Merge blk_recount_segments into blk_recalc_rq_segments
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / ll_rw_blk.c
blobe35119a72a443880a5b4ff63ab44b1870f2fe983
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
48 * For the allocated request tables
50 static struct kmem_cache *request_cachep;
53 * For queue allocation
55 static struct kmem_cache *requestq_cachep;
58 * For io context allocations
60 static struct kmem_cache *iocontext_cachep;
63 * Controlling structure to kblockd
65 static struct workqueue_struct *kblockd_workqueue;
67 unsigned long blk_max_low_pfn, blk_max_pfn;
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
72 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74 /* Amount of time in which a process may batch requests */
75 #define BLK_BATCH_TIME (HZ/50UL)
77 /* Number of requests a "batching" process may submit */
78 #define BLK_BATCH_REQ 32
81 * Return the threshold (number of used requests) at which the queue is
82 * considered to be congested. It include a little hysteresis to keep the
83 * context switch rate down.
85 static inline int queue_congestion_on_threshold(struct request_queue *q)
87 return q->nr_congestion_on;
91 * The threshold at which a queue is considered to be uncongested
93 static inline int queue_congestion_off_threshold(struct request_queue *q)
95 return q->nr_congestion_off;
98 static void blk_queue_congestion_threshold(struct request_queue *q)
100 int nr;
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * @bdev: device
117 * Locates the passed device's request queue and returns the address of its
118 * backing_dev_info
120 * Will return NULL if the request queue cannot be located.
122 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 struct backing_dev_info *ret = NULL;
125 struct request_queue *q = bdev_get_queue(bdev);
127 if (q)
128 ret = &q->backing_dev_info;
129 return ret;
131 EXPORT_SYMBOL(blk_get_backing_dev_info);
134 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @q: queue
136 * @pfn: prepare_request function
138 * It's possible for a queue to register a prepare_request callback which
139 * is invoked before the request is handed to the request_fn. The goal of
140 * the function is to prepare a request for I/O, it can be used to build a
141 * cdb from the request data for instance.
144 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
146 q->prep_rq_fn = pfn;
149 EXPORT_SYMBOL(blk_queue_prep_rq);
152 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @q: queue
154 * @mbfn: merge_bvec_fn
156 * Usually queues have static limitations on the max sectors or segments that
157 * we can put in a request. Stacking drivers may have some settings that
158 * are dynamic, and thus we have to query the queue whether it is ok to
159 * add a new bio_vec to a bio at a given offset or not. If the block device
160 * has such limitations, it needs to register a merge_bvec_fn to control
161 * the size of bio's sent to it. Note that a block device *must* allow a
162 * single page to be added to an empty bio. The block device driver may want
163 * to use the bio_split() function to deal with these bio's. By default
164 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
165 * honored.
167 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
169 q->merge_bvec_fn = mbfn;
172 EXPORT_SYMBOL(blk_queue_merge_bvec);
174 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
176 q->softirq_done_fn = fn;
179 EXPORT_SYMBOL(blk_queue_softirq_done);
182 * blk_queue_make_request - define an alternate make_request function for a device
183 * @q: the request queue for the device to be affected
184 * @mfn: the alternate make_request function
186 * Description:
187 * The normal way for &struct bios to be passed to a device
188 * driver is for them to be collected into requests on a request
189 * queue, and then to allow the device driver to select requests
190 * off that queue when it is ready. This works well for many block
191 * devices. However some block devices (typically virtual devices
192 * such as md or lvm) do not benefit from the processing on the
193 * request queue, and are served best by having the requests passed
194 * directly to them. This can be achieved by providing a function
195 * to blk_queue_make_request().
197 * Caveat:
198 * The driver that does this *must* be able to deal appropriately
199 * with buffers in "highmemory". This can be accomplished by either calling
200 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
201 * blk_queue_bounce() to create a buffer in normal memory.
203 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
206 * set defaults
208 q->nr_requests = BLKDEV_MAX_RQ;
209 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
210 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
211 q->make_request_fn = mfn;
212 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
213 q->backing_dev_info.state = 0;
214 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
215 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
216 blk_queue_hardsect_size(q, 512);
217 blk_queue_dma_alignment(q, 511);
218 blk_queue_congestion_threshold(q);
219 q->nr_batching = BLK_BATCH_REQ;
221 q->unplug_thresh = 4; /* hmm */
222 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
223 if (q->unplug_delay == 0)
224 q->unplug_delay = 1;
226 INIT_WORK(&q->unplug_work, blk_unplug_work);
228 q->unplug_timer.function = blk_unplug_timeout;
229 q->unplug_timer.data = (unsigned long)q;
232 * by default assume old behaviour and bounce for any highmem page
234 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
237 EXPORT_SYMBOL(blk_queue_make_request);
239 static void rq_init(struct request_queue *q, struct request *rq)
241 INIT_LIST_HEAD(&rq->queuelist);
242 INIT_LIST_HEAD(&rq->donelist);
244 rq->errors = 0;
245 rq->bio = rq->biotail = NULL;
246 INIT_HLIST_NODE(&rq->hash);
247 RB_CLEAR_NODE(&rq->rb_node);
248 rq->ioprio = 0;
249 rq->buffer = NULL;
250 rq->ref_count = 1;
251 rq->q = q;
252 rq->special = NULL;
253 rq->data_len = 0;
254 rq->data = NULL;
255 rq->nr_phys_segments = 0;
256 rq->sense = NULL;
257 rq->end_io = NULL;
258 rq->end_io_data = NULL;
259 rq->completion_data = NULL;
260 rq->next_rq = NULL;
264 * blk_queue_ordered - does this queue support ordered writes
265 * @q: the request queue
266 * @ordered: one of QUEUE_ORDERED_*
267 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
269 * Description:
270 * For journalled file systems, doing ordered writes on a commit
271 * block instead of explicitly doing wait_on_buffer (which is bad
272 * for performance) can be a big win. Block drivers supporting this
273 * feature should call this function and indicate so.
276 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
277 prepare_flush_fn *prepare_flush_fn)
279 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
280 prepare_flush_fn == NULL) {
281 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
282 return -EINVAL;
285 if (ordered != QUEUE_ORDERED_NONE &&
286 ordered != QUEUE_ORDERED_DRAIN &&
287 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
288 ordered != QUEUE_ORDERED_DRAIN_FUA &&
289 ordered != QUEUE_ORDERED_TAG &&
290 ordered != QUEUE_ORDERED_TAG_FLUSH &&
291 ordered != QUEUE_ORDERED_TAG_FUA) {
292 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
293 return -EINVAL;
296 q->ordered = ordered;
297 q->next_ordered = ordered;
298 q->prepare_flush_fn = prepare_flush_fn;
300 return 0;
303 EXPORT_SYMBOL(blk_queue_ordered);
306 * blk_queue_issue_flush_fn - set function for issuing a flush
307 * @q: the request queue
308 * @iff: the function to be called issuing the flush
310 * Description:
311 * If a driver supports issuing a flush command, the support is notified
312 * to the block layer by defining it through this call.
315 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
317 q->issue_flush_fn = iff;
320 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
323 * Cache flushing for ordered writes handling
325 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
327 if (!q->ordseq)
328 return 0;
329 return 1 << ffz(q->ordseq);
332 unsigned blk_ordered_req_seq(struct request *rq)
334 struct request_queue *q = rq->q;
336 BUG_ON(q->ordseq == 0);
338 if (rq == &q->pre_flush_rq)
339 return QUEUE_ORDSEQ_PREFLUSH;
340 if (rq == &q->bar_rq)
341 return QUEUE_ORDSEQ_BAR;
342 if (rq == &q->post_flush_rq)
343 return QUEUE_ORDSEQ_POSTFLUSH;
346 * !fs requests don't need to follow barrier ordering. Always
347 * put them at the front. This fixes the following deadlock.
349 * http://thread.gmane.org/gmane.linux.kernel/537473
351 if (!blk_fs_request(rq))
352 return QUEUE_ORDSEQ_DRAIN;
354 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
355 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
356 return QUEUE_ORDSEQ_DRAIN;
357 else
358 return QUEUE_ORDSEQ_DONE;
361 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
363 struct request *rq;
364 int uptodate;
366 if (error && !q->orderr)
367 q->orderr = error;
369 BUG_ON(q->ordseq & seq);
370 q->ordseq |= seq;
372 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
373 return;
376 * Okay, sequence complete.
378 rq = q->orig_bar_rq;
379 uptodate = q->orderr ? q->orderr : 1;
381 q->ordseq = 0;
383 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
384 end_that_request_last(rq, uptodate);
387 static void pre_flush_end_io(struct request *rq, int error)
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
393 static void bar_end_io(struct request *rq, int error)
395 elv_completed_request(rq->q, rq);
396 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
399 static void post_flush_end_io(struct request *rq, int error)
401 elv_completed_request(rq->q, rq);
402 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
405 static void queue_flush(struct request_queue *q, unsigned which)
407 struct request *rq;
408 rq_end_io_fn *end_io;
410 if (which == QUEUE_ORDERED_PREFLUSH) {
411 rq = &q->pre_flush_rq;
412 end_io = pre_flush_end_io;
413 } else {
414 rq = &q->post_flush_rq;
415 end_io = post_flush_end_io;
418 rq->cmd_flags = REQ_HARDBARRIER;
419 rq_init(q, rq);
420 rq->elevator_private = NULL;
421 rq->elevator_private2 = NULL;
422 rq->rq_disk = q->bar_rq.rq_disk;
423 rq->end_io = end_io;
424 q->prepare_flush_fn(q, rq);
426 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
429 static inline struct request *start_ordered(struct request_queue *q,
430 struct request *rq)
432 q->bi_size = 0;
433 q->orderr = 0;
434 q->ordered = q->next_ordered;
435 q->ordseq |= QUEUE_ORDSEQ_STARTED;
438 * Prep proxy barrier request.
440 blkdev_dequeue_request(rq);
441 q->orig_bar_rq = rq;
442 rq = &q->bar_rq;
443 rq->cmd_flags = 0;
444 rq_init(q, rq);
445 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
446 rq->cmd_flags |= REQ_RW;
447 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
448 rq->elevator_private = NULL;
449 rq->elevator_private2 = NULL;
450 init_request_from_bio(rq, q->orig_bar_rq->bio);
451 rq->end_io = bar_end_io;
454 * Queue ordered sequence. As we stack them at the head, we
455 * need to queue in reverse order. Note that we rely on that
456 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
457 * request gets inbetween ordered sequence.
459 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
460 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
461 else
462 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
464 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
466 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
467 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
468 rq = &q->pre_flush_rq;
469 } else
470 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
472 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
473 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
474 else
475 rq = NULL;
477 return rq;
480 int blk_do_ordered(struct request_queue *q, struct request **rqp)
482 struct request *rq = *rqp;
483 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
485 if (!q->ordseq) {
486 if (!is_barrier)
487 return 1;
489 if (q->next_ordered != QUEUE_ORDERED_NONE) {
490 *rqp = start_ordered(q, rq);
491 return 1;
492 } else {
494 * This can happen when the queue switches to
495 * ORDERED_NONE while this request is on it.
497 blkdev_dequeue_request(rq);
498 end_that_request_first(rq, -EOPNOTSUPP,
499 rq->hard_nr_sectors);
500 end_that_request_last(rq, -EOPNOTSUPP);
501 *rqp = NULL;
502 return 0;
507 * Ordered sequence in progress
510 /* Special requests are not subject to ordering rules. */
511 if (!blk_fs_request(rq) &&
512 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
513 return 1;
515 if (q->ordered & QUEUE_ORDERED_TAG) {
516 /* Ordered by tag. Blocking the next barrier is enough. */
517 if (is_barrier && rq != &q->bar_rq)
518 *rqp = NULL;
519 } else {
520 /* Ordered by draining. Wait for turn. */
521 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
522 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
523 *rqp = NULL;
526 return 1;
529 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
531 struct request_queue *q = bio->bi_private;
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
538 q->bi_size += bytes;
540 if (bio->bi_size)
541 return 1;
543 /* Reset bio */
544 set_bit(BIO_UPTODATE, &bio->bi_flags);
545 bio->bi_size = q->bi_size;
546 bio->bi_sector -= (q->bi_size >> 9);
547 q->bi_size = 0;
549 return 0;
552 static int ordered_bio_endio(struct request *rq, struct bio *bio,
553 unsigned int nbytes, int error)
555 struct request_queue *q = rq->q;
556 bio_end_io_t *endio;
557 void *private;
559 if (&q->bar_rq != rq)
560 return 0;
563 * Okay, this is the barrier request in progress, dry finish it.
