x86/mm: Fix pgd_lock deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / pageattr.c
blob89d66f4afedd2bb156c2a7ca72f39b8f2e0b1b58
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
28 * The current flushing context - we pass it instead of 5 arguments:
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock);
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 void update_page_count(int level, unsigned long pages)
59 /* Protect against CPA */
60 spin_lock(&pgd_lock);
61 direct_pages_count[level] += pages;
62 spin_unlock(&pgd_lock);
65 static void split_page_count(int level)
67 direct_pages_count[level]--;
68 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 void arch_report_meminfo(struct seq_file *m)
73 seq_printf(m, "DirectMap4k: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_4K] << 2);
75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
76 seq_printf(m, "DirectMap2M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 11);
78 #else
79 seq_printf(m, "DirectMap4M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 12);
81 #endif
82 #ifdef CONFIG_X86_64
83 if (direct_gbpages)
84 seq_printf(m, "DirectMap1G: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_1G] << 20);
86 #endif
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
92 #ifdef CONFIG_X86_64
94 static inline unsigned long highmap_start_pfn(void)
96 return __pa(_text) >> PAGE_SHIFT;
99 static inline unsigned long highmap_end_pfn(void)
101 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 #endif
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
115 return addr >= start && addr < end;
119 * Flushing functions
123 * clflush_cache_range - flush a cache range with clflush
124 * @addr: virtual start address
125 * @size: number of bytes to flush
127 * clflush is an unordered instruction which needs fencing with mfence
128 * to avoid ordering issues.
130 void clflush_cache_range(void *vaddr, unsigned int size)
132 void *vend = vaddr + size - 1;
134 mb();
136 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 clflush(vaddr);
139 * Flush any possible final partial cacheline:
141 clflush(vend);
143 mb();
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
147 static void __cpa_flush_all(void *arg)
149 unsigned long cache = (unsigned long)arg;
152 * Flush all to work around Errata in early athlons regarding
153 * large page flushing.
155 __flush_tlb_all();
157 if (cache && boot_cpu_data.x86 >= 4)
158 wbinvd();
161 static void cpa_flush_all(unsigned long cache)
163 BUG_ON(irqs_disabled());
165 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 static void __cpa_flush_range(void *arg)
171 * We could optimize that further and do individual per page
172 * tlb invalidates for a low number of pages. Caveat: we must
173 * flush the high aliases on 64bit as well.
175 __flush_tlb_all();
178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 unsigned int i, level;
181 unsigned long addr;
183 BUG_ON(irqs_disabled());
184 WARN_ON(PAGE_ALIGN(start) != start);
186 on_each_cpu(__cpa_flush_range, NULL, 1);
188 if (!cache)
189 return;
192 * We only need to flush on one CPU,
193 * clflush is a MESI-coherent instruction that
194 * will cause all other CPUs to flush the same
195 * cachelines:
197 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 pte_t *pte = lookup_address(addr, &level);
201 * Only flush present addresses:
203 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 clflush_cache_range((void *) addr, PAGE_SIZE);
208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 int in_flags, struct page **pages)
211 unsigned int i, level;
212 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214 BUG_ON(irqs_disabled());
216 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218 if (!cache || do_wbinvd)
219 return;
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
225 * cachelines:
227 for (i = 0; i < numpages; i++) {
228 unsigned long addr;
229 pte_t *pte;
231 if (in_flags & CPA_PAGES_ARRAY)
232 addr = (unsigned long)page_address(pages[i]);
233 else
234 addr = start[i];
236 pte = lookup_address(addr, &level);
239 * Only flush present addresses:
241 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 clflush_cache_range((void *)addr, PAGE_SIZE);
247 * Certain areas of memory on x86 require very specific protection flags,
248 * for example the BIOS area or kernel text. Callers don't always get this
249 * right (again, ioremap() on BIOS memory is not uncommon) so this function
250 * checks and fixes these known static required protection bits.
