 adapter->hw_csum_err++;
3369 return;
3371 /* TCP/UDP Checksum has not been calculated */
3372 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3373 if (!(status & E1000_RXD_STAT_TCPCS))
3374 return;
3375 } else {
3376 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3377 return;
3379 /* It must be a TCP or UDP packet with a valid checksum */
3380 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3381 /* TCP checksum is good */
3382 skb->ip_summed = CHECKSUM_UNNECESSARY;
3383 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3384 /* IP fragment with UDP payload */
3385 /* Hardware complements the payload checksum, so we undo it
3386 * and then put the value in host order for further stack use.
3388 csum = ntohl(csum ^ 0xFFFF);
3389 skb->csum = csum;
3390 skb->ip_summed = CHECKSUM_HW;
3392 adapter->hw_csum_good++;
3396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3397 * @adapter: board private structure
3400 static boolean_t
3401 #ifdef CONFIG_E1000_NAPI
3402 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3403 struct e1000_rx_ring *rx_ring,
3404 int *work_done, int work_to_do)
3405 #else
3406 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3407 struct e1000_rx_ring *rx_ring)
3408 #endif
3410 struct net_device *netdev = adapter->netdev;
3411 struct pci_dev *pdev = adapter->pdev;
3412 struct e1000_rx_desc *rx_desc, *next_rxd;
3413 struct e1000_buffer *buffer_info, *next_buffer;
3414 unsigned long flags;
3415 uint32_t length;
3416 uint8_t last_byte;
3417 unsigned int i;
3418 int cleaned_count = 0;
3419 boolean_t cleaned = FALSE;
3421 i = rx_ring->next_to_clean;
3422 rx_desc = E1000_RX_DESC(*rx_ring, i);
3423 buffer_info = &rx_ring->buffer_info[i];
3425 while (rx_desc->status & E1000_RXD_STAT_DD) {
3426 struct sk_buff *skb, *next_skb;
3427 u8 status;
3428 #ifdef CONFIG_E1000_NAPI
3429 if (*work_done >= work_to_do)
3430 break;
3431 (*work_done)++;
3432 #endif
3433 status = rx_desc->status;
3434 skb = buffer_info->skb;
3435 buffer_info->skb = NULL;
3437 if (++i == rx_ring->count) i = 0;
3438 next_rxd = E1000_RX_DESC(*rx_ring, i);
3439 next_buffer = &rx_ring->buffer_info[i];
3440 next_skb = next_buffer->skb;
3442 cleaned = TRUE;
3443 cleaned_count++;
3444 pci_unmap_single(pdev,
3445 buffer_info->dma,
3446 buffer_info->length,
3447 PCI_DMA_FROMDEVICE);
3449 length = le16_to_cpu(rx_desc->length);
3451 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3452 /* All receives must fit into a single buffer */
3453 E1000_DBG("%s: Receive packet consumed multiple"
3454 " buffers\n", netdev->name);
3455 dev_kfree_skb_irq(skb);
3456 goto next_desc;
3459 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3460 last_byte = *(skb->data + length - 1);
3461 if (TBI_ACCEPT(&adapter->hw, status,
3462 rx_desc->errors, length, last_byte)) {
3463 spin_lock_irqsave(&adapter->stats_lock, flags);
3464 e1000_tbi_adjust_stats(&adapter->hw,
3465 &adapter->stats,
3466 length, skb->data);
3467 spin_unlock_irqrestore(&adapter->stats_lock,
3468 flags);
3469 length--;
3470 } else {
3471 dev_kfree_skb_irq(skb);
3472 goto next_desc;
3476 /* code added for copybreak, this should improve
3477 * performance for small packets with large amounts
3478 * of reassembly being done in the stack */
3479 #define E1000_CB_LENGTH 256
3480 if (length < E1000_CB_LENGTH) {
3481 struct sk_buff *new_skb =
3482 dev_alloc_skb(length + NET_IP_ALIGN);
3483 if (new_skb) {
3484 skb_reserve(new_skb, NET_IP_ALIGN);
3485 new_skb->dev = netdev;
3486 memcpy(new_skb->data - NET_IP_ALIGN,
3487 skb->data - NET_IP_ALIGN,
3488 length + NET_IP_ALIGN);
3489 /* save the skb in buffer_info as good */
3490 buffer_info->skb = skb;
3491 skb = new_skb;
3492 skb_put(skb, length);
3494 } else
3495 skb_put(skb, length);
3497 /* end copybreak code */
3499 /* Receive Checksum Offload */
