md: Fix bug where spares don't always get rebuilt properly when they become live
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob0471ebff482ffa4cf4c6df813fb5283c59813bdf
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
47 #include <linux/init.h>
49 #include <linux/file.h>
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
55 #include <asm/unaligned.h>
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
75 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76 * is 1000 KB/sec, so the extra system load does not show up that much.
77 * Increase it if you want to have more _guaranteed_ speed. Note that
78 * the RAID driver will use the maximum available bandwidth if the IO
79 * subsystem is idle. There is also an 'absolute maximum' reconstruction
80 * speed limit - in case reconstruction slows down your system despite
81 * idle IO detection.
83 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 * or /sys/block/mdX/md/sync_speed_{min,max}
87 static int sysctl_speed_limit_min = 1000;
88 static int sysctl_speed_limit_max = 200000;
89 static inline int speed_min(mddev_t *mddev)
91 return mddev->sync_speed_min ?
92 mddev->sync_speed_min : sysctl_speed_limit_min;
95 static inline int speed_max(mddev_t *mddev)
97 return mddev->sync_speed_max ?
98 mddev->sync_speed_max : sysctl_speed_limit_max;
101 static struct ctl_table_header *raid_table_header;
103 static ctl_table raid_table[] = {
105 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
106 .procname = "speed_limit_min",
107 .data = &sysctl_speed_limit_min,
108 .maxlen = sizeof(int),
109 .mode = 0644,
110 .proc_handler = &proc_dointvec,
113 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
114 .procname = "speed_limit_max",
115 .data = &sysctl_speed_limit_max,
116 .maxlen = sizeof(int),
117 .mode = 0644,
118 .proc_handler = &proc_dointvec,
120 { .ctl_name = 0 }
123 static ctl_table raid_dir_table[] = {
125 .ctl_name = DEV_RAID,
126 .procname = "raid",
127 .maxlen = 0,
128 .mode = 0555,
129 .child = raid_table,
131 { .ctl_name = 0 }
134 static ctl_table raid_root_table[] = {
136 .ctl_name = CTL_DEV,
137 .procname = "dev",
138 .maxlen = 0,
139 .mode = 0555,
140 .child = raid_dir_table,
142 { .ctl_name = 0 }
145 static struct block_device_operations md_fops;
147 static int start_readonly;
150 * We have a system wide 'event count' that is incremented
151 * on any 'interesting' event, and readers of /proc/mdstat
152 * can use 'poll' or 'select' to find out when the event
153 * count increases.
155 * Events are:
156 * start array, stop array, error, add device, remove device,
157 * start build, activate spare
159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
160 static atomic_t md_event_count;
161 static void md_new_event(mddev_t *mddev)
163 atomic_inc(&md_event_count);
164 wake_up(&md_event_waiters);
168 * Enables to iterate over all existing md arrays
169 * all_mddevs_lock protects this list.
171 static LIST_HEAD(all_mddevs);
172 static DEFINE_SPINLOCK(all_mddevs_lock);
176 * iterates through all used mddevs in the system.
177 * We take care to grab the all_mddevs_lock whenever navigating
178 * the list, and to always hold a refcount when unlocked.
179 * Any code which breaks out of this loop while own
180 * a reference to the current mddev and must mddev_put it.
182 #define ITERATE_MDDEV(mddev,tmp) \
184 for (({ spin_lock(&all_mddevs_lock); \
185 tmp = all_mddevs.next; \
186 mddev = NULL;}); \
187 ({ if (tmp != &all_mddevs) \
188 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
189 spin_unlock(&all_mddevs_lock); \
190 if (mddev) mddev_put(mddev); \
191 mddev = list_entry(tmp, mddev_t, all_mddevs); \
192 tmp != &all_mddevs;}); \
193 ({ spin_lock(&all_mddevs_lock); \
194 tmp = tmp->next;}) \
198 static int md_fail_request (request_queue_t *q, struct bio *bio)
200 bio_io_error(bio, bio->bi_size);
201 return 0;
204 static inline mddev_t *mddev_get(mddev_t *mddev)
206 atomic_inc(&mddev->active);
207 return mddev;
210 static void mddev_put(mddev_t *mddev)
212 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
213 return;
214 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
215 list_del(&mddev->all_mddevs);
216 blk_put_queue(mddev->queue);
217 kobject_unregister(&mddev->kobj);
219 spin_unlock(&all_mddevs_lock);
222 static mddev_t * mddev_find(dev_t unit)
224 mddev_t *mddev, *new = NULL;
226 retry:
227 spin_lock(&all_mddevs_lock);
228 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
229 if (mddev->unit == unit) {
230 mddev_get(mddev);
231 spin_unlock(&all_mddevs_lock);
232 kfree(new);
233 return mddev;
236 if (new) {
237 list_add(&new->all_mddevs, &all_mddevs);
238 spin_unlock(&all_mddevs_lock);
239 return new;
241 spin_unlock(&all_mddevs_lock);
243 new = kzalloc(sizeof(*new), GFP_KERNEL);
244 if (!new)
245 return NULL;
247 new->unit = unit;
248 if (MAJOR(unit) == MD_MAJOR)
249 new->md_minor = MINOR(unit);
250 else
251 new->md_minor = MINOR(unit) >> MdpMinorShift;
253 init_MUTEX(&new->reconfig_sem);
254 INIT_LIST_HEAD(&new->disks);
255 INIT_LIST_HEAD(&new->all_mddevs);
256 init_timer(&new->safemode_timer);
257 atomic_set(&new->active, 1);
258 spin_lock_init(&new->write_lock);
259 init_waitqueue_head(&new->sb_wait);
261 new->queue = blk_alloc_queue(GFP_KERNEL);
262 if (!new->queue) {
263 kfree(new);
264 return NULL;
267 blk_queue_make_request(new->queue, md_fail_request);
269 goto retry;
272 static inline int mddev_lock(mddev_t * mddev)
274 return down_interruptible(&mddev->reconfig_sem);
277 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
279 down(&mddev->reconfig_sem);
282 static inline int mddev_trylock(mddev_t * mddev)
284 return down_trylock(&mddev->reconfig_sem);
287 static inline void mddev_unlock(mddev_t * mddev)
289 up(&mddev->reconfig_sem);
291 md_wakeup_thread(mddev->thread);
294 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
296 mdk_rdev_t * rdev;
297 struct list_head *tmp;
299 ITERATE_RDEV(mddev,rdev,tmp) {
300 if (rdev->desc_nr == nr)
301 return rdev;
303 return NULL;
306 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
308 struct list_head *tmp;
309 mdk_rdev_t *rdev;
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->bdev->bd_dev == dev)
313 return rdev;
315 return NULL;
318 static struct mdk_personality *find_pers(int level, char *clevel)
320 struct mdk_personality *pers;
321 list_for_each_entry(pers, &pers_list, list) {
322 if (level != LEVEL_NONE && pers->level == level)
323 return pers;
324 if (strcmp(pers->name, clevel)==0)
325 return pers;
327 return NULL;
330 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
332 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
333 return MD_NEW_SIZE_BLOCKS(size);
336 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
338 sector_t size;
340 size = rdev->sb_offset;
342 if (chunk_size)
343 size &= ~((sector_t)chunk_size/1024 - 1);
344 return size;
347 static int alloc_disk_sb(mdk_rdev_t * rdev)
349 if (rdev->sb_page)
350 MD_BUG();
352 rdev->sb_page = alloc_page(GFP_KERNEL);
353 if (!rdev->sb_page) {
354 printk(KERN_ALERT "md: out of memory.\n");
355 return -EINVAL;
358 return 0;
361 static void free_disk_sb(mdk_rdev_t * rdev)
363 if (rdev->sb_page) {
364 put_page(rdev->sb_page);
365 rdev->sb_loaded = 0;
366 rdev->sb_page = NULL;
367 rdev->sb_offset = 0;
368 rdev->size = 0;
373 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
375 mdk_rdev_t *rdev = bio->bi_private;
376 mddev_t *mddev = rdev->mddev;
377 if (bio->bi_size)
378 return 1;
380 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
381 md_error(mddev, rdev);
383 if (atomic_dec_and_test(&mddev->pending_writes))
384 wake_up(&mddev->sb_wait);
385 bio_put(bio);
386 return 0;
389 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
391 struct bio *bio2 = bio->bi_private;
392 mdk_rdev_t *rdev = bio2->bi_private;
393 mddev_t *mddev = rdev->mddev;
394 if (bio->bi_size)
395 return 1;
397 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
398 error == -EOPNOTSUPP) {
399 unsigned long flags;
400 /* barriers don't appear to be supported :-( */
401 set_bit(BarriersNotsupp, &rdev->flags);
402 mddev->barriers_work = 0;
403 spin_lock_irqsave(&mddev->write_lock, flags);
404 bio2->bi_next = mddev->biolist;
405 mddev->biolist = bio2;
406 spin_unlock_irqrestore(&mddev->write_lock, flags);
407 wake_up(&mddev->sb_wait);
408 bio_put(bio);
409 return 0;
411 bio_put(bio2);
412 bio->bi_private = rdev;
413 return super_written(bio, bytes_done, error);
416 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
417 sector_t sector, int size, struct page *page)
419 /* write first size bytes of page to sector of rdev
420 * Increment mddev->pending_writes before returning
421 * and decrement it on completion, waking up sb_wait
422 * if zero is reached.
423 * If an error occurred, call md_error
425 * As we might need to resubmit the request if BIO_RW_BARRIER
426 * causes ENOTSUPP, we allocate a spare bio...
428 struct bio *bio = bio_alloc(GFP_NOIO, 1);
429 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
431 bio->bi_bdev = rdev->bdev;
432 bio->bi_sector = sector;
433 bio_add_page(bio, page, size, 0);
434 bio->bi_private = rdev;
435 bio->bi_end_io = super_written;
436 bio->bi_rw = rw;
438 atomic_inc(&mddev->pending_writes);
439 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
440 struct bio *rbio;
441 rw |= (1<<BIO_RW_BARRIER);
442 rbio = bio_clone(bio, GFP_NOIO);
443 rbio->bi_private = bio;
444 rbio->bi_end_io = super_written_barrier;
445 submit_bio(rw, rbio);
446 } else
447 submit_bio(rw, bio);
450 void md_super_wait(mddev_t *mddev)
452 /* wait for all superblock writes that were scheduled to complete.
453 * if any had to be retried (due to BARRIER problems), retry them
455 DEFINE_WAIT(wq);
456 for(;;) {
457 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
458 if (atomic_read(&mddev->pending_writes)==0)
459 break;
460 while (mddev->biolist) {
461 struct bio *bio;
462 spin_lock_irq(&mddev->write_lock);
463 bio = mddev->biolist;
464 mddev->biolist = bio->bi_next ;
465 bio->bi_next = NULL;
466 spin_unlock_irq(&mddev->write_lock);
467 submit_bio(bio->bi_rw, bio);
469 schedule();
471 finish_wait(&mddev->sb_wait, &wq);
474 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
476 if (bio->bi_size)
477 return 1;
479 complete((struct completion*)bio->bi_private);
480 return 0;
483 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
484 struct page *page, int rw)
486 struct bio *bio = bio_alloc(GFP_NOIO, 1);
487 struct completion event;
488 int ret;
490 rw |= (1 << BIO_RW_SYNC);
492 bio->bi_bdev = bdev;
493 bio->bi_sector = sector;
494 bio_add_page(bio, page, size, 0);
495 init_completion(&event);
496 bio->bi_private = &event;
497 bio->bi_end_io = bi_complete;
498 submit_bio(rw, bio);
499 wait_for_completion(&event);
501 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
502 bio_put(bio);
503 return ret;
505 EXPORT_SYMBOL_GPL(sync_page_io);
507 static int read_disk_sb(mdk_rdev_t * rdev, int size)
509 char b[BDEVNAME_SIZE];
510 if (!rdev->sb_page) {
511 MD_BUG();
512 return -EINVAL;
514 if (rdev->sb_loaded)
515 return 0;
518 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
519 goto fail;
520 rdev->sb_loaded = 1;
521 return 0;
523 fail:
524 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
525 bdevname(rdev->bdev,b));
526 return -EINVAL;
529 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
531 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
532 (sb1->set_uuid1 == sb2->set_uuid1) &&
533 (sb1->set_uuid2 == sb2->set_uuid2) &&
534 (sb1->set_uuid3 == sb2->set_uuid3))
536 return 1;
538 return 0;
542 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
544 int ret;
545 mdp_super_t *tmp1, *tmp2;
547 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
548 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
550 if (!tmp1 || !tmp2) {
551 ret = 0;
552 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
553 goto abort;
556 *tmp1 = *sb1;
557 *tmp2 = *sb2;
560 * nr_disks is not constant
562 tmp1->nr_disks = 0;
563 tmp2->nr_disks = 0;
565 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
566 ret = 0;
567 else
568 ret = 1;
570 abort:
571 kfree(tmp1);
572 kfree(tmp2);
573 return ret;
576 static unsigned int calc_sb_csum(mdp_super_t * sb)
578 unsigned int disk_csum, csum;
580 disk_csum = sb->sb_csum;
581 sb->sb_csum = 0;
582 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
583 sb->sb_csum = disk_csum;
584 return csum;
589 * Handle superblock details.
590 * We want to be able to handle multiple superblock formats
591 * so we have a common interface to them all, and an array of
592 * different handlers.
593 * We rely on user-space to write the initial superblock, and support
594 * reading and updating of superblocks.
595 * Interface methods are:
596 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
597 * loads and validates a superblock on dev.
598 * if refdev != NULL, compare superblocks on both devices
599 * Return:
600 * 0 - dev has a superblock that is compatible with refdev
601 * 1 - dev has a superblock that is compatible and newer than refdev
602 * so dev should be used as the refdev in future
603 * -EINVAL superblock incompatible or invalid
604 * -othererror e.g. -EIO
606 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
607 * Verify that dev is acceptable into mddev.
608 * The first time, mddev->raid_disks will be 0, and data from
609 * dev should be merged in. Subsequent calls check that dev
610 * is new enough. Return 0 or -EINVAL
612 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
613 * Update the superblock for rdev with data in mddev
614 * This does not write to disc.
618 struct super_type {
619 char *name;
620 struct module *owner;
621 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
622 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
623 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
627 * load_super for 0.90.0
629 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
631 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
632 mdp_super_t *sb;
633 int ret;
634 sector_t sb_offset;
637 * Calculate the position of the superblock,
638 * it's at the end of the disk.
640 * It also happens to be a multiple of 4Kb.
642 sb_offset = calc_dev_sboffset(rdev->bdev);
643 rdev->sb_offset = sb_offset;
645 ret = read_disk_sb(rdev, MD_SB_BYTES);
646 if (ret) return ret;
648 ret = -EINVAL;
650 bdevname(rdev->bdev, b);
651 sb = (mdp_super_t*)page_address(rdev->sb_page);
653 if (sb->md_magic != MD_SB_MAGIC) {
654 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
656 goto abort;
659 if (sb->major_version != 0 ||
660 sb->minor_version != 90) {
661 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
662 sb->major_version, sb->minor_version,
664 goto abort;
667 if (sb->raid_disks <= 0)
668 goto abort;
670 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
671 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
673 goto abort;
676 rdev->preferred_minor = sb->md_minor;
677 rdev->data_offset = 0;
678 rdev->sb_size = MD_SB_BYTES;
680 if (sb->level == LEVEL_MULTIPATH)
681 rdev->desc_nr = -1;
682 else
683 rdev->desc_nr = sb->this_disk.number;
685 if (refdev == 0)
686 ret = 1;
687 else {
688 __u64 ev1, ev2;
689 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
690 if (!uuid_equal(refsb, sb)) {
691 printk(KERN_WARNING "md: %s has different UUID to %s\n",
692 b, bdevname(refdev->bdev,b2));
693 goto abort;
695 if (!sb_equal(refsb, sb)) {
696 printk(KERN_WARNING "md: %s has same UUID"
697 " but different superblock to %s\n",
698 b, bdevname(refdev->bdev, b2));
699 goto abort;
701 ev1 = md_event(sb);
702 ev2 = md_event(refsb);
703 if (ev1 > ev2)
704 ret = 1;
705 else
706 ret = 0;
708 rdev->size = calc_dev_size(rdev, sb->chunk_size);
710 if (rdev->size < sb->size && sb->level > 1)
711 /* "this cannot possibly happen" ... */
712 ret = -EINVAL;
714 abort:
715 return ret;
719 * validate_super for 0.90.0
721 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
723 mdp_disk_t *desc;
724 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
726 rdev->raid_disk = -1;
727 rdev->flags = 0;
728 if (mddev->raid_disks == 0) {
729 mddev->major_version = 0;
730 mddev->minor_version = sb->minor_version;
731 mddev->patch_version = sb->patch_version;
732 mddev->persistent = ! sb->not_persistent;
733 mddev->chunk_size = sb->chunk_size;
734 mddev->ctime = sb->ctime;
735 mddev->utime = sb->utime;
736 mddev->level = sb->level;
737 mddev->clevel[0] = 0;
738 mddev->layout = sb->layout;
739 mddev->raid_disks = sb->raid_disks;
740 mddev->size = sb->size;
741 mddev->events = md_event(sb);
742 mddev->bitmap_offset = 0;
743 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
745 if (sb->state & (1<<MD_SB_CLEAN))
746 mddev->recovery_cp = MaxSector;
747 else {
748 if (sb->events_hi == sb->cp_events_hi &&
749 sb->events_lo == sb->cp_events_lo) {
750 mddev->recovery_cp = sb->recovery_cp;
751 } else
752 mddev->recovery_cp = 0;
755 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
756 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
757 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
758 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
760 mddev->max_disks = MD_SB_DISKS;
762 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
763 mddev->bitmap_file == NULL) {
764 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
765 && mddev->level != 10) {
766 /* FIXME use a better test */
767 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
768 return -EINVAL;
770 mddev->bitmap_offset = mddev->default_bitmap_offset;
773 } else if (mddev->pers == NULL) {
774 /* Insist on good event counter while assembling */
775 __u64 ev1 = md_event(sb);
776 ++ev1;
777 if (ev1 < mddev->events)
778 return -EINVAL;
779 } else if (mddev->bitmap) {
780 /* if adding to array with a bitmap, then we can accept an
781 * older device ... but not too old.
