uml: use ptrace directly in libc code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / um / kernel / process.c
blob7a291239242b75f8b40d2104b1b8266389435a2e
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include "linux/stddef.h"
8 #include "linux/err.h"
9 #include "linux/hardirq.h"
10 #include "linux/mm.h"
11 #include "linux/personality.h"
12 #include "linux/proc_fs.h"
13 #include "linux/ptrace.h"
14 #include "linux/random.h"
15 #include "linux/sched.h"
16 #include "linux/tick.h"
17 #include "linux/threads.h"
18 #include "asm/pgtable.h"
19 #include "asm/uaccess.h"
20 #include "as-layout.h"
21 #include "kern_util.h"
22 #include "os.h"
23 #include "skas.h"
24 #include "tlb.h"
27 * This is a per-cpu array. A processor only modifies its entry and it only
28 * cares about its entry, so it's OK if another processor is modifying its
29 * entry.
31 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
33 static inline int external_pid(struct task_struct *task)
35 /* FIXME: Need to look up userspace_pid by cpu */
36 return userspace_pid[0];
39 int pid_to_processor_id(int pid)
41 int i;
43 for(i = 0; i < ncpus; i++) {
44 if (cpu_tasks[i].pid == pid)
45 return i;
47 return -1;
50 void free_stack(unsigned long stack, int order)
52 free_pages(stack, order);
55 unsigned long alloc_stack(int order, int atomic)
57 unsigned long page;
58 gfp_t flags = GFP_KERNEL;
60 if (atomic)
61 flags = GFP_ATOMIC;
62 page = __get_free_pages(flags, order);
64 return page;
67 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
69 int pid;
71 current->thread.request.u.thread.proc = fn;
72 current->thread.request.u.thread.arg = arg;
73 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
74 &current->thread.regs, 0, NULL, NULL);
75 return pid;
78 static inline void set_current(struct task_struct *task)
80 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81 { external_pid(task), task });
84 extern void arch_switch_to(struct task_struct *to);
86 void *_switch_to(void *prev, void *next, void *last)
88 struct task_struct *from = prev;
89 struct task_struct *to = next;
91 to->thread.prev_sched = from;
92 set_current(to);
94 do {
95 current->thread.saved_task = NULL;
97 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
99 arch_switch_to(current);
101 if (current->thread.saved_task)
102 show_regs(&(current->thread.regs));
103 next = current->thread.saved_task;
104 prev = current;
105 } while (current->thread.saved_task);
107 return current->thread.prev_sched;
111 void interrupt_end(void)
113 if (need_resched())
114 schedule();
115 if (test_tsk_thread_flag(current, TIF_SIGPENDING))
116 do_signal();
119 void exit_thread(void)
123 void *get_current(void)
125 return current;
128 extern void schedule_tail(struct task_struct *prev);
131 * This is called magically, by its address being stuffed in a jmp_buf
132 * and being longjmp-d to.
134 void new_thread_handler(void)
136 int (*fn)(void *), n;
137 void *arg;
139 if (current->thread.prev_sched != NULL)
140 schedule_tail(current->thread.prev_sched);
141 current->thread.prev_sched = NULL;
143 fn = current->thread.request.u.thread.proc;
144 arg = current->thread.request.u.thread.arg;
147 * The return value is 1 if the kernel thread execs a process,
148 * 0 if it just exits
150 n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
151 if (n == 1) {
152 /* Handle any immediate reschedules or signals */
153 interrupt_end();
154 userspace(&current->thread.regs.regs);
156 else do_exit(0);
159 /* Called magically, see new_thread_handler above */
160 void fork_handler(void)
162 force_flush_all();
164 schedule_tail(current->thread.prev_sched);
167 * XXX: if interrupt_end() calls schedule, this call to
168 * arch_switch_to isn't needed. We could want to apply this to
169 * improve performance. -bb
171 arch_switch_to(current);
173 current->thread.prev_sched = NULL;
175 /* Handle any immediate reschedules or signals */
176 interrupt_end();
178 userspace(&current->thread.regs.regs);
181 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
182 unsigned long stack_top, struct task_struct * p,
183 struct pt_regs *regs)
185 void (*handler)(void);
186 int ret = 0;
188 p->thread = (struct thread_struct) INIT_THREAD;
190 if (current->thread.forking) {
191 memcpy(&p->thread.regs.regs, &regs->regs,
192 sizeof(p->thread.regs.regs));
193 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
194 if (sp != 0)
195 REGS_SP(p->thread.regs.regs.gp) = sp;
197 handler = fork_handler;
199 arch_copy_thread(&current->thread.arch, &p->thread.arch);
201 else {
202 get_safe_registers(p->thread.regs.regs.gp);
203 p->thread.request.u.thread = current->thread.request.u.thread;
204 handler = new_thread_handler;
207 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
209 if (current->thread.forking) {
210 clear_flushed_tls(p);
213 * Set a new TLS for the child thread?