252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 unsigned long pfn)
255 pgprot_t forbidden = __pgprot(0);
258 * The BIOS area between 640k and 1Mb needs to be executable for
259 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262 pgprot_val(forbidden) |= _PAGE_NX;
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
269 if (within(address, (unsigned long)_text, (unsigned long)_etext))
270 pgprot_val(forbidden) |= _PAGE_NX;
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
276 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
277 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
278 pgprot_val(forbidden) |= _PAGE_RW;
280 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
282 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283 * kernel text mappings for the large page aligned text, rodata sections
284 * will be always read-only. For the kernel identity mappings covering
285 * the holes caused by this alignment can be anything that user asks.
287 * This will preserve the large page mappings for kernel text/data
288 * at no extra cost.
290 if (kernel_set_to_readonly &&
291 within(address, (unsigned long)_text,
292 (unsigned long)__end_rodata_hpage_align)) {
293 unsigned int level;
296 * Don't enforce the !RW mapping for the kernel text mapping,
297 * if the current mapping is already using small page mapping.
298 * No need to work hard to preserve large page mappings in this
299 * case.
301 * This also fixes the Linux Xen paravirt guest boot failure
302 * (because of unexpected read-only mappings for kernel identity
303 * mappings). In this paravirt guest case, the kernel text
304 * mapping and the kernel identity mapping share the same
305 * page-table pages. Thus we can't really use different
306 * protections for the kernel text and identity mappings. Also,
307 * these shared mappings are made of small page mappings.
308 * Thus this don't enforce !RW mapping for small page kernel
309 * text mapping logic will help Linux Xen parvirt guest boot
310 * aswell.
312 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
313 pgprot_val(forbidden) |= _PAGE_RW;
315 #endif
317 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319 return prot;
323 * Lookup the page table entry for a virtual address. Return a pointer
324 * to the entry and the level of the mapping.
326 * Note: We return pud and pmd either when the entry is marked large
327 * or when the present bit is not set. Otherwise we would return a
328 * pointer to a nonexisting mapping.
330 pte_t *lookup_address(unsigned long address, unsigned int *level)
332 pgd_t *pgd = pgd_offset_k(address);
333 pud_t *pud;
334 pmd_t *pmd;
336 *level = PG_LEVEL_NONE;
338 if (pgd_none(*pgd))
339 return NULL;
341 pud = pud_offset(pgd, address);
342 if (pud_none(*pud))
343 return NULL;
345 *level = PG_LEVEL_1G;
346 if (pud_large(*pud) || !pud_present(*pud))
347 return (pte_t *)pud;
349 pmd = pmd_offset(pud, address);
350 if (pmd_none(*pmd))
351 return NULL;
353 *level = PG_LEVEL_2M;
354 if (pmd_large(*pmd) || !pmd_present(*pmd))
355 return (pte_t *)pmd;
357 *level = PG_LEVEL_4K;
359 return pte_offset_kernel(pmd, address);
361 EXPORT_SYMBOL_GPL(lookup_address);
364 * Set the new pmd in all the pgds we know about:
366 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
368 /* change init_mm */
369 set_pte_atomic(kpte, pte);
370 #ifdef CONFIG_X86_32
371 if (!SHARED_KERNEL_PMD) {
372 struct page *page;
374 list_for_each_entry(page, &pgd_list, lru) {
375 pgd_t *pgd;
376 pud_t *pud;
377 pmd_t *pmd;
379 pgd = (pgd_t *)page_address(page) + pgd_index(address);
380 pud = pud_offset(pgd, address);
381 pmd = pmd_offset(pud, address);
382 set_pte_atomic((pte_t *)pmd, pte);
385 #endif
388 static int
389 try_preserve_large_page(pte_t *kpte, unsigned long address,
390 struct cpa_data *cpa)
392 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
393 pte_t new_pte, old_pte, *tmp;
394 pgprot_t old_prot, new_prot;
395 int i, do_split = 1;
396 unsigned int level;
398 if (cpa->force_split)
399 return 1;
401 spin_lock(&pgd_lock);
403 * Check for races, another CPU might have split this page
404 * up already:
406 tmp = lookup_address(address, &level);
407 if (tmp != kpte)
408 goto out_unlock;
410 switch (level) {
411 case PG_LEVEL_2M:
412 psize = PMD_PAGE_SIZE;
413 pmask = PMD_PAGE_MASK;
414 break;
415 #ifdef CONFIG_X86_64
416 case PG_LEVEL_1G:
417 psize = PUD_PAGE_SIZE;
418 pmask = PUD_PAGE_MASK;
419 break;
420 #endif
421 default:
422 do_split = -EINVAL;
423 goto out_unlock;
427 * Calculate the number of pages, which fit into this large
428 * page starting at address:
430 nextpage_addr = (address + psize) & pmask;
431 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
432 if (numpages < cpa->numpages)
433 cpa->numpages = numpages;
436 * We are safe now. Check whether the new pgprot is the same:
438 old_pte = *kpte;
439 old_prot = new_prot = pte_pgprot(old_pte);
441 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
442 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
445 * old_pte points to the large page base address. So we need
446 * to add the offset of the virtual address:
448 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
449 cpa->pfn = pfn;
451 new_prot = static_protections(new_prot, address, pfn);
454 * We need to check the full range, whether
455 * static_protection() requires a different pgprot for one of
456 * the pages in the range we try to preserve:
458 addr = address + PAGE_SIZE;
459 pfn++;
460 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
461 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
463 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
464 goto out_unlock;
468 * If there are no changes, return. maxpages has been updated
469 * above:
471 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
472 do_split = 0;
473 goto out_unlock;
477 * We need to change the attributes. Check, whether we can
478 * change the large page in one go. We request a split, when
479 * the address is not aligned and the number of pages is
480 * smaller than the number of pages in the large page. Note
481 * that we limited the number of possible pages already to
482 * the number of pages in the large page.
484 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
486 * The address is aligned and the number of pages
487 * covers the full page.
489 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
490 __set_pmd_pte(kpte, address, new_pte);
491 cpa->flags |= CPA_FLUSHTLB;
492 do_split = 0;
495 out_unlock:
496 spin_unlock(&pgd_lock);
498 return do_split;
501 static int split_large_page(pte_t *kpte, unsigned long address)
503 unsigned long pfn, pfninc = 1;
504 unsigned int i, level;
505 pte_t *pbase, *tmp;
506 pgprot_t ref_prot;
507 struct page *base;
509 if (!debug_pagealloc)
510 spin_unlock(&cpa_lock);
511 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
512 if (!debug_pagealloc)
513 spin_lock(&cpa_lock);
514 if (!base)
515 return -ENOMEM;
517 spin_lock(&pgd_lock);
519 * Check for races, another CPU might have split this page
520 * up for us already:
522 tmp = lookup_address(address, &level);
523 if (tmp != kpte)
524 goto out_unlock;
526 pbase = (pte_t *)page_address(base);
527 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
528 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
530 * If we ever want to utilize the PAT bit, we need to
531 * update this function to make sure it's converted from
532 * bit 12 to bit 7 when we cross from the 2MB level to
533 * the 4K level:
535 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
537 #ifdef CONFIG_X86_64
538 if (level == PG_LEVEL_1G) {
539 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
540 pgprot_val(ref_prot) |= _PAGE_PSE;
542 #endif
545 * Get the target pfn from the original entry:
547 pfn = pte_pfn(*kpte);
548 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
549 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
551 if (address >= (unsigned long)__va(0) &&
552 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
553 split_page_count(level);
555 #ifdef CONFIG_X86_64
556 if (address >= (unsigned long)__va(1UL<<32) &&
557 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
558 split_page_count(level);
559 #endif
562 * Install the new, split up pagetable.
564 * We use the standard kernel pagetable protections for the new
565 * pagetable protections, the actual ptes set above control the
566 * primary protection behavior:
568 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
571 * Intel Atom errata AAH41 workaround.
573 * The real fix should be in hw or in a microcode update, but
574 * we also probabilistically try to reduce the window of having
575 * a large TLB mixed with 4K TLBs while instruction fetches are
576 * going on.