565 if (error && !q->orderr)
566 q->orderr = error;
568 endio = bio->bi_end_io;
569 private = bio->bi_private;
570 bio->bi_end_io = flush_dry_bio_endio;
571 bio->bi_private = q;
573 bio_endio(bio, nbytes, error);
575 bio->bi_end_io = endio;
576 bio->bi_private = private;
578 return 1;
582 * blk_queue_bounce_limit - set bounce buffer limit for queue
583 * @q: the request queue for the device
584 * @dma_addr: bus address limit
586 * Description:
587 * Different hardware can have different requirements as to what pages
588 * it can do I/O directly to. A low level driver can call
589 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
590 * buffers for doing I/O to pages residing above @page.
592 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
594 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
595 int dma = 0;
597 q->bounce_gfp = GFP_NOIO;
598 #if BITS_PER_LONG == 64
599 /* Assume anything <= 4GB can be handled by IOMMU.
600 Actually some IOMMUs can handle everything, but I don't
601 know of a way to test this here. */
602 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
603 dma = 1;
604 q->bounce_pfn = max_low_pfn;
605 #else
606 if (bounce_pfn < blk_max_low_pfn)
607 dma = 1;
608 q->bounce_pfn = bounce_pfn;
609 #endif
610 if (dma) {
611 init_emergency_isa_pool();
612 q->bounce_gfp = GFP_NOIO | GFP_DMA;
613 q->bounce_pfn = bounce_pfn;
617 EXPORT_SYMBOL(blk_queue_bounce_limit);
620 * blk_queue_max_sectors - set max sectors for a request for this queue
621 * @q: the request queue for the device
622 * @max_sectors: max sectors in the usual 512b unit
624 * Description:
625 * Enables a low level driver to set an upper limit on the size of
626 * received requests.
628 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
630 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
631 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
632 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
635 if (BLK_DEF_MAX_SECTORS > max_sectors)
636 q->max_hw_sectors = q->max_sectors = max_sectors;
637 else {
638 q->max_sectors = BLK_DEF_MAX_SECTORS;
639 q->max_hw_sectors = max_sectors;
643 EXPORT_SYMBOL(blk_queue_max_sectors);
646 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
647 * @q: the request queue for the device
648 * @max_segments: max number of segments
650 * Description:
651 * Enables a low level driver to set an upper limit on the number of
652 * physical data segments in a request. This would be the largest sized
653 * scatter list the driver could handle.
655 void blk_queue_max_phys_segments(struct request_queue *q,
656 unsigned short max_segments)
658 if (!max_segments) {
659 max_segments = 1;
660 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
663 q->max_phys_segments = max_segments;
666 EXPORT_SYMBOL(blk_queue_max_phys_segments);
669 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
670 * @q: the request queue for the device
671 * @max_segments: max number of segments
673 * Description:
674 * Enables a low level driver to set an upper limit on the number of
675 * hw data segments in a request. This would be the largest number of
676 * address/length pairs the host adapter can actually give as once
677 * to the device.
679 void blk_queue_max_hw_segments(struct request_queue *q,
680 unsigned short max_segments)
682 if (!max_segments) {
683 max_segments = 1;
684 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
687 q->max_hw_segments = max_segments;
690 EXPORT_SYMBOL(blk_queue_max_hw_segments);
693 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
694 * @q: the request queue for the device
695 * @max_size: max size of segment in bytes
697 * Description:
698 * Enables a low level driver to set an upper limit on the size of a
699 * coalesced segment
701 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
703 if (max_size < PAGE_CACHE_SIZE) {
704 max_size = PAGE_CACHE_SIZE;
705 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
708 q->max_segment_size = max_size;
711 EXPORT_SYMBOL(blk_queue_max_segment_size);
714 * blk_queue_hardsect_size - set hardware sector size for the queue
715 * @q: the request queue for the device
716 * @size: the hardware sector size, in bytes
718 * Description:
719 * This should typically be set to the lowest possible sector size
720 * that the hardware can operate on (possible without reverting to
721 * even internal read-modify-write operations). Usually the default
722 * of 512 covers most hardware.
724 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
726 q->hardsect_size = size;
729 EXPORT_SYMBOL(blk_queue_hardsect_size);
732 * Returns the minimum that is _not_ zero, unless both are zero.
734 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
737 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
738 * @t: the stacking driver (top)
739 * @b: the underlying device (bottom)
741 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
743 /* zero is "infinity" */
744 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
745 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
747 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
748 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
749 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
750 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
751 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
752 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
755 EXPORT_SYMBOL(blk_queue_stack_limits);
758 * blk_queue_segment_boundary - set boundary rules for segment merging
759 * @q: the request queue for the device
760 * @mask: the memory boundary mask
762 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
764 if (mask < PAGE_CACHE_SIZE - 1) {
765 mask = PAGE_CACHE_SIZE - 1;
766 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
769 q->seg_boundary_mask = mask;
772 EXPORT_SYMBOL(blk_queue_segment_boundary);
775 * blk_queue_dma_alignment - set dma length and memory alignment
776 * @q: the request queue for the device
777 * @mask: alignment mask
779 * description:
780 * set required memory and length aligment for direct dma transactions.
781 * this is used when buiding direct io requests for the queue.
784 void blk_queue_dma_alignment(struct request_queue *q, int mask)
786 q->dma_alignment = mask;
789 EXPORT_SYMBOL(blk_queue_dma_alignment);
792 * blk_queue_find_tag - find a request by its tag and queue
793 * @q: The request queue for the device
794 * @tag: The tag of the request
796 * Notes:
797 * Should be used when a device returns a tag and you want to match
798 * it with a request.
800 * no locks need be held.
802 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
804 return blk_map_queue_find_tag(q->queue_tags, tag);
807 EXPORT_SYMBOL(blk_queue_find_tag);
810 * __blk_free_tags - release a given set of tag maintenance info
811 * @bqt: the tag map to free
813 * Tries to free the specified @bqt@. Returns true if it was
814 * actually freed and false if there are still references using it
816 static int __blk_free_tags(struct blk_queue_tag *bqt)
818 int retval;
820 retval = atomic_dec_and_test(&bqt->refcnt);
821 if (retval) {
822 BUG_ON(bqt->busy);
823 BUG_ON(!list_empty(&bqt->busy_list));
825 kfree(bqt->tag_index);
826 bqt->tag_index = NULL;
828 kfree(bqt->tag_map);
829 bqt->tag_map = NULL;
831 kfree(bqt);
835 return retval;
839 * __blk_queue_free_tags - release tag maintenance info
840 * @q: the request queue for the device
842 * Notes:
843 * blk_cleanup_queue() will take care of calling this function, if tagging
844 * has been used. So there's no need to call this directly.
846 static void __blk_queue_free_tags(struct request_queue *q)
848 struct blk_queue_tag *bqt = q->queue_tags;
850 if (!bqt)
851 return;
853 __blk_free_tags(bqt);
855 q->queue_tags = NULL;
856 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
861 * blk_free_tags - release a given set of tag maintenance info
862 * @bqt: the tag map to free
864 * For externally managed @bqt@ frees the map. Callers of this
865 * function must guarantee to have released all the queues that
866 * might have been using this tag map.
868 void blk_free_tags(struct blk_queue_tag *bqt)
870 if (unlikely(!__blk_free_tags(bqt)))
871 BUG();
873 EXPORT_SYMBOL(blk_free_tags);
876 * blk_queue_free_tags - release tag maintenance info
877 * @q: the request queue for the device
879 * Notes:
880 * This is used to disabled tagged queuing to a device, yet leave
881 * queue in function.
883 void blk_queue_free_tags(struct request_queue *q)
885 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
888 EXPORT_SYMBOL(blk_queue_free_tags);
890 static int
891 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
893 struct request **tag_index;
894 unsigned long *tag_map;
895 int nr_ulongs;
897 if (q && depth > q->nr_requests * 2) {
898 depth = q->nr_requests * 2;
899 printk(KERN_ERR "%s: adjusted depth to %d\n",
900 __FUNCTION__, depth);
903 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
904 if (!tag_index)
905 goto fail;
907 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
908 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
909 if (!tag_map)
910 goto fail;
912 tags->real_max_depth = depth;
913 tags->max_depth = depth;
914 tags->tag_index = tag_index;
915 tags->tag_map = tag_map;
917 return 0;
918 fail:
919 kfree(tag_index);
920 return -ENOMEM;
923 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
924 int depth)
926 struct blk_queue_tag *tags;
928 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
929 if (!tags)
930 goto fail;
932 if (init_tag_map(q, tags, depth))
933 goto fail;
935 INIT_LIST_HEAD(&tags->busy_list);
936 tags->busy = 0;
937 atomic_set(&tags->refcnt, 1);
938 return tags;
939 fail:
940 kfree(tags);
941 return NULL;
945 * blk_init_tags - initialize the tag info for an external tag map
946 * @depth: the maximum queue depth supported
947 * @tags: the tag to use
949 struct blk_queue_tag *blk_init_tags(int depth)
951 return __blk_queue_init_tags(NULL, depth);
953 EXPORT_SYMBOL(blk_init_tags);
956 * blk_queue_init_tags - initialize the queue tag info
957 * @q: the request queue for the device
958 * @depth: the maximum queue depth supported
959 * @tags: the tag to use
961 int blk_queue_init_tags(struct request_queue *q, int depth,
962 struct blk_queue_tag *tags)
964 int rc;
966 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
968 if (!tags && !q->queue_tags) {
969 tags = __blk_queue_init_tags(q, depth);
971 if (!tags)
972 goto fail;
973 } else if (q->queue_tags) {
974 if ((rc = blk_queue_resize_tags(q, depth)))
975 return rc;
976 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
977 return 0;
978 } else
979 atomic_inc(&tags->refcnt);
982 * assign it, all done
984 q->queue_tags = tags;
985 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
986 return 0;
987 fail:
988 kfree(tags);
989 return -ENOMEM;
992 EXPORT_SYMBOL(blk_queue_init_tags);
995 * blk_queue_resize_tags - change the queueing depth
996 * @q: the request queue for the device
997 * @new_depth: the new max command queueing depth
999 * Notes:
1000 * Must be called with the queue lock held.
1002 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1004 struct blk_queue_tag *bqt = q->queue_tags;
1005 struct request **tag_index;
1006 unsigned long *tag_map;
1007 int max_depth, nr_ulongs;
1009 if (!bqt)
1010 return -ENXIO;
1013 * if we already have large enough real_max_depth. just
1014 * adjust max_depth. *NOTE* as requests with tag value
1015 * between new_depth and real_max_depth can be in-flight, tag
1016 * map can not be shrunk blindly here.
1018 if (new_depth <= bqt->real_max_depth) {
1019 bqt->max_depth = new_depth;
1020 return 0;
1024 * Currently cannot replace a shared tag map with a new
1025 * one, so error out if this is the case
1027 if (atomic_read(&bqt->refcnt) != 1)
1028 return -EBUSY;
1031 * save the old state info, so we can copy it back
1033 tag_index = bqt->tag_index;
1034 tag_map = bqt->tag_map;
1035 max_depth = bqt->real_max_depth;
1037 if (init_tag_map(q, bqt, new_depth))
1038 return -ENOMEM;
1040 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1041 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1042 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1044 kfree(tag_index);
1045 kfree(tag_map);
1046 return 0;
1049 EXPORT_SYMBOL(blk_queue_resize_tags);
1052 * blk_queue_end_tag - end tag operations for a request
1053 * @q: the request queue for the device
1054 * @rq: the request that has completed
1056 * Description:
1057 * Typically called when end_that_request_first() returns 0, meaning
1058 * all transfers have been done for a request. It's important to call
1059 * this function before end_that_request_last(), as that will put the
1060 * request back on the free list thus corrupting the internal tag list.
1062 * Notes:
1063 * queue lock must be held.
1065 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1067 struct blk_queue_tag *bqt = q->queue_tags;
1068 int tag = rq->tag;
1070 BUG_ON(tag == -1);
1072 if (unlikely(tag >= bqt->real_max_depth))
1074 * This can happen after tag depth has been reduced.