215 if (clone_flags & CLONE_SETTLS)
216 ret = arch_copy_tls(p);
219 return ret;
222 void initial_thread_cb(void (*proc)(void *), void *arg)
224 int save_kmalloc_ok = kmalloc_ok;
226 kmalloc_ok = 0;
227 initial_thread_cb_skas(proc, arg);
228 kmalloc_ok = save_kmalloc_ok;
231 void default_idle(void)
233 unsigned long long nsecs;
235 while(1) {
236 /* endless idle loop with no priority at all */
239 * although we are an idle CPU, we do not want to
240 * get into the scheduler unnecessarily.
242 if (need_resched())
243 schedule();
245 tick_nohz_stop_sched_tick();
246 nsecs = disable_timer();
247 idle_sleep(nsecs);
248 tick_nohz_restart_sched_tick();
252 void cpu_idle(void)
254 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
255 default_idle();
258 void dump_thread(struct pt_regs *regs, struct user *u)
262 int __cant_sleep(void) {
263 return in_atomic() || irqs_disabled() || in_interrupt();
264 /* Is in_interrupt() really needed? */
267 int user_context(unsigned long sp)
269 unsigned long stack;
271 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
272 return stack != (unsigned long) current_thread_info();
275 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
277 void do_uml_exitcalls(void)
279 exitcall_t *call;
281 call = &__uml_exitcall_end;
282 while (--call >= &__uml_exitcall_begin)
283 (*call)();
286 char *uml_strdup(const char *string)
288 return kstrdup(string, GFP_KERNEL);
291 int copy_to_user_proc(void __user *to, void *from, int size)
293 return copy_to_user(to, from, size);
296 int copy_from_user_proc(void *to, void __user *from, int size)
298 return copy_from_user(to, from, size);
301 int clear_user_proc(void __user *buf, int size)
303 return clear_user(buf, size);
306 int strlen_user_proc(char __user *str)
308 return strlen_user(str);
311 int smp_sigio_handler(void)
313 #ifdef CONFIG_SMP
314 int cpu = current_thread_info()->cpu;
315 IPI_handler(cpu);
316 if (cpu != 0)
317 return 1;
318 #endif
319 return 0;
322 int cpu(void)
324 return current_thread_info()->cpu;
327 static atomic_t using_sysemu = ATOMIC_INIT(0);
328 int sysemu_supported;
330 void set_using_sysemu(int value)
332 if (value > sysemu_supported)
333 return;
334 atomic_set(&using_sysemu, value);
337 int get_using_sysemu(void)
339 return atomic_read(&using_sysemu);
342 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
344 if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
345 /* No overflow */
346 *eof = 1;
348 return strlen(buf);
351 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
353 char tmp[2];
355 if (copy_from_user(tmp, buf, 1))
356 return -EFAULT;
358 if (tmp[0] >= '0' && tmp[0] <= '2')
359 set_using_sysemu(tmp[0] - '0');
360 /* We use the first char, but pretend to write everything */
361 return count;
364 int __init make_proc_sysemu(void)
366 struct proc_dir_entry *ent;
367 if (!sysemu_supported)
368 return 0;
370 ent = create_proc_entry("sysemu", 0600, &proc_root);
372 if (ent == NULL)
374 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
375 return 0;
378 ent->read_proc = proc_read_sysemu;
379 ent->write_proc = proc_write_sysemu;
381 return 0;
384 late_initcall(make_proc_sysemu);
386 int singlestepping(void * t)
388 struct task_struct *task = t ? t : current;
390 if ( ! (task->ptrace & PT_DTRACE) )
391 return 0;
393 if (task->thread.singlestep_syscall)
394 return 1;
396 return 2;
400 * Only x86 and x86_64 have an arch_align_stack().
401 * All other arches have "#define arch_align_stack(x) (x)"
402 * in their asm/system.h
403 * As this is included in UML from asm-um/system-generic.h,
404 * we can use it to behave as the subarch does.
406 #ifndef arch_align_stack
407 unsigned long arch_align_stack(unsigned long sp)
409 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
410 sp -= get_random_int() % 8192;
411 return sp & ~0xf;
413 #endif
415 unsigned long get_wchan(struct task_struct *p)
417 unsigned long stack_page, sp, ip;
418 bool seen_sched = 0;
420 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
421 return 0;
423 stack_page = (unsigned long) task_stack_page(p);
424 /* Bail if the process has no kernel stack for some reason */
425 if (stack_page == 0)
426 return 0;
428 sp = p->thread.switch_buf->JB_SP;
430 * Bail if the stack pointer is below the bottom of the kernel
431 * stack for some reason
433 if (sp < stack_page)
434 return 0;
436 while (sp < stack_page + THREAD_SIZE) {
437 ip = *((unsigned long *) sp);
438 if (in_sched_functions(ip))
439 /* Ignore everything until we're above the scheduler */
440 seen_sched = 1;
441 else if (kernel_text_address(ip) && seen_sched)
442 return ip;
444 sp += sizeof(unsigned long);
447 return 0;
450 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
452 int cpu = current_thread_info()->cpu;
454 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);