module: remove module_text_address()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / readahead.c
blob9ce303d4b8109a32bf198ffc02ba4fe6b77eec49
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
21 * Initialise a struct file's readahead state. Assumes that the caller has
22 * memset *ra to zero.
24 void
25 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
27 ra->ra_pages = mapping->backing_dev_info->ra_pages;
28 ra->prev_pos = -1;
30 EXPORT_SYMBOL_GPL(file_ra_state_init);
32 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
34 /**
35 * read_cache_pages - populate an address space with some pages & start reads against them
36 * @mapping: the address_space
37 * @pages: The address of a list_head which contains the target pages. These
38 * pages have their ->index populated and are otherwise uninitialised.
39 * @filler: callback routine for filling a single page.
40 * @data: private data for the callback routine.
42 * Hides the details of the LRU cache etc from the filesystems.
44 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
45 int (*filler)(void *, struct page *), void *data)
47 struct page *page;
48 int ret = 0;
50 while (!list_empty(pages)) {
51 page = list_to_page(pages);
52 list_del(&page->lru);
53 if (add_to_page_cache_lru(page, mapping,
54 page->index, GFP_KERNEL)) {
55 page_cache_release(page);
56 continue;
58 page_cache_release(page);
60 ret = filler(data, page);
61 if (unlikely(ret)) {
62 put_pages_list(pages);
63 break;
65 task_io_account_read(PAGE_CACHE_SIZE);
67 return ret;
70 EXPORT_SYMBOL(read_cache_pages);
72 static int read_pages(struct address_space *mapping, struct file *filp,
73 struct list_head *pages, unsigned nr_pages)
75 unsigned page_idx;
76 int ret;
78 if (mapping->a_ops->readpages) {
79 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
80 /* Clean up the remaining pages */
81 put_pages_list(pages);
82 goto out;
85 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
86 struct page *page = list_to_page(pages);
87 list_del(&page->lru);
88 if (!add_to_page_cache_lru(page, mapping,
89 page->index, GFP_KERNEL)) {
90 mapping->a_ops->readpage(filp, page);
92 page_cache_release(page);
94 ret = 0;
95 out:
96 return ret;
100 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
101 * the pages first, then submits them all for I/O. This avoids the very bad
102 * behaviour which would occur if page allocations are causing VM writeback.
103 * We really don't want to intermingle reads and writes like that.
105 * Returns the number of pages requested, or the maximum amount of I/O allowed.
107 * do_page_cache_readahead() returns -1 if it encountered request queue
108 * congestion.
110 static int
111 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
112 pgoff_t offset, unsigned long nr_to_read,
113 unsigned long lookahead_size)
115 struct inode *inode = mapping->host;
116 struct page *page;
117 unsigned long end_index; /* The last page we want to read */
118 LIST_HEAD(page_pool);
119 int page_idx;
120 int ret = 0;
121 loff_t isize = i_size_read(inode);
123 if (isize == 0)
124 goto out;
126 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
129 * Preallocate as many pages as we will need.
131 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
132 pgoff_t page_offset = offset + page_idx;
134 if (page_offset > end_index)
135 break;
137 rcu_read_lock();
138 page = radix_tree_lookup(&mapping->page_tree, page_offset);
139 rcu_read_unlock();
140 if (page)
141 continue;
143 page = page_cache_alloc_cold(mapping);
144 if (!page)
145 break;
146 page->index = page_offset;
147 list_add(&page->lru, &page_pool);
148 if (page_idx == nr_to_read - lookahead_size)
149 SetPageReadahead(page);
150 ret++;
154 * Now start the IO. We ignore I/O errors - if the page is not
155 * uptodate then the caller will launch readpage again, and
156 * will then handle the error.
158 if (ret)
159 read_pages(mapping, filp, &page_pool, ret);
160 BUG_ON(!list_empty(&page_pool));
161 out:
162 return ret;
166 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
167 * memory at once.
