thinkpad_acpi: Correct !CONFIG_THINKPAD_ACPI_VIDEO warning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / debug.c
bloba0c09fc49962a095aa7b78a0ba9882e7cac6b53c
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
39 #ifdef CONFIG_UBIFS_FS_DEBUG
41 DEFINE_SPINLOCK(dbg_lock);
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
46 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
47 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
48 unsigned int ubifs_tst_flags;
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
58 static const char *get_key_fmt(int fmt)
60 switch (fmt) {
61 case UBIFS_SIMPLE_KEY_FMT:
62 return "simple";
63 default:
64 return "unknown/invalid format";
68 static const char *get_key_hash(int hash)
70 switch (hash) {
71 case UBIFS_KEY_HASH_R5:
72 return "R5";
73 case UBIFS_KEY_HASH_TEST:
74 return "test";
75 default:
76 return "unknown/invalid name hash";
80 static const char *get_key_type(int type)
82 switch (type) {
83 case UBIFS_INO_KEY:
84 return "inode";
85 case UBIFS_DENT_KEY:
86 return "direntry";
87 case UBIFS_XENT_KEY:
88 return "xentry";
89 case UBIFS_DATA_KEY:
90 return "data";
91 case UBIFS_TRUN_KEY:
92 return "truncate";
93 default:
94 return "unknown/invalid key";
98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99 char *buffer)
101 char *p = buffer;
102 int type = key_type(c, key);
104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105 switch (type) {
106 case UBIFS_INO_KEY:
107 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108 get_key_type(type));
109 break;
110 case UBIFS_DENT_KEY:
111 case UBIFS_XENT_KEY:
112 sprintf(p, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c, key),
114 get_key_type(type), key_hash(c, key));
115 break;
116 case UBIFS_DATA_KEY:
117 sprintf(p, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c, key),
119 get_key_type(type), key_block(c, key));
120 break;
121 case UBIFS_TRUN_KEY:
122 sprintf(p, "(%lu, %s)",
123 (unsigned long)key_inum(c, key),
124 get_key_type(type));
125 break;
126 default:
127 sprintf(p, "(bad key type: %#08x, %#08x)",
128 key->u32[0], key->u32[1]);
130 } else
131 sprintf(p, "bad key format %d", c->key_fmt);
134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
136 /* dbg_lock must be held */
137 sprintf_key(c, key, dbg_key_buf0);
138 return dbg_key_buf0;
141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
143 /* dbg_lock must be held */
144 sprintf_key(c, key, dbg_key_buf1);
145 return dbg_key_buf1;
148 const char *dbg_ntype(int type)
150 switch (type) {
151 case UBIFS_PAD_NODE:
152 return "padding node";
153 case UBIFS_SB_NODE:
154 return "superblock node";
155 case UBIFS_MST_NODE:
156 return "master node";
157 case UBIFS_REF_NODE:
158 return "reference node";
159 case UBIFS_INO_NODE:
160 return "inode node";
161 case UBIFS_DENT_NODE:
162 return "direntry node";
163 case UBIFS_XENT_NODE:
164 return "xentry node";
165 case UBIFS_DATA_NODE:
166 return "data node";
167 case UBIFS_TRUN_NODE:
168 return "truncate node";
169 case UBIFS_IDX_NODE:
170 return "indexing node";
171 case UBIFS_CS_NODE:
172 return "commit start node";
173 case UBIFS_ORPH_NODE:
174 return "orphan node";
175 default:
176 return "unknown node";
180 static const char *dbg_gtype(int type)
182 switch (type) {
183 case UBIFS_NO_NODE_GROUP:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP:
188 return "last of node group";
189 default:
190 return "unknown";
194 const char *dbg_cstate(int cmt_state)
196 switch (cmt_state) {
197 case COMMIT_RESTING:
198 return "commit resting";
199 case COMMIT_BACKGROUND:
200 return "background commit requested";
201 case COMMIT_REQUIRED:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED:
206 return "commit running and required";
207 case COMMIT_BROKEN:
208 return "broken commit";
209 default:
210 return "unknown commit state";
214 const char *dbg_jhead(int jhead)
216 switch (jhead) {
217 case GCHD:
218 return "0 (GC)";
219 case BASEHD:
220 return "1 (base)";
221 case DATAHD:
222 return "2 (data)";
223 default:
224 return "unknown journal head";
228 static void dump_ch(const struct ubifs_ch *ch)
230 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
231 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
232 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
233 dbg_ntype(ch->node_type));
234 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
235 dbg_gtype(ch->group_type));
236 printk(KERN_DEBUG "\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch->sqnum));
238 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
243 const struct ubifs_inode *ui = ubifs_inode(inode);
245 printk(KERN_DEBUG "Dump in-memory inode:");
246 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
247 printk(KERN_DEBUG "\tsize %llu\n",
248 (unsigned long long)i_size_read(inode));
249 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
250 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
251 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
252 printk(KERN_DEBUG "\tatime %u.%u\n",
253 (unsigned int)inode->i_atime.tv_sec,
254 (unsigned int)inode->i_atime.tv_nsec);
255 printk(KERN_DEBUG "\tmtime %u.%u\n",
256 (unsigned int)inode->i_mtime.tv_sec,
257 (unsigned int)inode->i_mtime.tv_nsec);
258 printk(KERN_DEBUG "\tctime %u.%u\n",
259 (unsigned int)inode->i_ctime.tv_sec,
260 (unsigned int)inode->i_ctime.tv_nsec);
261 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
262 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
263 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
264 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
265 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
266 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
268 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
269 (unsigned long long)ui->synced_i_size);
270 printk(KERN_DEBUG "\tui_size %llu\n",
271 (unsigned long long)ui->ui_size);
272 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
273 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
274 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
276 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
281 int i, n;
282 union ubifs_key key;
283 const struct ubifs_ch *ch = node;
285 if (dbg_failure_mode)
286 return;
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292 (void *)node, UBIFS_CH_SZ, 1);
293 return;
296 spin_lock(&dbg_lock);
297 dump_ch(node);
299 switch (ch->node_type) {
300 case UBIFS_PAD_NODE:
302 const struct ubifs_pad_node *pad = node;
304 printk(KERN_DEBUG "\tpad_len %u\n",
305 le32_to_cpu(pad->pad_len));
306 break;
308 case UBIFS_SB_NODE:
310 const struct ubifs_sb_node *sup = node;
311 unsigned int sup_flags = le32_to_cpu(sup->flags);
313 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
314 (int)sup->key_hash, get_key_hash(sup->key_hash));
315 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
316 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
318 printk(KERN_DEBUG "\t big_lpt %u\n",
319 !!(sup_flags & UBIFS_FLG_BIGLPT));
320 printk(KERN_DEBUG "\tmin_io_size %u\n",
321 le32_to_cpu(sup->min_io_size));
322 printk(KERN_DEBUG "\tleb_size %u\n",
323 le32_to_cpu(sup->leb_size));
324 printk(KERN_DEBUG "\tleb_cnt %u\n",
325 le32_to_cpu(sup->leb_cnt));
326 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup->max_leb_cnt));
328 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330 printk(KERN_DEBUG "\tlog_lebs %u\n",
331 le32_to_cpu(sup->log_lebs));
332 printk(KERN_DEBUG "\tlpt_lebs %u\n",
333 le32_to_cpu(sup->lpt_lebs));
334 printk(KERN_DEBUG "\torph_lebs %u\n",
335 le32_to_cpu(sup->orph_lebs));
336 printk(KERN_DEBUG "\tjhead_cnt %u\n",
337 le32_to_cpu(sup->jhead_cnt));
338 printk(KERN_DEBUG "\tfanout %u\n",
339 le32_to_cpu(sup->fanout));
340 printk(KERN_DEBUG "\tlsave_cnt %u\n",
341 le32_to_cpu(sup->lsave_cnt));
342 printk(KERN_DEBUG "\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup->default_compr));
344 printk(KERN_DEBUG "\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup->rp_size));
346 printk(KERN_DEBUG "\trp_uid %u\n",
347 le32_to_cpu(sup->rp_uid));
348 printk(KERN_DEBUG "\trp_gid %u\n",
349 le32_to_cpu(sup->rp_gid));
350 printk(KERN_DEBUG "\tfmt_version %u\n",
351 le32_to_cpu(sup->fmt_version));
352 printk(KERN_DEBUG "\ttime_gran %u\n",
353 le32_to_cpu(sup->time_gran));
354 printk(KERN_DEBUG "\tUUID %pUB\n",
355 sup->uuid);
356 break;
358 case UBIFS_MST_NODE:
360 const struct ubifs_mst_node *mst = node;
362 printk(KERN_DEBUG "\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst->highest_inum));
364 printk(KERN_DEBUG "\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst->cmt_no));
366 printk(KERN_DEBUG "\tflags %#x\n",
367 le32_to_cpu(mst->flags));
368 printk(KERN_DEBUG "\tlog_lnum %u\n",
369 le32_to_cpu(mst->log_lnum));
370 printk(KERN_DEBUG "\troot_lnum %u\n",
371 le32_to_cpu(mst->root_lnum));
372 printk(KERN_DEBUG "\troot_offs %u\n",
373 le32_to_cpu(mst->root_offs));
374 printk(KERN_DEBUG "\troot_len %u\n",
375 le32_to_cpu(mst->root_len));
376 printk(KERN_DEBUG "\tgc_lnum %u\n",
377 le32_to_cpu(mst->gc_lnum));
378 printk(KERN_DEBUG "\tihead_lnum %u\n",
379 le32_to_cpu(mst->ihead_lnum));
380 printk(KERN_DEBUG "\tihead_offs %u\n",
381 le32_to_cpu(mst->ihead_offs));
382 printk(KERN_DEBUG "\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst->index_size));
384 printk(KERN_DEBUG "\tlpt_lnum %u\n",
385 le32_to_cpu(mst->lpt_lnum));
386 printk(KERN_DEBUG "\tlpt_offs %u\n",
387 le32_to_cpu(mst->lpt_offs));
388 printk(KERN_DEBUG "\tnhead_lnum %u\n",