3500 e1000_rx_checksum(adapter,
3501 (uint32_t)(status) |
3502 ((uint32_t)(rx_desc->errors) << 24),
3503 rx_desc->csum, skb);
3505 skb->protocol = eth_type_trans(skb, netdev);
3506 #ifdef CONFIG_E1000_NAPI
3507 if (unlikely(adapter->vlgrp &&
3508 (status & E1000_RXD_STAT_VP))) {
3509 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3510 le16_to_cpu(rx_desc->special) &
3511 E1000_RXD_SPC_VLAN_MASK);
3512 } else {
3513 netif_receive_skb(skb);
3515 #else /* CONFIG_E1000_NAPI */
3516 if (unlikely(adapter->vlgrp &&
3517 (status & E1000_RXD_STAT_VP))) {
3518 vlan_hwaccel_rx(skb, adapter->vlgrp,
3519 le16_to_cpu(rx_desc->special) &
3520 E1000_RXD_SPC_VLAN_MASK);
3521 } else {
3522 netif_rx(skb);
3524 #endif /* CONFIG_E1000_NAPI */
3525 netdev->last_rx = jiffies;
3527 next_desc:
3528 rx_desc->status = 0;
3530 /* return some buffers to hardware, one at a time is too slow */
3531 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3532 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3533 cleaned_count = 0;
3536 rx_desc = next_rxd;
3537 buffer_info = next_buffer;
3539 rx_ring->next_to_clean = i;
3541 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3542 if (cleaned_count)
3543 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3545 return cleaned;
3549 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3550 * @adapter: board private structure
3553 static boolean_t
3554 #ifdef CONFIG_E1000_NAPI
3555 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3556 struct e1000_rx_ring *rx_ring,
3557 int *work_done, int work_to_do)
3558 #else
3559 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3560 struct e1000_rx_ring *rx_ring)
3561 #endif
3563 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3564 struct net_device *netdev = adapter->netdev;
3565 struct pci_dev *pdev = adapter->pdev;
3566 struct e1000_buffer *buffer_info, *next_buffer;
3567 struct e1000_ps_page *ps_page;
3568 struct e1000_ps_page_dma *ps_page_dma;
3569 struct sk_buff *skb, *next_skb;
3570 unsigned int i, j;
3571 uint32_t length, staterr;
3572 int cleaned_count = 0;
3573 boolean_t cleaned = FALSE;
3575 i = rx_ring->next_to_clean;
3576 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3577 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3578 buffer_info = &rx_ring->buffer_info[i];
3580 while (staterr & E1000_RXD_STAT_DD) {
3581 ps_page = &rx_ring->ps_page[i];
3582 ps_page_dma = &rx_ring->ps_page_dma[i];
3583 #ifdef CONFIG_E1000_NAPI
3584 if (unlikely(*work_done >= work_to_do))
3585 break;
3586 (*work_done)++;
3587 #endif
3588 skb = buffer_info->skb;
3590 if (++i == rx_ring->count) i = 0;
3591 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3592 next_buffer = &rx_ring->buffer_info[i];
3593 next_skb = next_buffer->skb;
3595 cleaned = TRUE;
3596 cleaned_count++;
3597 pci_unmap_single(pdev, buffer_info->dma,
3598 buffer_info->length,
3599 PCI_DMA_FROMDEVICE);
3601 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3602 E1000_DBG("%s: Packet Split buffers didn't pick up"
3603 " the full packet\n", netdev->name);
3604 dev_kfree_skb_irq(skb);
3605 goto next_desc;
3608 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3609 dev_kfree_skb_irq(skb);
3610 goto next_desc;
3613 length = le16_to_cpu(rx_desc->wb.middle.length0);
3615 if (unlikely(!length)) {
3616 E1000_DBG("%s: Last part of the packet spanning"
3617 " multiple descriptors\n", netdev->name);
3618 dev_kfree_skb_irq(skb);
3619 goto next_desc;
3622 /* Good Receive */
3623 skb_put(skb, length);
3625 for (j = 0; j < adapter->rx_ps_pages; j++) {
3626 if (!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3627 break;
3629 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3630 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3631 ps_page_dma->ps_page_dma[j] = 0;