169 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
170 pgoff_t offset, unsigned long nr_to_read)
172 int ret = 0;
174 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
175 return -EINVAL;
177 while (nr_to_read) {
178 int err;
180 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
182 if (this_chunk > nr_to_read)
183 this_chunk = nr_to_read;
184 err = __do_page_cache_readahead(mapping, filp,
185 offset, this_chunk, 0);
186 if (err < 0) {
187 ret = err;
188 break;
190 ret += err;
191 offset += this_chunk;
192 nr_to_read -= this_chunk;
194 return ret;
198 * This version skips the IO if the queue is read-congested, and will tell the
199 * block layer to abandon the readahead if request allocation would block.
201 * force_page_cache_readahead() will ignore queue congestion and will block on
202 * request queues.
204 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
205 pgoff_t offset, unsigned long nr_to_read)
207 if (bdi_read_congested(mapping->backing_dev_info))
208 return -1;
210 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
214 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
215 * sensible upper limit.
217 unsigned long max_sane_readahead(unsigned long nr)
219 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
220 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
224 * Submit IO for the read-ahead request in file_ra_state.
226 static unsigned long ra_submit(struct file_ra_state *ra,
227 struct address_space *mapping, struct file *filp)
229 int actual;
231 actual = __do_page_cache_readahead(mapping, filp,
232 ra->start, ra->size, ra->async_size);
234 return actual;
238 * Set the initial window size, round to next power of 2 and square
239 * for small size, x 4 for medium, and x 2 for large
240 * for 128k (32 page) max ra
241 * 1-8 page = 32k initial, > 8 page = 128k initial
243 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
245 unsigned long newsize = roundup_pow_of_two(size);
247 if (newsize <= max / 32)
248 newsize = newsize * 4;
249 else if (newsize <= max / 4)
250 newsize = newsize * 2;
251 else
252 newsize = max;
254 return newsize;
258 * Get the previous window size, ramp it up, and
259 * return it as the new window size.
261 static unsigned long get_next_ra_size(struct file_ra_state *ra,
262 unsigned long max)
264 unsigned long cur = ra->size;
265 unsigned long newsize;
267 if (cur < max / 16)
268 newsize = 4 * cur;
269 else
270 newsize = 2 * cur;
272 return min(newsize, max);
276 * On-demand readahead design.
278 * The fields in struct file_ra_state represent the most-recently-executed
279 * readahead attempt:
281 * |<----- async_size ---------|
282 * |------------------- size -------------------->|
283 * |==================#===========================|
284 * ^start ^page marked with PG_readahead
286 * To overlap application thinking time and disk I/O time, we do
287 * `readahead pipelining': Do not wait until the application consumed all
288 * readahead pages and stalled on the missing page at readahead_index;
289 * Instead, submit an asynchronous readahead I/O as soon as there are
290 * only async_size pages left in the readahead window. Normally async_size
291 * will be equal to size, for maximum pipelining.
293 * In interleaved sequential reads, concurrent streams on the same fd can
294 * be invalidating each other's readahead state. So we flag the new readahead
295 * page at (start+size-async_size) with PG_readahead, and use it as readahead
296 * indicator. The flag won't be set on already cached pages, to avoid the
297 * readahead-for-nothing fuss, saving pointless page cache lookups.
299 * prev_pos tracks the last visited byte in the _previous_ read request.
300 * It should be maintained by the caller, and will be used for detecting
301 * small random reads. Note that the readahead algorithm checks loosely
302 * for sequential patterns. Hence interleaved reads might be served as
303 * sequential ones.
305 * There is a special-case: if the first page which the application tries to
306 * read happens to be the first page of the file, it is assumed that a linear
307 * read is about to happen and the window is immediately set to the initial size
308 * based on I/O request size and the max_readahead.
310 * The code ramps up the readahead size aggressively at first, but slow down as
311 * it approaches max_readhead.
315 * A minimal readahead algorithm for trivial sequential/random reads.