389 le32_to_cpu(mst->nhead_lnum));
390 printk(KERN_DEBUG "\tnhead_offs %u\n",
391 le32_to_cpu(mst->nhead_offs));
392 printk(KERN_DEBUG "\tltab_lnum %u\n",
393 le32_to_cpu(mst->ltab_lnum));
394 printk(KERN_DEBUG "\tltab_offs %u\n",
395 le32_to_cpu(mst->ltab_offs));
396 printk(KERN_DEBUG "\tlsave_lnum %u\n",
397 le32_to_cpu(mst->lsave_lnum));
398 printk(KERN_DEBUG "\tlsave_offs %u\n",
399 le32_to_cpu(mst->lsave_offs));
400 printk(KERN_DEBUG "\tlscan_lnum %u\n",
401 le32_to_cpu(mst->lscan_lnum));
402 printk(KERN_DEBUG "\tleb_cnt %u\n",
403 le32_to_cpu(mst->leb_cnt));
404 printk(KERN_DEBUG "\tempty_lebs %u\n",
405 le32_to_cpu(mst->empty_lebs));
406 printk(KERN_DEBUG "\tidx_lebs %u\n",
407 le32_to_cpu(mst->idx_lebs));
408 printk(KERN_DEBUG "\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst->total_free));
410 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst->total_dirty));
412 printk(KERN_DEBUG "\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_used));
414 printk(KERN_DEBUG "\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dead));
416 printk(KERN_DEBUG "\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_dark));
418 break;
420 case UBIFS_REF_NODE:
422 const struct ubifs_ref_node *ref = node;
424 printk(KERN_DEBUG "\tlnum %u\n",
425 le32_to_cpu(ref->lnum));
426 printk(KERN_DEBUG "\toffs %u\n",
427 le32_to_cpu(ref->offs));
428 printk(KERN_DEBUG "\tjhead %u\n",
429 le32_to_cpu(ref->jhead));
430 break;
432 case UBIFS_INO_NODE:
434 const struct ubifs_ino_node *ino = node;
436 key_read(c, &ino->key, &key);
437 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
438 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440 printk(KERN_DEBUG "\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino->size));
442 printk(KERN_DEBUG "\tnlink %u\n",
443 le32_to_cpu(ino->nlink));
444 printk(KERN_DEBUG "\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino->atime_sec),
446 le32_to_cpu(ino->atime_nsec));
447 printk(KERN_DEBUG "\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino->mtime_sec),
449 le32_to_cpu(ino->mtime_nsec));
450 printk(KERN_DEBUG "\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino->ctime_sec),
452 le32_to_cpu(ino->ctime_nsec));
453 printk(KERN_DEBUG "\tuid %u\n",
454 le32_to_cpu(ino->uid));
455 printk(KERN_DEBUG "\tgid %u\n",
456 le32_to_cpu(ino->gid));
457 printk(KERN_DEBUG "\tmode %u\n",
458 le32_to_cpu(ino->mode));
459 printk(KERN_DEBUG "\tflags %#x\n",
460 le32_to_cpu(ino->flags));
461 printk(KERN_DEBUG "\txattr_cnt %u\n",
462 le32_to_cpu(ino->xattr_cnt));
463 printk(KERN_DEBUG "\txattr_size %u\n",
464 le32_to_cpu(ino->xattr_size));
465 printk(KERN_DEBUG "\txattr_names %u\n",
466 le32_to_cpu(ino->xattr_names));
467 printk(KERN_DEBUG "\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino->compr_type));
469 printk(KERN_DEBUG "\tdata len %u\n",
470 le32_to_cpu(ino->data_len));
471 break;
473 case UBIFS_DENT_NODE:
474 case UBIFS_XENT_NODE:
476 const struct ubifs_dent_node *dent = node;
477 int nlen = le16_to_cpu(dent->nlen);
479 key_read(c, &dent->key, &key);
480 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
481 printk(KERN_DEBUG "\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent->inum));
483 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
484 printk(KERN_DEBUG "\tnlen %d\n", nlen);
485 printk(KERN_DEBUG "\tname ");
487 if (nlen > UBIFS_MAX_NLEN)
488 printk(KERN_DEBUG "(bad name length, not printing, "
489 "bad or corrupted node)");
490 else {
491 for (i = 0; i < nlen && dent->name[i]; i++)
492 printk(KERN_CONT "%c", dent->name[i]);
494 printk(KERN_CONT "\n");
496 break;
498 case UBIFS_DATA_NODE:
500 const struct ubifs_data_node *dn = node;
501 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
503 key_read(c, &dn->key, &key);
504 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
505 printk(KERN_DEBUG "\tsize %u\n",
506 le32_to_cpu(dn->size));
507 printk(KERN_DEBUG "\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn->compr_type));
509 printk(KERN_DEBUG "\tdata size %d\n",
510 dlen);
511 printk(KERN_DEBUG "\tdata:\n");
512 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data, dlen, 0);
514 break;
516 case UBIFS_TRUN_NODE:
518 const struct ubifs_trun_node *trun = node;
520 printk(KERN_DEBUG "\tinum %u\n",
521 le32_to_cpu(trun->inum));
522 printk(KERN_DEBUG "\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 printk(KERN_DEBUG "\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
528 case UBIFS_IDX_NODE:
530 const struct ubifs_idx_node *idx = node;
532 n = le16_to_cpu(idx->child_cnt);
533 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
534 printk(KERN_DEBUG "\tlevel %d\n",
535 (int)le16_to_cpu(idx->level));
536 printk(KERN_DEBUG "\tBranches:\n");
538 for (i = 0; i < n && i < c->fanout - 1; i++) {
539 const struct ubifs_branch *br;
541 br = ubifs_idx_branch(c, idx, i);
542 key_read(c, &br->key, &key);
543 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545 le32_to_cpu(br->len), DBGKEY(&key));
547 break;
549 case UBIFS_CS_NODE:
550 break;
551 case UBIFS_ORPH_NODE:
553 const struct ubifs_orph_node *orph = node;
555 printk(KERN_DEBUG "\tcommit number %llu\n",
556 (unsigned long long)
557 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558 printk(KERN_DEBUG "\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562 for (i = 0; i < n; i++)
563 printk(KERN_DEBUG "\t ino %llu\n",
564 (unsigned long long)le64_to_cpu(orph->inos[i]));
565 break;
567 default:
568 printk(KERN_DEBUG "node type %d was not recognized\n",
569 (int)ch->node_type);
571 spin_unlock(&dbg_lock);
574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
576 spin_lock(&dbg_lock);
577 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req->new_ino, req->dirtied_ino);
579 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req->new_ino_d, req->dirtied_ino_d);
581 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
582 req->new_page, req->dirtied_page);
583 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
584 req->new_dent, req->mod_dent);
585 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
586 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
587 req->data_growth, req->dd_growth);
588 spin_unlock(&dbg_lock);
591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
593 spin_lock(&dbg_lock);
594 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598 lst->total_dirty);
599 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst->total_used, lst->total_dark,
601 lst->total_dead);
602 spin_unlock(&dbg_lock);
605 void dbg_dump_budg(struct ubifs_info *c)
607 int i;
608 struct rb_node *rb;
609 struct ubifs_bud *bud;
610 struct ubifs_gced_idx_leb *idx_gc;
611 long long available, outstanding, free;
613 ubifs_assert(spin_is_locked(&c->space_lock));
614 spin_lock(&dbg_lock);
615 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621 c->freeable_cnt);
622 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627 atomic_long_read(&c->dirty_zn_cnt),
628 atomic_long_read(&c->clean_zn_cnt));
629 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632 c->gc_lnum, c->ihead_lnum);
633 /* If we are in R/O mode, journal heads do not exist */
634 if (c->jheads)
635 for (i = 0; i < c->jhead_cnt; i++)
636 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637 dbg_jhead(c->jheads[i].wbuf.jhead),
638 c->jheads[i].wbuf.lnum);
639 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640 bud = rb_entry(rb, struct ubifs_bud, rb);
641 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
643 list_for_each_entry(bud, &c->old_buds, list)
644 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645 list_for_each_entry(idx_gc, &c->idx_gc, list)
646 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc->lnum, idx_gc->unmap);
648 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
650 /* Print budgeting predictions */
651 available = ubifs_calc_available(c, c->min_idx_lebs);
652 outstanding = c->budg_data_growth + c->budg_dd_growth;
653 free = ubifs_get_free_space_nolock(c);
654 printk(KERN_DEBUG "Budgeting predictions:\n");
655 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656 available, outstanding, free);
657 spin_unlock(&dbg_lock);
660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
662 int i, spc, dark = 0, dead = 0;
663 struct rb_node *rb;
664 struct ubifs_bud *bud;
666 spc = lp->free + lp->dirty;
667 if (spc < c->dead_wm)
668 dead = spc;
669 else
670 dark = ubifs_calc_dark(c, spc);
672 if (lp->flags & LPROPS_INDEX)
673 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675 lp->dirty, c->leb_size - spc, spc, lp->flags);
676 else
677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680 c->leb_size - spc, spc, dark, dead,
681 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
683 if (lp->flags & LPROPS_TAKEN) {
684 if (lp->flags & LPROPS_INDEX)
685 printk(KERN_CONT "index, taken");
686 else
687 printk(KERN_CONT "taken");
688 } else {
689 const char *s;
691 if (lp->flags & LPROPS_INDEX) {
692 switch (lp->flags & LPROPS_CAT_MASK) {
693 case LPROPS_DIRTY_IDX:
694 s = "dirty index";
695 break;
696 case LPROPS_FRDI_IDX:
697 s = "freeable index";
698 break;
699 default:
700 s = "index";
702 } else {
703 switch (lp->flags & LPROPS_CAT_MASK) {
704 case LPROPS_UNCAT:
705 s = "not categorized";
706 break;
707 case LPROPS_DIRTY:
708 s = "dirty";
709 break;
710 case LPROPS_FREE:
711 s = "free";
712 break;
713 case LPROPS_EMPTY:
714 s = "empty";
715 break;
716 case LPROPS_FREEABLE:
717 s = "freeable";
718 break;
719 default:
720 s = NULL;