783 __u64 ev1 = md_event(sb);
784 if (ev1 < mddev->bitmap->events_cleared)
785 return 0;
786 } else /* just a hot-add of a new device, leave raid_disk at -1 */
787 return 0;
789 if (mddev->level != LEVEL_MULTIPATH) {
790 desc = sb->disks + rdev->desc_nr;
792 if (desc->state & (1<<MD_DISK_FAULTY))
793 set_bit(Faulty, &rdev->flags);
794 else if (desc->state & (1<<MD_DISK_SYNC) &&
795 desc->raid_disk < mddev->raid_disks) {
796 set_bit(In_sync, &rdev->flags);
797 rdev->raid_disk = desc->raid_disk;
799 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
800 set_bit(WriteMostly, &rdev->flags);
801 } else /* MULTIPATH are always insync */
802 set_bit(In_sync, &rdev->flags);
803 return 0;
807 * sync_super for 0.90.0
809 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
811 mdp_super_t *sb;
812 struct list_head *tmp;
813 mdk_rdev_t *rdev2;
814 int next_spare = mddev->raid_disks;
817 /* make rdev->sb match mddev data..
819 * 1/ zero out disks
820 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
821 * 3/ any empty disks < next_spare become removed
823 * disks[0] gets initialised to REMOVED because
824 * we cannot be sure from other fields if it has
825 * been initialised or not.
827 int i;
828 int active=0, working=0,failed=0,spare=0,nr_disks=0;
830 rdev->sb_size = MD_SB_BYTES;
832 sb = (mdp_super_t*)page_address(rdev->sb_page);
834 memset(sb, 0, sizeof(*sb));
836 sb->md_magic = MD_SB_MAGIC;
837 sb->major_version = mddev->major_version;
838 sb->minor_version = mddev->minor_version;
839 sb->patch_version = mddev->patch_version;
840 sb->gvalid_words = 0; /* ignored */
841 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
842 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
843 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
844 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
846 sb->ctime = mddev->ctime;
847 sb->level = mddev->level;
848 sb->size = mddev->size;
849 sb->raid_disks = mddev->raid_disks;
850 sb->md_minor = mddev->md_minor;
851 sb->not_persistent = !mddev->persistent;
852 sb->utime = mddev->utime;
853 sb->state = 0;
854 sb->events_hi = (mddev->events>>32);
855 sb->events_lo = (u32)mddev->events;
857 if (mddev->in_sync)
859 sb->recovery_cp = mddev->recovery_cp;
860 sb->cp_events_hi = (mddev->events>>32);
861 sb->cp_events_lo = (u32)mddev->events;
862 if (mddev->recovery_cp == MaxSector)
863 sb->state = (1<< MD_SB_CLEAN);
864 } else
865 sb->recovery_cp = 0;
867 sb->layout = mddev->layout;
868 sb->chunk_size = mddev->chunk_size;
870 if (mddev->bitmap && mddev->bitmap_file == NULL)
871 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
873 sb->disks[0].state = (1<<MD_DISK_REMOVED);
874 ITERATE_RDEV(mddev,rdev2,tmp) {
875 mdp_disk_t *d;
876 int desc_nr;
877 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
878 && !test_bit(Faulty, &rdev2->flags))
879 desc_nr = rdev2->raid_disk;
880 else
881 desc_nr = next_spare++;
882 rdev2->desc_nr = desc_nr;
883 d = &sb->disks[rdev2->desc_nr];
884 nr_disks++;
885 d->number = rdev2->desc_nr;
886 d->major = MAJOR(rdev2->bdev->bd_dev);
887 d->minor = MINOR(rdev2->bdev->bd_dev);
888 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
889 && !test_bit(Faulty, &rdev2->flags))
890 d->raid_disk = rdev2->raid_disk;
891 else
892 d->raid_disk = rdev2->desc_nr; /* compatibility */
893 if (test_bit(Faulty, &rdev2->flags)) {
894 d->state = (1<<MD_DISK_FAULTY);
895 failed++;
896 } else if (test_bit(In_sync, &rdev2->flags)) {
897 d->state = (1<<MD_DISK_ACTIVE);
898 d->state |= (1<<MD_DISK_SYNC);
899 active++;
900 working++;
901 } else {
902 d->state = 0;
903 spare++;
904 working++;
906 if (test_bit(WriteMostly, &rdev2->flags))
907 d->state |= (1<<MD_DISK_WRITEMOSTLY);
909 /* now set the "removed" and "faulty" bits on any missing devices */
910 for (i=0 ; i < mddev->raid_disks ; i++) {
911 mdp_disk_t *d = &sb->disks[i];
912 if (d->state == 0 && d->number == 0) {
913 d->number = i;
914 d->raid_disk = i;
915 d->state = (1<<MD_DISK_REMOVED);
916 d->state |= (1<<MD_DISK_FAULTY);
917 failed++;
920 sb->nr_disks = nr_disks;
921 sb->active_disks = active;
922 sb->working_disks = working;
923 sb->failed_disks = failed;
924 sb->spare_disks = spare;
926 sb->this_disk = sb->disks[rdev->desc_nr];
927 sb->sb_csum = calc_sb_csum(sb);
931 * version 1 superblock
934 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
936 unsigned int disk_csum, csum;
937 unsigned long long newcsum;
938 int size = 256 + le32_to_cpu(sb->max_dev)*2;
939 unsigned int *isuper = (unsigned int*)sb;
940 int i;
942 disk_csum = sb->sb_csum;
943 sb->sb_csum = 0;
944 newcsum = 0;
945 for (i=0; size>=4; size -= 4 )
946 newcsum += le32_to_cpu(*isuper++);
948 if (size == 2)
949 newcsum += le16_to_cpu(*(unsigned short*) isuper);
951 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
952 sb->sb_csum = disk_csum;
953 return cpu_to_le32(csum);
956 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
958 struct mdp_superblock_1 *sb;
959 int ret;
960 sector_t sb_offset;
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 int bmask;
965 * Calculate the position of the superblock.
966 * It is always aligned to a 4K boundary and
967 * depeding on minor_version, it can be:
968 * 0: At least 8K, but less than 12K, from end of device
969 * 1: At start of device
970 * 2: 4K from start of device.
972 switch(minor_version) {
973 case 0:
974 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
975 sb_offset -= 8*2;
976 sb_offset &= ~(sector_t)(4*2-1);
977 /* convert from sectors to K */
978 sb_offset /= 2;
979 break;
980 case 1:
981 sb_offset = 0;
982 break;
983 case 2:
984 sb_offset = 4;
985 break;
986 default:
987 return -EINVAL;
989 rdev->sb_offset = sb_offset;
991 /* superblock is rarely larger than 1K, but it can be larger,
992 * and it is safe to read 4k, so we do that
994 ret = read_disk_sb(rdev, 4096);
995 if (ret) return ret;
998 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1000 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1001 sb->major_version != cpu_to_le32(1) ||
1002 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1003 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1004 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1005 return -EINVAL;
1007 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1008 printk("md: invalid superblock checksum on %s\n",
1009 bdevname(rdev->bdev,b));
1010 return -EINVAL;
1012 if (le64_to_cpu(sb->data_size) < 10) {
1013 printk("md: data_size too small on %s\n",
1014 bdevname(rdev->bdev,b));
1015 return -EINVAL;
1017 rdev->preferred_minor = 0xffff;
1018 rdev->data_offset = le64_to_cpu(sb->data_offset);
1019 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1021 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1022 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1023 if (rdev->sb_size & bmask)
1024 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1026 if (refdev == 0)
1027 ret = 1;
1028 else {
1029 __u64 ev1, ev2;
1030 struct mdp_superblock_1 *refsb =
1031 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1033 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1034 sb->level != refsb->level ||
1035 sb->layout != refsb->layout ||
1036 sb->chunksize != refsb->chunksize) {
1037 printk(KERN_WARNING "md: %s has strangely different"
1038 " superblock to %s\n",
1039 bdevname(rdev->bdev,b),
1040 bdevname(refdev->bdev,b2));
1041 return -EINVAL;
1043 ev1 = le64_to_cpu(sb->events);
1044 ev2 = le64_to_cpu(refsb->events);
1046 if (ev1 > ev2)
1047 ret = 1;
1048 else
1049 ret = 0;
1051 if (minor_version)
1052 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1053 else
1054 rdev->size = rdev->sb_offset;
1055 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1056 return -EINVAL;
1057 rdev->size = le64_to_cpu(sb->data_size)/2;
1058 if (le32_to_cpu(sb->chunksize))
1059 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1061 if (le32_to_cpu(sb->size) > rdev->size*2)
1062 return -EINVAL;
1063 return ret;
1066 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1068 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1070 rdev->raid_disk = -1;
1071 rdev->flags = 0;
1072 if (mddev->raid_disks == 0) {
1073 mddev->major_version = 1;
1074 mddev->patch_version = 0;
1075 mddev->persistent = 1;
1076 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1077 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1078 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1079 mddev->level = le32_to_cpu(sb->level);
1080 mddev->clevel[0] = 0;
1081 mddev->layout = le32_to_cpu(sb->layout);
1082 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1083 mddev->size = le64_to_cpu(sb->size)/2;
1084 mddev->events = le64_to_cpu(sb->events);
1085 mddev->bitmap_offset = 0;
1086 mddev->default_bitmap_offset = 1024 >> 9;
1088 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1089 memcpy(mddev->uuid, sb->set_uuid, 16);
1091 mddev->max_disks = (4096-256)/2;
1093 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1094 mddev->bitmap_file == NULL ) {
1095 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1096 && mddev->level != 10) {
1097 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1098 return -EINVAL;
1100 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1102 } else if (mddev->pers == NULL) {
1103 /* Insist of good event counter while assembling */
1104 __u64 ev1 = le64_to_cpu(sb->events);
1105 ++ev1;
1106 if (ev1 < mddev->events)
1107 return -EINVAL;
1108 } else if (mddev->bitmap) {
1109 /* If adding to array with a bitmap, then we can accept an
1110 * older device, but not too old.
1112 __u64 ev1 = le64_to_cpu(sb->events);
1113 if (ev1 < mddev->bitmap->events_cleared)
1114 return 0;
1115 } else /* just a hot-add of a new device, leave raid_disk at -1 */
1116 return 0;
1118 if (mddev->level != LEVEL_MULTIPATH) {
1119 int role;
1120 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1121 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1122 switch(role) {
1123 case 0xffff: /* spare */
1124 break;
1125 case 0xfffe: /* faulty */
1126 set_bit(Faulty, &rdev->flags);
1127 break;
1128 default:
1129 set_bit(In_sync, &rdev->flags);
1130 rdev->raid_disk = role;
1131 break;
1133 if (sb->devflags & WriteMostly1)
1134 set_bit(WriteMostly, &rdev->flags);
1135 } else /* MULTIPATH are always insync */
1136 set_bit(In_sync, &rdev->flags);
1138 return 0;
1141 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1143 struct mdp_superblock_1 *sb;
1144 struct list_head *tmp;
1145 mdk_rdev_t *rdev2;
1146 int max_dev, i;
1147 /* make rdev->sb match mddev and rdev data. */
1149 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1151 sb->feature_map = 0;
1152 sb->pad0 = 0;
1153 memset(sb->pad1, 0, sizeof(sb->pad1));
1154 memset(sb->pad2, 0, sizeof(sb->pad2));
1155 memset(sb->pad3, 0, sizeof(sb->pad3));
1157 sb->utime = cpu_to_le64((__u64)mddev->utime);
1158 sb->events = cpu_to_le64(mddev->events);
1159 if (mddev->in_sync)
1160 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1161 else
1162 sb->resync_offset = cpu_to_le64(0);
1164 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1166 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1167 sb->size = cpu_to_le64(mddev->size<<1);
1169 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1170 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1171 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1174 max_dev = 0;
1175 ITERATE_RDEV(mddev,rdev2,tmp)
1176 if (rdev2->desc_nr+1 > max_dev)
1177 max_dev = rdev2->desc_nr+1;
1179 sb->max_dev = cpu_to_le32(max_dev);
1180 for (i=0; i<max_dev;i++)
1181 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1183 ITERATE_RDEV(mddev,rdev2,tmp) {
1184 i = rdev2->desc_nr;
1185 if (test_bit(Faulty, &rdev2->flags))
1186 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1187 else if (test_bit(In_sync, &rdev2->flags))
1188 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1189 else
1190 sb->dev_roles[i] = cpu_to_le16(0xffff);
1193 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1194 sb->sb_csum = calc_sb_1_csum(sb);
1198 static struct super_type super_types[] = {
1199 [0] = {
1200 .name = "0.90.0",
1201 .owner = THIS_MODULE,
1202 .load_super = super_90_load,
1203 .validate_super = super_90_validate,
1204 .sync_super = super_90_sync,
1206 [1] = {
1207 .name = "md-1",
1208 .owner = THIS_MODULE,
1209 .load_super = super_1_load,
1210 .validate_super = super_1_validate,
1211 .sync_super = super_1_sync,
1215 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1217 struct list_head *tmp;
1218 mdk_rdev_t *rdev;
1220 ITERATE_RDEV(mddev,rdev,tmp)
1221 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1222 return rdev;
1224 return NULL;
1227 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1229 struct list_head *tmp;
1230 mdk_rdev_t *rdev;
1232 ITERATE_RDEV(mddev1,rdev,tmp)
1233 if (match_dev_unit(mddev2, rdev))
1234 return 1;
1236 return 0;
1239 static LIST_HEAD(pending_raid_disks);
1241 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1243 mdk_rdev_t *same_pdev;
1244 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1245 struct kobject *ko;
1246 char *s;
1248 if (rdev->mddev) {
1249 MD_BUG();
1250 return -EINVAL;
1252 /* make sure rdev->size exceeds mddev->size */
1253 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1254 if (mddev->pers)
1255 /* Cannot change size, so fail */
1256 return -ENOSPC;
1257 else
1258 mddev->size = rdev->size;
1260 same_pdev = match_dev_unit(mddev, rdev);
1261 if (same_pdev)
1262 printk(KERN_WARNING
1263 "%s: WARNING: %s appears to be on the same physical"
1264 " disk as %s. True\n protection against single-disk"
1265 " failure might be compromised.\n",
1266 mdname(mddev), bdevname(rdev->bdev,b),
1267 bdevname(same_pdev->bdev,b2));
1269 /* Verify rdev->desc_nr is unique.
1270 * If it is -1, assign a free number, else
1271 * check number is not in use
1273 if (rdev->desc_nr < 0) {
1274 int choice = 0;
1275 if (mddev->pers) choice = mddev->raid_disks;
1276 while (find_rdev_nr(mddev, choice))
1277 choice++;
1278 rdev->desc_nr = choice;
1279 } else {
1280 if (find_rdev_nr(mddev, rdev->desc_nr))
1281 return -EBUSY;
1283 bdevname(rdev->bdev,b);
1284 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1285 return -ENOMEM;
1286 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1287 *s = '!';
1289 list_add(&rdev->same_set, &mddev->disks);
1290 rdev->mddev = mddev;
1291 printk(KERN_INFO "md: bind<%s>\n", b);
1293 rdev->kobj.parent = &mddev->kobj;
1294 kobject_add(&rdev->kobj);
1296 if (rdev->bdev->bd_part)
1297 ko = &rdev->bdev->bd_part->kobj;
1298 else
1299 ko = &rdev->bdev->bd_disk->kobj;
1300 sysfs_create_link(&rdev->kobj, ko, "block");
1301 return 0;
1304 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1306 char b[BDEVNAME_SIZE];
1307 if (!rdev->mddev) {
1308 MD_BUG();
1309 return;
1311 list_del_init(&rdev->same_set);
1312 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1313 rdev->mddev = NULL;
1314 sysfs_remove_link(&rdev->kobj, "block");
1315 kobject_del(&rdev->kobj);
1319 * prevent the device from being mounted, repartitioned or
1320 * otherwise reused by a RAID array (or any other kernel
1321 * subsystem), by bd_claiming the device.