1075 * FIXME: how about a warning or info message here?
1077 return;
1079 list_del_init(&rq->queuelist);
1080 rq->cmd_flags &= ~REQ_QUEUED;
1081 rq->tag = -1;
1083 if (unlikely(bqt->tag_index[tag] == NULL))
1084 printk(KERN_ERR "%s: tag %d is missing\n",
1085 __FUNCTION__, tag);
1087 bqt->tag_index[tag] = NULL;
1090 * We use test_and_clear_bit's memory ordering properties here.
1091 * The tag_map bit acts as a lock for tag_index[bit], so we need
1092 * a barrer before clearing the bit (precisely: release semantics).
1093 * Could use clear_bit_unlock when it is merged.
1095 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1096 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1097 __FUNCTION__, tag);
1098 return;
1101 bqt->busy--;
1104 EXPORT_SYMBOL(blk_queue_end_tag);
1107 * blk_queue_start_tag - find a free tag and assign it
1108 * @q: the request queue for the device
1109 * @rq: the block request that needs tagging
1111 * Description:
1112 * This can either be used as a stand-alone helper, or possibly be
1113 * assigned as the queue &prep_rq_fn (in which case &struct request
1114 * automagically gets a tag assigned). Note that this function
1115 * assumes that any type of request can be queued! if this is not
1116 * true for your device, you must check the request type before
1117 * calling this function. The request will also be removed from
1118 * the request queue, so it's the drivers responsibility to readd
1119 * it if it should need to be restarted for some reason.
1121 * Notes:
1122 * queue lock must be held.
1124 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1126 struct blk_queue_tag *bqt = q->queue_tags;
1127 int tag;
1129 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1130 printk(KERN_ERR
1131 "%s: request %p for device [%s] already tagged %d",
1132 __FUNCTION__, rq,
1133 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1134 BUG();
1138 * Protect against shared tag maps, as we may not have exclusive
1139 * access to the tag map.
1141 do {
1142 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1143 if (tag >= bqt->max_depth)
1144 return 1;
1146 } while (test_and_set_bit(tag, bqt->tag_map));
1148 * We rely on test_and_set_bit providing lock memory ordering semantics
1149 * (could use test_and_set_bit_lock when it is merged).
1152 rq->cmd_flags |= REQ_QUEUED;
1153 rq->tag = tag;
1154 bqt->tag_index[tag] = rq;
1155 blkdev_dequeue_request(rq);
1156 list_add(&rq->queuelist, &bqt->busy_list);
1157 bqt->busy++;
1158 return 0;
1161 EXPORT_SYMBOL(blk_queue_start_tag);
1164 * blk_queue_invalidate_tags - invalidate all pending tags
1165 * @q: the request queue for the device
1167 * Description:
1168 * Hardware conditions may dictate a need to stop all pending requests.
1169 * In this case, we will safely clear the block side of the tag queue and
1170 * readd all requests to the request queue in the right order.
1172 * Notes:
1173 * queue lock must be held.
1175 void blk_queue_invalidate_tags(struct request_queue *q)
1177 struct blk_queue_tag *bqt = q->queue_tags;
1178 struct list_head *tmp, *n;
1179 struct request *rq;
1181 list_for_each_safe(tmp, n, &bqt->busy_list) {
1182 rq = list_entry_rq(tmp);
1184 if (rq->tag == -1) {
1185 printk(KERN_ERR
1186 "%s: bad tag found on list\n", __FUNCTION__);
1187 list_del_init(&rq->queuelist);
1188 rq->cmd_flags &= ~REQ_QUEUED;
1189 } else
1190 blk_queue_end_tag(q, rq);
1192 rq->cmd_flags &= ~REQ_STARTED;
1193 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1197 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1199 void blk_dump_rq_flags(struct request *rq, char *msg)
1201 int bit;
1203 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1204 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1205 rq->cmd_flags);
1207 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1208 rq->nr_sectors,
1209 rq->current_nr_sectors);
1210 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1212 if (blk_pc_request(rq)) {
1213 printk("cdb: ");
1214 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1215 printk("%02x ", rq->cmd[bit]);
1216 printk("\n");
1220 EXPORT_SYMBOL(blk_dump_rq_flags);
1222 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1224 struct request rq;
1225 struct bio *nxt = bio->bi_next;
1226 rq.q = q;
1227 rq.bio = rq.biotail = bio;
1228 bio->bi_next = NULL;
1229 blk_recalc_rq_segments(&rq);
1230 bio->bi_next = nxt;
1231 bio->bi_phys_segments = rq.nr_phys_segments;
1232 bio->bi_hw_segments = rq.nr_hw_segments;
1233 bio->bi_flags |= (1 << BIO_SEG_VALID);
1235 EXPORT_SYMBOL(blk_recount_segments);
1237 static void blk_recalc_rq_segments(struct request *rq)
1239 int nr_phys_segs;
1240 int nr_hw_segs;
1241 unsigned int phys_size;
1242 unsigned int hw_size;
1243 struct bio_vec *bv, *bvprv = NULL;
1244 int seg_size;
1245 int hw_seg_size;
1246 int cluster;
1247 struct bio *bio;
1248 int i;
1249 int high, highprv = 1;
1250 struct request_queue *q = rq->q;
1252 if (!rq->bio)
1253 return;
1255 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1256 hw_seg_size = seg_size = 0;
1257 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1258 rq_for_each_bio(bio, rq)
1259 bio_for_each_segment(bv, bio, i) {
1261 * the trick here is making sure that a high page is never
1262 * considered part of another segment, since that might
1263 * change with the bounce page.
1265 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1266 if (high || highprv)
1267 goto new_hw_segment;
1268 if (cluster) {
1269 if (seg_size + bv->bv_len > q->max_segment_size)
1270 goto new_segment;
1271 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1272 goto new_segment;
1273 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1274 goto new_segment;
1275 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1276 goto new_hw_segment;
1278 seg_size += bv->bv_len;
1279 hw_seg_size += bv->bv_len;
1280 bvprv = bv;
1281 continue;
1283 new_segment:
1284 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1285 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1286 hw_seg_size += bv->bv_len;
1287 else {
1288 new_hw_segment:
1289 if (nr_hw_segs == 1 &&
1290 hw_seg_size > rq->bio->bi_hw_front_size)
1291 rq->bio->bi_hw_front_size = hw_seg_size;
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1302 if (nr_hw_segs == 1 &&
1303 hw_seg_size > rq->bio->bi_hw_front_size)
1304 rq->bio->bi_hw_front_size = hw_seg_size;
1305 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1306 rq->biotail->bi_hw_back_size = hw_seg_size;
1307 rq->nr_phys_segments = nr_phys_segs;
1308 rq->nr_hw_segments = nr_hw_segs;
1311 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1312 struct bio *nxt)
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1329 return 0;
1332 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1333 struct bio *nxt)
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1341 return 0;
1342 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1343 return 0;
1345 return 1;
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1352 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1353 struct scatterlist *sg)
1355 struct bio_vec *bvec, *bvprv;
1356 struct bio *bio;
1357 int nsegs, i, cluster;
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1363 * for each bio in rq
1365 bvprv = NULL;
1366 rq_for_each_bio(bio, rq) {
1368 * for each segment in bio
1370 bio_for_each_segment(bvec, bio, i) {
1371 int nbytes = bvec->bv_len;
1373 if (bvprv && cluster) {
1374 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1375 goto new_segment;
1377 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1378 goto new_segment;
1379 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1380 goto new_segment;
1382 sg[nsegs - 1].length += nbytes;
1383 } else {
1384 new_segment:
1385 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1386 sg[nsegs].page = bvec->bv_page;
1387 sg[nsegs].length = nbytes;
1388 sg[nsegs].offset = bvec->bv_offset;
1390 nsegs++;
1392 bvprv = bvec;
1393 } /* segments in bio */
1394 } /* bios in rq */
1396 return nsegs;
1399 EXPORT_SYMBOL(blk_rq_map_sg);
1402 * the standard queue merge functions, can be overridden with device
1403 * specific ones if so desired
1406 static inline int ll_new_mergeable(struct request_queue *q,
1407 struct request *req,
1408 struct bio *bio)
1410 int nr_phys_segs = bio_phys_segments(q, bio);
1412 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1413 req->cmd_flags |= REQ_NOMERGE;
1414 if (req == q->last_merge)
1415 q->last_merge = NULL;
1416 return 0;
1420 * A hw segment is just getting larger, bump just the phys
1421 * counter.
1423 req->nr_phys_segments += nr_phys_segs;
1424 return 1;
1427 static inline int ll_new_hw_segment(struct request_queue *q,
1428 struct request *req,
1429 struct bio *bio)
1431 int nr_hw_segs = bio_hw_segments(q, bio);
1432 int nr_phys_segs = bio_phys_segments(q, bio);
1434 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1435 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1436 req->cmd_flags |= REQ_NOMERGE;
1437 if (req == q->last_merge)
1438 q->last_merge = NULL;
1439 return 0;
1443 * This will form the start of a new hw segment. Bump both
1444 * counters.
1446 req->nr_hw_segments += nr_hw_segs;
1447 req->nr_phys_segments += nr_phys_segs;
1448 return 1;
1451 int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1453 unsigned short max_sectors;
1454 int len;
1456 if (unlikely(blk_pc_request(req)))
1457 max_sectors = q->max_hw_sectors;
1458 else
1459 max_sectors = q->max_sectors;
1461 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1462 req->cmd_flags |= REQ_NOMERGE;
1463 if (req == q->last_merge)
1464 q->last_merge = NULL;
1465 return 0;
1467 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1468 blk_recount_segments(q, req->biotail);
1469 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1470 blk_recount_segments(q, bio);
1471 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1472 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1473 !BIOVEC_VIRT_OVERSIZE(len)) {
1474 int mergeable = ll_new_mergeable(q, req, bio);
1476 if (mergeable) {
1477 if (req->nr_hw_segments == 1)
1478 req->bio->bi_hw_front_size = len;
1479 if (bio->bi_hw_segments == 1)
1480 bio->bi_hw_back_size = len;
1482 return mergeable;
1485 return ll_new_hw_segment(q, req, bio);
1487 EXPORT_SYMBOL(ll_back_merge_fn);
1489 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1490 struct bio *bio)
1492 unsigned short max_sectors;
1493 int len;
1495 if (unlikely(blk_pc_request(req)))
1496 max_sectors = q->max_hw_sectors;
1497 else
1498 max_sectors = q->max_sectors;
1501 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1502 req->cmd_flags |= REQ_NOMERGE;
1503 if (req == q->last_merge)
1504 q->last_merge = NULL;
1505 return 0;
1507 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1508 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1509 blk_recount_segments(q, bio);
1510 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1511 blk_recount_segments(q, req->bio);
1512 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1513 !BIOVEC_VIRT_OVERSIZE(len)) {
1514 int mergeable = ll_new_mergeable(q, req, bio);
1516 if (mergeable) {
1517 if (bio->bi_hw_segments == 1)
1518 bio->bi_hw_front_size = len;
1519 if (req->nr_hw_segments == 1)
1520 req->biotail->bi_hw_back_size = len;
1522 return mergeable;
1525 return ll_new_hw_segment(q, req, bio);
1528 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1529 struct request *next)
1531 int total_phys_segments;
1532 int total_hw_segments;
1535 * First check if the either of the requests are re-queued
1536 * requests. Can't merge them if they are.
1538 if (req->special || next->special)
1539 return 0;
1542 * Will it become too large?
1544 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1545 return 0;
1547 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1548 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1549 total_phys_segments--;
1551 if (total_phys_segments > q->max_phys_segments)
1552 return 0;
1554 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1555 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1556 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1558 * propagate the combined length to the end of the requests
1560 if (req->nr_hw_segments == 1)
1561 req->bio->bi_hw_front_size = len;
1562 if (next->nr_hw_segments == 1)
1563 next->biotail->bi_hw_back_size = len;
1564 total_hw_segments--;
1567 if (total_hw_segments > q->max_hw_segments)
1568 return 0;
1570 /* Merge is OK... */
1571 req->nr_phys_segments = total_phys_segments;
1572 req->nr_hw_segments = total_hw_segments;
1573 return 1;
1577 * "plug" the device if there are no outstanding requests: this will
1578 * force the transfer to start only after we have put all the requests
1579 * on the list.