721 break;
724 printk(KERN_CONT "%s", s);
727 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728 bud = rb_entry(rb, struct ubifs_bud, rb);
729 if (bud->lnum == lp->lnum) {
730 int head = 0;
731 for (i = 0; i < c->jhead_cnt; i++) {
732 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733 printk(KERN_CONT ", jhead %s",
734 dbg_jhead(i));
735 head = 1;
738 if (!head)
739 printk(KERN_CONT ", bud of jhead %s",
740 dbg_jhead(bud->jhead));
743 if (lp->lnum == c->gc_lnum)
744 printk(KERN_CONT ", GC LEB");
745 printk(KERN_CONT ")\n");
748 void dbg_dump_lprops(struct ubifs_info *c)
750 int lnum, err;
751 struct ubifs_lprops lp;
752 struct ubifs_lp_stats lst;
754 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755 current->pid);
756 ubifs_get_lp_stats(c, &lst);
757 dbg_dump_lstats(&lst);
759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760 err = ubifs_read_one_lp(c, lnum, &lp);
761 if (err)
762 ubifs_err("cannot read lprops for LEB %d", lnum);
764 dbg_dump_lprop(c, &lp);
766 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767 current->pid);
770 void dbg_dump_lpt_info(struct ubifs_info *c)
772 int i;
774 spin_lock(&dbg_lock);
775 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
777 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
778 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
779 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
780 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
781 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
782 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
783 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
784 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
785 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
786 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
787 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
788 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
789 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
792 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
793 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
794 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796 c->nhead_lnum, c->nhead_offs);
797 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798 c->ltab_lnum, c->ltab_offs);
799 if (c->big_lpt)
800 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801 c->lsave_lnum, c->lsave_offs);
802 for (i = 0; i < c->lpt_lebs; i++)
803 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806 spin_unlock(&dbg_lock);
809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
811 struct ubifs_scan_leb *sleb;
812 struct ubifs_scan_node *snod;
814 if (dbg_failure_mode)
815 return;
817 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
818 current->pid, lnum);
819 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
820 if (IS_ERR(sleb)) {
821 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
822 return;
825 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
826 sleb->nodes_cnt, sleb->endpt);
828 list_for_each_entry(snod, &sleb->nodes, list) {
829 cond_resched();
830 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
831 snod->offs, snod->len);
832 dbg_dump_node(c, snod->node);
835 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
836 current->pid, lnum);
837 ubifs_scan_destroy(sleb);
838 return;
841 void dbg_dump_znode(const struct ubifs_info *c,
842 const struct ubifs_znode *znode)
844 int n;
845 const struct ubifs_zbranch *zbr;
847 spin_lock(&dbg_lock);
848 if (znode->parent)
849 zbr = &znode->parent->zbranch[znode->iip];
850 else
851 zbr = &c->zroot;
853 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
854 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
855 zbr->len, znode->parent, znode->iip, znode->level,
856 znode->child_cnt, znode->flags);
858 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
859 spin_unlock(&dbg_lock);
860 return;
863 printk(KERN_DEBUG "zbranches:\n");
864 for (n = 0; n < znode->child_cnt; n++) {
865 zbr = &znode->zbranch[n];
866 if (znode->level > 0)
867 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
868 "%s\n", n, zbr->znode, zbr->lnum,
869 zbr->offs, zbr->len,
870 DBGKEY(&zbr->key));
871 else
872 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
873 "%s\n", n, zbr->znode, zbr->lnum,
874 zbr->offs, zbr->len,
875 DBGKEY(&zbr->key));
877 spin_unlock(&dbg_lock);
880 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
882 int i;
884 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
885 current->pid, cat, heap->cnt);
886 for (i = 0; i < heap->cnt; i++) {
887 struct ubifs_lprops *lprops = heap->arr[i];
889 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
890 "flags %d\n", i, lprops->lnum, lprops->hpos,
891 lprops->free, lprops->dirty, lprops->flags);
893 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
896 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
897 struct ubifs_nnode *parent, int iip)
899 int i;
901 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
902 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
903 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
904 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
905 pnode->flags, iip, pnode->level, pnode->num);
906 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
907 struct ubifs_lprops *lp = &pnode->lprops[i];
909 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
910 i, lp->free, lp->dirty, lp->flags, lp->lnum);
914 void dbg_dump_tnc(struct ubifs_info *c)
916 struct ubifs_znode *znode;
917 int level;
919 printk(KERN_DEBUG "\n");
920 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
921 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
922 level = znode->level;
923 printk(KERN_DEBUG "== Level %d ==\n", level);
924 while (znode) {
925 if (level != znode->level) {
926 level = znode->level;
927 printk(KERN_DEBUG "== Level %d ==\n", level);
929 dbg_dump_znode(c, znode);
930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
932 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
935 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
936 void *priv)
938 dbg_dump_znode(c, znode);
939 return 0;
943 * dbg_dump_index - dump the on-flash index.
944 * @c: UBIFS file-system description object
946 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
947 * which dumps only in-memory znodes and does not read znodes which from flash.
949 void dbg_dump_index(struct ubifs_info *c)
951 dbg_walk_index(c, NULL, dump_znode, NULL);
955 * dbg_save_space_info - save information about flash space.
956 * @c: UBIFS file-system description object
958 * This function saves information about UBIFS free space, dirty space, etc, in
959 * order to check it later.
961 void dbg_save_space_info(struct ubifs_info *c)
963 struct ubifs_debug_info *d = c->dbg;
964 int freeable_cnt;
966 spin_lock(&c->space_lock);
967 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
970 * We use a dirty hack here and zero out @c->freeable_cnt, because it
971 * affects the free space calculations, and UBIFS might not know about
972 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
973 * only when we read their lprops, and we do this only lazily, upon the
974 * need. So at any given point of time @c->freeable_cnt might be not
975 * exactly accurate.
977 * Just one example about the issue we hit when we did not zero
978 * @c->freeable_cnt.
979 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
980 * amount of free space in @d->saved_free
981 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
982 * information from flash, where we cache LEBs from various
983 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
984 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
985 * -> 'ubifs_get_pnode()' -> 'update_cats()'
986 * -> 'ubifs_add_to_cat()').
987 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
988 * becomes %1.
989 * 4. We calculate the amount of free space when the re-mount is
990 * finished in 'dbg_check_space_info()' and it does not match
991 * @d->saved_free.
993 freeable_cnt = c->freeable_cnt;
994 c->freeable_cnt = 0;
995 d->saved_free = ubifs_get_free_space_nolock(c);
996 c->freeable_cnt = freeable_cnt;
997 spin_unlock(&c->space_lock);
1001 * dbg_check_space_info - check flash space information.
1002 * @c: UBIFS file-system description object
1004 * This function compares current flash space information with the information
1005 * which was saved when the 'dbg_save_space_info()' function was called.
1006 * Returns zero if the information has not changed, and %-EINVAL it it has
1007 * changed.
1009 int dbg_check_space_info(struct ubifs_info *c)
1011 struct ubifs_debug_info *d = c->dbg;
1012 struct ubifs_lp_stats lst;
1013 long long free;
1014 int freeable_cnt;
1016 spin_lock(&c->space_lock);
1017 freeable_cnt = c->freeable_cnt;
1018 c->freeable_cnt = 0;
1019 free = ubifs_get_free_space_nolock(c);
1020 c->freeable_cnt = freeable_cnt;
1021 spin_unlock(&c->space_lock);
1023 if (free != d->saved_free) {
1024 ubifs_err("free space changed from %lld to %lld",
1025 d->saved_free, free);
1026 goto out;
1029 return 0;
1031 out:
1032 ubifs_msg("saved lprops statistics dump");
1033 dbg_dump_lstats(&d->saved_lst);
1034 ubifs_get_lp_stats(c, &lst);
1036 ubifs_msg("current lprops statistics dump");
1037 dbg_dump_lstats(&lst);
1039 spin_lock(&c->space_lock);
1040 dbg_dump_budg(c);
1041 spin_unlock(&c->space_lock);
1042 dump_stack();
1043 return -EINVAL;
1047 * dbg_check_synced_i_size - check synchronized inode size.