1323 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1325 int err = 0;
1326 struct block_device *bdev;
1327 char b[BDEVNAME_SIZE];
1329 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1330 if (IS_ERR(bdev)) {
1331 printk(KERN_ERR "md: could not open %s.\n",
1332 __bdevname(dev, b));
1333 return PTR_ERR(bdev);
1335 err = bd_claim(bdev, rdev);
1336 if (err) {
1337 printk(KERN_ERR "md: could not bd_claim %s.\n",
1338 bdevname(bdev, b));
1339 blkdev_put(bdev);
1340 return err;
1342 rdev->bdev = bdev;
1343 return err;
1346 static void unlock_rdev(mdk_rdev_t *rdev)
1348 struct block_device *bdev = rdev->bdev;
1349 rdev->bdev = NULL;
1350 if (!bdev)
1351 MD_BUG();
1352 bd_release(bdev);
1353 blkdev_put(bdev);
1356 void md_autodetect_dev(dev_t dev);
1358 static void export_rdev(mdk_rdev_t * rdev)
1360 char b[BDEVNAME_SIZE];
1361 printk(KERN_INFO "md: export_rdev(%s)\n",
1362 bdevname(rdev->bdev,b));
1363 if (rdev->mddev)
1364 MD_BUG();
1365 free_disk_sb(rdev);
1366 list_del_init(&rdev->same_set);
1367 #ifndef MODULE
1368 md_autodetect_dev(rdev->bdev->bd_dev);
1369 #endif
1370 unlock_rdev(rdev);
1371 kobject_put(&rdev->kobj);
1374 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1376 unbind_rdev_from_array(rdev);
1377 export_rdev(rdev);
1380 static void export_array(mddev_t *mddev)
1382 struct list_head *tmp;
1383 mdk_rdev_t *rdev;
1385 ITERATE_RDEV(mddev,rdev,tmp) {
1386 if (!rdev->mddev) {
1387 MD_BUG();
1388 continue;
1390 kick_rdev_from_array(rdev);
1392 if (!list_empty(&mddev->disks))
1393 MD_BUG();
1394 mddev->raid_disks = 0;
1395 mddev->major_version = 0;
1398 static void print_desc(mdp_disk_t *desc)
1400 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1401 desc->major,desc->minor,desc->raid_disk,desc->state);
1404 static void print_sb(mdp_super_t *sb)
1406 int i;
1408 printk(KERN_INFO
1409 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1410 sb->major_version, sb->minor_version, sb->patch_version,
1411 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1412 sb->ctime);
1413 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1414 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1415 sb->md_minor, sb->layout, sb->chunk_size);
1416 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1417 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1418 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1419 sb->failed_disks, sb->spare_disks,
1420 sb->sb_csum, (unsigned long)sb->events_lo);
1422 printk(KERN_INFO);
1423 for (i = 0; i < MD_SB_DISKS; i++) {
1424 mdp_disk_t *desc;
1426 desc = sb->disks + i;
1427 if (desc->number || desc->major || desc->minor ||
1428 desc->raid_disk || (desc->state && (desc->state != 4))) {
1429 printk(" D %2d: ", i);
1430 print_desc(desc);
1433 printk(KERN_INFO "md: THIS: ");
1434 print_desc(&sb->this_disk);
1438 static void print_rdev(mdk_rdev_t *rdev)
1440 char b[BDEVNAME_SIZE];
1441 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1442 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1443 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1444 rdev->desc_nr);
1445 if (rdev->sb_loaded) {
1446 printk(KERN_INFO "md: rdev superblock:\n");
1447 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1448 } else
1449 printk(KERN_INFO "md: no rdev superblock!\n");
1452 void md_print_devices(void)
1454 struct list_head *tmp, *tmp2;
1455 mdk_rdev_t *rdev;
1456 mddev_t *mddev;
1457 char b[BDEVNAME_SIZE];
1459 printk("\n");
1460 printk("md: **********************************\n");
1461 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1462 printk("md: **********************************\n");
1463 ITERATE_MDDEV(mddev,tmp) {
1465 if (mddev->bitmap)
1466 bitmap_print_sb(mddev->bitmap);
1467 else
1468 printk("%s: ", mdname(mddev));
1469 ITERATE_RDEV(mddev,rdev,tmp2)
1470 printk("<%s>", bdevname(rdev->bdev,b));
1471 printk("\n");
1473 ITERATE_RDEV(mddev,rdev,tmp2)
1474 print_rdev(rdev);
1476 printk("md: **********************************\n");
1477 printk("\n");
1481 static void sync_sbs(mddev_t * mddev)
1483 mdk_rdev_t *rdev;
1484 struct list_head *tmp;
1486 ITERATE_RDEV(mddev,rdev,tmp) {
1487 super_types[mddev->major_version].
1488 sync_super(mddev, rdev);
1489 rdev->sb_loaded = 1;
1493 static void md_update_sb(mddev_t * mddev)
1495 int err;
1496 struct list_head *tmp;
1497 mdk_rdev_t *rdev;
1498 int sync_req;
1500 repeat:
1501 spin_lock_irq(&mddev->write_lock);
1502 sync_req = mddev->in_sync;
1503 mddev->utime = get_seconds();
1504 mddev->events ++;
1506 if (!mddev->events) {
1508 * oops, this 64-bit counter should never wrap.
1509 * Either we are in around ~1 trillion A.C., assuming
1510 * 1 reboot per second, or we have a bug:
1512 MD_BUG();
1513 mddev->events --;
1515 mddev->sb_dirty = 2;
1516 sync_sbs(mddev);
1519 * do not write anything to disk if using
1520 * nonpersistent superblocks
1522 if (!mddev->persistent) {
1523 mddev->sb_dirty = 0;
1524 spin_unlock_irq(&mddev->write_lock);
1525 wake_up(&mddev->sb_wait);
1526 return;
1528 spin_unlock_irq(&mddev->write_lock);
1530 dprintk(KERN_INFO
1531 "md: updating %s RAID superblock on device (in sync %d)\n",
1532 mdname(mddev),mddev->in_sync);
1534 err = bitmap_update_sb(mddev->bitmap);
1535 ITERATE_RDEV(mddev,rdev,tmp) {
1536 char b[BDEVNAME_SIZE];
1537 dprintk(KERN_INFO "md: ");
1538 if (test_bit(Faulty, &rdev->flags))
1539 dprintk("(skipping faulty ");
1541 dprintk("%s ", bdevname(rdev->bdev,b));
1542 if (!test_bit(Faulty, &rdev->flags)) {
1543 md_super_write(mddev,rdev,
1544 rdev->sb_offset<<1, rdev->sb_size,
1545 rdev->sb_page);
1546 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1547 bdevname(rdev->bdev,b),
1548 (unsigned long long)rdev->sb_offset);
1550 } else
1551 dprintk(")\n");
1552 if (mddev->level == LEVEL_MULTIPATH)
1553 /* only need to write one superblock... */
1554 break;
1556 md_super_wait(mddev);
1557 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1559 spin_lock_irq(&mddev->write_lock);
1560 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1561 /* have to write it out again */
1562 spin_unlock_irq(&mddev->write_lock);
1563 goto repeat;
1565 mddev->sb_dirty = 0;
1566 spin_unlock_irq(&mddev->write_lock);
1567 wake_up(&mddev->sb_wait);
1571 /* words written to sysfs files may, or my not, be \n terminated.
1572 * We want to accept with case. For this we use cmd_match.
1574 static int cmd_match(const char *cmd, const char *str)
1576 /* See if cmd, written into a sysfs file, matches
1577 * str. They must either be the same, or cmd can
1578 * have a trailing newline
1580 while (*cmd && *str && *cmd == *str) {
1581 cmd++;
1582 str++;
1584 if (*cmd == '\n')
1585 cmd++;
1586 if (*str || *cmd)
1587 return 0;
1588 return 1;
1591 struct rdev_sysfs_entry {
1592 struct attribute attr;
1593 ssize_t (*show)(mdk_rdev_t *, char *);
1594 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1597 static ssize_t
1598 state_show(mdk_rdev_t *rdev, char *page)
1600 char *sep = "";
1601 int len=0;
1603 if (test_bit(Faulty, &rdev->flags)) {
1604 len+= sprintf(page+len, "%sfaulty",sep);
1605 sep = ",";
1607 if (test_bit(In_sync, &rdev->flags)) {
1608 len += sprintf(page+len, "%sin_sync",sep);
1609 sep = ",";
1611 if (!test_bit(Faulty, &rdev->flags) &&
1612 !test_bit(In_sync, &rdev->flags)) {
1613 len += sprintf(page+len, "%sspare", sep);
1614 sep = ",";
1616 return len+sprintf(page+len, "\n");
1619 static struct rdev_sysfs_entry
1620 rdev_state = __ATTR_RO(state);
1622 static ssize_t
1623 super_show(mdk_rdev_t *rdev, char *page)
1625 if (rdev->sb_loaded && rdev->sb_size) {
1626 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1627 return rdev->sb_size;
1628 } else
1629 return 0;
1631 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1633 static ssize_t
1634 errors_show(mdk_rdev_t *rdev, char *page)
1636 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1639 static ssize_t
1640 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1642 char *e;
1643 unsigned long n = simple_strtoul(buf, &e, 10);
1644 if (*buf && (*e == 0 || *e == '\n')) {
1645 atomic_set(&rdev->corrected_errors, n);
1646 return len;
1648 return -EINVAL;
1650 static struct rdev_sysfs_entry rdev_errors =
1651 __ATTR(errors, 0644, errors_show, errors_store);
1653 static ssize_t
1654 slot_show(mdk_rdev_t *rdev, char *page)
1656 if (rdev->raid_disk < 0)
1657 return sprintf(page, "none\n");
1658 else
1659 return sprintf(page, "%d\n", rdev->raid_disk);
1662 static ssize_t
1663 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1665 char *e;
1666 int slot = simple_strtoul(buf, &e, 10);
1667 if (strncmp(buf, "none", 4)==0)
1668 slot = -1;
1669 else if (e==buf || (*e && *e!= '\n'))
1670 return -EINVAL;
1671 if (rdev->mddev->pers)
1672 /* Cannot set slot in active array (yet) */
1673 return -EBUSY;
1674 if (slot >= rdev->mddev->raid_disks)
1675 return -ENOSPC;
1676 rdev->raid_disk = slot;
1677 /* assume it is working */
1678 rdev->flags = 0;
1679 set_bit(In_sync, &rdev->flags);
1680 return len;
1684 static struct rdev_sysfs_entry rdev_slot =
1685 __ATTR(slot, 0644, slot_show, slot_store);
1687 static ssize_t
1688 offset_show(mdk_rdev_t *rdev, char *page)
1690 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1693 static ssize_t
1694 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1696 char *e;
1697 unsigned long long offset = simple_strtoull(buf, &e, 10);
1698 if (e==buf || (*e && *e != '\n'))
1699 return -EINVAL;
1700 if (rdev->mddev->pers)
1701 return -EBUSY;
1702 rdev->data_offset = offset;
1703 return len;
1706 static struct rdev_sysfs_entry rdev_offset =
1707 __ATTR(offset, 0644, offset_show, offset_store);
1709 static ssize_t
1710 rdev_size_show(mdk_rdev_t *rdev, char *page)
1712 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1715 static ssize_t
1716 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1718 char *e;
1719 unsigned long long size = simple_strtoull(buf, &e, 10);
1720 if (e==buf || (*e && *e != '\n'))
1721 return -EINVAL;
1722 if (rdev->mddev->pers)
1723 return -EBUSY;
1724 rdev->size = size;
1725 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1726 rdev->mddev->size = size;
1727 return len;
1730 static struct rdev_sysfs_entry rdev_size =
1731 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1733 static struct attribute *rdev_default_attrs[] = {
1734 &rdev_state.attr,
1735 &rdev_super.attr,
1736 &rdev_errors.attr,
1737 &rdev_slot.attr,
1738 &rdev_offset.attr,
1739 &rdev_size.attr,
1740 NULL,
1742 static ssize_t
1743 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1745 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1746 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1748 if (!entry->show)
1749 return -EIO;
1750 return entry->show(rdev, page);
1753 static ssize_t
1754 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1755 const char *page, size_t length)
1757 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1758 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1760 if (!entry->store)
1761 return -EIO;
1762 return entry->store(rdev, page, length);
1765 static void rdev_free(struct kobject *ko)
1767 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1768 kfree(rdev);
1770 static struct sysfs_ops rdev_sysfs_ops = {
1771 .show = rdev_attr_show,
1772 .store = rdev_attr_store,
1774 static struct kobj_type rdev_ktype = {
1775 .release = rdev_free,
1776 .sysfs_ops = &rdev_sysfs_ops,
1777 .default_attrs = rdev_default_attrs,
1781 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1783 * mark the device faulty if:
1785 * - the device is nonexistent (zero size)
1786 * - the device has no valid superblock
1788 * a faulty rdev _never_ has rdev->sb set.
1790 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1792 char b[BDEVNAME_SIZE];
1793 int err;
1794 mdk_rdev_t *rdev;
1795 sector_t size;
1797 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1798 if (!rdev) {
1799 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1800 return ERR_PTR(-ENOMEM);
1803 if ((err = alloc_disk_sb(rdev)))
1804 goto abort_free;
1806 err = lock_rdev(rdev, newdev);
1807 if (err)
1808 goto abort_free;
1810 rdev->kobj.parent = NULL;
1811 rdev->kobj.ktype = &rdev_ktype;
1812 kobject_init(&rdev->kobj);
1814 rdev->desc_nr = -1;
1815 rdev->saved_raid_disk = -1;
1816 rdev->flags = 0;
1817 rdev->data_offset = 0;
1818 atomic_set(&rdev->nr_pending, 0);
1819 atomic_set(&rdev->read_errors, 0);
1820 atomic_set(&rdev->corrected_errors, 0);
1822 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1823 if (!size) {
1824 printk(KERN_WARNING
1825 "md: %s has zero or unknown size, marking faulty!\n",
1826 bdevname(rdev->bdev,b));
1827 err = -EINVAL;
1828 goto abort_free;
1831 if (super_format >= 0) {
1832 err = super_types[super_format].
1833 load_super(rdev, NULL, super_minor);
1834 if (err == -EINVAL) {
1835 printk(KERN_WARNING
1836 "md: %s has invalid sb, not importing!\n",
1837 bdevname(rdev->bdev,b));
1838 goto abort_free;
1840 if (err < 0) {
1841 printk(KERN_WARNING
1842 "md: could not read %s's sb, not importing!\n",
1843 bdevname(rdev->bdev,b));
1844 goto abort_free;
1847 INIT_LIST_HEAD(&rdev->same_set);
1849 return rdev;
1851 abort_free:
1852 if (rdev->sb_page) {
1853 if (rdev->bdev)
1854 unlock_rdev(rdev);
1855 free_disk_sb(rdev);
1857 kfree(rdev);
1858 return ERR_PTR(err);
1862 * Check a full RAID array for plausibility
1866 static void analyze_sbs(mddev_t * mddev)
1868 int i;
1869 struct list_head *tmp;
1870 mdk_rdev_t *rdev, *freshest;
1871 char b[BDEVNAME_SIZE];
1873 freshest = NULL;
1874 ITERATE_RDEV(mddev,rdev,tmp)
1875 switch (super_types[mddev->major_version].
1876 load_super(rdev, freshest, mddev->minor_version)) {
1877 case 1:
1878 freshest = rdev;
1879 break;
1880 case 0:
1881 break;
1882 default:
1883 printk( KERN_ERR \
1884 "md: fatal superblock inconsistency in %s"
1885 " -- removing from array\n",
1886 bdevname(rdev->bdev,b));
1887 kick_rdev_from_array(rdev);
1891 super_types[mddev->major_version].
1892 validate_super(mddev, freshest);
1894 i = 0;
1895 ITERATE_RDEV(mddev,rdev,tmp) {
1896 if (rdev != freshest)
1897 if (super_types[mddev->major_version].