1581 * This is called with interrupts off and no requests on the queue and
1582 * with the queue lock held.
1584 void blk_plug_device(struct request_queue *q)
1586 WARN_ON(!irqs_disabled());
1589 * don't plug a stopped queue, it must be paired with blk_start_queue()
1590 * which will restart the queueing
1592 if (blk_queue_stopped(q))
1593 return;
1595 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1596 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1597 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1601 EXPORT_SYMBOL(blk_plug_device);
1604 * remove the queue from the plugged list, if present. called with
1605 * queue lock held and interrupts disabled.
1607 int blk_remove_plug(struct request_queue *q)
1609 WARN_ON(!irqs_disabled());
1611 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1612 return 0;
1614 del_timer(&q->unplug_timer);
1615 return 1;
1618 EXPORT_SYMBOL(blk_remove_plug);
1621 * remove the plug and let it rip..
1623 void __generic_unplug_device(struct request_queue *q)
1625 if (unlikely(blk_queue_stopped(q)))
1626 return;
1628 if (!blk_remove_plug(q))
1629 return;
1631 q->request_fn(q);
1633 EXPORT_SYMBOL(__generic_unplug_device);
1636 * generic_unplug_device - fire a request queue
1637 * @q: The &struct request_queue in question
1639 * Description:
1640 * Linux uses plugging to build bigger requests queues before letting
1641 * the device have at them. If a queue is plugged, the I/O scheduler
1642 * is still adding and merging requests on the queue. Once the queue
1643 * gets unplugged, the request_fn defined for the queue is invoked and
1644 * transfers started.
1646 void generic_unplug_device(struct request_queue *q)
1648 spin_lock_irq(q->queue_lock);
1649 __generic_unplug_device(q);
1650 spin_unlock_irq(q->queue_lock);
1652 EXPORT_SYMBOL(generic_unplug_device);
1654 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1655 struct page *page)
1657 struct request_queue *q = bdi->unplug_io_data;
1660 * devices don't necessarily have an ->unplug_fn defined
1662 if (q->unplug_fn) {
1663 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1664 q->rq.count[READ] + q->rq.count[WRITE]);
1666 q->unplug_fn(q);
1670 static void blk_unplug_work(struct work_struct *work)
1672 struct request_queue *q =
1673 container_of(work, struct request_queue, unplug_work);
1675 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1676 q->rq.count[READ] + q->rq.count[WRITE]);
1678 q->unplug_fn(q);
1681 static void blk_unplug_timeout(unsigned long data)
1683 struct request_queue *q = (struct request_queue *)data;
1685 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1686 q->rq.count[READ] + q->rq.count[WRITE]);
1688 kblockd_schedule_work(&q->unplug_work);
1692 * blk_start_queue - restart a previously stopped queue
1693 * @q: The &struct request_queue in question
1695 * Description:
1696 * blk_start_queue() will clear the stop flag on the queue, and call
1697 * the request_fn for the queue if it was in a stopped state when
1698 * entered. Also see blk_stop_queue(). Queue lock must be held.
1700 void blk_start_queue(struct request_queue *q)
1702 WARN_ON(!irqs_disabled());
1704 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1707 * one level of recursion is ok and is much faster than kicking
1708 * the unplug handling
1710 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1711 q->request_fn(q);
1712 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1713 } else {
1714 blk_plug_device(q);
1715 kblockd_schedule_work(&q->unplug_work);
1719 EXPORT_SYMBOL(blk_start_queue);
1722 * blk_stop_queue - stop a queue
1723 * @q: The &struct request_queue in question
1725 * Description:
1726 * The Linux block layer assumes that a block driver will consume all
1727 * entries on the request queue when the request_fn strategy is called.
1728 * Often this will not happen, because of hardware limitations (queue
1729 * depth settings). If a device driver gets a 'queue full' response,
1730 * or if it simply chooses not to queue more I/O at one point, it can
1731 * call this function to prevent the request_fn from being called until
1732 * the driver has signalled it's ready to go again. This happens by calling
1733 * blk_start_queue() to restart queue operations. Queue lock must be held.
1735 void blk_stop_queue(struct request_queue *q)
1737 blk_remove_plug(q);
1738 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1740 EXPORT_SYMBOL(blk_stop_queue);
1743 * blk_sync_queue - cancel any pending callbacks on a queue
1744 * @q: the queue
1746 * Description:
1747 * The block layer may perform asynchronous callback activity
1748 * on a queue, such as calling the unplug function after a timeout.
1749 * A block device may call blk_sync_queue to ensure that any
1750 * such activity is cancelled, thus allowing it to release resources
1751 * that the callbacks might use. The caller must already have made sure
1752 * that its ->make_request_fn will not re-add plugging prior to calling
1753 * this function.
1756 void blk_sync_queue(struct request_queue *q)
1758 del_timer_sync(&q->unplug_timer);
1760 EXPORT_SYMBOL(blk_sync_queue);
1763 * blk_run_queue - run a single device queue
1764 * @q: The queue to run
1766 void blk_run_queue(struct request_queue *q)
1768 unsigned long flags;
1770 spin_lock_irqsave(q->queue_lock, flags);
1771 blk_remove_plug(q);
1774 * Only recurse once to avoid overrunning the stack, let the unplug
1775 * handling reinvoke the handler shortly if we already got there.
1777 if (!elv_queue_empty(q)) {
1778 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1779 q->request_fn(q);
1780 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1781 } else {
1782 blk_plug_device(q);
1783 kblockd_schedule_work(&q->unplug_work);
1787 spin_unlock_irqrestore(q->queue_lock, flags);
1789 EXPORT_SYMBOL(blk_run_queue);
1792 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1793 * @kobj: the kobj belonging of the request queue to be released
1795 * Description:
1796 * blk_cleanup_queue is the pair to blk_init_queue() or
1797 * blk_queue_make_request(). It should be called when a request queue is
1798 * being released; typically when a block device is being de-registered.
1799 * Currently, its primary task it to free all the &struct request
1800 * structures that were allocated to the queue and the queue itself.
1802 * Caveat:
1803 * Hopefully the low level driver will have finished any
1804 * outstanding requests first...
1806 static void blk_release_queue(struct kobject *kobj)
1808 struct request_queue *q =
1809 container_of(kobj, struct request_queue, kobj);
1810 struct request_list *rl = &q->rq;
1812 blk_sync_queue(q);
1814 if (rl->rq_pool)
1815 mempool_destroy(rl->rq_pool);
1817 if (q->queue_tags)
1818 __blk_queue_free_tags(q);
1820 blk_trace_shutdown(q);
1822 kmem_cache_free(requestq_cachep, q);
1825 void blk_put_queue(struct request_queue *q)
1827 kobject_put(&q->kobj);
1829 EXPORT_SYMBOL(blk_put_queue);
1831 void blk_cleanup_queue(struct request_queue * q)
1833 mutex_lock(&q->sysfs_lock);
1834 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1835 mutex_unlock(&q->sysfs_lock);
1837 if (q->elevator)
1838 elevator_exit(q->elevator);
1840 blk_put_queue(q);
1843 EXPORT_SYMBOL(blk_cleanup_queue);
1845 static int blk_init_free_list(struct request_queue *q)
1847 struct request_list *rl = &q->rq;
1849 rl->count[READ] = rl->count[WRITE] = 0;
1850 rl->starved[READ] = rl->starved[WRITE] = 0;
1851 rl->elvpriv = 0;
1852 init_waitqueue_head(&rl->wait[READ]);
1853 init_waitqueue_head(&rl->wait[WRITE]);
1855 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1856 mempool_free_slab, request_cachep, q->node);
1858 if (!rl->rq_pool)
1859 return -ENOMEM;
1861 return 0;
1864 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1866 return blk_alloc_queue_node(gfp_mask, -1);
1868 EXPORT_SYMBOL(blk_alloc_queue);
1870 static struct kobj_type queue_ktype;
1872 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1874 struct request_queue *q;
1876 q = kmem_cache_alloc_node(requestq_cachep,
1877 gfp_mask | __GFP_ZERO, node_id);
1878 if (!q)
1879 return NULL;
1881 init_timer(&q->unplug_timer);
1883 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1884 q->kobj.ktype = &queue_ktype;
1885 kobject_init(&q->kobj);
1887 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1888 q->backing_dev_info.unplug_io_data = q;
1890 mutex_init(&q->sysfs_lock);
1892 return q;
1894 EXPORT_SYMBOL(blk_alloc_queue_node);
1897 * blk_init_queue - prepare a request queue for use with a block device
1898 * @rfn: The function to be called to process requests that have been
1899 * placed on the queue.
1900 * @lock: Request queue spin lock
1902 * Description:
1903 * If a block device wishes to use the standard request handling procedures,
1904 * which sorts requests and coalesces adjacent requests, then it must
1905 * call blk_init_queue(). The function @rfn will be called when there
1906 * are requests on the queue that need to be processed. If the device
1907 * supports plugging, then @rfn may not be called immediately when requests
1908 * are available on the queue, but may be called at some time later instead.
1909 * Plugged queues are generally unplugged when a buffer belonging to one
1910 * of the requests on the queue is needed, or due to memory pressure.
1912 * @rfn is not required, or even expected, to remove all requests off the
1913 * queue, but only as many as it can handle at a time. If it does leave
1914 * requests on the queue, it is responsible for arranging that the requests
1915 * get dealt with eventually.
1917 * The queue spin lock must be held while manipulating the requests on the
1918 * request queue; this lock will be taken also from interrupt context, so irq
1919 * disabling is needed for it.
1921 * Function returns a pointer to the initialized request queue, or NULL if
1922 * it didn't succeed.
1924 * Note:
1925 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1926 * when the block device is deactivated (such as at module unload).
1929 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1931 return blk_init_queue_node(rfn, lock, -1);
1933 EXPORT_SYMBOL(blk_init_queue);
1935 struct request_queue *
1936 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1938 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1940 if (!q)
1941 return NULL;
1943 q->node = node_id;
1944 if (blk_init_free_list(q)) {
1945 kmem_cache_free(requestq_cachep, q);
1946 return NULL;
1950 * if caller didn't supply a lock, they get per-queue locking with
1951 * our embedded lock
1953 if (!lock) {
1954 spin_lock_init(&q->__queue_lock);
1955 lock = &q->__queue_lock;
1958 q->request_fn = rfn;
1959 q->prep_rq_fn = NULL;
1960 q->unplug_fn = generic_unplug_device;
1961 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1962 q->queue_lock = lock;
1964 blk_queue_segment_boundary(q, 0xffffffff);
1966 blk_queue_make_request(q, __make_request);
1967 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1969 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1970 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1972 q->sg_reserved_size = INT_MAX;
1975 * all done
1977 if (!elevator_init(q, NULL)) {
1978 blk_queue_congestion_threshold(q);
1979 return q;
1982 blk_put_queue(q);
1983 return NULL;
1985 EXPORT_SYMBOL(blk_init_queue_node);
1987 int blk_get_queue(struct request_queue *q)
1989 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1990 kobject_get(&q->kobj);
1991 return 0;
1994 return 1;
1997 EXPORT_SYMBOL(blk_get_queue);
1999 static inline void blk_free_request(struct request_queue *q, struct request *rq)
2001 if (rq->cmd_flags & REQ_ELVPRIV)
2002 elv_put_request(q, rq);
2003 mempool_free(rq, q->rq.rq_pool);
2006 static struct request *
2007 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
2009 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2011 if (!rq)
2012 return NULL;
2015 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2016 * see bio.h and blkdev.h
2018 rq->cmd_flags = rw | REQ_ALLOCED;
2020 if (priv) {
2021 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2022 mempool_free(rq, q->rq.rq_pool);
2023 return NULL;
2025 rq->cmd_flags |= REQ_ELVPRIV;
2028 return rq;
2032 * ioc_batching returns true if the ioc is a valid batching request and
2033 * should be given priority access to a request.
2035 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2037 if (!ioc)
2038 return 0;
2041 * Make sure the process is able to allocate at least 1 request
2042 * even if the batch times out, otherwise we could theoretically
2043 * lose wakeups.
2045 return ioc->nr_batch_requests == q->nr_batching ||
2046 (ioc->nr_batch_requests > 0
2047 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2051 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2052 * will cause the process to be a "batcher" on all queues in the system. This
2053 * is the behaviour we want though - once it gets a wakeup it should be given
2054 * a nice run.