1048 * @inode: inode to check
1050 * If inode is clean, synchronized inode size has to be equivalent to current
1051 * inode size. This function has to be called only for locked inodes (@i_mutex
1052 * has to be locked). Returns %0 if synchronized inode size if correct, and
1053 * %-EINVAL if not.
1055 int dbg_check_synced_i_size(struct inode *inode)
1057 int err = 0;
1058 struct ubifs_inode *ui = ubifs_inode(inode);
1060 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1061 return 0;
1062 if (!S_ISREG(inode->i_mode))
1063 return 0;
1065 mutex_lock(&ui->ui_mutex);
1066 spin_lock(&ui->ui_lock);
1067 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1068 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1069 "is clean", ui->ui_size, ui->synced_i_size);
1070 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1071 inode->i_mode, i_size_read(inode));
1072 dbg_dump_stack();
1073 err = -EINVAL;
1075 spin_unlock(&ui->ui_lock);
1076 mutex_unlock(&ui->ui_mutex);
1077 return err;
1081 * dbg_check_dir - check directory inode size and link count.
1082 * @c: UBIFS file-system description object
1083 * @dir: the directory to calculate size for
1084 * @size: the result is returned here
1086 * This function makes sure that directory size and link count are correct.
1087 * Returns zero in case of success and a negative error code in case of
1088 * failure.
1090 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1091 * calling this function.
1093 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1095 unsigned int nlink = 2;
1096 union ubifs_key key;
1097 struct ubifs_dent_node *dent, *pdent = NULL;
1098 struct qstr nm = { .name = NULL };
1099 loff_t size = UBIFS_INO_NODE_SZ;
1101 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1102 return 0;
1104 if (!S_ISDIR(dir->i_mode))
1105 return 0;
1107 lowest_dent_key(c, &key, dir->i_ino);
1108 while (1) {
1109 int err;
1111 dent = ubifs_tnc_next_ent(c, &key, &nm);
1112 if (IS_ERR(dent)) {
1113 err = PTR_ERR(dent);
1114 if (err == -ENOENT)
1115 break;
1116 return err;
1119 nm.name = dent->name;
1120 nm.len = le16_to_cpu(dent->nlen);
1121 size += CALC_DENT_SIZE(nm.len);
1122 if (dent->type == UBIFS_ITYPE_DIR)
1123 nlink += 1;
1124 kfree(pdent);
1125 pdent = dent;
1126 key_read(c, &dent->key, &key);
1128 kfree(pdent);
1130 if (i_size_read(dir) != size) {
1131 ubifs_err("directory inode %lu has size %llu, "
1132 "but calculated size is %llu", dir->i_ino,
1133 (unsigned long long)i_size_read(dir),
1134 (unsigned long long)size);
1135 dump_stack();
1136 return -EINVAL;
1138 if (dir->i_nlink != nlink) {
1139 ubifs_err("directory inode %lu has nlink %u, but calculated "
1140 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1141 dump_stack();
1142 return -EINVAL;
1145 return 0;
1149 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1150 * @c: UBIFS file-system description object
1151 * @zbr1: first zbranch
1152 * @zbr2: following zbranch
1154 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1155 * names of the direntries/xentries which are referred by the keys. This
1156 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1157 * sure the name of direntry/xentry referred by @zbr1 is less than
1158 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1159 * and a negative error code in case of failure.
1161 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1162 struct ubifs_zbranch *zbr2)
1164 int err, nlen1, nlen2, cmp;
1165 struct ubifs_dent_node *dent1, *dent2;
1166 union ubifs_key key;
1168 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1169 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1170 if (!dent1)
1171 return -ENOMEM;
1172 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1173 if (!dent2) {
1174 err = -ENOMEM;
1175 goto out_free;
1178 err = ubifs_tnc_read_node(c, zbr1, dent1);
1179 if (err)
1180 goto out_free;
1181 err = ubifs_validate_entry(c, dent1);
1182 if (err)
1183 goto out_free;
1185 err = ubifs_tnc_read_node(c, zbr2, dent2);
1186 if (err)
1187 goto out_free;
1188 err = ubifs_validate_entry(c, dent2);
1189 if (err)
1190 goto out_free;
1192 /* Make sure node keys are the same as in zbranch */
1193 err = 1;
1194 key_read(c, &dent1->key, &key);
1195 if (keys_cmp(c, &zbr1->key, &key)) {
1196 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1197 zbr1->offs, DBGKEY(&key));
1198 dbg_err("but it should have key %s according to tnc",
1199 DBGKEY(&zbr1->key));
1200 dbg_dump_node(c, dent1);
1201 goto out_free;
1204 key_read(c, &dent2->key, &key);
1205 if (keys_cmp(c, &zbr2->key, &key)) {
1206 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1207 zbr1->offs, DBGKEY(&key));
1208 dbg_err("but it should have key %s according to tnc",
1209 DBGKEY(&zbr2->key));
1210 dbg_dump_node(c, dent2);
1211 goto out_free;
1214 nlen1 = le16_to_cpu(dent1->nlen);
1215 nlen2 = le16_to_cpu(dent2->nlen);
1217 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1218 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1219 err = 0;
1220 goto out_free;
1222 if (cmp == 0 && nlen1 == nlen2)
1223 dbg_err("2 xent/dent nodes with the same name");
1224 else
1225 dbg_err("bad order of colliding key %s",
1226 DBGKEY(&key));
1228 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1229 dbg_dump_node(c, dent1);
1230 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1231 dbg_dump_node(c, dent2);
1233 out_free:
1234 kfree(dent2);
1235 kfree(dent1);
1236 return err;
1240 * dbg_check_znode - check if znode is all right.
1241 * @c: UBIFS file-system description object
1242 * @zbr: zbranch which points to this znode
1244 * This function makes sure that znode referred to by @zbr is all right.
1245 * Returns zero if it is, and %-EINVAL if it is not.
1247 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1249 struct ubifs_znode *znode = zbr->znode;
1250 struct ubifs_znode *zp = znode->parent;
1251 int n, err, cmp;
1253 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1254 err = 1;
1255 goto out;
1257 if (znode->level < 0) {
1258 err = 2;
1259 goto out;
1261 if (znode->iip < 0 || znode->iip >= c->fanout) {
1262 err = 3;
1263 goto out;
1266 if (zbr->len == 0)
1267 /* Only dirty zbranch may have no on-flash nodes */
1268 if (!ubifs_zn_dirty(znode)) {
1269 err = 4;
1270 goto out;
1273 if (ubifs_zn_dirty(znode)) {
1275 * If znode is dirty, its parent has to be dirty as well. The
1276 * order of the operation is important, so we have to have
1277 * memory barriers.
1279 smp_mb();
1280 if (zp && !ubifs_zn_dirty(zp)) {
1282 * The dirty flag is atomic and is cleared outside the
1283 * TNC mutex, so znode's dirty flag may now have
1284 * been cleared. The child is always cleared before the
1285 * parent, so we just need to check again.
1287 smp_mb();
1288 if (ubifs_zn_dirty(znode)) {
1289 err = 5;
1290 goto out;
1295 if (zp) {
1296 const union ubifs_key *min, *max;
1298 if (znode->level != zp->level - 1) {
1299 err = 6;
1300 goto out;
1303 /* Make sure the 'parent' pointer in our znode is correct */
1304 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1305 if (!err) {
1306 /* This zbranch does not exist in the parent */
1307 err = 7;
1308 goto out;
1311 if (znode->iip >= zp->child_cnt) {
1312 err = 8;
1313 goto out;
1316 if (znode->iip != n) {
1317 /* This may happen only in case of collisions */
1318 if (keys_cmp(c, &zp->zbranch[n].key,
1319 &zp->zbranch[znode->iip].key)) {
1320 err = 9;
1321 goto out;
1323 n = znode->iip;
1327 * Make sure that the first key in our znode is greater than or
1328 * equal to the key in the pointing zbranch.
1330 min = &zbr->key;
1331 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1332 if (cmp == 1) {
1333 err = 10;
1334 goto out;
1337 if (n + 1 < zp->child_cnt) {
1338 max = &zp->zbranch[n + 1].key;
1341 * Make sure the last key in our znode is less or
1342 * equivalent than the key in the zbranch which goes
1343 * after our pointing zbranch.
1345 cmp = keys_cmp(c, max,
1346 &znode->zbranch[znode->child_cnt - 1].key);
1347 if (cmp == -1) {
1348 err = 11;
1349 goto out;
1352 } else {
1353 /* This may only be root znode */
1354 if (zbr != &c->zroot) {
1355 err = 12;
1356 goto out;
1361 * Make sure that next key is greater or equivalent then the previous
1362 * one.
1364 for (n = 1; n < znode->child_cnt; n++) {
1365 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1366 &znode->zbranch[n].key);
1367 if (cmp > 0) {
1368 err = 13;
1369 goto out;
1371 if (cmp == 0) {
1372 /* This can only be keys with colliding hash */
1373 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1374 err = 14;
1375 goto out;
1378 if (znode->level != 0 || c->replaying)
1379 continue;
1382 * Colliding keys should follow binary order of
1383 * corresponding xentry/dentry names.