1898 validate_super(mddev, rdev)) {
1899 printk(KERN_WARNING "md: kicking non-fresh %s"
1900 " from array!\n",
1901 bdevname(rdev->bdev,b));
1902 kick_rdev_from_array(rdev);
1903 continue;
1905 if (mddev->level == LEVEL_MULTIPATH) {
1906 rdev->desc_nr = i++;
1907 rdev->raid_disk = rdev->desc_nr;
1908 set_bit(In_sync, &rdev->flags);
1914 if (mddev->recovery_cp != MaxSector &&
1915 mddev->level >= 1)
1916 printk(KERN_ERR "md: %s: raid array is not clean"
1917 " -- starting background reconstruction\n",
1918 mdname(mddev));
1922 static ssize_t
1923 level_show(mddev_t *mddev, char *page)
1925 struct mdk_personality *p = mddev->pers;
1926 if (p)
1927 return sprintf(page, "%s\n", p->name);
1928 else if (mddev->clevel[0])
1929 return sprintf(page, "%s\n", mddev->clevel);
1930 else if (mddev->level != LEVEL_NONE)
1931 return sprintf(page, "%d\n", mddev->level);
1932 else
1933 return 0;
1936 static ssize_t
1937 level_store(mddev_t *mddev, const char *buf, size_t len)
1939 int rv = len;
1940 if (mddev->pers)
1941 return -EBUSY;
1942 if (len == 0)
1943 return 0;
1944 if (len >= sizeof(mddev->clevel))
1945 return -ENOSPC;
1946 strncpy(mddev->clevel, buf, len);
1947 if (mddev->clevel[len-1] == '\n')
1948 len--;
1949 mddev->clevel[len] = 0;
1950 mddev->level = LEVEL_NONE;
1951 return rv;
1954 static struct md_sysfs_entry md_level =
1955 __ATTR(level, 0644, level_show, level_store);
1957 static ssize_t
1958 raid_disks_show(mddev_t *mddev, char *page)
1960 if (mddev->raid_disks == 0)
1961 return 0;
1962 return sprintf(page, "%d\n", mddev->raid_disks);
1965 static int update_raid_disks(mddev_t *mddev, int raid_disks);
1967 static ssize_t
1968 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
1970 /* can only set raid_disks if array is not yet active */
1971 char *e;
1972 int rv = 0;
1973 unsigned long n = simple_strtoul(buf, &e, 10);
1975 if (!*buf || (*e && *e != '\n'))
1976 return -EINVAL;
1978 if (mddev->pers)
1979 rv = update_raid_disks(mddev, n);
1980 else
1981 mddev->raid_disks = n;
1982 return rv ? rv : len;
1984 static struct md_sysfs_entry md_raid_disks =
1985 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
1987 static ssize_t
1988 chunk_size_show(mddev_t *mddev, char *page)
1990 return sprintf(page, "%d\n", mddev->chunk_size);
1993 static ssize_t
1994 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1996 /* can only set chunk_size if array is not yet active */
1997 char *e;
1998 unsigned long n = simple_strtoul(buf, &e, 10);
2000 if (mddev->pers)
2001 return -EBUSY;
2002 if (!*buf || (*e && *e != '\n'))
2003 return -EINVAL;
2005 mddev->chunk_size = n;
2006 return len;
2008 static struct md_sysfs_entry md_chunk_size =
2009 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2011 static ssize_t
2012 null_show(mddev_t *mddev, char *page)
2014 return -EINVAL;
2017 static ssize_t
2018 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2020 /* buf must be %d:%d\n? giving major and minor numbers */
2021 /* The new device is added to the array.
2022 * If the array has a persistent superblock, we read the
2023 * superblock to initialise info and check validity.
2024 * Otherwise, only checking done is that in bind_rdev_to_array,
2025 * which mainly checks size.
2027 char *e;
2028 int major = simple_strtoul(buf, &e, 10);
2029 int minor;
2030 dev_t dev;
2031 mdk_rdev_t *rdev;
2032 int err;
2034 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2035 return -EINVAL;
2036 minor = simple_strtoul(e+1, &e, 10);
2037 if (*e && *e != '\n')
2038 return -EINVAL;
2039 dev = MKDEV(major, minor);
2040 if (major != MAJOR(dev) ||
2041 minor != MINOR(dev))
2042 return -EOVERFLOW;
2045 if (mddev->persistent) {
2046 rdev = md_import_device(dev, mddev->major_version,
2047 mddev->minor_version);
2048 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2049 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2050 mdk_rdev_t, same_set);
2051 err = super_types[mddev->major_version]
2052 .load_super(rdev, rdev0, mddev->minor_version);
2053 if (err < 0)
2054 goto out;
2056 } else
2057 rdev = md_import_device(dev, -1, -1);
2059 if (IS_ERR(rdev))
2060 return PTR_ERR(rdev);
2061 err = bind_rdev_to_array(rdev, mddev);
2062 out:
2063 if (err)
2064 export_rdev(rdev);
2065 return err ? err : len;
2068 static struct md_sysfs_entry md_new_device =
2069 __ATTR(new_dev, 0200, null_show, new_dev_store);
2071 static ssize_t
2072 size_show(mddev_t *mddev, char *page)
2074 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2077 static int update_size(mddev_t *mddev, unsigned long size);
2079 static ssize_t
2080 size_store(mddev_t *mddev, const char *buf, size_t len)
2082 /* If array is inactive, we can reduce the component size, but
2083 * not increase it (except from 0).
2084 * If array is active, we can try an on-line resize
2086 char *e;
2087 int err = 0;
2088 unsigned long long size = simple_strtoull(buf, &e, 10);
2089 if (!*buf || *buf == '\n' ||
2090 (*e && *e != '\n'))
2091 return -EINVAL;
2093 if (mddev->pers) {
2094 err = update_size(mddev, size);
2095 md_update_sb(mddev);
2096 } else {
2097 if (mddev->size == 0 ||
2098 mddev->size > size)
2099 mddev->size = size;
2100 else
2101 err = -ENOSPC;
2103 return err ? err : len;
2106 static struct md_sysfs_entry md_size =
2107 __ATTR(component_size, 0644, size_show, size_store);
2110 /* Metdata version.
2111 * This is either 'none' for arrays with externally managed metadata,
2112 * or N.M for internally known formats
2114 static ssize_t
2115 metadata_show(mddev_t *mddev, char *page)
2117 if (mddev->persistent)
2118 return sprintf(page, "%d.%d\n",
2119 mddev->major_version, mddev->minor_version);
2120 else
2121 return sprintf(page, "none\n");
2124 static ssize_t
2125 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2127 int major, minor;
2128 char *e;
2129 if (!list_empty(&mddev->disks))
2130 return -EBUSY;
2132 if (cmd_match(buf, "none")) {
2133 mddev->persistent = 0;
2134 mddev->major_version = 0;
2135 mddev->minor_version = 90;
2136 return len;
2138 major = simple_strtoul(buf, &e, 10);
2139 if (e==buf || *e != '.')
2140 return -EINVAL;
2141 buf = e+1;
2142 minor = simple_strtoul(buf, &e, 10);
2143 if (e==buf || *e != '\n')
2144 return -EINVAL;
2145 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2146 super_types[major].name == NULL)
2147 return -ENOENT;
2148 mddev->major_version = major;
2149 mddev->minor_version = minor;
2150 mddev->persistent = 1;
2151 return len;
2154 static struct md_sysfs_entry md_metadata =
2155 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2157 static ssize_t
2158 action_show(mddev_t *mddev, char *page)
2160 char *type = "idle";
2161 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2162 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2163 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2164 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2165 type = "resync";
2166 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2167 type = "check";
2168 else
2169 type = "repair";
2170 } else
2171 type = "recover";
2173 return sprintf(page, "%s\n", type);
2176 static ssize_t
2177 action_store(mddev_t *mddev, const char *page, size_t len)
2179 if (!mddev->pers || !mddev->pers->sync_request)
2180 return -EINVAL;
2182 if (cmd_match(page, "idle")) {
2183 if (mddev->sync_thread) {
2184 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2185 md_unregister_thread(mddev->sync_thread);
2186 mddev->sync_thread = NULL;
2187 mddev->recovery = 0;
2189 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2190 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2191 return -EBUSY;
2192 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2193 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2194 else {
2195 if (cmd_match(page, "check"))
2196 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2197 else if (!cmd_match(page, "repair"))
2198 return -EINVAL;
2199 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2200 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2203 md_wakeup_thread(mddev->thread);
2204 return len;
2207 static ssize_t
2208 mismatch_cnt_show(mddev_t *mddev, char *page)
2210 return sprintf(page, "%llu\n",
2211 (unsigned long long) mddev->resync_mismatches);
2214 static struct md_sysfs_entry
2215 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2218 static struct md_sysfs_entry
2219 md_mismatches = __ATTR_RO(mismatch_cnt);
2221 static ssize_t
2222 sync_min_show(mddev_t *mddev, char *page)
2224 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2225 mddev->sync_speed_min ? "local": "system");
2228 static ssize_t
2229 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2231 int min;
2232 char *e;
2233 if (strncmp(buf, "system", 6)==0) {
2234 mddev->sync_speed_min = 0;
2235 return len;
2237 min = simple_strtoul(buf, &e, 10);
2238 if (buf == e || (*e && *e != '\n') || min <= 0)
2239 return -EINVAL;
2240 mddev->sync_speed_min = min;
2241 return len;
2244 static struct md_sysfs_entry md_sync_min =
2245 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2247 static ssize_t
2248 sync_max_show(mddev_t *mddev, char *page)
2250 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2251 mddev->sync_speed_max ? "local": "system");
2254 static ssize_t
2255 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2257 int max;
2258 char *e;
2259 if (strncmp(buf, "system", 6)==0) {
2260 mddev->sync_speed_max = 0;
2261 return len;
2263 max = simple_strtoul(buf, &e, 10);
2264 if (buf == e || (*e && *e != '\n') || max <= 0)
2265 return -EINVAL;
2266 mddev->sync_speed_max = max;
2267 return len;
2270 static struct md_sysfs_entry md_sync_max =
2271 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2274 static ssize_t
2275 sync_speed_show(mddev_t *mddev, char *page)
2277 unsigned long resync, dt, db;
2278 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2279 dt = ((jiffies - mddev->resync_mark) / HZ);
2280 if (!dt) dt++;
2281 db = resync - (mddev->resync_mark_cnt);
2282 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2285 static struct md_sysfs_entry
2286 md_sync_speed = __ATTR_RO(sync_speed);
2288 static ssize_t
2289 sync_completed_show(mddev_t *mddev, char *page)
2291 unsigned long max_blocks, resync;
2293 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2294 max_blocks = mddev->resync_max_sectors;
2295 else
2296 max_blocks = mddev->size << 1;
2298 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2299 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2302 static struct md_sysfs_entry
2303 md_sync_completed = __ATTR_RO(sync_completed);
2305 static struct attribute *md_default_attrs[] = {
2306 &md_level.attr,
2307 &md_raid_disks.attr,
2308 &md_chunk_size.attr,
2309 &md_size.attr,
2310 &md_metadata.attr,
2311 &md_new_device.attr,
2312 NULL,
2315 static struct attribute *md_redundancy_attrs[] = {
2316 &md_scan_mode.attr,
2317 &md_mismatches.attr,
2318 &md_sync_min.attr,
2319 &md_sync_max.attr,
2320 &md_sync_speed.attr,
2321 &md_sync_completed.attr,
2322 NULL,
2324 static struct attribute_group md_redundancy_group = {
2325 .name = NULL,
2326 .attrs = md_redundancy_attrs,
2330 static ssize_t
2331 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2333 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2334 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2335 ssize_t rv;
2337 if (!entry->show)
2338 return -EIO;
2339 mddev_lock(mddev);
2340 rv = entry->show(mddev, page);
2341 mddev_unlock(mddev);
2342 return rv;
2345 static ssize_t
2346 md_attr_store(struct kobject *kobj, struct attribute *attr,
2347 const char *page, size_t length)
2349 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2350 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2351 ssize_t rv;
2353 if (!entry->store)
2354 return -EIO;
2355 mddev_lock(mddev);
2356 rv = entry->store(mddev, page, length);
2357 mddev_unlock(mddev);
2358 return rv;
2361 static void md_free(struct kobject *ko)
2363 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2364 kfree(mddev);
2367 static struct sysfs_ops md_sysfs_ops = {
2368 .show = md_attr_show,
2369 .store = md_attr_store,
2371 static struct kobj_type md_ktype = {
2372 .release = md_free,
2373 .sysfs_ops = &md_sysfs_ops,
2374 .default_attrs = md_default_attrs,
2377 int mdp_major = 0;
2379 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2381 static DECLARE_MUTEX(disks_sem);
2382 mddev_t *mddev = mddev_find(dev);
2383 struct gendisk *disk;
2384 int partitioned = (MAJOR(dev) != MD_MAJOR);
2385 int shift = partitioned ? MdpMinorShift : 0;
2386 int unit = MINOR(dev) >> shift;
2388 if (!mddev)
2389 return NULL;
2391 down(&disks_sem);
2392 if (mddev->gendisk) {
2393 up(&disks_sem);
2394 mddev_put(mddev);
2395 return NULL;
2397 disk = alloc_disk(1 << shift);
2398 if (!disk) {
2399 up(&disks_sem);
2400 mddev_put(mddev);
2401 return NULL;
2403 disk->major = MAJOR(dev);
2404 disk->first_minor = unit << shift;
2405 if (partitioned) {
2406 sprintf(disk->disk_name, "md_d%d", unit);
2407 sprintf(disk->devfs_name, "md/d%d", unit);
2408 } else {
2409 sprintf(disk->disk_name, "md%d", unit);
2410 sprintf(disk->devfs_name, "md/%d", unit);
2412 disk->fops = &md_fops;
2413 disk->private_data = mddev;
2414 disk->queue = mddev->queue;
2415 add_disk(disk);
2416 mddev->gendisk = disk;
2417 up(&disks_sem);
2418 mddev->kobj.parent = &disk->kobj;
2419 mddev->kobj.k_name = NULL;
2420 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2421 mddev->kobj.ktype = &md_ktype;
2422 kobject_register(&mddev->kobj);
2423 return NULL;
2426 void md_wakeup_thread(mdk_thread_t *thread);
2428 static void md_safemode_timeout(unsigned long data)
2430 mddev_t *mddev = (mddev_t *) data;
2432 mddev->safemode = 1;
2433 md_wakeup_thread(mddev->thread);
2436 static int start_dirty_degraded;
2438 static int do_md_run(mddev_t * mddev)
2440 int err;
2441 int chunk_size;
2442 struct list_head *tmp;
2443 mdk_rdev_t *rdev;
2444 struct gendisk *disk;
2445 struct mdk_personality *pers;
2446 char b[BDEVNAME_SIZE];
2448 if (list_empty(&mddev->disks))
2449 /* cannot run an array with no devices.. */
2450 return -EINVAL;
2452 if (mddev->pers)
2453 return -EBUSY;
2456 * Analyze all RAID superblock(s)
2458 if (!mddev->raid_disks)
2459 analyze_sbs(mddev);
2461 chunk_size = mddev->chunk_size;
2463 if (chunk_size) {
2464 if (chunk_size > MAX_CHUNK_SIZE) {
2465 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2466 chunk_size, MAX_CHUNK_SIZE);
2467 return -EINVAL;
2470 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2472 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2473 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2474 return -EINVAL;
2476 if (chunk_size < PAGE_SIZE) {
2477 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2478 chunk_size, PAGE_SIZE);
2479 return -EINVAL;
2482 /* devices must have minimum size of one chunk */
2483 ITERATE_RDEV(mddev,rdev,tmp) {
2484 if (test_bit(Faulty, &rdev->flags))
2485 continue;
2486 if (rdev->size < chunk_size / 1024) {
2487 printk(KERN_WARNING
2488 "md: Dev %s smaller than chunk_size:"
2489 " %lluk < %dk\n",
2490 bdevname(rdev->bdev,b),
2491 (unsigned long long)rdev->size,
2492 chunk_size / 1024);
2493 return -EINVAL;
2498 #ifdef CONFIG_KMOD
2499 if (mddev->level != LEVEL_NONE)
2500 request_module("md-level-%d", mddev->level);
2501 else if (mddev->clevel[0])
2502 request_module("md-%s", mddev->clevel);
2503 #endif
2506 * Drop all container device buffers, from now on
2507 * the only valid external interface is through the md
2508 * device.
2509 * Also find largest hardsector size
2511 ITERATE_RDEV(mddev,rdev,tmp) {
2512 if (test_bit(Faulty, &rdev->flags))
2513 continue;
2514 sync_blockdev(rdev->bdev);
2515 invalidate_bdev(rdev->bdev, 0);
2518 md_probe(mddev->unit, NULL, NULL);
2519 disk = mddev->gendisk;
2520 if (!disk)
2521 return -ENOMEM;
2523 spin_lock(&pers_lock);
2524 pers = find_pers(mddev->level, mddev->clevel);
2525 if (!pers || !try_module_get(pers->owner)) {
2526 spin_unlock(&pers_lock);
2527 if (mddev->level != LEVEL_NONE)
2528 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2529 mddev->level);
2530 else
2531 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2532 mddev->clevel);
2533 return -EINVAL;
2535 mddev->pers = pers;
2536 spin_unlock(&pers_lock);
2537 mddev->level = pers->level;
2538 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2540 mddev->recovery = 0;
2541 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2542 mddev->barriers_work = 1;
2543 mddev->ok_start_degraded = start_dirty_degraded;
2545 if (start_readonly)
2546 mddev->ro = 2; /* read-only, but switch on first write */
2548 err = mddev->pers->run(mddev);
2549 if (!err && mddev->pers->sync_request) {
2550 err = bitmap_create(mddev);
2551 if (err) {
2552 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2553 mdname(mddev), err);
2554 mddev->pers->stop(mddev);
2557 if (err) {
2558 printk(KERN_ERR "md: pers->run() failed ...\n");
2559 module_put(mddev->pers->owner);
2560 mddev->pers = NULL;
2561 bitmap_destroy(mddev);
2562 return err;
2564 if (mddev->pers->sync_request)
2565 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2566 else if (mddev->ro == 2) /* auto-readonly not meaningful */
2567 mddev->ro = 0;
2569 atomic_set(&mddev->writes_pending,0);
2570 mddev->safemode = 0;
2571 mddev->safemode_timer.function = md_safemode_timeout;
2572 mddev->safemode_timer.data = (unsigned long) mddev;
2573 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2574 mddev->in_sync = 1;
2576 ITERATE_RDEV(mddev,rdev,tmp)
2577 if (rdev->raid_disk >= 0) {
2578 char nm[20];
2579 sprintf(nm, "rd%d", rdev->raid_disk);
2580 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2583 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2584 md_wakeup_thread(mddev->thread);
2586 if (mddev->sb_dirty)
2587 md_update_sb(mddev);
2589 set_capacity(disk, mddev->array_size<<1);
2591 /* If we call blk_queue_make_request here, it will
2592 * re-initialise max_sectors etc which may have been
2593 * refined inside -> run. So just set the bits we need to set.