3632 skb_shinfo(skb)->frags[j].page =
3633 ps_page->ps_page[j];
3634 ps_page->ps_page[j] = NULL;
3635 skb_shinfo(skb)->frags[j].page_offset = 0;
3636 skb_shinfo(skb)->frags[j].size = length;
3637 skb_shinfo(skb)->nr_frags++;
3638 skb->len += length;
3639 skb->data_len += length;
3642 e1000_rx_checksum(adapter, staterr,
3643 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3644 skb->protocol = eth_type_trans(skb, netdev);
3646 if (likely(rx_desc->wb.upper.header_status &
3647 E1000_RXDPS_HDRSTAT_HDRSP))
3648 adapter->rx_hdr_split++;
3649 #ifdef CONFIG_E1000_NAPI
3650 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3651 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3652 le16_to_cpu(rx_desc->wb.middle.vlan) &
3653 E1000_RXD_SPC_VLAN_MASK);
3654 } else {
3655 netif_receive_skb(skb);
3657 #else /* CONFIG_E1000_NAPI */
3658 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3659 vlan_hwaccel_rx(skb, adapter->vlgrp,
3660 le16_to_cpu(rx_desc->wb.middle.vlan) &
3661 E1000_RXD_SPC_VLAN_MASK);
3662 } else {
3663 netif_rx(skb);
3665 #endif /* CONFIG_E1000_NAPI */
3666 netdev->last_rx = jiffies;
3668 next_desc:
3669 rx_desc->wb.middle.status_error &= ~0xFF;
3670 buffer_info->skb = NULL;
3672 /* return some buffers to hardware, one at a time is too slow */
3673 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3674 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3675 cleaned_count = 0;
3678 rx_desc = next_rxd;
3679 buffer_info = next_buffer;
3681 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3683 rx_ring->next_to_clean = i;
3685 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3686 if (cleaned_count)
3687 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3689 return cleaned;
3693 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3694 * @adapter: address of board private structure
3697 static void
3698 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3699 struct e1000_rx_ring *rx_ring,
3700 int cleaned_count)
3702 struct net_device *netdev = adapter->netdev;
3703 struct pci_dev *pdev = adapter->pdev;
3704 struct e1000_rx_desc *rx_desc;
3705 struct e1000_buffer *buffer_info;
3706 struct sk_buff *skb;
3707 unsigned int i;
3708 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3710 i = rx_ring->next_to_use;
3711 buffer_info = &rx_ring->buffer_info[i];
3713 while (cleaned_count--) {
3714 if (!(skb = buffer_info->skb))
3715 skb = dev_alloc_skb(bufsz);
3716 else {
3717 skb_trim(skb, 0);
3718 goto map_skb;
3722 if (unlikely(!skb)) {
3723 /* Better luck next round */
3724 adapter->alloc_rx_buff_failed++;
3725 break;
3728 /* Fix for errata 23, can't cross 64kB boundary */
3729 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3730 struct sk_buff *oldskb = skb;
3731 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3732 "at %p\n", bufsz, skb->data);
3733 /* Try again, without freeing the previous */
3734 skb = dev_alloc_skb(bufsz);
3735 /* Failed allocation, critical failure */
3736 if (!skb) {
3737 dev_kfree_skb(oldskb);
3738 break;
3741 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3742 /* give up */
3743 dev_kfree_skb(skb);
3744 dev_kfree_skb(oldskb);
3745 break; /* while !buffer_info->skb */
3746 } else {
3747 /* Use new allocation */
3748 dev_kfree_skb(oldskb);
3751 /* Make buffer alignment 2 beyond a 16 byte boundary
3752 * this will result in a 16 byte aligned IP header after
3753 * the 14 byte MAC header is removed
3755 skb_reserve(skb, NET_IP_ALIGN);
3757 skb->dev = netdev;
3759 buffer_info->skb = skb;
3760 buffer_info->length = adapter->rx_buffer_len;
3761 map_skb:
3762 buffer_info->dma = pci_map_single(pdev,
3763 skb->data,
3764 adapter->rx_buffer_len,
3765 PCI_DMA_FROMDEVICE);
3767 /* Fix for errata 23, can't cross 64kB boundary */
3768 if (!e1000_check_64k_bound(adapter,