2056 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2058 if (!ioc || ioc_batching(q, ioc))
2059 return;
2061 ioc->nr_batch_requests = q->nr_batching;
2062 ioc->last_waited = jiffies;
2065 static void __freed_request(struct request_queue *q, int rw)
2067 struct request_list *rl = &q->rq;
2069 if (rl->count[rw] < queue_congestion_off_threshold(q))
2070 blk_clear_queue_congested(q, rw);
2072 if (rl->count[rw] + 1 <= q->nr_requests) {
2073 if (waitqueue_active(&rl->wait[rw]))
2074 wake_up(&rl->wait[rw]);
2076 blk_clear_queue_full(q, rw);
2081 * A request has just been released. Account for it, update the full and
2082 * congestion status, wake up any waiters. Called under q->queue_lock.
2084 static void freed_request(struct request_queue *q, int rw, int priv)
2086 struct request_list *rl = &q->rq;
2088 rl->count[rw]--;
2089 if (priv)
2090 rl->elvpriv--;
2092 __freed_request(q, rw);
2094 if (unlikely(rl->starved[rw ^ 1]))
2095 __freed_request(q, rw ^ 1);
2098 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2100 * Get a free request, queue_lock must be held.
2101 * Returns NULL on failure, with queue_lock held.
2102 * Returns !NULL on success, with queue_lock *not held*.
2104 static struct request *get_request(struct request_queue *q, int rw_flags,
2105 struct bio *bio, gfp_t gfp_mask)
2107 struct request *rq = NULL;
2108 struct request_list *rl = &q->rq;
2109 struct io_context *ioc = NULL;
2110 const int rw = rw_flags & 0x01;
2111 int may_queue, priv;
2113 may_queue = elv_may_queue(q, rw_flags);
2114 if (may_queue == ELV_MQUEUE_NO)
2115 goto rq_starved;
2117 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2118 if (rl->count[rw]+1 >= q->nr_requests) {
2119 ioc = current_io_context(GFP_ATOMIC, q->node);
2121 * The queue will fill after this allocation, so set
2122 * it as full, and mark this process as "batching".
2123 * This process will be allowed to complete a batch of
2124 * requests, others will be blocked.
2126 if (!blk_queue_full(q, rw)) {
2127 ioc_set_batching(q, ioc);
2128 blk_set_queue_full(q, rw);
2129 } else {
2130 if (may_queue != ELV_MQUEUE_MUST
2131 && !ioc_batching(q, ioc)) {
2133 * The queue is full and the allocating
2134 * process is not a "batcher", and not
2135 * exempted by the IO scheduler
2137 goto out;
2141 blk_set_queue_congested(q, rw);
2145 * Only allow batching queuers to allocate up to 50% over the defined
2146 * limit of requests, otherwise we could have thousands of requests
2147 * allocated with any setting of ->nr_requests
2149 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2150 goto out;
2152 rl->count[rw]++;
2153 rl->starved[rw] = 0;
2155 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2156 if (priv)
2157 rl->elvpriv++;
2159 spin_unlock_irq(q->queue_lock);
2161 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2162 if (unlikely(!rq)) {
2164 * Allocation failed presumably due to memory. Undo anything
2165 * we might have messed up.
2167 * Allocating task should really be put onto the front of the
2168 * wait queue, but this is pretty rare.
2170 spin_lock_irq(q->queue_lock);
2171 freed_request(q, rw, priv);
2174 * in the very unlikely event that allocation failed and no
2175 * requests for this direction was pending, mark us starved
2176 * so that freeing of a request in the other direction will
2177 * notice us. another possible fix would be to split the
2178 * rq mempool into READ and WRITE
2180 rq_starved:
2181 if (unlikely(rl->count[rw] == 0))
2182 rl->starved[rw] = 1;
2184 goto out;
2188 * ioc may be NULL here, and ioc_batching will be false. That's
2189 * OK, if the queue is under the request limit then requests need
2190 * not count toward the nr_batch_requests limit. There will always
2191 * be some limit enforced by BLK_BATCH_TIME.
2193 if (ioc_batching(q, ioc))
2194 ioc->nr_batch_requests--;
2196 rq_init(q, rq);
2198 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2199 out:
2200 return rq;
2204 * No available requests for this queue, unplug the device and wait for some
2205 * requests to become available.
2207 * Called with q->queue_lock held, and returns with it unlocked.
2209 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2210 struct bio *bio)
2212 const int rw = rw_flags & 0x01;
2213 struct request *rq;
2215 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2216 while (!rq) {
2217 DEFINE_WAIT(wait);
2218 struct request_list *rl = &q->rq;
2220 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2221 TASK_UNINTERRUPTIBLE);
2223 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2225 if (!rq) {
2226 struct io_context *ioc;
2228 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2230 __generic_unplug_device(q);
2231 spin_unlock_irq(q->queue_lock);
2232 io_schedule();
2235 * After sleeping, we become a "batching" process and
2236 * will be able to allocate at least one request, and
2237 * up to a big batch of them for a small period time.
2238 * See ioc_batching, ioc_set_batching
2240 ioc = current_io_context(GFP_NOIO, q->node);
2241 ioc_set_batching(q, ioc);
2243 spin_lock_irq(q->queue_lock);
2245 finish_wait(&rl->wait[rw], &wait);
2248 return rq;
2251 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2253 struct request *rq;
2255 BUG_ON(rw != READ && rw != WRITE);
2257 spin_lock_irq(q->queue_lock);
2258 if (gfp_mask & __GFP_WAIT) {
2259 rq = get_request_wait(q, rw, NULL);
2260 } else {
2261 rq = get_request(q, rw, NULL, gfp_mask);
2262 if (!rq)
2263 spin_unlock_irq(q->queue_lock);
2265 /* q->queue_lock is unlocked at this point */
2267 return rq;
2269 EXPORT_SYMBOL(blk_get_request);
2272 * blk_start_queueing - initiate dispatch of requests to device
2273 * @q: request queue to kick into gear
2275 * This is basically a helper to remove the need to know whether a queue
2276 * is plugged or not if someone just wants to initiate dispatch of requests
2277 * for this queue.
2279 * The queue lock must be held with interrupts disabled.
2281 void blk_start_queueing(struct request_queue *q)
2283 if (!blk_queue_plugged(q))
2284 q->request_fn(q);
2285 else
2286 __generic_unplug_device(q);
2288 EXPORT_SYMBOL(blk_start_queueing);
2291 * blk_requeue_request - put a request back on queue
2292 * @q: request queue where request should be inserted
2293 * @rq: request to be inserted
2295 * Description:
2296 * Drivers often keep queueing requests until the hardware cannot accept
2297 * more, when that condition happens we need to put the request back
2298 * on the queue. Must be called with queue lock held.
2300 void blk_requeue_request(struct request_queue *q, struct request *rq)
2302 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2304 if (blk_rq_tagged(rq))
2305 blk_queue_end_tag(q, rq);
2307 elv_requeue_request(q, rq);
2310 EXPORT_SYMBOL(blk_requeue_request);
2313 * blk_insert_request - insert a special request in to a request queue
2314 * @q: request queue where request should be inserted
2315 * @rq: request to be inserted
2316 * @at_head: insert request at head or tail of queue
2317 * @data: private data
2319 * Description:
2320 * Many block devices need to execute commands asynchronously, so they don't
2321 * block the whole kernel from preemption during request execution. This is
2322 * accomplished normally by inserting aritficial requests tagged as
2323 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2324 * scheduled for actual execution by the request queue.
2326 * We have the option of inserting the head or the tail of the queue.
2327 * Typically we use the tail for new ioctls and so forth. We use the head
2328 * of the queue for things like a QUEUE_FULL message from a device, or a
2329 * host that is unable to accept a particular command.
2331 void blk_insert_request(struct request_queue *q, struct request *rq,
2332 int at_head, void *data)
2334 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2335 unsigned long flags;
2338 * tell I/O scheduler that this isn't a regular read/write (ie it
2339 * must not attempt merges on this) and that it acts as a soft
2340 * barrier
2342 rq->cmd_type = REQ_TYPE_SPECIAL;
2343 rq->cmd_flags |= REQ_SOFTBARRIER;
2345 rq->special = data;
2347 spin_lock_irqsave(q->queue_lock, flags);
2350 * If command is tagged, release the tag
2352 if (blk_rq_tagged(rq))
2353 blk_queue_end_tag(q, rq);
2355 drive_stat_acct(rq, rq->nr_sectors, 1);
2356 __elv_add_request(q, rq, where, 0);
2357 blk_start_queueing(q);
2358 spin_unlock_irqrestore(q->queue_lock, flags);
2361 EXPORT_SYMBOL(blk_insert_request);
2363 static int __blk_rq_unmap_user(struct bio *bio)
2365 int ret = 0;
2367 if (bio) {
2368 if (bio_flagged(bio, BIO_USER_MAPPED))
2369 bio_unmap_user(bio);
2370 else
2371 ret = bio_uncopy_user(bio);
2374 return ret;
2377 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2378 void __user *ubuf, unsigned int len)
2380 unsigned long uaddr;
2381 struct bio *bio, *orig_bio;
2382 int reading, ret;
2384 reading = rq_data_dir(rq) == READ;
2387 * if alignment requirement is satisfied, map in user pages for
2388 * direct dma. else, set up kernel bounce buffers
2390 uaddr = (unsigned long) ubuf;
2391 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2392 bio = bio_map_user(q, NULL, uaddr, len, reading);
2393 else
2394 bio = bio_copy_user(q, uaddr, len, reading);
2396 if (IS_ERR(bio))
2397 return PTR_ERR(bio);
2399 orig_bio = bio;
2400 blk_queue_bounce(q, &bio);
2403 * We link the bounce buffer in and could have to traverse it
2404 * later so we have to get a ref to prevent it from being freed
2406 bio_get(bio);
2408 if (!rq->bio)
2409 blk_rq_bio_prep(q, rq, bio);
2410 else if (!ll_back_merge_fn(q, rq, bio)) {
2411 ret = -EINVAL;
2412 goto unmap_bio;
2413 } else {
2414 rq->biotail->bi_next = bio;
2415 rq->biotail = bio;
2417 rq->data_len += bio->bi_size;
2420 return bio->bi_size;
2422 unmap_bio:
2423 /* if it was boucned we must call the end io function */
2424 bio_endio(bio, bio->bi_size, 0);
2425 __blk_rq_unmap_user(orig_bio);
2426 bio_put(bio);
2427 return ret;
2431 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2432 * @q: request queue where request should be inserted
2433 * @rq: request structure to fill
2434 * @ubuf: the user buffer
2435 * @len: length of user data
2437 * Description:
2438 * Data will be mapped directly for zero copy io, if possible. Otherwise
2439 * a kernel bounce buffer is used.
2441 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2442 * still in process context.
2444 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2445 * before being submitted to the device, as pages mapped may be out of
2446 * reach. It's the callers responsibility to make sure this happens. The
2447 * original bio must be passed back in to blk_rq_unmap_user() for proper
2448 * unmapping.
2450 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2451 void __user *ubuf, unsigned long len)
2453 unsigned long bytes_read = 0;
2454 struct bio *bio = NULL;
2455 int ret;
2457 if (len > (q->max_hw_sectors << 9))
2458 return -EINVAL;
2459 if (!len || !ubuf)
2460 return -EINVAL;
2462 while (bytes_read != len) {
2463 unsigned long map_len, end, start;
2465 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2466 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2467 >> PAGE_SHIFT;
2468 start = (unsigned long)ubuf >> PAGE_SHIFT;
2471 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2472 * pages. If this happens we just lower the requested
2473 * mapping len by a page so that we can fit
2475 if (end - start > BIO_MAX_PAGES)
2476 map_len -= PAGE_SIZE;
2478 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2479 if (ret < 0)
2480 goto unmap_rq;
2481 if (!bio)
2482 bio = rq->bio;
2483 bytes_read += ret;
2484 ubuf += ret;
2487 rq->buffer = rq->data = NULL;
2488 return 0;
2489 unmap_rq:
2490 blk_rq_unmap_user(bio);
2491 return ret;
2494 EXPORT_SYMBOL(blk_rq_map_user);
2497 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2498 * @q: request queue where request should be inserted
2499 * @rq: request to map data to
2500 * @iov: pointer to the iovec
2501 * @iov_count: number of elements in the iovec
2502 * @len: I/O byte count
2504 * Description:
2505 * Data will be mapped directly for zero copy io, if possible. Otherwise
2506 * a kernel bounce buffer is used.