317 static unsigned long
318 ondemand_readahead(struct address_space *mapping,
319 struct file_ra_state *ra, struct file *filp,
320 bool hit_readahead_marker, pgoff_t offset,
321 unsigned long req_size)
323 int max = ra->ra_pages; /* max readahead pages */
324 pgoff_t prev_offset;
325 int sequential;
328 * It's the expected callback offset, assume sequential access.
329 * Ramp up sizes, and push forward the readahead window.
331 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
332 offset == (ra->start + ra->size))) {
333 ra->start += ra->size;
334 ra->size = get_next_ra_size(ra, max);
335 ra->async_size = ra->size;
336 goto readit;
339 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
340 sequential = offset - prev_offset <= 1UL || req_size > max;
343 * Standalone, small read.
344 * Read as is, and do not pollute the readahead state.
346 if (!hit_readahead_marker && !sequential) {
347 return __do_page_cache_readahead(mapping, filp,
348 offset, req_size, 0);
352 * Hit a marked page without valid readahead state.
353 * E.g. interleaved reads.
354 * Query the pagecache for async_size, which normally equals to
355 * readahead size. Ramp it up and use it as the new readahead size.
357 if (hit_readahead_marker) {
358 pgoff_t start;
360 rcu_read_lock();
361 start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
362 rcu_read_unlock();
364 if (!start || start - offset > max)
365 return 0;
367 ra->start = start;
368 ra->size = start - offset; /* old async_size */
369 ra->size = get_next_ra_size(ra, max);
370 ra->async_size = ra->size;
371 goto readit;
375 * It may be one of
376 * - first read on start of file
377 * - sequential cache miss
378 * - oversize random read
379 * Start readahead for it.
381 ra->start = offset;
382 ra->size = get_init_ra_size(req_size, max);
383 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
385 readit:
386 return ra_submit(ra, mapping, filp);
390 * page_cache_sync_readahead - generic file readahead
391 * @mapping: address_space which holds the pagecache and I/O vectors
392 * @ra: file_ra_state which holds the readahead state
393 * @filp: passed on to ->readpage() and ->readpages()
394 * @offset: start offset into @mapping, in pagecache page-sized units
395 * @req_size: hint: total size of the read which the caller is performing in
396 * pagecache pages
398 * page_cache_sync_readahead() should be called when a cache miss happened:
399 * it will submit the read. The readahead logic may decide to piggyback more
400 * pages onto the read request if access patterns suggest it will improve
401 * performance.
403 void page_cache_sync_readahead(struct address_space *mapping,
404 struct file_ra_state *ra, struct file *filp,
405 pgoff_t offset, unsigned long req_size)
407 /* no read-ahead */
408 if (!ra->ra_pages)
409 return;
411 /* do read-ahead */
412 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
414 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
417 * page_cache_async_readahead - file readahead for marked pages
418 * @mapping: address_space which holds the pagecache and I/O vectors
419 * @ra: file_ra_state which holds the readahead state
420 * @filp: passed on to ->readpage() and ->readpages()
421 * @page: the page at @offset which has the PG_readahead flag set
422 * @offset: start offset into @mapping, in pagecache page-sized units
423 * @req_size: hint: total size of the read which the caller is performing in
424 * pagecache pages
426 * page_cache_async_ondemand() should be called when a page is used which
427 * has the PG_readahead flag; this is a marker to suggest that the application
428 * has used up enough of the readahead window that we should start pulling in
429 * more pages.
431 void
432 page_cache_async_readahead(struct address_space *mapping,
433 struct file_ra_state *ra, struct file *filp,
434 struct page *page, pgoff_t offset,
435 unsigned long req_size)
437 /* no read-ahead */
438 if (!ra->ra_pages)
439 return;
442 * Same bit is used for PG_readahead and PG_reclaim.
444 if (PageWriteback(page))
445 return;
447 ClearPageReadahead(page);
450 * Defer asynchronous read-ahead on IO congestion.
452 if (bdi_read_congested(mapping->backing_dev_info))
453 return;
455 /* do read-ahead */
456 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
458 EXPORT_SYMBOL_GPL(page_cache_async_readahead);