3769 (void *)(unsigned long)buffer_info->dma,
3770 adapter->rx_buffer_len)) {
3771 DPRINTK(RX_ERR, ERR,
3772 "dma align check failed: %u bytes at %p\n",
3773 adapter->rx_buffer_len,
3774 (void *)(unsigned long)buffer_info->dma);
3775 dev_kfree_skb(skb);
3776 buffer_info->skb = NULL;
3778 pci_unmap_single(pdev, buffer_info->dma,
3779 adapter->rx_buffer_len,
3780 PCI_DMA_FROMDEVICE);
3782 break; /* while !buffer_info->skb */
3784 rx_desc = E1000_RX_DESC(*rx_ring, i);
3785 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3787 if (unlikely(++i == rx_ring->count))
3788 i = 0;
3789 buffer_info = &rx_ring->buffer_info[i];
3792 if (likely(rx_ring->next_to_use != i)) {
3793 rx_ring->next_to_use = i;
3794 if (unlikely(i-- == 0))
3795 i = (rx_ring->count - 1);
3797 /* Force memory writes to complete before letting h/w
3798 * know there are new descriptors to fetch. (Only
3799 * applicable for weak-ordered memory model archs,
3800 * such as IA-64). */
3801 wmb();
3802 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3807 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3808 * @adapter: address of board private structure
3811 static void
3812 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3813 struct e1000_rx_ring *rx_ring,
3814 int cleaned_count)
3816 struct net_device *netdev = adapter->netdev;
3817 struct pci_dev *pdev = adapter->pdev;
3818 union e1000_rx_desc_packet_split *rx_desc;
3819 struct e1000_buffer *buffer_info;
3820 struct e1000_ps_page *ps_page;
3821 struct e1000_ps_page_dma *ps_page_dma;
3822 struct sk_buff *skb;
3823 unsigned int i, j;
3825 i = rx_ring->next_to_use;
3826 buffer_info = &rx_ring->buffer_info[i];
3827 ps_page = &rx_ring->ps_page[i];
3828 ps_page_dma = &rx_ring->ps_page_dma[i];
3830 while (cleaned_count--) {
3831 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3833 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3834 if (j < adapter->rx_ps_pages) {
3835 if (likely(!ps_page->ps_page[j])) {
3836 ps_page->ps_page[j] =
3837 alloc_page(GFP_ATOMIC);
3838 if (unlikely(!ps_page->ps_page[j])) {
3839 adapter->alloc_rx_buff_failed++;
3840 goto no_buffers;
3842 ps_page_dma->ps_page_dma[j] =
3843 pci_map_page(pdev,
3844 ps_page->ps_page[j],
3845 0, PAGE_SIZE,
3846 PCI_DMA_FROMDEVICE);
3848 /* Refresh the desc even if buffer_addrs didn't
3849 * change because each write-back erases
3850 * this info.
3852 rx_desc->read.buffer_addr[j+1] =
3853 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3854 } else
3855 rx_desc->read.buffer_addr[j+1] = ~0;
3858 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3860 if (unlikely(!skb)) {
3861 adapter->alloc_rx_buff_failed++;
3862 break;
3865 /* Make buffer alignment 2 beyond a 16 byte boundary
3866 * this will result in a 16 byte aligned IP header after
3867 * the 14 byte MAC header is removed
3869 skb_reserve(skb, NET_IP_ALIGN);
3871 skb->dev = netdev;
3873 buffer_info->skb = skb;
3874 buffer_info->length = adapter->rx_ps_bsize0;
3875 buffer_info->dma = pci_map_single(pdev, skb->data,
3876 adapter->rx_ps_bsize0,
3877 PCI_DMA_FROMDEVICE);
3879 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3881 if (unlikely(++i == rx_ring->count)) i = 0;
3882 buffer_info = &rx_ring->buffer_info[i];
3883 ps_page = &rx_ring->ps_page[i];
3884 ps_page_dma = &rx_ring->ps_page_dma[i];
3887 no_buffers:
3888 if (likely(rx_ring->next_to_use != i)) {
3889 rx_ring->next_to_use = i;
3890 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
3892 /* Force memory writes to complete before letting h/w
3893 * know there are new descriptors to fetch. (Only
3894 * applicable for weak-ordered memory model archs,
3895 * such as IA-64). */
3896 wmb();
3897 /* Hardware increments by 16 bytes, but packet split
3898 * descriptors are 32 bytes...so we increment tail
3899 * twice as much.