2508 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2509 * still in process context.
2511 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2512 * before being submitted to the device, as pages mapped may be out of
2513 * reach. It's the callers responsibility to make sure this happens. The
2514 * original bio must be passed back in to blk_rq_unmap_user() for proper
2515 * unmapping.
2517 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2518 struct sg_iovec *iov, int iov_count, unsigned int len)
2520 struct bio *bio;
2522 if (!iov || iov_count <= 0)
2523 return -EINVAL;
2525 /* we don't allow misaligned data like bio_map_user() does. If the
2526 * user is using sg, they're expected to know the alignment constraints
2527 * and respect them accordingly */
2528 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2529 if (IS_ERR(bio))
2530 return PTR_ERR(bio);
2532 if (bio->bi_size != len) {
2533 bio_endio(bio, bio->bi_size, 0);
2534 bio_unmap_user(bio);
2535 return -EINVAL;
2538 bio_get(bio);
2539 blk_rq_bio_prep(q, rq, bio);
2540 rq->buffer = rq->data = NULL;
2541 return 0;
2544 EXPORT_SYMBOL(blk_rq_map_user_iov);
2547 * blk_rq_unmap_user - unmap a request with user data
2548 * @bio: start of bio list
2550 * Description:
2551 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2552 * supply the original rq->bio from the blk_rq_map_user() return, since
2553 * the io completion may have changed rq->bio.
2555 int blk_rq_unmap_user(struct bio *bio)
2557 struct bio *mapped_bio;
2558 int ret = 0, ret2;
2560 while (bio) {
2561 mapped_bio = bio;
2562 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2563 mapped_bio = bio->bi_private;
2565 ret2 = __blk_rq_unmap_user(mapped_bio);
2566 if (ret2 && !ret)
2567 ret = ret2;
2569 mapped_bio = bio;
2570 bio = bio->bi_next;
2571 bio_put(mapped_bio);
2574 return ret;
2577 EXPORT_SYMBOL(blk_rq_unmap_user);
2580 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2581 * @q: request queue where request should be inserted
2582 * @rq: request to fill
2583 * @kbuf: the kernel buffer
2584 * @len: length of user data
2585 * @gfp_mask: memory allocation flags
2587 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2588 unsigned int len, gfp_t gfp_mask)
2590 struct bio *bio;
2592 if (len > (q->max_hw_sectors << 9))
2593 return -EINVAL;
2594 if (!len || !kbuf)
2595 return -EINVAL;
2597 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2598 if (IS_ERR(bio))
2599 return PTR_ERR(bio);
2601 if (rq_data_dir(rq) == WRITE)
2602 bio->bi_rw |= (1 << BIO_RW);
2604 blk_rq_bio_prep(q, rq, bio);
2605 blk_queue_bounce(q, &rq->bio);
2606 rq->buffer = rq->data = NULL;
2607 return 0;
2610 EXPORT_SYMBOL(blk_rq_map_kern);
2613 * blk_execute_rq_nowait - insert a request into queue for execution
2614 * @q: queue to insert the request in
2615 * @bd_disk: matching gendisk
2616 * @rq: request to insert
2617 * @at_head: insert request at head or tail of queue
2618 * @done: I/O completion handler
2620 * Description:
2621 * Insert a fully prepared request at the back of the io scheduler queue
2622 * for execution. Don't wait for completion.
2624 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2625 struct request *rq, int at_head,
2626 rq_end_io_fn *done)
2628 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2630 rq->rq_disk = bd_disk;
2631 rq->cmd_flags |= REQ_NOMERGE;
2632 rq->end_io = done;
2633 WARN_ON(irqs_disabled());
2634 spin_lock_irq(q->queue_lock);
2635 __elv_add_request(q, rq, where, 1);
2636 __generic_unplug_device(q);
2637 spin_unlock_irq(q->queue_lock);
2639 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2642 * blk_execute_rq - insert a request into queue for execution
2643 * @q: queue to insert the request in
2644 * @bd_disk: matching gendisk
2645 * @rq: request to insert
2646 * @at_head: insert request at head or tail of queue
2648 * Description:
2649 * Insert a fully prepared request at the back of the io scheduler queue
2650 * for execution and wait for completion.
2652 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2653 struct request *rq, int at_head)
2655 DECLARE_COMPLETION_ONSTACK(wait);
2656 char sense[SCSI_SENSE_BUFFERSIZE];
2657 int err = 0;
2660 * we need an extra reference to the request, so we can look at
2661 * it after io completion
2663 rq->ref_count++;
2665 if (!rq->sense) {
2666 memset(sense, 0, sizeof(sense));
2667 rq->sense = sense;
2668 rq->sense_len = 0;
2671 rq->end_io_data = &wait;
2672 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2673 wait_for_completion(&wait);
2675 if (rq->errors)
2676 err = -EIO;
2678 return err;
2681 EXPORT_SYMBOL(blk_execute_rq);
2684 * blkdev_issue_flush - queue a flush
2685 * @bdev: blockdev to issue flush for
2686 * @error_sector: error sector
2688 * Description:
2689 * Issue a flush for the block device in question. Caller can supply
2690 * room for storing the error offset in case of a flush error, if they
2691 * wish to. Caller must run wait_for_completion() on its own.
2693 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2695 struct request_queue *q;
2697 if (bdev->bd_disk == NULL)
2698 return -ENXIO;
2700 q = bdev_get_queue(bdev);
2701 if (!q)
2702 return -ENXIO;
2703 if (!q->issue_flush_fn)
2704 return -EOPNOTSUPP;
2706 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2709 EXPORT_SYMBOL(blkdev_issue_flush);
2711 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2713 int rw = rq_data_dir(rq);
2715 if (!blk_fs_request(rq) || !rq->rq_disk)
2716 return;
2718 if (!new_io) {
2719 __disk_stat_inc(rq->rq_disk, merges[rw]);
2720 } else {
2721 disk_round_stats(rq->rq_disk);
2722 rq->rq_disk->in_flight++;
2727 * add-request adds a request to the linked list.
2728 * queue lock is held and interrupts disabled, as we muck with the
2729 * request queue list.
2731 static inline void add_request(struct request_queue * q, struct request * req)
2733 drive_stat_acct(req, req->nr_sectors, 1);
2736 * elevator indicated where it wants this request to be
2737 * inserted at elevator_merge time
2739 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2743 * disk_round_stats() - Round off the performance stats on a struct
2744 * disk_stats.
2746 * The average IO queue length and utilisation statistics are maintained
2747 * by observing the current state of the queue length and the amount of
2748 * time it has been in this state for.
2750 * Normally, that accounting is done on IO completion, but that can result
2751 * in more than a second's worth of IO being accounted for within any one
2752 * second, leading to >100% utilisation. To deal with that, we call this
2753 * function to do a round-off before returning the results when reading
2754 * /proc/diskstats. This accounts immediately for all queue usage up to
2755 * the current jiffies and restarts the counters again.
2757 void disk_round_stats(struct gendisk *disk)
2759 unsigned long now = jiffies;
2761 if (now == disk->stamp)
2762 return;
2764 if (disk->in_flight) {
2765 __disk_stat_add(disk, time_in_queue,
2766 disk->in_flight * (now - disk->stamp));
2767 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2769 disk->stamp = now;
2772 EXPORT_SYMBOL_GPL(disk_round_stats);
2775 * queue lock must be held
2777 void __blk_put_request(struct request_queue *q, struct request *req)
2779 if (unlikely(!q))
2780 return;
2781 if (unlikely(--req->ref_count))
2782 return;
2784 elv_completed_request(q, req);
2787 * Request may not have originated from ll_rw_blk. if not,
2788 * it didn't come out of our reserved rq pools
2790 if (req->cmd_flags & REQ_ALLOCED) {
2791 int rw = rq_data_dir(req);
2792 int priv = req->cmd_flags & REQ_ELVPRIV;
2794 BUG_ON(!list_empty(&req->queuelist));
2795 BUG_ON(!hlist_unhashed(&req->hash));
2797 blk_free_request(q, req);
2798 freed_request(q, rw, priv);
2802 EXPORT_SYMBOL_GPL(__blk_put_request);
2804 void blk_put_request(struct request *req)
2806 unsigned long flags;
2807 struct request_queue *q = req->q;
2810 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2811 * following if (q) test.
2813 if (q) {
2814 spin_lock_irqsave(q->queue_lock, flags);
2815 __blk_put_request(q, req);
2816 spin_unlock_irqrestore(q->queue_lock, flags);
2820 EXPORT_SYMBOL(blk_put_request);
2823 * blk_end_sync_rq - executes a completion event on a request
2824 * @rq: request to complete
2825 * @error: end io status of the request
2827 void blk_end_sync_rq(struct request *rq, int error)
2829 struct completion *waiting = rq->end_io_data;
2831 rq->end_io_data = NULL;
2832 __blk_put_request(rq->q, rq);
2835 * complete last, if this is a stack request the process (and thus
2836 * the rq pointer) could be invalid right after this complete()
2838 complete(waiting);
2840 EXPORT_SYMBOL(blk_end_sync_rq);
2843 * Has to be called with the request spinlock acquired
2845 static int attempt_merge(struct request_queue *q, struct request *req,
2846 struct request *next)
2848 if (!rq_mergeable(req) || !rq_mergeable(next))
2849 return 0;
2852 * not contiguous
2854 if (req->sector + req->nr_sectors != next->sector)
2855 return 0;
2857 if (rq_data_dir(req) != rq_data_dir(next)
2858 || req->rq_disk != next->rq_disk
2859 || next->special)
2860 return 0;
2863 * If we are allowed to merge, then append bio list
2864 * from next to rq and release next. merge_requests_fn
2865 * will have updated segment counts, update sector
2866 * counts here.
2868 if (!ll_merge_requests_fn(q, req, next))
2869 return 0;
2872 * At this point we have either done a back merge
2873 * or front merge. We need the smaller start_time of
2874 * the merged requests to be the current request
2875 * for accounting purposes.
2877 if (time_after(req->start_time, next->start_time))
2878 req->start_time = next->start_time;
2880 req->biotail->bi_next = next->bio;
2881 req->biotail = next->biotail;
2883 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2885 elv_merge_requests(q, req, next);
2887 if (req->rq_disk) {
2888 disk_round_stats(req->rq_disk);
2889 req->rq_disk->in_flight--;
2892 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2894 __blk_put_request(q, next);
2895 return 1;
2898 static inline int attempt_back_merge(struct request_queue *q,
2899 struct request *rq)
2901 struct request *next = elv_latter_request(q, rq);
2903 if (next)
2904 return attempt_merge(q, rq, next);
2906 return 0;
2909 static inline int attempt_front_merge(struct request_queue *q,
2910 struct request *rq)
2912 struct request *prev = elv_former_request(q, rq);
2914 if (prev)
2915 return attempt_merge(q, prev, rq);
2917 return 0;
2920 static void init_request_from_bio(struct request *req, struct bio *bio)
2922 req->cmd_type = REQ_TYPE_FS;
2925 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2927 if (bio_rw_ahead(bio) || bio_failfast(bio))
2928 req->cmd_flags |= REQ_FAILFAST;
2931 * REQ_BARRIER implies no merging, but lets make it explicit
2933 if (unlikely(bio_barrier(bio)))
2934 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2936 if (bio_sync(bio))
2937 req->cmd_flags |= REQ_RW_SYNC;
2938 if (bio_rw_meta(bio))
2939 req->cmd_flags |= REQ_RW_META;
2941 req->errors = 0;
2942 req->hard_sector = req->sector = bio->bi_sector;
2943 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2944 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2945 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2946 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2947 req->buffer = bio_data(bio); /* see ->buffer comment above */
2948 req->bio = req->biotail = bio;
2949 req->ioprio = bio_prio(bio);
2950 req->rq_disk = bio->bi_bdev->bd_disk;
2951 req->start_time = jiffies;
2954 static int __make_request(struct request_queue *q, struct bio *bio)
2956 struct request *req;
2957 int el_ret, nr_sectors, barrier, err;
2958 const unsigned short prio = bio_prio(bio);
2959 const int sync = bio_sync(bio);
2960 int rw_flags;
2962 nr_sectors = bio_sectors(bio);
2965 * low level driver can indicate that it wants pages above a
2966 * certain limit bounced to low memory (ie for highmem, or even
2967 * ISA dma in theory)
2969 blk_queue_bounce(q, &bio);
2971 barrier = bio_barrier(bio);
2972 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2973 err = -EOPNOTSUPP;
2974 goto end_io;
2977 spin_lock_irq(q->queue_lock);
2979 if (unlikely(barrier) || elv_queue_empty(q))
2980 goto get_rq;
2982 el_ret = elv_merge(q, &req, bio);
2983 switch (el_ret) {
2984 case ELEVATOR_BACK_MERGE:
2985 BUG_ON(!rq_mergeable(req));
2987 if (!ll_back_merge_fn(q, req, bio))
2988 break;
2990 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2992 req->biotail->bi_next = bio;
2993 req->biotail = bio;
2994 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2995 req->ioprio = ioprio_best(req->ioprio, prio);
2996 drive_stat_acct(req, nr_sectors, 0);
2997 if (!attempt_back_merge(q, req))
2998 elv_merged_request(q, req, el_ret);
2999 goto out;
3001 case ELEVATOR_FRONT_MERGE:
3002 BUG_ON(!rq_mergeable(req));
3004 if (!ll_front_merge_fn(q, req, bio))
3005 break;
3007 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3009 bio->bi_next = req->bio;
3010 req->bio = bio;
3013 * may not be valid. if the low level driver said
3014 * it didn't need a bounce buffer then it better
3015 * not touch req->buffer either...