1385 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1386 &znode->zbranch[n]);
1387 if (err < 0)
1388 return err;
1389 if (err) {
1390 err = 15;
1391 goto out;
1396 for (n = 0; n < znode->child_cnt; n++) {
1397 if (!znode->zbranch[n].znode &&
1398 (znode->zbranch[n].lnum == 0 ||
1399 znode->zbranch[n].len == 0)) {
1400 err = 16;
1401 goto out;
1404 if (znode->zbranch[n].lnum != 0 &&
1405 znode->zbranch[n].len == 0) {
1406 err = 17;
1407 goto out;
1410 if (znode->zbranch[n].lnum == 0 &&
1411 znode->zbranch[n].len != 0) {
1412 err = 18;
1413 goto out;
1416 if (znode->zbranch[n].lnum == 0 &&
1417 znode->zbranch[n].offs != 0) {
1418 err = 19;
1419 goto out;
1422 if (znode->level != 0 && znode->zbranch[n].znode)
1423 if (znode->zbranch[n].znode->parent != znode) {
1424 err = 20;
1425 goto out;
1429 return 0;
1431 out:
1432 ubifs_err("failed, error %d", err);
1433 ubifs_msg("dump of the znode");
1434 dbg_dump_znode(c, znode);
1435 if (zp) {
1436 ubifs_msg("dump of the parent znode");
1437 dbg_dump_znode(c, zp);
1439 dump_stack();
1440 return -EINVAL;
1444 * dbg_check_tnc - check TNC tree.
1445 * @c: UBIFS file-system description object
1446 * @extra: do extra checks that are possible at start commit
1448 * This function traverses whole TNC tree and checks every znode. Returns zero
1449 * if everything is all right and %-EINVAL if something is wrong with TNC.
1451 int dbg_check_tnc(struct ubifs_info *c, int extra)
1453 struct ubifs_znode *znode;
1454 long clean_cnt = 0, dirty_cnt = 0;
1455 int err, last;
1457 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1458 return 0;
1460 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1461 if (!c->zroot.znode)
1462 return 0;
1464 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1465 while (1) {
1466 struct ubifs_znode *prev;
1467 struct ubifs_zbranch *zbr;
1469 if (!znode->parent)
1470 zbr = &c->zroot;
1471 else
1472 zbr = &znode->parent->zbranch[znode->iip];
1474 err = dbg_check_znode(c, zbr);
1475 if (err)
1476 return err;
1478 if (extra) {
1479 if (ubifs_zn_dirty(znode))
1480 dirty_cnt += 1;
1481 else
1482 clean_cnt += 1;
1485 prev = znode;
1486 znode = ubifs_tnc_postorder_next(znode);
1487 if (!znode)
1488 break;
1491 * If the last key of this znode is equivalent to the first key
1492 * of the next znode (collision), then check order of the keys.
1494 last = prev->child_cnt - 1;
1495 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1496 !keys_cmp(c, &prev->zbranch[last].key,
1497 &znode->zbranch[0].key)) {
1498 err = dbg_check_key_order(c, &prev->zbranch[last],
1499 &znode->zbranch[0]);
1500 if (err < 0)
1501 return err;
1502 if (err) {
1503 ubifs_msg("first znode");
1504 dbg_dump_znode(c, prev);
1505 ubifs_msg("second znode");
1506 dbg_dump_znode(c, znode);
1507 return -EINVAL;
1512 if (extra) {
1513 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1514 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1515 atomic_long_read(&c->clean_zn_cnt),
1516 clean_cnt);
1517 return -EINVAL;
1519 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1520 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1521 atomic_long_read(&c->dirty_zn_cnt),
1522 dirty_cnt);
1523 return -EINVAL;
1527 return 0;
1531 * dbg_walk_index - walk the on-flash index.
1532 * @c: UBIFS file-system description object
1533 * @leaf_cb: called for each leaf node
1534 * @znode_cb: called for each indexing node
1535 * @priv: private data which is passed to callbacks
1537 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1538 * node and @znode_cb for each indexing node. Returns zero in case of success
1539 * and a negative error code in case of failure.
1541 * It would be better if this function removed every znode it pulled to into
1542 * the TNC, so that the behavior more closely matched the non-debugging
1543 * behavior.
1545 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1546 dbg_znode_callback znode_cb, void *priv)
1548 int err;
1549 struct ubifs_zbranch *zbr;
1550 struct ubifs_znode *znode, *child;
1552 mutex_lock(&c->tnc_mutex);
1553 /* If the root indexing node is not in TNC - pull it */
1554 if (!c->zroot.znode) {
1555 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1556 if (IS_ERR(c->zroot.znode)) {
1557 err = PTR_ERR(c->zroot.znode);
1558 c->zroot.znode = NULL;
1559 goto out_unlock;
1564 * We are going to traverse the indexing tree in the postorder manner.
1565 * Go down and find the leftmost indexing node where we are going to
1566 * start from.
1568 znode = c->zroot.znode;
1569 while (znode->level > 0) {
1570 zbr = &znode->zbranch[0];
1571 child = zbr->znode;
1572 if (!child) {
1573 child = ubifs_load_znode(c, zbr, znode, 0);
1574 if (IS_ERR(child)) {
1575 err = PTR_ERR(child);
1576 goto out_unlock;
1578 zbr->znode = child;
1581 znode = child;
1584 /* Iterate over all indexing nodes */
1585 while (1) {
1586 int idx;
1588 cond_resched();
1590 if (znode_cb) {
1591 err = znode_cb(c, znode, priv);
1592 if (err) {
1593 ubifs_err("znode checking function returned "
1594 "error %d", err);
1595 dbg_dump_znode(c, znode);
1596 goto out_dump;
1599 if (leaf_cb && znode->level == 0) {
1600 for (idx = 0; idx < znode->child_cnt; idx++) {
1601 zbr = &znode->zbranch[idx];
1602 err = leaf_cb(c, zbr, priv);
1603 if (err) {
1604 ubifs_err("leaf checking function "
1605 "returned error %d, for leaf "
1606 "at LEB %d:%d",
1607 err, zbr->lnum, zbr->offs);
1608 goto out_dump;
1613 if (!znode->parent)
1614 break;
1616 idx = znode->iip + 1;
1617 znode = znode->parent;
1618 if (idx < znode->child_cnt) {
1619 /* Switch to the next index in the parent */
1620 zbr = &znode->zbranch[idx];
1621 child = zbr->znode;
1622 if (!child) {
1623 child = ubifs_load_znode(c, zbr, znode, idx);
1624 if (IS_ERR(child)) {
1625 err = PTR_ERR(child);
1626 goto out_unlock;
1628 zbr->znode = child;
1630 znode = child;
1631 } else
1633 * This is the last child, switch to the parent and
1634 * continue.
1636 continue;
1638 /* Go to the lowest leftmost znode in the new sub-tree */
1639 while (znode->level > 0) {
1640 zbr = &znode->zbranch[0];
1641 child = zbr->znode;
1642 if (!child) {
1643 child = ubifs_load_znode(c, zbr, znode, 0);
1644 if (IS_ERR(child)) {
1645 err = PTR_ERR(child);
1646 goto out_unlock;
1648 zbr->znode = child;
1650 znode = child;
1654 mutex_unlock(&c->tnc_mutex);
1655 return 0;
1657 out_dump:
1658 if (znode->parent)
1659 zbr = &znode->parent->zbranch[znode->iip];
1660 else
1661 zbr = &c->zroot;
1662 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1663 dbg_dump_znode(c, znode);
1664 out_unlock:
1665 mutex_unlock(&c->tnc_mutex);
1666 return err;
1670 * add_size - add znode size to partially calculated index size.
1671 * @c: UBIFS file-system description object
1672 * @znode: znode to add size for
1673 * @priv: partially calculated index size
1675 * This is a helper function for 'dbg_check_idx_size()' which is called for
1676 * every indexing node and adds its size to the 'long long' variable pointed to
1677 * by @priv.
1679 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1681 long long *idx_size = priv;
1682 int add;
1684 add = ubifs_idx_node_sz(c, znode->child_cnt);
1685 add = ALIGN(add, 8);
1686 *idx_size += add;
1687 return 0;
1691 * dbg_check_idx_size - check index size.
1692 * @c: UBIFS file-system description object
1693 * @idx_size: size to check
1695 * This function walks the UBIFS index, calculates its size and checks that the
1696 * size is equivalent to @idx_size. Returns zero in case of success and a
1697 * negative error code in case of failure.
1699 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1701 int err;
1702 long long calc = 0;
1704 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1705 return 0;
1707 err = dbg_walk_index(c, NULL, add_size, &calc);
1708 if (err) {
1709 ubifs_err("error %d while walking the index", err);
1710 return err;
1713 if (calc != idx_size) {
1714 ubifs_err("index size check failed: calculated size is %lld, "
1715 "should be %lld", calc, idx_size);
1716 dump_stack();
1717 return -EINVAL;
1720 return 0;
1724 * struct fsck_inode - information about an inode used when checking the file-system.