578 __flush_tlb_all();
580 base = NULL;
582 out_unlock:
584 * If we dropped out via the lookup_address check under
585 * pgd_lock then stick the page back into the pool:
587 if (base)
588 __free_page(base);
589 spin_unlock(&pgd_lock);
591 return 0;
594 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
595 int primary)
598 * Ignore all non primary paths.
600 if (!primary)
601 return 0;
604 * Ignore the NULL PTE for kernel identity mapping, as it is expected
605 * to have holes.
606 * Also set numpages to '1' indicating that we processed cpa req for
607 * one virtual address page and its pfn. TBD: numpages can be set based
608 * on the initial value and the level returned by lookup_address().
610 if (within(vaddr, PAGE_OFFSET,
611 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
612 cpa->numpages = 1;
613 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
614 return 0;
615 } else {
616 WARN(1, KERN_WARNING "CPA: called for zero pte. "
617 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
618 *cpa->vaddr);
620 return -EFAULT;
624 static int __change_page_attr(struct cpa_data *cpa, int primary)
626 unsigned long address;
627 int do_split, err;
628 unsigned int level;
629 pte_t *kpte, old_pte;
631 if (cpa->flags & CPA_PAGES_ARRAY) {
632 struct page *page = cpa->pages[cpa->curpage];
633 if (unlikely(PageHighMem(page)))
634 return 0;
635 address = (unsigned long)page_address(page);
636 } else if (cpa->flags & CPA_ARRAY)
637 address = cpa->vaddr[cpa->curpage];
638 else
639 address = *cpa->vaddr;
640 repeat:
641 kpte = lookup_address(address, &level);
642 if (!kpte)
643 return __cpa_process_fault(cpa, address, primary);
645 old_pte = *kpte;
646 if (!pte_val(old_pte))
647 return __cpa_process_fault(cpa, address, primary);
649 if (level == PG_LEVEL_4K) {
650 pte_t new_pte;
651 pgprot_t new_prot = pte_pgprot(old_pte);
652 unsigned long pfn = pte_pfn(old_pte);
654 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
655 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
657 new_prot = static_protections(new_prot, address, pfn);
660 * We need to keep the pfn from the existing PTE,
661 * after all we're only going to change it's attributes
662 * not the memory it points to
664 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
665 cpa->pfn = pfn;
667 * Do we really change anything ?
669 if (pte_val(old_pte) != pte_val(new_pte)) {
670 set_pte_atomic(kpte, new_pte);
671 cpa->flags |= CPA_FLUSHTLB;
673 cpa->numpages = 1;
674 return 0;
678 * Check, whether we can keep the large page intact
679 * and just change the pte:
681 do_split = try_preserve_large_page(kpte, address, cpa);
683 * When the range fits into the existing large page,
684 * return. cp->numpages and cpa->tlbflush have been updated in
685 * try_large_page:
687 if (do_split <= 0)
688 return do_split;
691 * We have to split the large page:
693 err = split_large_page(kpte, address);
694 if (!err) {
696 * Do a global flush tlb after splitting the large page
697 * and before we do the actual change page attribute in the PTE.
699 * With out this, we violate the TLB application note, that says
700 * "The TLBs may contain both ordinary and large-page
701 * translations for a 4-KByte range of linear addresses. This
702 * may occur if software modifies the paging structures so that
703 * the page size used for the address range changes. If the two
704 * translations differ with respect to page frame or attributes
705 * (e.g., permissions), processor behavior is undefined and may
706 * be implementation-specific."
708 * We do this global tlb flush inside the cpa_lock, so that we
709 * don't allow any other cpu, with stale tlb entries change the
710 * page attribute in parallel, that also falls into the
711 * just split large page entry.