2594 * Most initialisation happended when we called
2595 * blk_queue_make_request(..., md_fail_request)
2596 * earlier.
2598 mddev->queue->queuedata = mddev;
2599 mddev->queue->make_request_fn = mddev->pers->make_request;
2601 mddev->changed = 1;
2602 md_new_event(mddev);
2603 return 0;
2606 static int restart_array(mddev_t *mddev)
2608 struct gendisk *disk = mddev->gendisk;
2609 int err;
2612 * Complain if it has no devices
2614 err = -ENXIO;
2615 if (list_empty(&mddev->disks))
2616 goto out;
2618 if (mddev->pers) {
2619 err = -EBUSY;
2620 if (!mddev->ro)
2621 goto out;
2623 mddev->safemode = 0;
2624 mddev->ro = 0;
2625 set_disk_ro(disk, 0);
2627 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2628 mdname(mddev));
2630 * Kick recovery or resync if necessary
2632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2633 md_wakeup_thread(mddev->thread);
2634 err = 0;
2635 } else {
2636 printk(KERN_ERR "md: %s has no personality assigned.\n",
2637 mdname(mddev));
2638 err = -EINVAL;
2641 out:
2642 return err;
2645 static int do_md_stop(mddev_t * mddev, int ro)
2647 int err = 0;
2648 struct gendisk *disk = mddev->gendisk;
2650 if (mddev->pers) {
2651 if (atomic_read(&mddev->active)>2) {
2652 printk("md: %s still in use.\n",mdname(mddev));
2653 return -EBUSY;
2656 if (mddev->sync_thread) {
2657 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2658 md_unregister_thread(mddev->sync_thread);
2659 mddev->sync_thread = NULL;
2662 del_timer_sync(&mddev->safemode_timer);
2664 invalidate_partition(disk, 0);
2666 if (ro) {
2667 err = -ENXIO;
2668 if (mddev->ro==1)
2669 goto out;
2670 mddev->ro = 1;
2671 } else {
2672 bitmap_flush(mddev);
2673 md_super_wait(mddev);
2674 if (mddev->ro)
2675 set_disk_ro(disk, 0);
2676 blk_queue_make_request(mddev->queue, md_fail_request);
2677 mddev->pers->stop(mddev);
2678 if (mddev->pers->sync_request)
2679 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2681 module_put(mddev->pers->owner);
2682 mddev->pers = NULL;
2683 if (mddev->ro)
2684 mddev->ro = 0;
2686 if (!mddev->in_sync) {
2687 /* mark array as shutdown cleanly */
2688 mddev->in_sync = 1;
2689 md_update_sb(mddev);
2691 if (ro)
2692 set_disk_ro(disk, 1);
2696 * Free resources if final stop
2698 if (!ro) {
2699 mdk_rdev_t *rdev;
2700 struct list_head *tmp;
2701 struct gendisk *disk;
2702 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2704 bitmap_destroy(mddev);
2705 if (mddev->bitmap_file) {
2706 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2707 fput(mddev->bitmap_file);
2708 mddev->bitmap_file = NULL;
2710 mddev->bitmap_offset = 0;
2712 ITERATE_RDEV(mddev,rdev,tmp)
2713 if (rdev->raid_disk >= 0) {
2714 char nm[20];
2715 sprintf(nm, "rd%d", rdev->raid_disk);
2716 sysfs_remove_link(&mddev->kobj, nm);
2719 export_array(mddev);
2721 mddev->array_size = 0;
2722 disk = mddev->gendisk;
2723 if (disk)
2724 set_capacity(disk, 0);
2725 mddev->changed = 1;
2726 } else
2727 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2728 mdname(mddev));
2729 err = 0;
2730 md_new_event(mddev);
2731 out:
2732 return err;
2735 static void autorun_array(mddev_t *mddev)
2737 mdk_rdev_t *rdev;
2738 struct list_head *tmp;
2739 int err;
2741 if (list_empty(&mddev->disks))
2742 return;
2744 printk(KERN_INFO "md: running: ");
2746 ITERATE_RDEV(mddev,rdev,tmp) {
2747 char b[BDEVNAME_SIZE];
2748 printk("<%s>", bdevname(rdev->bdev,b));
2750 printk("\n");
2752 err = do_md_run (mddev);
2753 if (err) {
2754 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2755 do_md_stop (mddev, 0);
2760 * lets try to run arrays based on all disks that have arrived
2761 * until now. (those are in pending_raid_disks)
2763 * the method: pick the first pending disk, collect all disks with
2764 * the same UUID, remove all from the pending list and put them into
2765 * the 'same_array' list. Then order this list based on superblock
2766 * update time (freshest comes first), kick out 'old' disks and
2767 * compare superblocks. If everything's fine then run it.
2769 * If "unit" is allocated, then bump its reference count
2771 static void autorun_devices(int part)
2773 struct list_head candidates;
2774 struct list_head *tmp;
2775 mdk_rdev_t *rdev0, *rdev;
2776 mddev_t *mddev;
2777 char b[BDEVNAME_SIZE];
2779 printk(KERN_INFO "md: autorun ...\n");
2780 while (!list_empty(&pending_raid_disks)) {
2781 dev_t dev;
2782 rdev0 = list_entry(pending_raid_disks.next,
2783 mdk_rdev_t, same_set);
2785 printk(KERN_INFO "md: considering %s ...\n",
2786 bdevname(rdev0->bdev,b));
2787 INIT_LIST_HEAD(&candidates);
2788 ITERATE_RDEV_PENDING(rdev,tmp)
2789 if (super_90_load(rdev, rdev0, 0) >= 0) {
2790 printk(KERN_INFO "md: adding %s ...\n",
2791 bdevname(rdev->bdev,b));
2792 list_move(&rdev->same_set, &candidates);
2795 * now we have a set of devices, with all of them having
2796 * mostly sane superblocks. It's time to allocate the
2797 * mddev.
2799 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2800 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2801 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2802 break;
2804 if (part)
2805 dev = MKDEV(mdp_major,
2806 rdev0->preferred_minor << MdpMinorShift);
2807 else
2808 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2810 md_probe(dev, NULL, NULL);
2811 mddev = mddev_find(dev);
2812 if (!mddev) {
2813 printk(KERN_ERR
2814 "md: cannot allocate memory for md drive.\n");
2815 break;
2817 if (mddev_lock(mddev))
2818 printk(KERN_WARNING "md: %s locked, cannot run\n",
2819 mdname(mddev));
2820 else if (mddev->raid_disks || mddev->major_version
2821 || !list_empty(&mddev->disks)) {
2822 printk(KERN_WARNING
2823 "md: %s already running, cannot run %s\n",
2824 mdname(mddev), bdevname(rdev0->bdev,b));
2825 mddev_unlock(mddev);
2826 } else {
2827 printk(KERN_INFO "md: created %s\n", mdname(mddev));
2828 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2829 list_del_init(&rdev->same_set);
2830 if (bind_rdev_to_array(rdev, mddev))
2831 export_rdev(rdev);
2833 autorun_array(mddev);
2834 mddev_unlock(mddev);
2836 /* on success, candidates will be empty, on error
2837 * it won't...
2839 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2840 export_rdev(rdev);
2841 mddev_put(mddev);
2843 printk(KERN_INFO "md: ... autorun DONE.\n");
2847 * import RAID devices based on one partition
2848 * if possible, the array gets run as well.
2851 static int autostart_array(dev_t startdev)
2853 char b[BDEVNAME_SIZE];
2854 int err = -EINVAL, i;
2855 mdp_super_t *sb = NULL;
2856 mdk_rdev_t *start_rdev = NULL, *rdev;
2858 start_rdev = md_import_device(startdev, 0, 0);
2859 if (IS_ERR(start_rdev))
2860 return err;
2863 /* NOTE: this can only work for 0.90.0 superblocks */
2864 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2865 if (sb->major_version != 0 ||
2866 sb->minor_version != 90 ) {
2867 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2868 export_rdev(start_rdev);
2869 return err;
2872 if (test_bit(Faulty, &start_rdev->flags)) {
2873 printk(KERN_WARNING
2874 "md: can not autostart based on faulty %s!\n",
2875 bdevname(start_rdev->bdev,b));
2876 export_rdev(start_rdev);
2877 return err;
2879 list_add(&start_rdev->same_set, &pending_raid_disks);
2881 for (i = 0; i < MD_SB_DISKS; i++) {
2882 mdp_disk_t *desc = sb->disks + i;
2883 dev_t dev = MKDEV(desc->major, desc->minor);
2885 if (!dev)
2886 continue;
2887 if (dev == startdev)
2888 continue;
2889 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2890 continue;
2891 rdev = md_import_device(dev, 0, 0);
2892 if (IS_ERR(rdev))
2893 continue;
2895 list_add(&rdev->same_set, &pending_raid_disks);
2899 * possibly return codes
2901 autorun_devices(0);
2902 return 0;
2907 static int get_version(void __user * arg)
2909 mdu_version_t ver;
2911 ver.major = MD_MAJOR_VERSION;
2912 ver.minor = MD_MINOR_VERSION;
2913 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2915 if (copy_to_user(arg, &ver, sizeof(ver)))
2916 return -EFAULT;
2918 return 0;
2921 static int get_array_info(mddev_t * mddev, void __user * arg)
2923 mdu_array_info_t info;
2924 int nr,working,active,failed,spare;
2925 mdk_rdev_t *rdev;
2926 struct list_head *tmp;
2928 nr=working=active=failed=spare=0;
2929 ITERATE_RDEV(mddev,rdev,tmp) {
2930 nr++;
2931 if (test_bit(Faulty, &rdev->flags))
2932 failed++;
2933 else {
2934 working++;
2935 if (test_bit(In_sync, &rdev->flags))
2936 active++;
2937 else
2938 spare++;
2942 info.major_version = mddev->major_version;
2943 info.minor_version = mddev->minor_version;
2944 info.patch_version = MD_PATCHLEVEL_VERSION;
2945 info.ctime = mddev->ctime;
2946 info.level = mddev->level;
2947 info.size = mddev->size;
2948 if (info.size != mddev->size) /* overflow */
2949 info.size = -1;
2950 info.nr_disks = nr;
2951 info.raid_disks = mddev->raid_disks;
2952 info.md_minor = mddev->md_minor;
2953 info.not_persistent= !mddev->persistent;
2955 info.utime = mddev->utime;
2956 info.state = 0;
2957 if (mddev->in_sync)
2958 info.state = (1<<MD_SB_CLEAN);
2959 if (mddev->bitmap && mddev->bitmap_offset)
2960 info.state = (1<<MD_SB_BITMAP_PRESENT);
2961 info.active_disks = active;
2962 info.working_disks = working;
2963 info.failed_disks = failed;
2964 info.spare_disks = spare;
2966 info.layout = mddev->layout;
2967 info.chunk_size = mddev->chunk_size;
2969 if (copy_to_user(arg, &info, sizeof(info)))
2970 return -EFAULT;
2972 return 0;
2975 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2977 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2978 char *ptr, *buf = NULL;
2979 int err = -ENOMEM;
2981 file = kmalloc(sizeof(*file), GFP_KERNEL);
2982 if (!file)
2983 goto out;
2985 /* bitmap disabled, zero the first byte and copy out */
2986 if (!mddev->bitmap || !mddev->bitmap->file) {
2987 file->pathname[0] = '\0';
2988 goto copy_out;
2991 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2992 if (!buf)
2993 goto out;
2995 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2996 if (!ptr)
2997 goto out;
2999 strcpy(file->pathname, ptr);
3001 copy_out:
3002 err = 0;
3003 if (copy_to_user(arg, file, sizeof(*file)))
3004 err = -EFAULT;
3005 out:
3006 kfree(buf);
3007 kfree(file);
3008 return err;
3011 static int get_disk_info(mddev_t * mddev, void __user * arg)
3013 mdu_disk_info_t info;
3014 unsigned int nr;
3015 mdk_rdev_t *rdev;
3017 if (copy_from_user(&info, arg, sizeof(info)))
3018 return -EFAULT;
3020 nr = info.number;
3022 rdev = find_rdev_nr(mddev, nr);
3023 if (rdev) {
3024 info.major = MAJOR(rdev->bdev->bd_dev);
3025 info.minor = MINOR(rdev->bdev->bd_dev);
3026 info.raid_disk = rdev->raid_disk;
3027 info.state = 0;
3028 if (test_bit(Faulty, &rdev->flags))
3029 info.state |= (1<<MD_DISK_FAULTY);
3030 else if (test_bit(In_sync, &rdev->flags)) {
3031 info.state |= (1<<MD_DISK_ACTIVE);
3032 info.state |= (1<<MD_DISK_SYNC);
3034 if (test_bit(WriteMostly, &rdev->flags))
3035 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3036 } else {
3037 info.major = info.minor = 0;
3038 info.raid_disk = -1;
3039 info.state = (1<<MD_DISK_REMOVED);
3042 if (copy_to_user(arg, &info, sizeof(info)))
3043 return -EFAULT;
3045 return 0;
3048 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3050 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3051 mdk_rdev_t *rdev;
3052 dev_t dev = MKDEV(info->major,info->minor);
3054 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3055 return -EOVERFLOW;
3057 if (!mddev->raid_disks) {
3058 int err;
3059 /* expecting a device which has a superblock */
3060 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3061 if (IS_ERR(rdev)) {
3062 printk(KERN_WARNING
3063 "md: md_import_device returned %ld\n",
3064 PTR_ERR(rdev));
3065 return PTR_ERR(rdev);
3067 if (!list_empty(&mddev->disks)) {
3068 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3069 mdk_rdev_t, same_set);
3070 int err = super_types[mddev->major_version]
3071 .load_super(rdev, rdev0, mddev->minor_version);
3072 if (err < 0) {
3073 printk(KERN_WARNING
3074 "md: %s has different UUID to %s\n",
3075 bdevname(rdev->bdev,b),
3076 bdevname(rdev0->bdev,b2));
3077 export_rdev(rdev);
3078 return -EINVAL;
3081 err = bind_rdev_to_array(rdev, mddev);
3082 if (err)
3083 export_rdev(rdev);
3084 return err;
3088 * add_new_disk can be used once the array is assembled
3089 * to add "hot spares". They must already have a superblock
3090 * written
3092 if (mddev->pers) {
3093 int err;
3094 if (!mddev->pers->hot_add_disk) {
3095 printk(KERN_WARNING
3096 "%s: personality does not support diskops!\n",
3097 mdname(mddev));
3098 return -EINVAL;
3100 if (mddev->persistent)
3101 rdev = md_import_device(dev, mddev->major_version,
3102 mddev->minor_version);
3103 else
3104 rdev = md_import_device(dev, -1, -1);
3105 if (IS_ERR(rdev)) {
3106 printk(KERN_WARNING
3107 "md: md_import_device returned %ld\n",
3108 PTR_ERR(rdev));
3109 return PTR_ERR(rdev);
3111 /* set save_raid_disk if appropriate */
3112 if (!mddev->persistent) {
3113 if (info->state & (1<<MD_DISK_SYNC) &&
3114 info->raid_disk < mddev->raid_disks)
3115 rdev->raid_disk = info->raid_disk;
3116 else
3117 rdev->raid_disk = -1;
3118 } else
3119 super_types[mddev->major_version].