3901 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3906 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3907 * @adapter:
3910 static void
3911 e1000_smartspeed(struct e1000_adapter *adapter)
3913 uint16_t phy_status;
3914 uint16_t phy_ctrl;
3916 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3917 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3918 return;
3920 if (adapter->smartspeed == 0) {
3921 /* If Master/Slave config fault is asserted twice,
3922 * we assume back-to-back */
3923 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3924 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3925 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3926 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3927 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3928 if (phy_ctrl & CR_1000T_MS_ENABLE) {
3929 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3930 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3931 phy_ctrl);
3932 adapter->smartspeed++;
3933 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
3934 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3935 &phy_ctrl)) {
3936 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3937 MII_CR_RESTART_AUTO_NEG);
3938 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3939 phy_ctrl);
3942 return;
3943 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3944 /* If still no link, perhaps using 2/3 pair cable */
3945 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3946 phy_ctrl |= CR_1000T_MS_ENABLE;
3947 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3948 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
3949 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3950 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3951 MII_CR_RESTART_AUTO_NEG);
3952 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3955 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3956 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3957 adapter->smartspeed = 0;
3961 * e1000_ioctl -
3962 * @netdev:
3963 * @ifreq:
3964 * @cmd:
3967 static int
3968 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3970 switch (cmd) {
3971 case SIOCGMIIPHY:
3972 case SIOCGMIIREG:
3973 case SIOCSMIIREG:
3974 return e1000_mii_ioctl(netdev, ifr, cmd);
3975 default:
3976 return -EOPNOTSUPP;
3981 * e1000_mii_ioctl -
3982 * @netdev:
3983 * @ifreq:
3984 * @cmd:
3987 static int
3988 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3990 struct e1000_adapter *adapter = netdev_priv(netdev);
3991 struct mii_ioctl_data *data = if_mii(ifr);
3992 int retval;
3993 uint16_t mii_reg;
3994 uint16_t spddplx;
3995 unsigned long flags;
3997 if (adapter->hw.media_type != e1000_media_type_copper)
3998 return -EOPNOTSUPP;
4000 switch (cmd) {
4001 case SIOCGMIIPHY:
4002 data->phy_id = adapter->hw.phy_addr;
4003 break;
4004 case SIOCGMIIREG:
4005 if (!capable(CAP_NET_ADMIN))
4006 return -EPERM;
4007 spin_lock_irqsave(&adapter->stats_lock, flags);
4008 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4009 &data->val_out)) {
4010 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4011 return -EIO;
4013 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4014 break;
4015 case SIOCSMIIREG:
4016 if (!capable(CAP_NET_ADMIN))
4017 return -EPERM;
4018 if (data->reg_num & ~(0x1F))
4019 return -EFAULT;
4020 mii_reg = data->val_in;
4021 spin_lock_irqsave(&adapter->stats_lock, flags);
4022 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4023 mii_reg)) {
4024 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4025 return -EIO;
4027 if (adapter->hw.phy_type == e1000_phy_m88) {
4028 switch (data->reg_num) {
4029 case PHY_CTRL:
4030 if (mii_reg & MII_CR_POWER_DOWN)
4031 break;
4032 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4033 adapter->hw.autoneg = 1;
4034 adapter->hw.autoneg_advertised = 0x2F;
4035 } else {
4036 if (mii_reg & 0x40)
4037 spddplx = SPEED_1000;
4038 else if (mii_reg & 0x2000)
4039 spddplx = SPEED_100;
4040 else
4041 spddplx = SPEED_10;
4042 spddplx += (mii_reg & 0x100)
4043 ? FULL_DUPLEX :
4044 HALF_DUPLEX;
4045 retval = e1000_set_spd_dplx(adapter,
4046 spddplx);
4047 if (retval) {
4048 spin_unlock_irqrestore(
4049 &adapter->stats_lock,
4050 flags);
4051 return retval;