713 flush_tlb_all();
714 goto repeat;
717 return err;
720 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
722 static int cpa_process_alias(struct cpa_data *cpa)
724 struct cpa_data alias_cpa;
725 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
726 unsigned long vaddr;
727 int ret;
729 if (cpa->pfn >= max_pfn_mapped)
730 return 0;
732 #ifdef CONFIG_X86_64
733 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
734 return 0;
735 #endif
737 * No need to redo, when the primary call touched the direct
738 * mapping already:
740 if (cpa->flags & CPA_PAGES_ARRAY) {
741 struct page *page = cpa->pages[cpa->curpage];
742 if (unlikely(PageHighMem(page)))
743 return 0;
744 vaddr = (unsigned long)page_address(page);
745 } else if (cpa->flags & CPA_ARRAY)
746 vaddr = cpa->vaddr[cpa->curpage];
747 else
748 vaddr = *cpa->vaddr;
750 if (!(within(vaddr, PAGE_OFFSET,
751 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
753 alias_cpa = *cpa;
754 alias_cpa.vaddr = &laddr;
755 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
757 ret = __change_page_attr_set_clr(&alias_cpa, 0);
758 if (ret)
759 return ret;
762 #ifdef CONFIG_X86_64
764 * If the primary call didn't touch the high mapping already
765 * and the physical address is inside the kernel map, we need
766 * to touch the high mapped kernel as well:
768 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
769 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
770 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
771 __START_KERNEL_map - phys_base;
772 alias_cpa = *cpa;
773 alias_cpa.vaddr = &temp_cpa_vaddr;
774 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
777 * The high mapping range is imprecise, so ignore the
778 * return value.
780 __change_page_attr_set_clr(&alias_cpa, 0);
782 #endif
784 return 0;
787 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
789 int ret, numpages = cpa->numpages;
791 while (numpages) {
793 * Store the remaining nr of pages for the large page
794 * preservation check.
796 cpa->numpages = numpages;
797 /* for array changes, we can't use large page */
798 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
799 cpa->numpages = 1;
801 if (!debug_pagealloc)
802 spin_lock(&cpa_lock);
803 ret = __change_page_attr(cpa, checkalias);
804 if (!debug_pagealloc)
805 spin_unlock(&cpa_lock);
806 if (ret)
807 return ret;
809 if (checkalias) {
810 ret = cpa_process_alias(cpa);
811 if (ret)
812 return ret;
816 * Adjust the number of pages with the result of the
817 * CPA operation. Either a large page has been
818 * preserved or a single page update happened.
820 BUG_ON(cpa->numpages > numpages);
821 numpages -= cpa->numpages;
822 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
823 cpa->curpage++;
824 else
825 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
828 return 0;
831 static inline int cache_attr(pgprot_t attr)
833 return pgprot_val(attr) &
834 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
837 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
838 pgprot_t mask_set, pgprot_t mask_clr,
839 int force_split, int in_flag,
840 struct page **pages)
842 struct cpa_data cpa;
843 int ret, cache, checkalias;
844 unsigned long baddr = 0;
847 * Check, if we are requested to change a not supported
848 * feature:
850 mask_set = canon_pgprot(mask_set);
851 mask_clr = canon_pgprot(mask_clr);
852 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
853 return 0;
855 /* Ensure we are PAGE_SIZE aligned */
856 if (in_flag & CPA_ARRAY) {
857 int i;
858 for (i = 0; i < numpages; i++) {
859 if (addr[i] & ~PAGE_MASK) {
860 addr[i] &= PAGE_MASK;
861 WARN_ON_ONCE(1);
864 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
866 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
867 * No need to cehck in that case
869 if (*addr & ~PAGE_MASK) {
870 *addr &= PAGE_MASK;
872 * People should not be passing in unaligned addresses:
874 WARN_ON_ONCE(1);
877 * Save address for cache flush. *addr is modified in the call
878 * to __change_page_attr_set_clr() below.