3120 validate_super(mddev, rdev);
3121 rdev->saved_raid_disk = rdev->raid_disk;
3123 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3124 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3125 set_bit(WriteMostly, &rdev->flags);
3127 rdev->raid_disk = -1;
3128 err = bind_rdev_to_array(rdev, mddev);
3129 if (err)
3130 export_rdev(rdev);
3132 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3133 md_wakeup_thread(mddev->thread);
3134 return err;
3137 /* otherwise, add_new_disk is only allowed
3138 * for major_version==0 superblocks
3140 if (mddev->major_version != 0) {
3141 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3142 mdname(mddev));
3143 return -EINVAL;
3146 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3147 int err;
3148 rdev = md_import_device (dev, -1, 0);
3149 if (IS_ERR(rdev)) {
3150 printk(KERN_WARNING
3151 "md: error, md_import_device() returned %ld\n",
3152 PTR_ERR(rdev));
3153 return PTR_ERR(rdev);
3155 rdev->desc_nr = info->number;
3156 if (info->raid_disk < mddev->raid_disks)
3157 rdev->raid_disk = info->raid_disk;
3158 else
3159 rdev->raid_disk = -1;
3161 rdev->flags = 0;
3163 if (rdev->raid_disk < mddev->raid_disks)
3164 if (info->state & (1<<MD_DISK_SYNC))
3165 set_bit(In_sync, &rdev->flags);
3167 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3168 set_bit(WriteMostly, &rdev->flags);
3170 if (!mddev->persistent) {
3171 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3172 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3173 } else
3174 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3175 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3177 err = bind_rdev_to_array(rdev, mddev);
3178 if (err) {
3179 export_rdev(rdev);
3180 return err;
3184 return 0;
3187 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3189 char b[BDEVNAME_SIZE];
3190 mdk_rdev_t *rdev;
3192 if (!mddev->pers)
3193 return -ENODEV;
3195 rdev = find_rdev(mddev, dev);
3196 if (!rdev)
3197 return -ENXIO;
3199 if (rdev->raid_disk >= 0)
3200 goto busy;
3202 kick_rdev_from_array(rdev);
3203 md_update_sb(mddev);
3204 md_new_event(mddev);
3206 return 0;
3207 busy:
3208 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3209 bdevname(rdev->bdev,b), mdname(mddev));
3210 return -EBUSY;
3213 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3215 char b[BDEVNAME_SIZE];
3216 int err;
3217 unsigned int size;
3218 mdk_rdev_t *rdev;
3220 if (!mddev->pers)
3221 return -ENODEV;
3223 if (mddev->major_version != 0) {
3224 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3225 " version-0 superblocks.\n",
3226 mdname(mddev));
3227 return -EINVAL;
3229 if (!mddev->pers->hot_add_disk) {
3230 printk(KERN_WARNING
3231 "%s: personality does not support diskops!\n",
3232 mdname(mddev));
3233 return -EINVAL;
3236 rdev = md_import_device (dev, -1, 0);
3237 if (IS_ERR(rdev)) {
3238 printk(KERN_WARNING
3239 "md: error, md_import_device() returned %ld\n",
3240 PTR_ERR(rdev));
3241 return -EINVAL;
3244 if (mddev->persistent)
3245 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3246 else
3247 rdev->sb_offset =
3248 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3250 size = calc_dev_size(rdev, mddev->chunk_size);
3251 rdev->size = size;
3253 if (test_bit(Faulty, &rdev->flags)) {
3254 printk(KERN_WARNING
3255 "md: can not hot-add faulty %s disk to %s!\n",
3256 bdevname(rdev->bdev,b), mdname(mddev));
3257 err = -EINVAL;
3258 goto abort_export;
3260 clear_bit(In_sync, &rdev->flags);
3261 rdev->desc_nr = -1;
3262 rdev->saved_raid_disk = -1;
3263 err = bind_rdev_to_array(rdev, mddev);
3264 if (err)
3265 goto abort_export;
3268 * The rest should better be atomic, we can have disk failures
3269 * noticed in interrupt contexts ...
3272 if (rdev->desc_nr == mddev->max_disks) {
3273 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3274 mdname(mddev));
3275 err = -EBUSY;
3276 goto abort_unbind_export;
3279 rdev->raid_disk = -1;
3281 md_update_sb(mddev);
3284 * Kick recovery, maybe this spare has to be added to the
3285 * array immediately.
3287 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288 md_wakeup_thread(mddev->thread);
3289 md_new_event(mddev);
3290 return 0;
3292 abort_unbind_export:
3293 unbind_rdev_from_array(rdev);
3295 abort_export:
3296 export_rdev(rdev);
3297 return err;
3300 /* similar to deny_write_access, but accounts for our holding a reference
3301 * to the file ourselves */
3302 static int deny_bitmap_write_access(struct file * file)
3304 struct inode *inode = file->f_mapping->host;
3306 spin_lock(&inode->i_lock);
3307 if (atomic_read(&inode->i_writecount) > 1) {
3308 spin_unlock(&inode->i_lock);
3309 return -ETXTBSY;
3311 atomic_set(&inode->i_writecount, -1);
3312 spin_unlock(&inode->i_lock);
3314 return 0;
3317 static int set_bitmap_file(mddev_t *mddev, int fd)
3319 int err;
3321 if (mddev->pers) {
3322 if (!mddev->pers->quiesce)
3323 return -EBUSY;
3324 if (mddev->recovery || mddev->sync_thread)
3325 return -EBUSY;
3326 /* we should be able to change the bitmap.. */
3330 if (fd >= 0) {
3331 if (mddev->bitmap)
3332 return -EEXIST; /* cannot add when bitmap is present */
3333 mddev->bitmap_file = fget(fd);
3335 if (mddev->bitmap_file == NULL) {
3336 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3337 mdname(mddev));
3338 return -EBADF;
3341 err = deny_bitmap_write_access(mddev->bitmap_file);
3342 if (err) {
3343 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3344 mdname(mddev));
3345 fput(mddev->bitmap_file);
3346 mddev->bitmap_file = NULL;
3347 return err;
3349 mddev->bitmap_offset = 0; /* file overrides offset */
3350 } else if (mddev->bitmap == NULL)
3351 return -ENOENT; /* cannot remove what isn't there */
3352 err = 0;
3353 if (mddev->pers) {
3354 mddev->pers->quiesce(mddev, 1);
3355 if (fd >= 0)
3356 err = bitmap_create(mddev);
3357 if (fd < 0 || err)
3358 bitmap_destroy(mddev);
3359 mddev->pers->quiesce(mddev, 0);
3360 } else if (fd < 0) {
3361 if (mddev->bitmap_file)
3362 fput(mddev->bitmap_file);
3363 mddev->bitmap_file = NULL;
3366 return err;
3370 * set_array_info is used two different ways
3371 * The original usage is when creating a new array.
3372 * In this usage, raid_disks is > 0 and it together with
3373 * level, size, not_persistent,layout,chunksize determine the
3374 * shape of the array.
3375 * This will always create an array with a type-0.90.0 superblock.
3376 * The newer usage is when assembling an array.
3377 * In this case raid_disks will be 0, and the major_version field is
3378 * use to determine which style super-blocks are to be found on the devices.
3379 * The minor and patch _version numbers are also kept incase the
3380 * super_block handler wishes to interpret them.
3382 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3385 if (info->raid_disks == 0) {
3386 /* just setting version number for superblock loading */
3387 if (info->major_version < 0 ||
3388 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3389 super_types[info->major_version].name == NULL) {
3390 /* maybe try to auto-load a module? */
3391 printk(KERN_INFO
3392 "md: superblock version %d not known\n",
3393 info->major_version);
3394 return -EINVAL;
3396 mddev->major_version = info->major_version;
3397 mddev->minor_version = info->minor_version;
3398 mddev->patch_version = info->patch_version;
3399 return 0;
3401 mddev->major_version = MD_MAJOR_VERSION;
3402 mddev->minor_version = MD_MINOR_VERSION;
3403 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3404 mddev->ctime = get_seconds();
3406 mddev->level = info->level;
3407 mddev->clevel[0] = 0;
3408 mddev->size = info->size;
3409 mddev->raid_disks = info->raid_disks;
3410 /* don't set md_minor, it is determined by which /dev/md* was
3411 * openned
3413 if (info->state & (1<<MD_SB_CLEAN))
3414 mddev->recovery_cp = MaxSector;
3415 else
3416 mddev->recovery_cp = 0;
3417 mddev->persistent = ! info->not_persistent;
3419 mddev->layout = info->layout;
3420 mddev->chunk_size = info->chunk_size;
3422 mddev->max_disks = MD_SB_DISKS;
3424 mddev->sb_dirty = 1;
3426 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3427 mddev->bitmap_offset = 0;
3430 * Generate a 128 bit UUID
3432 get_random_bytes(mddev->uuid, 16);
3434 return 0;
3437 static int update_size(mddev_t *mddev, unsigned long size)
3439 mdk_rdev_t * rdev;
3440 int rv;
3441 struct list_head *tmp;
3442 int fit = (size == 0);
3444 if (mddev->pers->resize == NULL)
3445 return -EINVAL;
3446 /* The "size" is the amount of each device that is used.
3447 * This can only make sense for arrays with redundancy.
3448 * linear and raid0 always use whatever space is available
3449 * We can only consider changing the size if no resync
3450 * or reconstruction is happening, and if the new size
3451 * is acceptable. It must fit before the sb_offset or,
3452 * if that is <data_offset, it must fit before the
3453 * size of each device.
3454 * If size is zero, we find the largest size that fits.
3456 if (mddev->sync_thread)
3457 return -EBUSY;
3458 ITERATE_RDEV(mddev,rdev,tmp) {
3459 sector_t avail;
3460 if (rdev->sb_offset > rdev->data_offset)
3461 avail = (rdev->sb_offset*2) - rdev->data_offset;
3462 else
3463 avail = get_capacity(rdev->bdev->bd_disk)
3464 - rdev->data_offset;
3465 if (fit && (size == 0 || size > avail/2))
3466 size = avail/2;
3467 if (avail < ((sector_t)size << 1))
3468 return -ENOSPC;
3470 rv = mddev->pers->resize(mddev, (sector_t)size *2);
3471 if (!rv) {
3472 struct block_device *bdev;
3474 bdev = bdget_disk(mddev->gendisk, 0);
3475 if (bdev) {
3476 mutex_lock(&bdev->bd_inode->i_mutex);
3477 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3478 mutex_unlock(&bdev->bd_inode->i_mutex);
3479 bdput(bdev);
3482 return rv;
3485 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3487 int rv;
3488 /* change the number of raid disks */
3489 if (mddev->pers->reshape == NULL)
3490 return -EINVAL;
3491 if (raid_disks <= 0 ||
3492 raid_disks >= mddev->max_disks)
3493 return -EINVAL;
3494 if (mddev->sync_thread)
3495 return -EBUSY;
3496 rv = mddev->pers->reshape(mddev, raid_disks);
3497 return rv;
3502 * update_array_info is used to change the configuration of an
3503 * on-line array.
3504 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3505 * fields in the info are checked against the array.
3506 * Any differences that cannot be handled will cause an error.
3507 * Normally, only one change can be managed at a time.
3509 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3511 int rv = 0;
3512 int cnt = 0;
3513 int state = 0;
3515 /* calculate expected state,ignoring low bits */
3516 if (mddev->bitmap && mddev->bitmap_offset)
3517 state |= (1 << MD_SB_BITMAP_PRESENT);
3519 if (mddev->major_version != info->major_version ||
3520 mddev->minor_version != info->minor_version ||
3521 /* mddev->patch_version != info->patch_version || */
3522 mddev->ctime != info->ctime ||
3523 mddev->level != info->level ||
3524 /* mddev->layout != info->layout || */
3525 !mddev->persistent != info->not_persistent||
3526 mddev->chunk_size != info->chunk_size ||
3527 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3528 ((state^info->state) & 0xfffffe00)
3530 return -EINVAL;
3531 /* Check there is only one change */
3532 if (info->size >= 0 && mddev->size != info->size) cnt++;
3533 if (mddev->raid_disks != info->raid_disks) cnt++;
3534 if (mddev->layout != info->layout) cnt++;
3535 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3536 if (cnt == 0) return 0;
3537 if (cnt > 1) return -EINVAL;
3539 if (mddev->layout != info->layout) {
3540 /* Change layout
3541 * we don't need to do anything at the md level, the
3542 * personality will take care of it all.
3544 if (mddev->pers->reconfig == NULL)
3545 return -EINVAL;
3546 else
3547 return mddev->pers->reconfig(mddev, info->layout, -1);
3549 if (info->size >= 0 && mddev->size != info->size)
3550 rv = update_size(mddev, info->size);
3552 if (mddev->raid_disks != info->raid_disks)
3553 rv = update_raid_disks(mddev, info->raid_disks);
3555 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3556 if (mddev->pers->quiesce == NULL)
3557 return -EINVAL;
3558 if (mddev->recovery || mddev->sync_thread)
3559 return -EBUSY;
3560 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3561 /* add the bitmap */
3562 if (mddev->bitmap)
3563 return -EEXIST;
3564 if (mddev->default_bitmap_offset == 0)
3565 return -EINVAL;
3566 mddev->bitmap_offset = mddev->default_bitmap_offset;
3567 mddev->pers->quiesce(mddev, 1);
3568 rv = bitmap_create(mddev);
3569 if (rv)
3570 bitmap_destroy(mddev);
3571 mddev->pers->quiesce(mddev, 0);
3572 } else {
3573 /* remove the bitmap */
3574 if (!mddev->bitmap)
3575 return -ENOENT;
3576 if (mddev->bitmap->file)
3577 return -EINVAL;
3578 mddev->pers->quiesce(mddev, 1);
3579 bitmap_destroy(mddev);
3580 mddev->pers->quiesce(mddev, 0);
3581 mddev->bitmap_offset = 0;
3584 md_update_sb(mddev);
3585 return rv;
3588 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3590 mdk_rdev_t *rdev;
3592 if (mddev->pers == NULL)
3593 return -ENODEV;
3595 rdev = find_rdev(mddev, dev);
3596 if (!rdev)
3597 return -ENODEV;
3599 md_error(mddev, rdev);
3600 return 0;
3603 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3605 mddev_t *mddev = bdev->bd_disk->private_data;
3607 geo->heads = 2;
3608 geo->sectors = 4;
3609 geo->cylinders = get_capacity(mddev->gendisk) / 8;
3610 return 0;
3613 static int md_ioctl(struct inode *inode, struct file *file,
3614 unsigned int cmd, unsigned long arg)
3616 int err = 0;
3617 void __user *argp = (void __user *)arg;
3618 mddev_t *mddev = NULL;
3620 if (!capable(CAP_SYS_ADMIN))
3621 return -EACCES;
3624 * Commands dealing with the RAID driver but not any
3625 * particular array:
3627 switch (cmd)
3629 case RAID_VERSION:
3630 err = get_version(argp);
3631 goto done;
3633 case PRINT_RAID_DEBUG:
3634 err = 0;
3635 md_print_devices();
3636 goto done;
3638 #ifndef MODULE
3639 case RAID_AUTORUN:
3640 err = 0;
3641 autostart_arrays(arg);
3642 goto done;
3643 #endif
3644 default:;
3648 * Commands creating/starting a new array:
3651 mddev = inode->i_bdev->bd_disk->private_data;
3653 if (!mddev) {
3654 BUG();
3655 goto abort;
3659 if (cmd == START_ARRAY) {
3660 /* START_ARRAY doesn't need to lock the array as autostart_array
3661 * does the locking, and it could even be a different array
3663 static int cnt = 3;
3664 if (cnt > 0 ) {
3665 printk(KERN_WARNING
3666 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3667 "START_ARRAY is removed in kernel 2.6.19 and above.\n",
3668 current->comm, current->pid);
3669 cnt--;
3671 err = autostart_array(new_decode_dev(arg));
3672 if (err) {
3673 printk(KERN_WARNING "md: autostart failed!\n");
3674 goto abort;
3676 goto done;
3679 err = mddev_lock(mddev);
3680 if (err) {
3681 printk(KERN_INFO
3682 "md: ioctl lock interrupted, reason %d, cmd %d\n",
3683 err, cmd);
3684 goto abort;
3687 switch (cmd)
3689 case SET_ARRAY_INFO:
3691 mdu_array_info_t info;
3692 if (!arg)
3693 memset(&info, 0, sizeof(info));
3694 else if (copy_from_user(&info, argp, sizeof(info))) {
3695 err = -EFAULT;
3696 goto abort_unlock;
3698 if (mddev->pers) {
3699 err = update_array_info(mddev, &info);
3700 if (err) {
3701 printk(KERN_WARNING "md: couldn't update"
3702 " array info. %d\n", err);
3703 goto abort_unlock;
3705 goto done_unlock;
3707 if (!list_empty(&mddev->disks)) {
3708 printk(KERN_WARNING
3709 "md: array %s already has disks!\n",
3710 mdname(mddev));
3711 err = -EBUSY;
3712 goto abort_unlock;
3714 if (mddev->raid_disks) {
3715 printk(KERN_WARNING
3716 "md: array %s already initialised!\n",
3717 mdname(mddev));
3718 err = -EBUSY;
3719 goto abort_unlock;
3721 err = set_array_info(mddev, &info);
3722 if (err) {
3723 printk(KERN_WARNING "md: couldn't set"
3724 " array info. %d\n", err);
3725 goto abort_unlock;
3728 goto done_unlock;
3730 default:;
3734 * Commands querying/configuring an existing array:
3736 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3737 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3738 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3739 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3740 err = -ENODEV;
3741 goto abort_unlock;
3745 * Commands even a read-only array can execute:
3747 switch (cmd)
3749 case GET_ARRAY_INFO:
3750 err = get_array_info(mddev, argp);
3751 goto done_unlock;
3753 case GET_BITMAP_FILE:
3754 err = get_bitmap_file(mddev, argp);
3755 goto done_unlock;
3757 case GET_DISK_INFO:
3758 err = get_disk_info(mddev, argp);
3759 goto done_unlock;
3761 case RESTART_ARRAY_RW:
3762 err = restart_array(mddev);
3763 goto done_unlock;
3765 case STOP_ARRAY:
3766 err = do_md_stop (mddev, 0);
3767 goto done_unlock;
3769 case STOP_ARRAY_RO:
3770 err = do_md_stop (mddev, 1);
3771 goto done_unlock;
3774 * We have a problem here : there is no easy way to give a CHS
3775 * virtual geometry. We currently pretend that we have a 2 heads
3776 * 4 sectors (with a BIG number of cylinders...). This drives
3777 * dosfs just mad... ;-)
3782 * The remaining ioctls are changing the state of the
3783 * superblock, so we do not allow them on read-only arrays.