4054 if (netif_running(adapter->netdev)) {
4055 e1000_down(adapter);
4056 e1000_up(adapter);
4057 } else
4058 e1000_reset(adapter);
4059 break;
4060 case M88E1000_PHY_SPEC_CTRL:
4061 case M88E1000_EXT_PHY_SPEC_CTRL:
4062 if (e1000_phy_reset(&adapter->hw)) {
4063 spin_unlock_irqrestore(
4064 &adapter->stats_lock, flags);
4065 return -EIO;
4067 break;
4069 } else {
4070 switch (data->reg_num) {
4071 case PHY_CTRL:
4072 if (mii_reg & MII_CR_POWER_DOWN)
4073 break;
4074 if (netif_running(adapter->netdev)) {
4075 e1000_down(adapter);
4076 e1000_up(adapter);
4077 } else
4078 e1000_reset(adapter);
4079 break;
4082 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4083 break;
4084 default:
4085 return -EOPNOTSUPP;
4087 return E1000_SUCCESS;
4090 void
4091 e1000_pci_set_mwi(struct e1000_hw *hw)
4093 struct e1000_adapter *adapter = hw->back;
4094 int ret_val = pci_set_mwi(adapter->pdev);
4096 if (ret_val)
4097 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4100 void
4101 e1000_pci_clear_mwi(struct e1000_hw *hw)
4103 struct e1000_adapter *adapter = hw->back;
4105 pci_clear_mwi(adapter->pdev);
4108 void
4109 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4111 struct e1000_adapter *adapter = hw->back;
4113 pci_read_config_word(adapter->pdev, reg, value);
4116 void
4117 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4119 struct e1000_adapter *adapter = hw->back;
4121 pci_write_config_word(adapter->pdev, reg, *value);
4124 uint32_t
4125 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4127 return inl(port);
4130 void
4131 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4133 outl(value, port);
4136 static void
4137 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4139 struct e1000_adapter *adapter = netdev_priv(netdev);
4140 uint32_t ctrl, rctl;
4142 e1000_irq_disable(adapter);
4143 adapter->vlgrp = grp;
4145 if (grp) {
4146 /* enable VLAN tag insert/strip */
4147 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4148 ctrl |= E1000_CTRL_VME;
4149 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4151 /* enable VLAN receive filtering */
4152 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4153 rctl |= E1000_RCTL_VFE;
4154 rctl &= ~E1000_RCTL_CFIEN;
4155 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4156 e1000_update_mng_vlan(adapter);
4157 } else {
4158 /* disable VLAN tag insert/strip */
4159 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4160 ctrl &= ~E1000_CTRL_VME;
4161 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4163 /* disable VLAN filtering */
4164 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4165 rctl &= ~E1000_RCTL_VFE;
4166 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4167 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4168 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4169 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4173 e1000_irq_enable(adapter);
4176 static void
4177 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4179 struct e1000_adapter *adapter = netdev_priv(netdev);
4180 uint32_t vfta, index;
4182 if ((adapter->hw.mng_cookie.status &
4183 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4184 (vid == adapter->mng_vlan_id))
4185 return;
4186 /* add VID to filter table */
4187 index = (vid >> 5) & 0x7F;
4188 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4189 vfta |= (1 << (vid & 0x1F));
4190 e1000_write_vfta(&adapter->hw, index, vfta);
4193 static void
4194 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4196 struct e1000_adapter *adapter = netdev_priv(netdev);
4197 uint32_t vfta, index;
4199 e1000_irq_disable(adapter);
4201 if (adapter->vlgrp)
4202 adapter->vlgrp->vlan_devices[vid] = NULL;
4204 e1000_irq_enable(adapter);
4206 if ((adapter->hw.mng_cookie.status &
4207 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4208 (vid == adapter->mng_vlan_id)) {
4209 /* release control to f/w */
4210 e1000_release_hw_control(adapter);
4211 return;
4214 /* remove VID from filter table */
4215 index = (vid >> 5) & 0x7F;
4216 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4217 vfta &= ~(1 << (vid & 0x1F));
4218 e1000_write_vfta(&adapter->hw, index, vfta);
4221 static void
4222 e1000_restore_vlan(struct e1000_adapter *adapter)