1725 * @rb: link in the RB-tree of inodes
1726 * @inum: inode number
1727 * @mode: inode type, permissions, etc
1728 * @nlink: inode link count
1729 * @xattr_cnt: count of extended attributes
1730 * @references: how many directory/xattr entries refer this inode (calculated
1731 * while walking the index)
1732 * @calc_cnt: for directory inode count of child directories
1733 * @size: inode size (read from on-flash inode)
1734 * @xattr_sz: summary size of all extended attributes (read from on-flash
1735 * inode)
1736 * @calc_sz: for directories calculated directory size
1737 * @calc_xcnt: count of extended attributes
1738 * @calc_xsz: calculated summary size of all extended attributes
1739 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1740 * inode (read from on-flash inode)
1741 * @calc_xnms: calculated sum of lengths of all extended attribute names
1743 struct fsck_inode {
1744 struct rb_node rb;
1745 ino_t inum;
1746 umode_t mode;
1747 unsigned int nlink;
1748 unsigned int xattr_cnt;
1749 int references;
1750 int calc_cnt;
1751 long long size;
1752 unsigned int xattr_sz;
1753 long long calc_sz;
1754 long long calc_xcnt;
1755 long long calc_xsz;
1756 unsigned int xattr_nms;
1757 long long calc_xnms;
1761 * struct fsck_data - private FS checking information.
1762 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1764 struct fsck_data {
1765 struct rb_root inodes;
1769 * add_inode - add inode information to RB-tree of inodes.
1770 * @c: UBIFS file-system description object
1771 * @fsckd: FS checking information
1772 * @ino: raw UBIFS inode to add
1774 * This is a helper function for 'check_leaf()' which adds information about
1775 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1776 * case of success and a negative error code in case of failure.
1778 static struct fsck_inode *add_inode(struct ubifs_info *c,
1779 struct fsck_data *fsckd,
1780 struct ubifs_ino_node *ino)
1782 struct rb_node **p, *parent = NULL;
1783 struct fsck_inode *fscki;
1784 ino_t inum = key_inum_flash(c, &ino->key);
1786 p = &fsckd->inodes.rb_node;
1787 while (*p) {
1788 parent = *p;
1789 fscki = rb_entry(parent, struct fsck_inode, rb);
1790 if (inum < fscki->inum)
1791 p = &(*p)->rb_left;
1792 else if (inum > fscki->inum)
1793 p = &(*p)->rb_right;
1794 else
1795 return fscki;
1798 if (inum > c->highest_inum) {
1799 ubifs_err("too high inode number, max. is %lu",
1800 (unsigned long)c->highest_inum);
1801 return ERR_PTR(-EINVAL);
1804 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1805 if (!fscki)
1806 return ERR_PTR(-ENOMEM);
1808 fscki->inum = inum;
1809 fscki->nlink = le32_to_cpu(ino->nlink);
1810 fscki->size = le64_to_cpu(ino->size);
1811 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1812 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1813 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1814 fscki->mode = le32_to_cpu(ino->mode);
1815 if (S_ISDIR(fscki->mode)) {
1816 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1817 fscki->calc_cnt = 2;
1819 rb_link_node(&fscki->rb, parent, p);
1820 rb_insert_color(&fscki->rb, &fsckd->inodes);
1821 return fscki;
1825 * search_inode - search inode in the RB-tree of inodes.
1826 * @fsckd: FS checking information
1827 * @inum: inode number to search
1829 * This is a helper function for 'check_leaf()' which searches inode @inum in
1830 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1831 * the inode was not found.
1833 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1835 struct rb_node *p;
1836 struct fsck_inode *fscki;
1838 p = fsckd->inodes.rb_node;
1839 while (p) {
1840 fscki = rb_entry(p, struct fsck_inode, rb);
1841 if (inum < fscki->inum)
1842 p = p->rb_left;
1843 else if (inum > fscki->inum)
1844 p = p->rb_right;
1845 else
1846 return fscki;
1848 return NULL;
1852 * read_add_inode - read inode node and add it to RB-tree of inodes.
1853 * @c: UBIFS file-system description object
1854 * @fsckd: FS checking information
1855 * @inum: inode number to read
1857 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1858 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1859 * information pointer in case of success and a negative error code in case of
1860 * failure.
1862 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1863 struct fsck_data *fsckd, ino_t inum)
1865 int n, err;
1866 union ubifs_key key;
1867 struct ubifs_znode *znode;
1868 struct ubifs_zbranch *zbr;
1869 struct ubifs_ino_node *ino;
1870 struct fsck_inode *fscki;
1872 fscki = search_inode(fsckd, inum);
1873 if (fscki)
1874 return fscki;
1876 ino_key_init(c, &key, inum);
1877 err = ubifs_lookup_level0(c, &key, &znode, &n);
1878 if (!err) {
1879 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1880 return ERR_PTR(-ENOENT);
1881 } else if (err < 0) {
1882 ubifs_err("error %d while looking up inode %lu",
1883 err, (unsigned long)inum);
1884 return ERR_PTR(err);
1887 zbr = &znode->zbranch[n];
1888 if (zbr->len < UBIFS_INO_NODE_SZ) {
1889 ubifs_err("bad node %lu node length %d",
1890 (unsigned long)inum, zbr->len);
1891 return ERR_PTR(-EINVAL);
1894 ino = kmalloc(zbr->len, GFP_NOFS);
1895 if (!ino)
1896 return ERR_PTR(-ENOMEM);
1898 err = ubifs_tnc_read_node(c, zbr, ino);
1899 if (err) {
1900 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1901 zbr->lnum, zbr->offs, err);
1902 kfree(ino);
1903 return ERR_PTR(err);
1906 fscki = add_inode(c, fsckd, ino);
1907 kfree(ino);
1908 if (IS_ERR(fscki)) {
1909 ubifs_err("error %ld while adding inode %lu node",
1910 PTR_ERR(fscki), (unsigned long)inum);
1911 return fscki;
1914 return fscki;
1918 * check_leaf - check leaf node.
1919 * @c: UBIFS file-system description object
1920 * @zbr: zbranch of the leaf node to check
1921 * @priv: FS checking information
1923 * This is a helper function for 'dbg_check_filesystem()' which is called for
1924 * every single leaf node while walking the indexing tree. It checks that the
1925 * leaf node referred from the indexing tree exists, has correct CRC, and does
1926 * some other basic validation. This function is also responsible for building
1927 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1928 * calculates reference count, size, etc for each inode in order to later
1929 * compare them to the information stored inside the inodes and detect possible
1930 * inconsistencies. Returns zero in case of success and a negative error code
1931 * in case of failure.
1933 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1934 void *priv)
1936 ino_t inum;
1937 void *node;
1938 struct ubifs_ch *ch;
1939 int err, type = key_type(c, &zbr->key);
1940 struct fsck_inode *fscki;
1942 if (zbr->len < UBIFS_CH_SZ) {
1943 ubifs_err("bad leaf length %d (LEB %d:%d)",
1944 zbr->len, zbr->lnum, zbr->offs);
1945 return -EINVAL;
1948 node = kmalloc(zbr->len, GFP_NOFS);
1949 if (!node)
1950 return -ENOMEM;
1952 err = ubifs_tnc_read_node(c, zbr, node);
1953 if (err) {
1954 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1955 zbr->lnum, zbr->offs, err);
1956 goto out_free;
1959 /* If this is an inode node, add it to RB-tree of inodes */
1960 if (type == UBIFS_INO_KEY) {
1961 fscki = add_inode(c, priv, node);
1962 if (IS_ERR(fscki)) {
1963 err = PTR_ERR(fscki);
1964 ubifs_err("error %d while adding inode node", err);
1965 goto out_dump;
1967 goto out;
1970 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1971 type != UBIFS_DATA_KEY) {
1972 ubifs_err("unexpected node type %d at LEB %d:%d",
1973 type, zbr->lnum, zbr->offs);
1974 err = -EINVAL;
1975 goto out_free;
1978 ch = node;
1979 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1980 ubifs_err("too high sequence number, max. is %llu",
1981 c->max_sqnum);
1982 err = -EINVAL;
1983 goto out_dump;
1986 if (type == UBIFS_DATA_KEY) {
1987 long long blk_offs;
1988 struct ubifs_data_node *dn = node;
1991 * Search the inode node this data node belongs to and insert
1992 * it to the RB-tree of inodes.
1994 inum = key_inum_flash(c, &dn->key);
1995 fscki = read_add_inode(c, priv, inum);
1996 if (IS_ERR(fscki)) {
1997 err = PTR_ERR(fscki);
1998 ubifs_err("error %d while processing data node and "
1999 "trying to find inode node %lu",
2000 err, (unsigned long)inum);
2001 goto out_dump;
2004 /* Make sure the data node is within inode size */
2005 blk_offs = key_block_flash(c, &dn->key);
2006 blk_offs <<= UBIFS_BLOCK_SHIFT;
2007 blk_offs += le32_to_cpu(dn->size);
2008 if (blk_offs > fscki->size) {
2009 ubifs_err("data node at LEB %d:%d is not within inode "
2010 "size %lld", zbr->lnum, zbr->offs,
2011 fscki->size);
2012 err = -EINVAL;
2013 goto out_dump;
2015 } else {
2016 int nlen;
2017 struct ubifs_dent_node *dent = node;
2018 struct fsck_inode *fscki1;
2020 err = ubifs_validate_entry(c, dent);
2021 if (err)
2022 goto out_dump;
2025 * Search the inode node this entry refers to and the parent
2026 * inode node and insert them to the RB-tree of inodes.