3017 req->buffer = bio_data(bio);
3018 req->current_nr_sectors = bio_cur_sectors(bio);
3019 req->hard_cur_sectors = req->current_nr_sectors;
3020 req->sector = req->hard_sector = bio->bi_sector;
3021 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3022 req->ioprio = ioprio_best(req->ioprio, prio);
3023 drive_stat_acct(req, nr_sectors, 0);
3024 if (!attempt_front_merge(q, req))
3025 elv_merged_request(q, req, el_ret);
3026 goto out;
3028 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3029 default:
3033 get_rq:
3035 * This sync check and mask will be re-done in init_request_from_bio(),
3036 * but we need to set it earlier to expose the sync flag to the
3037 * rq allocator and io schedulers.
3039 rw_flags = bio_data_dir(bio);
3040 if (sync)
3041 rw_flags |= REQ_RW_SYNC;
3044 * Grab a free request. This is might sleep but can not fail.
3045 * Returns with the queue unlocked.
3047 req = get_request_wait(q, rw_flags, bio);
3050 * After dropping the lock and possibly sleeping here, our request
3051 * may now be mergeable after it had proven unmergeable (above).
3052 * We don't worry about that case for efficiency. It won't happen
3053 * often, and the elevators are able to handle it.
3055 init_request_from_bio(req, bio);
3057 spin_lock_irq(q->queue_lock);
3058 if (elv_queue_empty(q))
3059 blk_plug_device(q);
3060 add_request(q, req);
3061 out:
3062 if (sync)
3063 __generic_unplug_device(q);
3065 spin_unlock_irq(q->queue_lock);
3066 return 0;
3068 end_io:
3069 bio_endio(bio, nr_sectors << 9, err);
3070 return 0;
3074 * If bio->bi_dev is a partition, remap the location
3076 static inline void blk_partition_remap(struct bio *bio)
3078 struct block_device *bdev = bio->bi_bdev;
3080 if (bdev != bdev->bd_contains) {
3081 struct hd_struct *p = bdev->bd_part;
3082 const int rw = bio_data_dir(bio);
3084 p->sectors[rw] += bio_sectors(bio);
3085 p->ios[rw]++;
3087 bio->bi_sector += p->start_sect;
3088 bio->bi_bdev = bdev->bd_contains;
3090 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3091 bdev->bd_dev, bio->bi_sector,
3092 bio->bi_sector - p->start_sect);
3096 static void handle_bad_sector(struct bio *bio)
3098 char b[BDEVNAME_SIZE];
3100 printk(KERN_INFO "attempt to access beyond end of device\n");
3101 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3102 bdevname(bio->bi_bdev, b),
3103 bio->bi_rw,
3104 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3105 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3107 set_bit(BIO_EOF, &bio->bi_flags);
3110 #ifdef CONFIG_FAIL_MAKE_REQUEST
3112 static DECLARE_FAULT_ATTR(fail_make_request);
3114 static int __init setup_fail_make_request(char *str)
3116 return setup_fault_attr(&fail_make_request, str);
3118 __setup("fail_make_request=", setup_fail_make_request);
3120 static int should_fail_request(struct bio *bio)
3122 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3123 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3124 return should_fail(&fail_make_request, bio->bi_size);
3126 return 0;
3129 static int __init fail_make_request_debugfs(void)
3131 return init_fault_attr_dentries(&fail_make_request,
3132 "fail_make_request");
3135 late_initcall(fail_make_request_debugfs);
3137 #else /* CONFIG_FAIL_MAKE_REQUEST */
3139 static inline int should_fail_request(struct bio *bio)
3141 return 0;
3144 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3147 * generic_make_request: hand a buffer to its device driver for I/O
3148 * @bio: The bio describing the location in memory and on the device.
3150 * generic_make_request() is used to make I/O requests of block
3151 * devices. It is passed a &struct bio, which describes the I/O that needs
3152 * to be done.
3154 * generic_make_request() does not return any status. The
3155 * success/failure status of the request, along with notification of
3156 * completion, is delivered asynchronously through the bio->bi_end_io
3157 * function described (one day) else where.
3159 * The caller of generic_make_request must make sure that bi_io_vec
3160 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3161 * set to describe the device address, and the
3162 * bi_end_io and optionally bi_private are set to describe how
3163 * completion notification should be signaled.
3165 * generic_make_request and the drivers it calls may use bi_next if this
3166 * bio happens to be merged with someone else, and may change bi_dev and
3167 * bi_sector for remaps as it sees fit. So the values of these fields
3168 * should NOT be depended on after the call to generic_make_request.
3170 static inline void __generic_make_request(struct bio *bio)
3172 struct request_queue *q;
3173 sector_t maxsector;
3174 sector_t old_sector;
3175 int ret, nr_sectors = bio_sectors(bio);
3176 dev_t old_dev;
3178 might_sleep();
3179 /* Test device or partition size, when known. */
3180 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3181 if (maxsector) {
3182 sector_t sector = bio->bi_sector;
3184 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3186 * This may well happen - the kernel calls bread()
3187 * without checking the size of the device, e.g., when
3188 * mounting a device.
3190 handle_bad_sector(bio);
3191 goto end_io;
3196 * Resolve the mapping until finished. (drivers are
3197 * still free to implement/resolve their own stacking
3198 * by explicitly returning 0)
3200 * NOTE: we don't repeat the blk_size check for each new device.
3201 * Stacking drivers are expected to know what they are doing.
3203 old_sector = -1;
3204 old_dev = 0;
3205 do {
3206 char b[BDEVNAME_SIZE];
3208 q = bdev_get_queue(bio->bi_bdev);
3209 if (!q) {
3210 printk(KERN_ERR
3211 "generic_make_request: Trying to access "
3212 "nonexistent block-device %s (%Lu)\n",
3213 bdevname(bio->bi_bdev, b),
3214 (long long) bio->bi_sector);
3215 end_io:
3216 bio_endio(bio, bio->bi_size, -EIO);
3217 break;
3220 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3221 printk("bio too big device %s (%u > %u)\n",
3222 bdevname(bio->bi_bdev, b),
3223 bio_sectors(bio),
3224 q->max_hw_sectors);
3225 goto end_io;
3228 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3229 goto end_io;
3231 if (should_fail_request(bio))
3232 goto end_io;
3235 * If this device has partitions, remap block n
3236 * of partition p to block n+start(p) of the disk.
3238 blk_partition_remap(bio);
3240 if (old_sector != -1)
3241 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3242 old_sector);
3244 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3246 old_sector = bio->bi_sector;
3247 old_dev = bio->bi_bdev->bd_dev;
3249 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3250 if (maxsector) {
3251 sector_t sector = bio->bi_sector;
3253 if (maxsector < nr_sectors ||
3254 maxsector - nr_sectors < sector) {
3256 * This may well happen - partitions are not
3257 * checked to make sure they are within the size
3258 * of the whole device.
3260 handle_bad_sector(bio);
3261 goto end_io;
3265 ret = q->make_request_fn(q, bio);
3266 } while (ret);
3270 * We only want one ->make_request_fn to be active at a time,
3271 * else stack usage with stacked devices could be a problem.
3272 * So use current->bio_{list,tail} to keep a list of requests
3273 * submited by a make_request_fn function.
3274 * current->bio_tail is also used as a flag to say if
3275 * generic_make_request is currently active in this task or not.
3276 * If it is NULL, then no make_request is active. If it is non-NULL,
3277 * then a make_request is active, and new requests should be added
3278 * at the tail
3280 void generic_make_request(struct bio *bio)
3282 if (current->bio_tail) {
3283 /* make_request is active */
3284 *(current->bio_tail) = bio;
3285 bio->bi_next = NULL;
3286 current->bio_tail = &bio->bi_next;
3287 return;
3289 /* following loop may be a bit non-obvious, and so deserves some
3290 * explanation.
3291 * Before entering the loop, bio->bi_next is NULL (as all callers
3292 * ensure that) so we have a list with a single bio.
3293 * We pretend that we have just taken it off a longer list, so
3294 * we assign bio_list to the next (which is NULL) and bio_tail
3295 * to &bio_list, thus initialising the bio_list of new bios to be
3296 * added. __generic_make_request may indeed add some more bios
3297 * through a recursive call to generic_make_request. If it
3298 * did, we find a non-NULL value in bio_list and re-enter the loop
3299 * from the top. In this case we really did just take the bio
3300 * of the top of the list (no pretending) and so fixup bio_list and
3301 * bio_tail or bi_next, and call into __generic_make_request again.
3303 * The loop was structured like this to make only one call to
3304 * __generic_make_request (which is important as it is large and
3305 * inlined) and to keep the structure simple.
3307 BUG_ON(bio->bi_next);
3308 do {
3309 current->bio_list = bio->bi_next;
3310 if (bio->bi_next == NULL)
3311 current->bio_tail = &current->bio_list;
3312 else
3313 bio->bi_next = NULL;
3314 __generic_make_request(bio);
3315 bio = current->bio_list;
3316 } while (bio);
3317 current->bio_tail = NULL; /* deactivate */
3320 EXPORT_SYMBOL(generic_make_request);
3323 * submit_bio: submit a bio to the block device layer for I/O
3324 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3325 * @bio: The &struct bio which describes the I/O
3327 * submit_bio() is very similar in purpose to generic_make_request(), and
3328 * uses that function to do most of the work. Both are fairly rough
3329 * interfaces, @bio must be presetup and ready for I/O.
3332 void submit_bio(int rw, struct bio *bio)
3334 int count = bio_sectors(bio);
3336 BIO_BUG_ON(!bio->bi_size);
3337 BIO_BUG_ON(!bio->bi_io_vec);
3338 bio->bi_rw |= rw;
3339 if (rw & WRITE) {
3340 count_vm_events(PGPGOUT, count);
3341 } else {
3342 task_io_account_read(bio->bi_size);
3343 count_vm_events(PGPGIN, count);
3346 if (unlikely(block_dump)) {
3347 char b[BDEVNAME_SIZE];
3348 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3349 current->comm, current->pid,
3350 (rw & WRITE) ? "WRITE" : "READ",
3351 (unsigned long long)bio->bi_sector,
3352 bdevname(bio->bi_bdev,b));
3355 generic_make_request(bio);
3358 EXPORT_SYMBOL(submit_bio);
3360 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3362 if (blk_fs_request(rq)) {
3363 rq->hard_sector += nsect;
3364 rq->hard_nr_sectors -= nsect;
3367 * Move the I/O submission pointers ahead if required.