3784 * However non-MD ioctls (e.g. get-size) will still come through
3785 * here and hit the 'default' below, so only disallow
3786 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3788 if (_IOC_TYPE(cmd) == MD_MAJOR &&
3789 mddev->ro && mddev->pers) {
3790 if (mddev->ro == 2) {
3791 mddev->ro = 0;
3792 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3793 md_wakeup_thread(mddev->thread);
3795 } else {
3796 err = -EROFS;
3797 goto abort_unlock;
3801 switch (cmd)
3803 case ADD_NEW_DISK:
3805 mdu_disk_info_t info;
3806 if (copy_from_user(&info, argp, sizeof(info)))
3807 err = -EFAULT;
3808 else
3809 err = add_new_disk(mddev, &info);
3810 goto done_unlock;
3813 case HOT_REMOVE_DISK:
3814 err = hot_remove_disk(mddev, new_decode_dev(arg));
3815 goto done_unlock;
3817 case HOT_ADD_DISK:
3818 err = hot_add_disk(mddev, new_decode_dev(arg));
3819 goto done_unlock;
3821 case SET_DISK_FAULTY:
3822 err = set_disk_faulty(mddev, new_decode_dev(arg));
3823 goto done_unlock;
3825 case RUN_ARRAY:
3826 err = do_md_run (mddev);
3827 goto done_unlock;
3829 case SET_BITMAP_FILE:
3830 err = set_bitmap_file(mddev, (int)arg);
3831 goto done_unlock;
3833 default:
3834 if (_IOC_TYPE(cmd) == MD_MAJOR)
3835 printk(KERN_WARNING "md: %s(pid %d) used"
3836 " obsolete MD ioctl, upgrade your"
3837 " software to use new ictls.\n",
3838 current->comm, current->pid);
3839 err = -EINVAL;
3840 goto abort_unlock;
3843 done_unlock:
3844 abort_unlock:
3845 mddev_unlock(mddev);
3847 return err;
3848 done:
3849 if (err)
3850 MD_BUG();
3851 abort:
3852 return err;
3855 static int md_open(struct inode *inode, struct file *file)
3858 * Succeed if we can lock the mddev, which confirms that
3859 * it isn't being stopped right now.
3861 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3862 int err;
3864 if ((err = mddev_lock(mddev)))
3865 goto out;
3867 err = 0;
3868 mddev_get(mddev);
3869 mddev_unlock(mddev);
3871 check_disk_change(inode->i_bdev);
3872 out:
3873 return err;
3876 static int md_release(struct inode *inode, struct file * file)
3878 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3880 if (!mddev)
3881 BUG();
3882 mddev_put(mddev);
3884 return 0;
3887 static int md_media_changed(struct gendisk *disk)
3889 mddev_t *mddev = disk->private_data;
3891 return mddev->changed;
3894 static int md_revalidate(struct gendisk *disk)
3896 mddev_t *mddev = disk->private_data;
3898 mddev->changed = 0;
3899 return 0;
3901 static struct block_device_operations md_fops =
3903 .owner = THIS_MODULE,
3904 .open = md_open,
3905 .release = md_release,
3906 .ioctl = md_ioctl,
3907 .getgeo = md_getgeo,
3908 .media_changed = md_media_changed,
3909 .revalidate_disk= md_revalidate,
3912 static int md_thread(void * arg)
3914 mdk_thread_t *thread = arg;
3917 * md_thread is a 'system-thread', it's priority should be very
3918 * high. We avoid resource deadlocks individually in each
3919 * raid personality. (RAID5 does preallocation) We also use RR and
3920 * the very same RT priority as kswapd, thus we will never get
3921 * into a priority inversion deadlock.
3923 * we definitely have to have equal or higher priority than
3924 * bdflush, otherwise bdflush will deadlock if there are too
3925 * many dirty RAID5 blocks.
3928 allow_signal(SIGKILL);
3929 while (!kthread_should_stop()) {
3931 /* We need to wait INTERRUPTIBLE so that
3932 * we don't add to the load-average.
3933 * That means we need to be sure no signals are
3934 * pending
3936 if (signal_pending(current))
3937 flush_signals(current);
3939 wait_event_interruptible_timeout
3940 (thread->wqueue,
3941 test_bit(THREAD_WAKEUP, &thread->flags)
3942 || kthread_should_stop(),
3943 thread->timeout);
3944 try_to_freeze();
3946 clear_bit(THREAD_WAKEUP, &thread->flags);
3948 thread->run(thread->mddev);
3951 return 0;
3954 void md_wakeup_thread(mdk_thread_t *thread)
3956 if (thread) {
3957 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3958 set_bit(THREAD_WAKEUP, &thread->flags);
3959 wake_up(&thread->wqueue);
3963 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3964 const char *name)
3966 mdk_thread_t *thread;
3968 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3969 if (!thread)
3970 return NULL;
3972 init_waitqueue_head(&thread->wqueue);
3974 thread->run = run;
3975 thread->mddev = mddev;
3976 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3977 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3978 if (IS_ERR(thread->tsk)) {
3979 kfree(thread);
3980 return NULL;
3982 return thread;
3985 void md_unregister_thread(mdk_thread_t *thread)
3987 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3989 kthread_stop(thread->tsk);
3990 kfree(thread);
3993 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3995 if (!mddev) {
3996 MD_BUG();
3997 return;
4000 if (!rdev || test_bit(Faulty, &rdev->flags))
4001 return;
4003 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4004 mdname(mddev),
4005 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4006 __builtin_return_address(0),__builtin_return_address(1),
4007 __builtin_return_address(2),__builtin_return_address(3));
4009 if (!mddev->pers->error_handler)
4010 return;
4011 mddev->pers->error_handler(mddev,rdev);
4012 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4013 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4014 md_wakeup_thread(mddev->thread);
4015 md_new_event(mddev);
4018 /* seq_file implementation /proc/mdstat */
4020 static void status_unused(struct seq_file *seq)
4022 int i = 0;
4023 mdk_rdev_t *rdev;
4024 struct list_head *tmp;
4026 seq_printf(seq, "unused devices: ");
4028 ITERATE_RDEV_PENDING(rdev,tmp) {
4029 char b[BDEVNAME_SIZE];
4030 i++;
4031 seq_printf(seq, "%s ",
4032 bdevname(rdev->bdev,b));
4034 if (!i)
4035 seq_printf(seq, "<none>");
4037 seq_printf(seq, "\n");
4041 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4043 unsigned long max_blocks, resync, res, dt, db, rt;
4045 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4047 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4048 max_blocks = mddev->resync_max_sectors >> 1;
4049 else
4050 max_blocks = mddev->size;
4053 * Should not happen.
4055 if (!max_blocks) {
4056 MD_BUG();
4057 return;
4059 res = (resync/1024)*1000/(max_blocks/1024 + 1);
4061 int i, x = res/50, y = 20-x;
4062 seq_printf(seq, "[");
4063 for (i = 0; i < x; i++)
4064 seq_printf(seq, "=");
4065 seq_printf(seq, ">");
4066 for (i = 0; i < y; i++)
4067 seq_printf(seq, ".");
4068 seq_printf(seq, "] ");
4070 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
4071 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4072 "resync" : "recovery"),
4073 res/10, res % 10, resync, max_blocks);
4076 * We do not want to overflow, so the order of operands and
4077 * the * 100 / 100 trick are important. We do a +1 to be
4078 * safe against division by zero. We only estimate anyway.
4080 * dt: time from mark until now
4081 * db: blocks written from mark until now
4082 * rt: remaining time
4084 dt = ((jiffies - mddev->resync_mark) / HZ);
4085 if (!dt) dt++;
4086 db = resync - (mddev->resync_mark_cnt/2);
4087 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
4089 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4091 seq_printf(seq, " speed=%ldK/sec", db/dt);
4094 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4096 struct list_head *tmp;
4097 loff_t l = *pos;
4098 mddev_t *mddev;
4100 if (l >= 0x10000)
4101 return NULL;
4102 if (!l--)
4103 /* header */
4104 return (void*)1;
4106 spin_lock(&all_mddevs_lock);
4107 list_for_each(tmp,&all_mddevs)
4108 if (!l--) {
4109 mddev = list_entry(tmp, mddev_t, all_mddevs);
4110 mddev_get(mddev);
4111 spin_unlock(&all_mddevs_lock);
4112 return mddev;
4114 spin_unlock(&all_mddevs_lock);
4115 if (!l--)
4116 return (void*)2;/* tail */
4117 return NULL;
4120 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4122 struct list_head *tmp;
4123 mddev_t *next_mddev, *mddev = v;
4125 ++*pos;
4126 if (v == (void*)2)
4127 return NULL;
4129 spin_lock(&all_mddevs_lock);
4130 if (v == (void*)1)
4131 tmp = all_mddevs.next;
4132 else
4133 tmp = mddev->all_mddevs.next;
4134 if (tmp != &all_mddevs)
4135 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4136 else {
4137 next_mddev = (void*)2;
4138 *pos = 0x10000;
4140 spin_unlock(&all_mddevs_lock);
4142 if (v != (void*)1)
4143 mddev_put(mddev);
4144 return next_mddev;
4148 static void md_seq_stop(struct seq_file *seq, void *v)
4150 mddev_t *mddev = v;
4152 if (mddev && v != (void*)1 && v != (void*)2)
4153 mddev_put(mddev);
4156 struct mdstat_info {
4157 int event;
4160 static int md_seq_show(struct seq_file *seq, void *v)
4162 mddev_t *mddev = v;
4163 sector_t size;
4164 struct list_head *tmp2;
4165 mdk_rdev_t *rdev;
4166 struct mdstat_info *mi = seq->private;
4167 struct bitmap *bitmap;
4169 if (v == (void*)1) {
4170 struct mdk_personality *pers;
4171 seq_printf(seq, "Personalities : ");
4172 spin_lock(&pers_lock);
4173 list_for_each_entry(pers, &pers_list, list)
4174 seq_printf(seq, "[%s] ", pers->name);
4176 spin_unlock(&pers_lock);
4177 seq_printf(seq, "\n");
4178 mi->event = atomic_read(&md_event_count);
4179 return 0;
4181 if (v == (void*)2) {
4182 status_unused(seq);
4183 return 0;
4186 if (mddev_lock(mddev)!=0)
4187 return -EINTR;
4188 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4189 seq_printf(seq, "%s : %sactive", mdname(mddev),
4190 mddev->pers ? "" : "in");
4191 if (mddev->pers) {
4192 if (mddev->ro==1)
4193 seq_printf(seq, " (read-only)");
4194 if (mddev->ro==2)
4195 seq_printf(seq, "(auto-read-only)");
4196 seq_printf(seq, " %s", mddev->pers->name);
4199 size = 0;
4200 ITERATE_RDEV(mddev,rdev,tmp2) {
4201 char b[BDEVNAME_SIZE];
4202 seq_printf(seq, " %s[%d]",
4203 bdevname(rdev->bdev,b), rdev->desc_nr);
4204 if (test_bit(WriteMostly, &rdev->flags))
4205 seq_printf(seq, "(W)");
4206 if (test_bit(Faulty, &rdev->flags)) {
4207 seq_printf(seq, "(F)");
4208 continue;
4209 } else if (rdev->raid_disk < 0)
4210 seq_printf(seq, "(S)"); /* spare */
4211 size += rdev->size;
4214 if (!list_empty(&mddev->disks)) {
4215 if (mddev->pers)
4216 seq_printf(seq, "\n %llu blocks",
4217 (unsigned long long)mddev->array_size);
4218 else
4219 seq_printf(seq, "\n %llu blocks",
4220 (unsigned long long)size);
4222 if (mddev->persistent) {
4223 if (mddev->major_version != 0 ||
4224 mddev->minor_version != 90) {
4225 seq_printf(seq," super %d.%d",
4226 mddev->major_version,
4227 mddev->minor_version);
4229 } else
4230 seq_printf(seq, " super non-persistent");
4232 if (mddev->pers) {
4233 mddev->pers->status (seq, mddev);
4234 seq_printf(seq, "\n ");
4235 if (mddev->pers->sync_request) {
4236 if (mddev->curr_resync > 2) {
4237 status_resync (seq, mddev);
4238 seq_printf(seq, "\n ");
4239 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4240 seq_printf(seq, "\tresync=DELAYED\n ");
4241 else if (mddev->recovery_cp < MaxSector)
4242 seq_printf(seq, "\tresync=PENDING\n ");
4244 } else
4245 seq_printf(seq, "\n ");
4247 if ((bitmap = mddev->bitmap)) {
4248 unsigned long chunk_kb;
4249 unsigned long flags;
4250 spin_lock_irqsave(&bitmap->lock, flags);
4251 chunk_kb = bitmap->chunksize >> 10;
4252 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4253 "%lu%s chunk",
4254 bitmap->pages - bitmap->missing_pages,
4255 bitmap->pages,
4256 (bitmap->pages - bitmap->missing_pages)
4257 << (PAGE_SHIFT - 10),
4258 chunk_kb ? chunk_kb : bitmap->chunksize,
4259 chunk_kb ? "KB" : "B");
4260 if (bitmap->file) {
4261 seq_printf(seq, ", file: ");
4262 seq_path(seq, bitmap->file->f_vfsmnt,
4263 bitmap->file->f_dentry," \t\n");
4266 seq_printf(seq, "\n");
4267 spin_unlock_irqrestore(&bitmap->lock, flags);
4270 seq_printf(seq, "\n");
4272 mddev_unlock(mddev);
4274 return 0;
4277 static struct seq_operations md_seq_ops = {
4278 .start = md_seq_start,
4279 .next = md_seq_next,
4280 .stop = md_seq_stop,
4281 .show = md_seq_show,
4284 static int md_seq_open(struct inode *inode, struct file *file)
4286 int error;
4287 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4288 if (mi == NULL)
4289 return -ENOMEM;
4291 error = seq_open(file, &md_seq_ops);
4292 if (error)
4293 kfree(mi);
4294 else {
4295 struct seq_file *p = file->private_data;
4296 p->private = mi;
4297 mi->event = atomic_read(&md_event_count);
4299 return error;
4302 static int md_seq_release(struct inode *inode, struct file *file)
4304 struct seq_file *m = file->private_data;
4305 struct mdstat_info *mi = m->private;
4306 m->private = NULL;
4307 kfree(mi);
4308 return seq_release(inode, file);
4311 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4313 struct seq_file *m = filp->private_data;
4314 struct mdstat_info *mi = m->private;
4315 int mask;
4317 poll_wait(filp, &md_event_waiters, wait);
4319 /* always allow read */
4320 mask = POLLIN | POLLRDNORM;
4322 if (mi->event != atomic_read(&md_event_count))
4323 mask |= POLLERR | POLLPRI;
4324 return mask;
4327 static struct file_operations md_seq_fops = {
4328 .open = md_seq_open,
4329 .read = seq_read,
4330 .llseek = seq_lseek,
4331 .release = md_seq_release,
4332 .poll = mdstat_poll,
4335 int register_md_personality(struct mdk_personality *p)
4337 spin_lock(&pers_lock);
4338 list_add_tail(&p->list, &pers_list);
4339 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4340 spin_unlock(&pers_lock);
4341 return 0;
4344 int unregister_md_personality(struct mdk_personality *p)
4346 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4347 spin_lock(&pers_lock);
4348 list_del_init(&p->list);
4349 spin_unlock(&pers_lock);
4350 return 0;
4353 static int is_mddev_idle(mddev_t *mddev)
4355 mdk_rdev_t * rdev;
4356 struct list_head *tmp;
4357 int idle;
4358 unsigned long curr_events;
4360 idle = 1;
4361 ITERATE_RDEV(mddev,rdev,tmp) {
4362 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4363 curr_events = disk_stat_read(disk, sectors[0]) +
4364 disk_stat_read(disk, sectors[1]) -
4365 atomic_read(&disk->sync_io);
4366 /* The difference between curr_events and last_events
4367 * will be affected by any new non-sync IO (making
4368 * curr_events bigger) and any difference in the amount of
4369 * in-flight syncio (making current_events bigger or smaller)
4370 * The amount in-flight is currently limited to
4371 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4372 * which is at most 4096 sectors.
4373 * These numbers are fairly fragile and should be made
4374 * more robust, probably by enforcing the
4375 * 'window size' that md_do_sync sort-of uses.
4377 * Note: the following is an unsigned comparison.
4379 if ((curr_events - rdev->last_events + 4096) > 8192) {
4380 rdev->last_events = curr_events;
4381 idle = 0;
4384 return idle;
4387 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4389 /* another "blocks" (512byte) blocks have been synced */
4390 atomic_sub(blocks, &mddev->recovery_active);
4391 wake_up(&mddev->recovery_wait);
4392 if (!ok) {
4393 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4394 md_wakeup_thread(mddev->thread);
4395 // stop recovery, signal do_sync ....
4400 /* md_write_start(mddev, bi)
4401 * If we need to update some array metadata (e.g. 'active' flag
4402 * in superblock) before writing, schedule a superblock update
4403 * and wait for it to complete.