880 baddr = *addr;
883 /* Must avoid aliasing mappings in the highmem code */
884 kmap_flush_unused();
886 vm_unmap_aliases();
888 cpa.vaddr = addr;
889 cpa.pages = pages;
890 cpa.numpages = numpages;
891 cpa.mask_set = mask_set;
892 cpa.mask_clr = mask_clr;
893 cpa.flags = 0;
894 cpa.curpage = 0;
895 cpa.force_split = force_split;
897 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
898 cpa.flags |= in_flag;
900 /* No alias checking for _NX bit modifications */
901 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
903 ret = __change_page_attr_set_clr(&cpa, checkalias);
906 * Check whether we really changed something:
908 if (!(cpa.flags & CPA_FLUSHTLB))
909 goto out;
912 * No need to flush, when we did not set any of the caching
913 * attributes:
915 cache = cache_attr(mask_set);
918 * On success we use clflush, when the CPU supports it to
919 * avoid the wbindv. If the CPU does not support it and in the
920 * error case we fall back to cpa_flush_all (which uses
921 * wbindv):
923 if (!ret && cpu_has_clflush) {
924 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
925 cpa_flush_array(addr, numpages, cache,
926 cpa.flags, pages);
927 } else
928 cpa_flush_range(baddr, numpages, cache);
929 } else
930 cpa_flush_all(cache);
932 out:
933 return ret;
936 static inline int change_page_attr_set(unsigned long *addr, int numpages,
937 pgprot_t mask, int array)
939 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
940 (array ? CPA_ARRAY : 0), NULL);
943 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
944 pgprot_t mask, int array)
946 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
947 (array ? CPA_ARRAY : 0), NULL);
950 static inline int cpa_set_pages_array(struct page **pages, int numpages,
951 pgprot_t mask)
953 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
954 CPA_PAGES_ARRAY, pages);
957 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
958 pgprot_t mask)
960 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
961 CPA_PAGES_ARRAY, pages);
964 int _set_memory_uc(unsigned long addr, int numpages)
967 * for now UC MINUS. see comments in ioremap_nocache()
969 return change_page_attr_set(&addr, numpages,
970 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
973 int set_memory_uc(unsigned long addr, int numpages)
975 int ret;
978 * for now UC MINUS. see comments in ioremap_nocache()
980 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
981 _PAGE_CACHE_UC_MINUS, NULL);
982 if (ret)
983 goto out_err;
985 ret = _set_memory_uc(addr, numpages);
986 if (ret)
987 goto out_free;
989 return 0;
991 out_free:
992 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
993 out_err:
994 return ret;
996 EXPORT_SYMBOL(set_memory_uc);
998 int _set_memory_array(unsigned long *addr, int addrinarray,
999 unsigned long new_type)
1001 int i, j;
1002 int ret;
1005 * for now UC MINUS. see comments in ioremap_nocache()
1007 for (i = 0; i < addrinarray; i++) {
1008 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1009 new_type, NULL);
1010 if (ret)
1011 goto out_free;
1014 ret = change_page_attr_set(addr, addrinarray,
1015 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1017 if (!ret && new_type == _PAGE_CACHE_WC)
1018 ret = change_page_attr_set_clr(addr, addrinarray,
1019 __pgprot(_PAGE_CACHE_WC),
1020 __pgprot(_PAGE_CACHE_MASK),
1021 0, CPA_ARRAY, NULL);
1022 if (ret)
1023 goto out_free;
1025 return 0;
1027 out_free:
1028 for (j = 0; j < i; j++)
1029 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1031 return ret;
1034 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1036 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1038 EXPORT_SYMBOL(set_memory_array_uc);
1040 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1042 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1044 EXPORT_SYMBOL(set_memory_array_wc);
1046 int _set_memory_wc(unsigned long addr, int numpages)
1048 int ret;
1049 unsigned long addr_copy = addr;
1051 ret = change_page_attr_set(&addr, numpages,
1052 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1053 if (!ret) {