2028 inum = le64_to_cpu(dent->inum);
2029 fscki = read_add_inode(c, priv, inum);
2030 if (IS_ERR(fscki)) {
2031 err = PTR_ERR(fscki);
2032 ubifs_err("error %d while processing entry node and "
2033 "trying to find inode node %lu",
2034 err, (unsigned long)inum);
2035 goto out_dump;
2038 /* Count how many direntries or xentries refers this inode */
2039 fscki->references += 1;
2041 inum = key_inum_flash(c, &dent->key);
2042 fscki1 = read_add_inode(c, priv, inum);
2043 if (IS_ERR(fscki1)) {
2044 err = PTR_ERR(fscki1);
2045 ubifs_err("error %d while processing entry node and "
2046 "trying to find parent inode node %lu",
2047 err, (unsigned long)inum);
2048 goto out_dump;
2051 nlen = le16_to_cpu(dent->nlen);
2052 if (type == UBIFS_XENT_KEY) {
2053 fscki1->calc_xcnt += 1;
2054 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2055 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2056 fscki1->calc_xnms += nlen;
2057 } else {
2058 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2059 if (dent->type == UBIFS_ITYPE_DIR)
2060 fscki1->calc_cnt += 1;
2064 out:
2065 kfree(node);
2066 return 0;
2068 out_dump:
2069 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2070 dbg_dump_node(c, node);
2071 out_free:
2072 kfree(node);
2073 return err;
2077 * free_inodes - free RB-tree of inodes.
2078 * @fsckd: FS checking information
2080 static void free_inodes(struct fsck_data *fsckd)
2082 struct rb_node *this = fsckd->inodes.rb_node;
2083 struct fsck_inode *fscki;
2085 while (this) {
2086 if (this->rb_left)
2087 this = this->rb_left;
2088 else if (this->rb_right)
2089 this = this->rb_right;
2090 else {
2091 fscki = rb_entry(this, struct fsck_inode, rb);
2092 this = rb_parent(this);
2093 if (this) {
2094 if (this->rb_left == &fscki->rb)
2095 this->rb_left = NULL;
2096 else
2097 this->rb_right = NULL;
2099 kfree(fscki);
2105 * check_inodes - checks all inodes.
2106 * @c: UBIFS file-system description object
2107 * @fsckd: FS checking information
2109 * This is a helper function for 'dbg_check_filesystem()' which walks the
2110 * RB-tree of inodes after the index scan has been finished, and checks that
2111 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2112 * %-EINVAL if not, and a negative error code in case of failure.
2114 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2116 int n, err;
2117 union ubifs_key key;
2118 struct ubifs_znode *znode;
2119 struct ubifs_zbranch *zbr;
2120 struct ubifs_ino_node *ino;
2121 struct fsck_inode *fscki;
2122 struct rb_node *this = rb_first(&fsckd->inodes);
2124 while (this) {
2125 fscki = rb_entry(this, struct fsck_inode, rb);
2126 this = rb_next(this);
2128 if (S_ISDIR(fscki->mode)) {
2130 * Directories have to have exactly one reference (they
2131 * cannot have hardlinks), although root inode is an
2132 * exception.
2134 if (fscki->inum != UBIFS_ROOT_INO &&
2135 fscki->references != 1) {
2136 ubifs_err("directory inode %lu has %d "
2137 "direntries which refer it, but "
2138 "should be 1",
2139 (unsigned long)fscki->inum,
2140 fscki->references);
2141 goto out_dump;
2143 if (fscki->inum == UBIFS_ROOT_INO &&
2144 fscki->references != 0) {
2145 ubifs_err("root inode %lu has non-zero (%d) "
2146 "direntries which refer it",
2147 (unsigned long)fscki->inum,
2148 fscki->references);
2149 goto out_dump;
2151 if (fscki->calc_sz != fscki->size) {
2152 ubifs_err("directory inode %lu size is %lld, "
2153 "but calculated size is %lld",
2154 (unsigned long)fscki->inum,
2155 fscki->size, fscki->calc_sz);
2156 goto out_dump;
2158 if (fscki->calc_cnt != fscki->nlink) {
2159 ubifs_err("directory inode %lu nlink is %d, "
2160 "but calculated nlink is %d",
2161 (unsigned long)fscki->inum,
2162 fscki->nlink, fscki->calc_cnt);
2163 goto out_dump;
2165 } else {
2166 if (fscki->references != fscki->nlink) {
2167 ubifs_err("inode %lu nlink is %d, but "
2168 "calculated nlink is %d",
2169 (unsigned long)fscki->inum,
2170 fscki->nlink, fscki->references);
2171 goto out_dump;
2174 if (fscki->xattr_sz != fscki->calc_xsz) {
2175 ubifs_err("inode %lu has xattr size %u, but "
2176 "calculated size is %lld",
2177 (unsigned long)fscki->inum, fscki->xattr_sz,
2178 fscki->calc_xsz);
2179 goto out_dump;
2181 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2182 ubifs_err("inode %lu has %u xattrs, but "
2183 "calculated count is %lld",
2184 (unsigned long)fscki->inum,
2185 fscki->xattr_cnt, fscki->calc_xcnt);
2186 goto out_dump;
2188 if (fscki->xattr_nms != fscki->calc_xnms) {
2189 ubifs_err("inode %lu has xattr names' size %u, but "
2190 "calculated names' size is %lld",
2191 (unsigned long)fscki->inum, fscki->xattr_nms,
2192 fscki->calc_xnms);
2193 goto out_dump;
2197 return 0;
2199 out_dump:
2200 /* Read the bad inode and dump it */
2201 ino_key_init(c, &key, fscki->inum);
2202 err = ubifs_lookup_level0(c, &key, &znode, &n);
2203 if (!err) {
2204 ubifs_err("inode %lu not found in index",
2205 (unsigned long)fscki->inum);
2206 return -ENOENT;
2207 } else if (err < 0) {
2208 ubifs_err("error %d while looking up inode %lu",
2209 err, (unsigned long)fscki->inum);
2210 return err;
2213 zbr = &znode->zbranch[n];
2214 ino = kmalloc(zbr->len, GFP_NOFS);
2215 if (!ino)
2216 return -ENOMEM;
2218 err = ubifs_tnc_read_node(c, zbr, ino);
2219 if (err) {
2220 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2221 zbr->lnum, zbr->offs, err);
2222 kfree(ino);
2223 return err;
2226 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2227 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2228 dbg_dump_node(c, ino);
2229 kfree(ino);
2230 return -EINVAL;
2234 * dbg_check_filesystem - check the file-system.
2235 * @c: UBIFS file-system description object
2237 * This function checks the file system, namely:
2238 * o makes sure that all leaf nodes exist and their CRCs are correct;
2239 * o makes sure inode nlink, size, xattr size/count are correct (for all
2240 * inodes).
2242 * The function reads whole indexing tree and all nodes, so it is pretty
2243 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2244 * not, and a negative error code in case of failure.
2246 int dbg_check_filesystem(struct ubifs_info *c)
2248 int err;
2249 struct fsck_data fsckd;
2251 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2252 return 0;
2254 fsckd.inodes = RB_ROOT;
2255 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2256 if (err)
2257 goto out_free;
2259 err = check_inodes(c, &fsckd);
2260 if (err)
2261 goto out_free;
2263 free_inodes(&fsckd);
2264 return 0;
2266 out_free:
2267 ubifs_err("file-system check failed with error %d", err);
2268 dump_stack();
2269 free_inodes(&fsckd);
2270 return err;
2273 static int invocation_cnt;
2275 int dbg_force_in_the_gaps(void)
2277 if (!dbg_force_in_the_gaps_enabled)
2278 return 0;
2279 /* Force in-the-gaps every 8th commit */
2280 return !((invocation_cnt++) & 0x7);
2283 /* Failure mode for recovery testing */
2285 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2287 struct failure_mode_info {
2288 struct list_head list;
2289 struct ubifs_info *c;
2292 static LIST_HEAD(fmi_list);
2293 static DEFINE_SPINLOCK(fmi_lock);
2295 static unsigned int next;
2297 static int simple_rand(void)
2299 if (next == 0)
2300 next = current->pid;
2301 next = next * 1103515245 + 12345;
2302 return (next >> 16) & 32767;
2305 static void failure_mode_init(struct ubifs_info *c)
2307 struct failure_mode_info *fmi;
2309 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2310 if (!fmi) {
2311 ubifs_err("Failed to register failure mode - no memory");
2312 return;
2314 fmi->c = c;
2315 spin_lock(&fmi_lock);
2316 list_add_tail(&fmi->list, &fmi_list);
2317 spin_unlock(&fmi_lock);
2320 static void failure_mode_exit(struct ubifs_info *c)
2322 struct failure_mode_info *fmi, *tmp;
2324 spin_lock(&fmi_lock);
2325 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2326 if (fmi->c == c) {
2327 list_del(&fmi->list);
2328 kfree(fmi);
2330 spin_unlock(&fmi_lock);
2333 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2335 struct failure_mode_info *fmi;
2337 spin_lock(&fmi_lock);
2338 list_for_each_entry(fmi, &fmi_list, list)
2339 if (fmi->c->ubi == desc) {
2340 struct ubifs_info *c = fmi->c;
2342 spin_unlock(&fmi_lock);
2343 return c;
2345 spin_unlock(&fmi_lock);
2346 return NULL;
2349 static int in_failure_mode(struct ubi_volume_desc *desc)
2351 struct ubifs_info *c = dbg_find_info(desc);
2353 if (c && dbg_failure_mode)
2354 return c->dbg->failure_mode;
2355 return 0;
2358 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2360 struct ubifs_info *c = dbg_find_info(desc);
2361 struct ubifs_debug_info *d;
2363 if (!c || !dbg_failure_mode)
2364 return 0;
2365 d = c->dbg;
2366 if (d->failure_mode)
2367 return 1;
2368 if (!d->fail_cnt) {
2369 /* First call - decide delay to failure */
2370 if (chance(1, 2)) {
2371 unsigned int delay = 1 << (simple_rand() >> 11);
2373 if (chance(1, 2)) {
2374 d->fail_delay = 1;