4224 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4226 if (adapter->vlgrp) {
4227 uint16_t vid;
4228 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4229 if (!adapter->vlgrp->vlan_devices[vid])
4230 continue;
4231 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4237 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4239 adapter->hw.autoneg = 0;
4241 /* Fiber NICs only allow 1000 gbps Full duplex */
4242 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4243 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4244 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4245 return -EINVAL;
4248 switch (spddplx) {
4249 case SPEED_10 + DUPLEX_HALF:
4250 adapter->hw.forced_speed_duplex = e1000_10_half;
4251 break;
4252 case SPEED_10 + DUPLEX_FULL:
4253 adapter->hw.forced_speed_duplex = e1000_10_full;
4254 break;
4255 case SPEED_100 + DUPLEX_HALF:
4256 adapter->hw.forced_speed_duplex = e1000_100_half;
4257 break;
4258 case SPEED_100 + DUPLEX_FULL:
4259 adapter->hw.forced_speed_duplex = e1000_100_full;
4260 break;
4261 case SPEED_1000 + DUPLEX_FULL:
4262 adapter->hw.autoneg = 1;
4263 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4264 break;
4265 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4266 default:
4267 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4268 return -EINVAL;
4270 return 0;
4273 #ifdef CONFIG_PM
4274 /* these functions save and restore 16 or 64 dwords (64-256 bytes) of config
4275 * space versus the 64 bytes that pci_[save|restore]_state handle
4277 #define PCIE_CONFIG_SPACE_LEN 256
4278 #define PCI_CONFIG_SPACE_LEN 64
4279 static int
4280 e1000_pci_save_state(struct e1000_adapter *adapter)
4282 struct pci_dev *dev = adapter->pdev;
4283 int size;
4284 int i;
4285 if (adapter->hw.mac_type >= e1000_82571)
4286 size = PCIE_CONFIG_SPACE_LEN;
4287 else
4288 size = PCI_CONFIG_SPACE_LEN;
4290 WARN_ON(adapter->config_space != NULL);
4292 adapter->config_space = kmalloc(size, GFP_KERNEL);
4293 if (!adapter->config_space) {
4294 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4295 return -ENOMEM;
4297 for (i = 0; i < (size / 4); i++)
4298 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4299 return 0;
4302 static void
4303 e1000_pci_restore_state(struct e1000_adapter *adapter)
4305 struct pci_dev *dev = adapter->pdev;
4306 int size;
4307 int i;
4308 if (adapter->config_space == NULL)
4309 return;
4310 if (adapter->hw.mac_type >= e1000_82571)
4311 size = PCIE_CONFIG_SPACE_LEN;
4312 else
4313 size = PCI_CONFIG_SPACE_LEN;
4314 for (i = 0; i < (size / 4); i++)
4315 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4316 kfree(adapter->config_space);
4317 adapter->config_space = NULL;
4318 return;
4320 #endif /* CONFIG_PM */
4322 static int
4323 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4325 struct net_device *netdev = pci_get_drvdata(pdev);
4326 struct e1000_adapter *adapter = netdev_priv(netdev);
4327 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4328 uint32_t wufc = adapter->wol;
4329 int retval = 0;
4331 netif_device_detach(netdev);
4333 if (netif_running(netdev))
4334 e1000_down(adapter);
4336 #ifdef CONFIG_PM
4337 /* implement our own version of pci_save_state(pdev) because pci
4338 * express adapters have larger 256 byte config spaces */
4339 retval = e1000_pci_save_state(adapter);
4340 if (retval)
4341 return retval;
4342 #endif
4344 status = E1000_READ_REG(&adapter->hw, STATUS);
4345 if (status & E1000_STATUS_LU)
4346 wufc &= ~E1000_WUFC_LNKC;
4348 if (wufc) {
4349 e1000_setup_rctl(adapter);
4350 e1000_set_multi(netdev);
4352 /* turn on all-multi mode if wake on multicast is enabled */
4353 if (adapter->wol & E1000_WUFC_MC) {
4354 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4355 rctl |= E1000_RCTL_MPE;
4356 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4359 if (adapter->hw.mac_type >= e1000_82540) {
4360 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4361 /* advertise wake from D3Cold */
4362 #define E1000_CTRL_ADVD3WUC 0x00100000
4363 /* phy power management enable */
4364 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4365 ctrl |= E1000_CTRL_ADVD3WUC |
4366 E1000_CTRL_EN_PHY_PWR_MGMT;
4367 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4370 if (adapter->hw.media_type == e1000_media_type_fiber ||