1054 ret = change_page_attr_set_clr(&addr_copy, numpages,
1055 __pgprot(_PAGE_CACHE_WC),
1056 __pgprot(_PAGE_CACHE_MASK),
1057 0, 0, NULL);
1059 return ret;
1062 int set_memory_wc(unsigned long addr, int numpages)
1064 int ret;
1066 if (!pat_enabled)
1067 return set_memory_uc(addr, numpages);
1069 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1070 _PAGE_CACHE_WC, NULL);
1071 if (ret)
1072 goto out_err;
1074 ret = _set_memory_wc(addr, numpages);
1075 if (ret)
1076 goto out_free;
1078 return 0;
1080 out_free:
1081 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1082 out_err:
1083 return ret;
1085 EXPORT_SYMBOL(set_memory_wc);
1087 int _set_memory_wb(unsigned long addr, int numpages)
1089 return change_page_attr_clear(&addr, numpages,
1090 __pgprot(_PAGE_CACHE_MASK), 0);
1093 int set_memory_wb(unsigned long addr, int numpages)
1095 int ret;
1097 ret = _set_memory_wb(addr, numpages);
1098 if (ret)
1099 return ret;
1101 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1102 return 0;
1104 EXPORT_SYMBOL(set_memory_wb);
1106 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1108 int i;
1109 int ret;
1111 ret = change_page_attr_clear(addr, addrinarray,
1112 __pgprot(_PAGE_CACHE_MASK), 1);
1113 if (ret)
1114 return ret;
1116 for (i = 0; i < addrinarray; i++)
1117 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1119 return 0;
1121 EXPORT_SYMBOL(set_memory_array_wb);
1123 int set_memory_x(unsigned long addr, int numpages)
1125 if (!(__supported_pte_mask & _PAGE_NX))
1126 return 0;
1128 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1130 EXPORT_SYMBOL(set_memory_x);
1132 int set_memory_nx(unsigned long addr, int numpages)
1134 if (!(__supported_pte_mask & _PAGE_NX))
1135 return 0;
1137 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1139 EXPORT_SYMBOL(set_memory_nx);
1141 int set_memory_ro(unsigned long addr, int numpages)
1143 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1145 EXPORT_SYMBOL_GPL(set_memory_ro);
1147 int set_memory_rw(unsigned long addr, int numpages)
1149 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1151 EXPORT_SYMBOL_GPL(set_memory_rw);
1153 int set_memory_np(unsigned long addr, int numpages)
1155 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1158 int set_memory_4k(unsigned long addr, int numpages)
1160 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1161 __pgprot(0), 1, 0, NULL);
1164 int set_pages_uc(struct page *page, int numpages)
1166 unsigned long addr = (unsigned long)page_address(page);
1168 return set_memory_uc(addr, numpages);
1170 EXPORT_SYMBOL(set_pages_uc);
1172 static int _set_pages_array(struct page **pages, int addrinarray,
1173 unsigned long new_type)
1175 unsigned long start;
1176 unsigned long end;
1177 int i;
1178 int free_idx;
1179 int ret;
1181 for (i = 0; i < addrinarray; i++) {
1182 if (PageHighMem(pages[i]))
1183 continue;
1184 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1185 end = start + PAGE_SIZE;
1186 if (reserve_memtype(start, end, new_type, NULL))
1187 goto err_out;
1190 ret = cpa_set_pages_array(pages, addrinarray,
1191 __pgprot(_PAGE_CACHE_UC_MINUS));
1192 if (!ret && new_type == _PAGE_CACHE_WC)
1193 ret = change_page_attr_set_clr(NULL, addrinarray,
1194 __pgprot(_PAGE_CACHE_WC),
1195 __pgprot(_PAGE_CACHE_MASK),
1196 0, CPA_PAGES_ARRAY, pages);
1197 if (ret)
1198 goto err_out;
1199 return 0; /* Success */
1200 err_out:
1201 free_idx = i;
1202 for (i = 0; i < free_idx; i++) {
1203 if (PageHighMem(pages[i]))
1204 continue;
1205 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1206 end = start + PAGE_SIZE;
1207 free_memtype(start, end);
1209 return -EINVAL;
1212 int set_pages_array_uc(struct page **pages, int addrinarray)
1214 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1216 EXPORT_SYMBOL(set_pages_array_uc);
1218 int set_pages_array_wc(struct page **pages, int addrinarray)
1220 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1222 EXPORT_SYMBOL(set_pages_array_wc);