2375 d->fail_timeout = jiffies +
2376 msecs_to_jiffies(delay);
2377 dbg_rcvry("failing after %ums", delay);
2378 } else {
2379 d->fail_delay = 2;
2380 d->fail_cnt_max = delay;
2381 dbg_rcvry("failing after %u calls", delay);
2384 d->fail_cnt += 1;
2386 /* Determine if failure delay has expired */
2387 if (d->fail_delay == 1) {
2388 if (time_before(jiffies, d->fail_timeout))
2389 return 0;
2390 } else if (d->fail_delay == 2)
2391 if (d->fail_cnt++ < d->fail_cnt_max)
2392 return 0;
2393 if (lnum == UBIFS_SB_LNUM) {
2394 if (write) {
2395 if (chance(1, 2))
2396 return 0;
2397 } else if (chance(19, 20))
2398 return 0;
2399 dbg_rcvry("failing in super block LEB %d", lnum);
2400 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2401 if (chance(19, 20))
2402 return 0;
2403 dbg_rcvry("failing in master LEB %d", lnum);
2404 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2405 if (write) {
2406 if (chance(99, 100))
2407 return 0;
2408 } else if (chance(399, 400))
2409 return 0;
2410 dbg_rcvry("failing in log LEB %d", lnum);
2411 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2412 if (write) {
2413 if (chance(7, 8))
2414 return 0;
2415 } else if (chance(19, 20))
2416 return 0;
2417 dbg_rcvry("failing in LPT LEB %d", lnum);
2418 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2419 if (write) {
2420 if (chance(1, 2))
2421 return 0;
2422 } else if (chance(9, 10))
2423 return 0;
2424 dbg_rcvry("failing in orphan LEB %d", lnum);
2425 } else if (lnum == c->ihead_lnum) {
2426 if (chance(99, 100))
2427 return 0;
2428 dbg_rcvry("failing in index head LEB %d", lnum);
2429 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2430 if (chance(9, 10))
2431 return 0;
2432 dbg_rcvry("failing in GC head LEB %d", lnum);
2433 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2434 !ubifs_search_bud(c, lnum)) {
2435 if (chance(19, 20))
2436 return 0;
2437 dbg_rcvry("failing in non-bud LEB %d", lnum);
2438 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2439 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2440 if (chance(999, 1000))
2441 return 0;
2442 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2443 } else {
2444 if (chance(9999, 10000))
2445 return 0;
2446 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2448 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2449 d->failure_mode = 1;
2450 dump_stack();
2451 return 1;
2454 static void cut_data(const void *buf, int len)
2456 int flen, i;
2457 unsigned char *p = (void *)buf;
2459 flen = (len * (long long)simple_rand()) >> 15;
2460 for (i = flen; i < len; i++)
2461 p[i] = 0xff;
2464 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2465 int len, int check)
2467 if (in_failure_mode(desc))
2468 return -EIO;
2469 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2472 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2473 int offset, int len, int dtype)
2475 int err, failing;
2477 if (in_failure_mode(desc))
2478 return -EIO;
2479 failing = do_fail(desc, lnum, 1);
2480 if (failing)
2481 cut_data(buf, len);
2482 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2483 if (err)
2484 return err;
2485 if (failing)
2486 return -EIO;
2487 return 0;
2490 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2491 int len, int dtype)
2493 int err;
2495 if (do_fail(desc, lnum, 1))
2496 return -EIO;
2497 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2498 if (err)
2499 return err;
2500 if (do_fail(desc, lnum, 1))
2501 return -EIO;
2502 return 0;
2505 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2507 int err;
2509 if (do_fail(desc, lnum, 0))
2510 return -EIO;
2511 err = ubi_leb_erase(desc, lnum);
2512 if (err)
2513 return err;
2514 if (do_fail(desc, lnum, 0))
2515 return -EIO;
2516 return 0;
2519 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2521 int err;
2523 if (do_fail(desc, lnum, 0))
2524 return -EIO;
2525 err = ubi_leb_unmap(desc, lnum);
2526 if (err)
2527 return err;
2528 if (do_fail(desc, lnum, 0))
2529 return -EIO;
2530 return 0;
2533 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2535 if (in_failure_mode(desc))
2536 return -EIO;
2537 return ubi_is_mapped(desc, lnum);
2540 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2542 int err;
2544 if (do_fail(desc, lnum, 0))
2545 return -EIO;
2546 err = ubi_leb_map(desc, lnum, dtype);
2547 if (err)
2548 return err;
2549 if (do_fail(desc, lnum, 0))
2550 return -EIO;
2551 return 0;
2555 * ubifs_debugging_init - initialize UBIFS debugging.
2556 * @c: UBIFS file-system description object
2558 * This function initializes debugging-related data for the file system.
2559 * Returns zero in case of success and a negative error code in case of
2560 * failure.
2562 int ubifs_debugging_init(struct ubifs_info *c)
2564 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2565 if (!c->dbg)
2566 return -ENOMEM;
2568 c->dbg->buf = vmalloc(c->leb_size);
2569 if (!c->dbg->buf)
2570 goto out;
2572 failure_mode_init(c);
2573 return 0;
2575 out:
2576 kfree(c->dbg);
2577 return -ENOMEM;
2581 * ubifs_debugging_exit - free debugging data.
2582 * @c: UBIFS file-system description object
2584 void ubifs_debugging_exit(struct ubifs_info *c)
2586 failure_mode_exit(c);
2587 vfree(c->dbg->buf);
2588 kfree(c->dbg);
2592 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2593 * contain the stuff specific to particular file-system mounts.
2595 static struct dentry *dfs_rootdir;
2598 * dbg_debugfs_init - initialize debugfs file-system.
2600 * UBIFS uses debugfs file-system to expose various debugging knobs to
2601 * user-space. This function creates "ubifs" directory in the debugfs
2602 * file-system. Returns zero in case of success and a negative error code in
2603 * case of failure.
2605 int dbg_debugfs_init(void)
2607 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2608 if (IS_ERR(dfs_rootdir)) {
2609 int err = PTR_ERR(dfs_rootdir);
2610 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2611 "error %d\n", err);
2612 return err;
2615 return 0;
2619 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2621 void dbg_debugfs_exit(void)
2623 debugfs_remove(dfs_rootdir);
2626 static int open_debugfs_file(struct inode *inode, struct file *file)
2628 file->private_data = inode->i_private;
2629 return 0;
2632 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2633 size_t count, loff_t *ppos)
2635 struct ubifs_info *c = file->private_data;
2636 struct ubifs_debug_info *d = c->dbg;
2638 if (file->f_path.dentry == d->dfs_dump_lprops)
2639 dbg_dump_lprops(c);
2640 else if (file->f_path.dentry == d->dfs_dump_budg) {
2641 spin_lock(&c->space_lock);
2642 dbg_dump_budg(c);
2643 spin_unlock(&c->space_lock);
2644 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2645 mutex_lock(&c->tnc_mutex);
2646 dbg_dump_tnc(c);
2647 mutex_unlock(&c->tnc_mutex);
2648 } else
2649 return -EINVAL;
2651 *ppos += count;
2652 return count;
2655 static const struct file_operations dfs_fops = {
2656 .open = open_debugfs_file,
2657 .write = write_debugfs_file,
2658 .owner = THIS_MODULE,
2662 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2663 * @c: UBIFS file-system description object
2665 * This function creates all debugfs files for this instance of UBIFS. Returns
2666 * zero in case of success and a negative error code in case of failure.
2668 * Note, the only reason we have not merged this function with the
2669 * 'ubifs_debugging_init()' function is because it is better to initialize
2670 * debugfs interfaces at the very end of the mount process, and remove them at
2671 * the very beginning of the mount process.
2673 int dbg_debugfs_init_fs(struct ubifs_info *c)
2675 int err;
2676 const char *fname;
2677 struct dentry *dent;
2678 struct ubifs_debug_info *d = c->dbg;
2680 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2681 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2682 if (IS_ERR(d->dfs_dir)) {
2683 err = PTR_ERR(d->dfs_dir);
2684 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2685 d->dfs_dir_name, err);
2686 goto out;
2689 fname = "dump_lprops";
2690 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2691 if (IS_ERR(dent))
2692 goto out_remove;
2693 d->dfs_dump_lprops = dent;
2695 fname = "dump_budg";
2696 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2697 if (IS_ERR(dent))
2698 goto out_remove;
2699 d->dfs_dump_budg = dent;
2701 fname = "dump_tnc";
2702 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2703 if (IS_ERR(dent))
2704 goto out_remove;
2705 d->dfs_dump_tnc = dent;
2707 return 0;
2709 out_remove:
2710 err = PTR_ERR(dent);
2711 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2712 fname, err);
2713 debugfs_remove_recursive(d->dfs_dir);
2714 out:
2715 return err;
2719 * dbg_debugfs_exit_fs - remove all debugfs files.
2720 * @c: UBIFS file-system description object
2722 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2724 debugfs_remove_recursive(c->dbg->dfs_dir);
2727 #endif /* CONFIG_UBIFS_FS_DEBUG */