4371 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4372 /* keep the laser running in D3 */
4373 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4374 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4375 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4378 /* Allow time for pending master requests to run */
4379 e1000_disable_pciex_master(&adapter->hw);
4381 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4382 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4383 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4384 if (retval)
4385 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4386 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4387 if (retval)
4388 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4389 } else {
4390 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4391 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4392 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4393 if (retval)
4394 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4395 retval = pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
4396 if (retval)
4397 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4400 if (adapter->hw.mac_type >= e1000_82540 &&
4401 adapter->hw.media_type == e1000_media_type_copper) {
4402 manc = E1000_READ_REG(&adapter->hw, MANC);
4403 if (manc & E1000_MANC_SMBUS_EN) {
4404 manc |= E1000_MANC_ARP_EN;
4405 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4406 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4407 if (retval)
4408 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4409 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4410 if (retval)
4411 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4415 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4416 * would have already happened in close and is redundant. */
4417 e1000_release_hw_control(adapter);
4419 pci_disable_device(pdev);
4421 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
4422 if (retval)
4423 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4425 return 0;
4428 #ifdef CONFIG_PM
4429 static int
4430 e1000_resume(struct pci_dev *pdev)
4432 struct net_device *netdev = pci_get_drvdata(pdev);
4433 struct e1000_adapter *adapter = netdev_priv(netdev);
4434 int retval;
4435 uint32_t manc, ret_val;
4437 retval = pci_set_power_state(pdev, PCI_D0);
4438 if (retval)
4439 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4440 e1000_pci_restore_state(adapter);
4441 ret_val = pci_enable_device(pdev);
4442 pci_set_master(pdev);
4444 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4445 if (retval)
4446 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4447 retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4448 if (retval)
4449 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4451 e1000_reset(adapter);
4452 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4454 if (netif_running(netdev))
4455 e1000_up(adapter);
4457 netif_device_attach(netdev);
4459 if (adapter->hw.mac_type >= e1000_82540 &&
4460 adapter->hw.media_type == e1000_media_type_copper) {
4461 manc = E1000_READ_REG(&adapter->hw, MANC);
4462 manc &= ~(E1000_MANC_ARP_EN);
4463 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4466 /* If the controller is 82573 and f/w is AMT, do not set
4467 * DRV_LOAD until the interface is up. For all other cases,
4468 * let the f/w know that the h/w is now under the control
4469 * of the driver. */
4470 if (adapter->hw.mac_type != e1000_82573 ||
4471 !e1000_check_mng_mode(&adapter->hw))
4472 e1000_get_hw_control(adapter);
4474 return 0;
4476 #endif
4477 #ifdef CONFIG_NET_POLL_CONTROLLER
4479 * Polling 'interrupt' - used by things like netconsole to send skbs
4480 * without having to re-enable interrupts. It's not called while
4481 * the interrupt routine is executing.
4483 static void
4484 e1000_netpoll(struct net_device *netdev)
4486 struct e1000_adapter *adapter = netdev_priv(netdev);
4487 disable_irq(adapter->pdev->irq);
4488 e1000_intr(adapter->pdev->irq, netdev, NULL);
4489 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4490 #ifndef CONFIG_E1000_NAPI
4491 adapter->clean_rx(adapter, adapter->rx_ring);
4492 #endif
4493 enable_irq(adapter->pdev->irq);
4495 #endif
4497 /* e1000_main.c */