1224 int set_pages_wb(struct page *page, int numpages)
1226 unsigned long addr = (unsigned long)page_address(page);
1228 return set_memory_wb(addr, numpages);
1230 EXPORT_SYMBOL(set_pages_wb);
1232 int set_pages_array_wb(struct page **pages, int addrinarray)
1234 int retval;
1235 unsigned long start;
1236 unsigned long end;
1237 int i;
1239 retval = cpa_clear_pages_array(pages, addrinarray,
1240 __pgprot(_PAGE_CACHE_MASK));
1241 if (retval)
1242 return retval;
1244 for (i = 0; i < addrinarray; i++) {
1245 if (PageHighMem(pages[i]))
1246 continue;
1247 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1248 end = start + PAGE_SIZE;
1249 free_memtype(start, end);
1252 return 0;
1254 EXPORT_SYMBOL(set_pages_array_wb);
1256 int set_pages_x(struct page *page, int numpages)
1258 unsigned long addr = (unsigned long)page_address(page);
1260 return set_memory_x(addr, numpages);
1262 EXPORT_SYMBOL(set_pages_x);
1264 int set_pages_nx(struct page *page, int numpages)
1266 unsigned long addr = (unsigned long)page_address(page);
1268 return set_memory_nx(addr, numpages);
1270 EXPORT_SYMBOL(set_pages_nx);
1272 int set_pages_ro(struct page *page, int numpages)
1274 unsigned long addr = (unsigned long)page_address(page);
1276 return set_memory_ro(addr, numpages);
1279 int set_pages_rw(struct page *page, int numpages)
1281 unsigned long addr = (unsigned long)page_address(page);
1283 return set_memory_rw(addr, numpages);
1286 #ifdef CONFIG_DEBUG_PAGEALLOC
1288 static int __set_pages_p(struct page *page, int numpages)
1290 unsigned long tempaddr = (unsigned long) page_address(page);
1291 struct cpa_data cpa = { .vaddr = &tempaddr,
1292 .numpages = numpages,
1293 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1294 .mask_clr = __pgprot(0),
1295 .flags = 0};
1298 * No alias checking needed for setting present flag. otherwise,
1299 * we may need to break large pages for 64-bit kernel text
1300 * mappings (this adds to complexity if we want to do this from
1301 * atomic context especially). Let's keep it simple!
1303 return __change_page_attr_set_clr(&cpa, 0);
1306 static int __set_pages_np(struct page *page, int numpages)
1308 unsigned long tempaddr = (unsigned long) page_address(page);
1309 struct cpa_data cpa = { .vaddr = &tempaddr,
1310 .numpages = numpages,
1311 .mask_set = __pgprot(0),
1312 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1313 .flags = 0};
1316 * No alias checking needed for setting not present flag. otherwise,
1317 * we may need to break large pages for 64-bit kernel text
1318 * mappings (this adds to complexity if we want to do this from
1319 * atomic context especially). Let's keep it simple!
1321 return __change_page_attr_set_clr(&cpa, 0);
1324 void kernel_map_pages(struct page *page, int numpages, int enable)
1326 if (PageHighMem(page))
1327 return;
1328 if (!enable) {
1329 debug_check_no_locks_freed(page_address(page),
1330 numpages * PAGE_SIZE);
1334 * If page allocator is not up yet then do not call c_p_a():
1336 if (!debug_pagealloc_enabled)
1337 return;
1340 * The return value is ignored as the calls cannot fail.
1341 * Large pages for identity mappings are not used at boot time
1342 * and hence no memory allocations during large page split.
1344 if (enable)
1345 __set_pages_p(page, numpages);
1346 else
1347 __set_pages_np(page, numpages);
1350 * We should perform an IPI and flush all tlbs,
1351 * but that can deadlock->flush only current cpu:
1353 __flush_tlb_all();
1356 #ifdef CONFIG_HIBERNATION
1358 bool kernel_page_present(struct page *page)
1360 unsigned int level;
1361 pte_t *pte;
1363 if (PageHighMem(page))
1364 return false;
1366 pte = lookup_address((unsigned long)page_address(page), &level);
1367 return (pte_val(*pte) & _PAGE_PRESENT);
1370 #endif /* CONFIG_HIBERNATION */
1372 #endif /* CONFIG_DEBUG_PAGEALLOC */
1375 * The testcases use internal knowledge of the implementation that shouldn't
1376 * be exposed to the rest of the kernel. Include these directly here.
1378 #ifdef CONFIG_CPA_DEBUG
1379 #include "pageattr-test.c"
1380 #endif