4405 void md_write_start(mddev_t *mddev, struct bio *bi)
4407 if (bio_data_dir(bi) != WRITE)
4408 return;
4410 BUG_ON(mddev->ro == 1);
4411 if (mddev->ro == 2) {
4412 /* need to switch to read/write */
4413 mddev->ro = 0;
4414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4415 md_wakeup_thread(mddev->thread);
4417 atomic_inc(&mddev->writes_pending);
4418 if (mddev->in_sync) {
4419 spin_lock_irq(&mddev->write_lock);
4420 if (mddev->in_sync) {
4421 mddev->in_sync = 0;
4422 mddev->sb_dirty = 1;
4423 md_wakeup_thread(mddev->thread);
4425 spin_unlock_irq(&mddev->write_lock);
4427 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4430 void md_write_end(mddev_t *mddev)
4432 if (atomic_dec_and_test(&mddev->writes_pending)) {
4433 if (mddev->safemode == 2)
4434 md_wakeup_thread(mddev->thread);
4435 else
4436 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4440 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4442 #define SYNC_MARKS 10
4443 #define SYNC_MARK_STEP (3*HZ)
4444 static void md_do_sync(mddev_t *mddev)
4446 mddev_t *mddev2;
4447 unsigned int currspeed = 0,
4448 window;
4449 sector_t max_sectors,j, io_sectors;
4450 unsigned long mark[SYNC_MARKS];
4451 sector_t mark_cnt[SYNC_MARKS];
4452 int last_mark,m;
4453 struct list_head *tmp;
4454 sector_t last_check;
4455 int skipped = 0;
4457 /* just incase thread restarts... */
4458 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4459 return;
4461 /* we overload curr_resync somewhat here.
4462 * 0 == not engaged in resync at all
4463 * 2 == checking that there is no conflict with another sync
4464 * 1 == like 2, but have yielded to allow conflicting resync to
4465 * commense
4466 * other == active in resync - this many blocks
4468 * Before starting a resync we must have set curr_resync to
4469 * 2, and then checked that every "conflicting" array has curr_resync
4470 * less than ours. When we find one that is the same or higher
4471 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
4472 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4473 * This will mean we have to start checking from the beginning again.
4477 do {
4478 mddev->curr_resync = 2;
4480 try_again:
4481 if (kthread_should_stop()) {
4482 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4483 goto skip;
4485 ITERATE_MDDEV(mddev2,tmp) {
4486 if (mddev2 == mddev)
4487 continue;
4488 if (mddev2->curr_resync &&
4489 match_mddev_units(mddev,mddev2)) {
4490 DEFINE_WAIT(wq);
4491 if (mddev < mddev2 && mddev->curr_resync == 2) {
4492 /* arbitrarily yield */
4493 mddev->curr_resync = 1;
4494 wake_up(&resync_wait);
4496 if (mddev > mddev2 && mddev->curr_resync == 1)
4497 /* no need to wait here, we can wait the next
4498 * time 'round when curr_resync == 2
4500 continue;
4501 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4502 if (!kthread_should_stop() &&
4503 mddev2->curr_resync >= mddev->curr_resync) {
4504 printk(KERN_INFO "md: delaying resync of %s"
4505 " until %s has finished resync (they"
4506 " share one or more physical units)\n",
4507 mdname(mddev), mdname(mddev2));
4508 mddev_put(mddev2);
4509 schedule();
4510 finish_wait(&resync_wait, &wq);
4511 goto try_again;
4513 finish_wait(&resync_wait, &wq);
4516 } while (mddev->curr_resync < 2);
4518 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4519 /* resync follows the size requested by the personality,
4520 * which defaults to physical size, but can be virtual size
4522 max_sectors = mddev->resync_max_sectors;
4523 mddev->resync_mismatches = 0;
4524 } else
4525 /* recovery follows the physical size of devices */
4526 max_sectors = mddev->size << 1;
4528 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4529 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4530 " %d KB/sec/disc.\n", speed_min(mddev));
4531 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4532 "(but not more than %d KB/sec) for reconstruction.\n",
4533 speed_max(mddev));
4535 is_mddev_idle(mddev); /* this also initializes IO event counters */
4536 /* we don't use the checkpoint if there's a bitmap */
4537 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4538 && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4539 j = mddev->recovery_cp;
4540 else
4541 j = 0;
4542 io_sectors = 0;
4543 for (m = 0; m < SYNC_MARKS; m++) {
4544 mark[m] = jiffies;
4545 mark_cnt[m] = io_sectors;
4547 last_mark = 0;
4548 mddev->resync_mark = mark[last_mark];
4549 mddev->resync_mark_cnt = mark_cnt[last_mark];
4552 * Tune reconstruction:
4554 window = 32*(PAGE_SIZE/512);
4555 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4556 window/2,(unsigned long long) max_sectors/2);
4558 atomic_set(&mddev->recovery_active, 0);
4559 init_waitqueue_head(&mddev->recovery_wait);
4560 last_check = 0;
4562 if (j>2) {
4563 printk(KERN_INFO
4564 "md: resuming recovery of %s from checkpoint.\n",
4565 mdname(mddev));
4566 mddev->curr_resync = j;
4569 while (j < max_sectors) {
4570 sector_t sectors;
4572 skipped = 0;
4573 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4574 currspeed < speed_min(mddev));
4575 if (sectors == 0) {
4576 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4577 goto out;
4580 if (!skipped) { /* actual IO requested */
4581 io_sectors += sectors;
4582 atomic_add(sectors, &mddev->recovery_active);
4585 j += sectors;
4586 if (j>1) mddev->curr_resync = j;
4587 if (last_check == 0)
4588 /* this is the earliers that rebuilt will be
4589 * visible in /proc/mdstat
4591 md_new_event(mddev);
4593 if (last_check + window > io_sectors || j == max_sectors)
4594 continue;
4596 last_check = io_sectors;
4598 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4599 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4600 break;
4602 repeat:
4603 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4604 /* step marks */
4605 int next = (last_mark+1) % SYNC_MARKS;
4607 mddev->resync_mark = mark[next];
4608 mddev->resync_mark_cnt = mark_cnt[next];
4609 mark[next] = jiffies;
4610 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4611 last_mark = next;
4615 if (kthread_should_stop()) {
4617 * got a signal, exit.
4619 printk(KERN_INFO
4620 "md: md_do_sync() got signal ... exiting\n");
4621 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4622 goto out;
4626 * this loop exits only if either when we are slower than
4627 * the 'hard' speed limit, or the system was IO-idle for
4628 * a jiffy.
4629 * the system might be non-idle CPU-wise, but we only care
4630 * about not overloading the IO subsystem. (things like an
4631 * e2fsck being done on the RAID array should execute fast)
4633 mddev->queue->unplug_fn(mddev->queue);
4634 cond_resched();
4636 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4637 /((jiffies-mddev->resync_mark)/HZ +1) +1;
4639 if (currspeed > speed_min(mddev)) {
4640 if ((currspeed > speed_max(mddev)) ||
4641 !is_mddev_idle(mddev)) {
4642 msleep(500);
4643 goto repeat;
4647 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4649 * this also signals 'finished resyncing' to md_stop
4651 out:
4652 mddev->queue->unplug_fn(mddev->queue);
4654 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4656 /* tell personality that we are finished */
4657 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4659 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4660 mddev->curr_resync > 2 &&
4661 mddev->curr_resync >= mddev->recovery_cp) {
4662 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4663 printk(KERN_INFO
4664 "md: checkpointing recovery of %s.\n",
4665 mdname(mddev));
4666 mddev->recovery_cp = mddev->curr_resync;
4667 } else
4668 mddev->recovery_cp = MaxSector;
4671 skip:
4672 mddev->curr_resync = 0;
4673 wake_up(&resync_wait);
4674 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4675 md_wakeup_thread(mddev->thread);
4680 * This routine is regularly called by all per-raid-array threads to
4681 * deal with generic issues like resync and super-block update.
4682 * Raid personalities that don't have a thread (linear/raid0) do not
4683 * need this as they never do any recovery or update the superblock.
4685 * It does not do any resync itself, but rather "forks" off other threads
4686 * to do that as needed.
4687 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4688 * "->recovery" and create a thread at ->sync_thread.
4689 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4690 * and wakeups up this thread which will reap the thread and finish up.
4691 * This thread also removes any faulty devices (with nr_pending == 0).
4693 * The overall approach is:
4694 * 1/ if the superblock needs updating, update it.
4695 * 2/ If a recovery thread is running, don't do anything else.
4696 * 3/ If recovery has finished, clean up, possibly marking spares active.
4697 * 4/ If there are any faulty devices, remove them.
4698 * 5/ If array is degraded, try to add spares devices
4699 * 6/ If array has spares or is not in-sync, start a resync thread.
4701 void md_check_recovery(mddev_t *mddev)
4703 mdk_rdev_t *rdev;
4704 struct list_head *rtmp;
4707 if (mddev->bitmap)
4708 bitmap_daemon_work(mddev->bitmap);
4710 if (mddev->ro)
4711 return;
4713 if (signal_pending(current)) {
4714 if (mddev->pers->sync_request) {
4715 printk(KERN_INFO "md: %s in immediate safe mode\n",
4716 mdname(mddev));
4717 mddev->safemode = 2;
4719 flush_signals(current);
4722 if ( ! (
4723 mddev->sb_dirty ||
4724 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4725 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4726 (mddev->safemode == 1) ||
4727 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4728 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4730 return;
4732 if (mddev_trylock(mddev)==0) {
4733 int spares =0;
4735 spin_lock_irq(&mddev->write_lock);
4736 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4737 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4738 mddev->in_sync = 1;
4739 mddev->sb_dirty = 1;
4741 if (mddev->safemode == 1)
4742 mddev->safemode = 0;
4743 spin_unlock_irq(&mddev->write_lock);
4745 if (mddev->sb_dirty)
4746 md_update_sb(mddev);
4749 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4750 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4751 /* resync/recovery still happening */
4752 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4753 goto unlock;
4755 if (mddev->sync_thread) {
4756 /* resync has finished, collect result */
4757 md_unregister_thread(mddev->sync_thread);
4758 mddev->sync_thread = NULL;
4759 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4760 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4761 /* success...*/
4762 /* activate any spares */
4763 mddev->pers->spare_active(mddev);
4765 md_update_sb(mddev);
4767 /* if array is no-longer degraded, then any saved_raid_disk
4768 * information must be scrapped
4770 if (!mddev->degraded)
4771 ITERATE_RDEV(mddev,rdev,rtmp)
4772 rdev->saved_raid_disk = -1;
4774 mddev->recovery = 0;
4775 /* flag recovery needed just to double check */
4776 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4777 md_new_event(mddev);
4778 goto unlock;
4780 /* Clear some bits that don't mean anything, but
4781 * might be left set
4783 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4784 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4785 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4786 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4788 /* no recovery is running.
4789 * remove any failed drives, then
4790 * add spares if possible.
4791 * Spare are also removed and re-added, to allow
4792 * the personality to fail the re-add.
4794 ITERATE_RDEV(mddev,rdev,rtmp)
4795 if (rdev->raid_disk >= 0 &&
4796 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4797 atomic_read(&rdev->nr_pending)==0) {
4798 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4799 char nm[20];
4800 sprintf(nm,"rd%d", rdev->raid_disk);
4801 sysfs_remove_link(&mddev->kobj, nm);
4802 rdev->raid_disk = -1;
4806 if (mddev->degraded) {
4807 ITERATE_RDEV(mddev,rdev,rtmp)
4808 if (rdev->raid_disk < 0
4809 && !test_bit(Faulty, &rdev->flags)) {
4810 if (mddev->pers->hot_add_disk(mddev,rdev)) {
4811 char nm[20];
4812 sprintf(nm, "rd%d", rdev->raid_disk);
4813 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4814 spares++;
4815 md_new_event(mddev);
4816 } else
4817 break;
4821 if (spares) {
4822 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4823 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4824 } else if (mddev->recovery_cp < MaxSector) {
4825 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4826 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4827 /* nothing to be done ... */
4828 goto unlock;
4830 if (mddev->pers->sync_request) {
4831 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4832 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4833 /* We are adding a device or devices to an array
4834 * which has the bitmap stored on all devices.
4835 * So make sure all bitmap pages get written
4837 bitmap_write_all(mddev->bitmap);
4839 mddev->sync_thread = md_register_thread(md_do_sync,
4840 mddev,
4841 "%s_resync");
4842 if (!mddev->sync_thread) {
4843 printk(KERN_ERR "%s: could not start resync"
4844 " thread...\n",
4845 mdname(mddev));
4846 /* leave the spares where they are, it shouldn't hurt */
4847 mddev->recovery = 0;
4848 } else
4849 md_wakeup_thread(mddev->sync_thread);
4850 md_new_event(mddev);
4852 unlock:
4853 mddev_unlock(mddev);
4857 static int md_notify_reboot(struct notifier_block *this,
4858 unsigned long code, void *x)
4860 struct list_head *tmp;
4861 mddev_t *mddev;
4863 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4865 printk(KERN_INFO "md: stopping all md devices.\n");
4867 ITERATE_MDDEV(mddev,tmp)
4868 if (mddev_trylock(mddev)==0)
4869 do_md_stop (mddev, 1);
4871 * certain more exotic SCSI devices are known to be
4872 * volatile wrt too early system reboots. While the
4873 * right place to handle this issue is the given
4874 * driver, we do want to have a safe RAID driver ...
4876 mdelay(1000*1);
4878 return NOTIFY_DONE;
4881 static struct notifier_block md_notifier = {
4882 .notifier_call = md_notify_reboot,
4883 .next = NULL,
4884 .priority = INT_MAX, /* before any real devices */
4887 static void md_geninit(void)
4889 struct proc_dir_entry *p;
4891 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4893 p = create_proc_entry("mdstat", S_IRUGO, NULL);
4894 if (p)
4895 p->proc_fops = &md_seq_fops;
4898 static int __init md_init(void)
4900 int minor;
4902 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4903 " MD_SB_DISKS=%d\n",
4904 MD_MAJOR_VERSION, MD_MINOR_VERSION,
4905 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4906 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4907 BITMAP_MINOR);
4909 if (register_blkdev(MAJOR_NR, "md"))
4910 return -1;
4911 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4912 unregister_blkdev(MAJOR_NR, "md");
4913 return -1;
4915 devfs_mk_dir("md");
4916 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4917 md_probe, NULL, NULL);
4918 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4919 md_probe, NULL, NULL);
4921 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4922 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4923 S_IFBLK|S_IRUSR|S_IWUSR,
4924 "md/%d", minor);
4926 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4927 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4928 S_IFBLK|S_IRUSR|S_IWUSR,
4929 "md/mdp%d", minor);
4932 register_reboot_notifier(&md_notifier);
4933 raid_table_header = register_sysctl_table(raid_root_table, 1);
4935 md_geninit();
4936 return (0);
4940 #ifndef MODULE
4943 * Searches all registered partitions for autorun RAID arrays
4944 * at boot time.
4946 static dev_t detected_devices[128];
4947 static int dev_cnt;
4949 void md_autodetect_dev(dev_t dev)
4951 if (dev_cnt >= 0 && dev_cnt < 127)
4952 detected_devices[dev_cnt++] = dev;
4956 static void autostart_arrays(int part)
4958 mdk_rdev_t *rdev;
4959 int i;
4961 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4963 for (i = 0; i < dev_cnt; i++) {
4964 dev_t dev = detected_devices[i];
4966 rdev = md_import_device(dev,0, 0);
4967 if (IS_ERR(rdev))
4968 continue;
4970 if (test_bit(Faulty, &rdev->flags)) {
4971 MD_BUG();
4972 continue;
4974 list_add(&rdev->same_set, &pending_raid_disks);
4976 dev_cnt = 0;
4978 autorun_devices(part);
4981 #endif
4983 static __exit void md_exit(void)
4985 mddev_t *mddev;
4986 struct list_head *tmp;
4987 int i;
4988 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4989 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4990 for (i=0; i < MAX_MD_DEVS; i++)
4991 devfs_remove("md/%d", i);
4992 for (i=0; i < MAX_MD_DEVS; i++)
4993 devfs_remove("md/d%d", i);
4995 devfs_remove("md");
4997 unregister_blkdev(MAJOR_NR,"md");
4998 unregister_blkdev(mdp_major, "mdp");
4999 unregister_reboot_notifier(&md_notifier);
5000 unregister_sysctl_table(raid_table_header);
5001 remove_proc_entry("mdstat", NULL);
5002 ITERATE_MDDEV(mddev,tmp) {
5003 struct gendisk *disk = mddev->gendisk;
5004 if (!disk)
5005 continue;
5006 export_array(mddev);
5007 del_gendisk(disk);
5008 put_disk(disk);
5009 mddev->gendisk = NULL;
5010 mddev_put(mddev);
5014 module_init(md_init)
5015 module_exit(md_exit)
5017 static int get_ro(char *buffer, struct kernel_param *kp)
5019 return sprintf(buffer, "%d", start_readonly);
5021 static int set_ro(const char *val, struct kernel_param *kp)
5023 char *e;
5024 int num = simple_strtoul(val, &e, 10);
5025 if (*val && (*e == '\0' || *e == '\n')) {
5026 start_readonly = num;
5027 return 0;
5029 return -EINVAL;
5032 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5033 module_param(start_dirty_degraded, int, 0644);
5036 EXPORT_SYMBOL(register_md_personality);
5037 EXPORT_SYMBOL(unregister_md_personality);
5038 EXPORT_SYMBOL(md_error);
5039 EXPORT_SYMBOL(md_done_sync);
5040 EXPORT_SYMBOL(md_write_start);
5041 EXPORT_SYMBOL(md_write_end);
5042 EXPORT_SYMBOL(md_register_thread);
5043 EXPORT_SYMBOL(md_unregister_thread);
5044 EXPORT_SYMBOL(md_wakeup_thread);
5045 EXPORT_SYMBOL(md_print_devices);
5046 EXPORT_SYMBOL(md_check_recovery);
5047 MODULE_LICENSE("GPL");
5048 MODULE_ALIAS("md");
5049 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);