3369 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3370 (rq->sector <= rq->hard_sector)) {
3371 rq->sector = rq->hard_sector;
3372 rq->nr_sectors = rq->hard_nr_sectors;
3373 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3374 rq->current_nr_sectors = rq->hard_cur_sectors;
3375 rq->buffer = bio_data(rq->bio);
3379 * if total number of sectors is less than the first segment
3380 * size, something has gone terribly wrong
3382 if (rq->nr_sectors < rq->current_nr_sectors) {
3383 printk("blk: request botched\n");
3384 rq->nr_sectors = rq->current_nr_sectors;
3389 static int __end_that_request_first(struct request *req, int uptodate,
3390 int nr_bytes)
3392 int total_bytes, bio_nbytes, error, next_idx = 0;
3393 struct bio *bio;
3395 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3398 * extend uptodate bool to allow < 0 value to be direct io error
3400 error = 0;
3401 if (end_io_error(uptodate))
3402 error = !uptodate ? -EIO : uptodate;
3405 * for a REQ_BLOCK_PC request, we want to carry any eventual
3406 * sense key with us all the way through
3408 if (!blk_pc_request(req))
3409 req->errors = 0;
3411 if (!uptodate) {
3412 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3413 printk("end_request: I/O error, dev %s, sector %llu\n",
3414 req->rq_disk ? req->rq_disk->disk_name : "?",
3415 (unsigned long long)req->sector);
3418 if (blk_fs_request(req) && req->rq_disk) {
3419 const int rw = rq_data_dir(req);
3421 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3424 total_bytes = bio_nbytes = 0;
3425 while ((bio = req->bio) != NULL) {
3426 int nbytes;
3428 if (nr_bytes >= bio->bi_size) {
3429 req->bio = bio->bi_next;
3430 nbytes = bio->bi_size;
3431 if (!ordered_bio_endio(req, bio, nbytes, error))
3432 bio_endio(bio, nbytes, error);
3433 next_idx = 0;
3434 bio_nbytes = 0;
3435 } else {
3436 int idx = bio->bi_idx + next_idx;
3438 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3439 blk_dump_rq_flags(req, "__end_that");
3440 printk("%s: bio idx %d >= vcnt %d\n",
3441 __FUNCTION__,
3442 bio->bi_idx, bio->bi_vcnt);
3443 break;
3446 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3447 BIO_BUG_ON(nbytes > bio->bi_size);
3450 * not a complete bvec done
3452 if (unlikely(nbytes > nr_bytes)) {
3453 bio_nbytes += nr_bytes;
3454 total_bytes += nr_bytes;
3455 break;
3459 * advance to the next vector
3461 next_idx++;
3462 bio_nbytes += nbytes;
3465 total_bytes += nbytes;
3466 nr_bytes -= nbytes;
3468 if ((bio = req->bio)) {
3470 * end more in this run, or just return 'not-done'
3472 if (unlikely(nr_bytes <= 0))
3473 break;
3478 * completely done
3480 if (!req->bio)
3481 return 0;
3484 * if the request wasn't completed, update state
3486 if (bio_nbytes) {
3487 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3488 bio_endio(bio, bio_nbytes, error);
3489 bio->bi_idx += next_idx;
3490 bio_iovec(bio)->bv_offset += nr_bytes;
3491 bio_iovec(bio)->bv_len -= nr_bytes;
3494 blk_recalc_rq_sectors(req, total_bytes >> 9);
3495 blk_recalc_rq_segments(req);
3496 return 1;
3500 * end_that_request_first - end I/O on a request
3501 * @req: the request being processed
3502 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3503 * @nr_sectors: number of sectors to end I/O on
3505 * Description:
3506 * Ends I/O on a number of sectors attached to @req, and sets it up
3507 * for the next range of segments (if any) in the cluster.
3509 * Return:
3510 * 0 - we are done with this request, call end_that_request_last()
3511 * 1 - still buffers pending for this request
3513 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3515 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3518 EXPORT_SYMBOL(end_that_request_first);
3521 * end_that_request_chunk - end I/O on a request
3522 * @req: the request being processed
3523 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3524 * @nr_bytes: number of bytes to complete
3526 * Description:
3527 * Ends I/O on a number of bytes attached to @req, and sets it up
3528 * for the next range of segments (if any). Like end_that_request_first(),
3529 * but deals with bytes instead of sectors.
3531 * Return:
3532 * 0 - we are done with this request, call end_that_request_last()
3533 * 1 - still buffers pending for this request
3535 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3537 return __end_that_request_first(req, uptodate, nr_bytes);
3540 EXPORT_SYMBOL(end_that_request_chunk);
3543 * splice the completion data to a local structure and hand off to
3544 * process_completion_queue() to complete the requests
3546 static void blk_done_softirq(struct softirq_action *h)
3548 struct list_head *cpu_list, local_list;
3550 local_irq_disable();
3551 cpu_list = &__get_cpu_var(blk_cpu_done);
3552 list_replace_init(cpu_list, &local_list);
3553 local_irq_enable();
3555 while (!list_empty(&local_list)) {
3556 struct request *rq = list_entry(local_list.next, struct request, donelist);
3558 list_del_init(&rq->donelist);
3559 rq->q->softirq_done_fn(rq);
3563 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3564 void *hcpu)
3567 * If a CPU goes away, splice its entries to the current CPU
3568 * and trigger a run of the softirq
3570 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3571 int cpu = (unsigned long) hcpu;
3573 local_irq_disable();
3574 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3575 &__get_cpu_var(blk_cpu_done));
3576 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3577 local_irq_enable();
3580 return NOTIFY_OK;
3584 static struct notifier_block __devinitdata blk_cpu_notifier = {
3585 .notifier_call = blk_cpu_notify,
3589 * blk_complete_request - end I/O on a request
3590 * @req: the request being processed
3592 * Description:
3593 * Ends all I/O on a request. It does not handle partial completions,
3594 * unless the driver actually implements this in its completion callback
3595 * through requeueing. Theh actual completion happens out-of-order,
3596 * through a softirq handler. The user must have registered a completion
3597 * callback through blk_queue_softirq_done().
3600 void blk_complete_request(struct request *req)
3602 struct list_head *cpu_list;
3603 unsigned long flags;
3605 BUG_ON(!req->q->softirq_done_fn);
3607 local_irq_save(flags);
3609 cpu_list = &__get_cpu_var(blk_cpu_done);
3610 list_add_tail(&req->donelist, cpu_list);
3611 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3613 local_irq_restore(flags);
3616 EXPORT_SYMBOL(blk_complete_request);
3619 * queue lock must be held
3621 void end_that_request_last(struct request *req, int uptodate)
3623 struct gendisk *disk = req->rq_disk;
3624 int error;
3627 * extend uptodate bool to allow < 0 value to be direct io error
3629 error = 0;
3630 if (end_io_error(uptodate))
3631 error = !uptodate ? -EIO : uptodate;
3633 if (unlikely(laptop_mode) && blk_fs_request(req))
3634 laptop_io_completion();
3637 * Account IO completion. bar_rq isn't accounted as a normal
3638 * IO on queueing nor completion. Accounting the containing
3639 * request is enough.
3641 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3642 unsigned long duration = jiffies - req->start_time;
3643 const int rw = rq_data_dir(req);
3645 __disk_stat_inc(disk, ios[rw]);
3646 __disk_stat_add(disk, ticks[rw], duration);
3647 disk_round_stats(disk);
3648 disk->in_flight--;
3650 if (req->end_io)
3651 req->end_io(req, error);
3652 else
3653 __blk_put_request(req->q, req);
3656 EXPORT_SYMBOL(end_that_request_last);
3658 void end_request(struct request *req, int uptodate)
3660 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3661 add_disk_randomness(req->rq_disk);
3662 blkdev_dequeue_request(req);
3663 end_that_request_last(req, uptodate);
3667 EXPORT_SYMBOL(end_request);
3669 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3670 struct bio *bio)
3672 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3673 rq->cmd_flags |= (bio->bi_rw & 3);
3675 rq->nr_phys_segments = bio_phys_segments(q, bio);
3676 rq->nr_hw_segments = bio_hw_segments(q, bio);
3677 rq->current_nr_sectors = bio_cur_sectors(bio);
3678 rq->hard_cur_sectors = rq->current_nr_sectors;
3679 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3680 rq->buffer = bio_data(bio);
3681 rq->data_len = bio->bi_size;
3683 rq->bio = rq->biotail = bio;
3686 EXPORT_SYMBOL(blk_rq_bio_prep);
3688 int kblockd_schedule_work(struct work_struct *work)
3690 return queue_work(kblockd_workqueue, work);
3693 EXPORT_SYMBOL(kblockd_schedule_work);
3695 void kblockd_flush_work(struct work_struct *work)
3697 cancel_work_sync(work);
3699 EXPORT_SYMBOL(kblockd_flush_work);
3701 int __init blk_dev_init(void)
3703 int i;
3705 kblockd_workqueue = create_workqueue("kblockd");
3706 if (!kblockd_workqueue)
3707 panic("Failed to create kblockd\n");
3709 request_cachep = kmem_cache_create("blkdev_requests",
3710 sizeof(struct request), 0, SLAB_PANIC, NULL);
3712 requestq_cachep = kmem_cache_create("blkdev_queue",
3713 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3715 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3716 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3718 for_each_possible_cpu(i)
3719 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3721 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3722 register_hotcpu_notifier(&blk_cpu_notifier);
3724 blk_max_low_pfn = max_low_pfn - 1;
3725 blk_max_pfn = max_pfn - 1;
3727 return 0;
3731 * IO Context helper functions
3733 void put_io_context(struct io_context *ioc)
3735 if (ioc == NULL)
3736 return;
3738 BUG_ON(atomic_read(&ioc->refcount) == 0);
3740 if (atomic_dec_and_test(&ioc->refcount)) {
3741 struct cfq_io_context *cic;
3743 rcu_read_lock();
3744 if (ioc->aic && ioc->aic->dtor)
3745 ioc->aic->dtor(ioc->aic);
3746 if (ioc->cic_root.rb_node != NULL) {
3747 struct rb_node *n = rb_first(&ioc->cic_root);
3749 cic = rb_entry(n, struct cfq_io_context, rb_node);
3750 cic->dtor(ioc);
3752 rcu_read_unlock();
3754 kmem_cache_free(iocontext_cachep, ioc);
3757 EXPORT_SYMBOL(put_io_context);
3759 /* Called by the exitting task */
3760 void exit_io_context(void)
3762 struct io_context *ioc;
3763 struct cfq_io_context *cic;
3765 task_lock(current);
3766 ioc = current->io_context;
3767 current->io_context = NULL;
3768 task_unlock(current);
3770 ioc->task = NULL;
3771 if (ioc->aic && ioc->aic->exit)
3772 ioc->aic->exit(ioc->aic);
3773 if (ioc->cic_root.rb_node != NULL) {
3774 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3775 cic->exit(ioc);
3778 put_io_context(ioc);
3782 * If the current task has no IO context then create one and initialise it.
3783 * Otherwise, return its existing IO context.
3785 * This returned IO context doesn't have a specifically elevated refcount,
3786 * but since the current task itself holds a reference, the context can be
3787 * used in general code, so long as it stays within `current` context.
3789 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3791 struct task_struct *tsk = current;
3792 struct io_context *ret;
3794 ret = tsk->io_context;
3795 if (likely(ret))
3796 return ret;
3798 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3799 if (ret) {
3800 atomic_set(&ret->refcount, 1);
3801 ret->task = current;
3802 ret->ioprio_changed = 0;
3803 ret->last_waited = jiffies; /* doesn't matter... */
3804 ret->nr_batch_requests = 0; /* because this is 0 */
3805 ret->aic = NULL;
3806 ret->cic_root.rb_node = NULL;
3807 ret->ioc_data = NULL;
3808 /* make sure set_task_ioprio() sees the settings above */
3809 smp_wmb();
3810 tsk->io_context = ret;
3813 return ret;
3817 * If the current task has no IO context then create one and initialise it.
3818 * If it does have a context, take a ref on it.
3820 * This is always called in the context of the task which submitted the I/O.
3822 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3824 struct io_context *ret;
3825 ret = current_io_context(gfp_flags, node);
3826 if (likely(ret))
3827 atomic_inc(&ret->refcount);
3828 return ret;
3830 EXPORT_SYMBOL(get_io_context);
3832 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3834 struct io_context *src = *psrc;
3835 struct io_context *dst = *pdst;
3837 if (src) {
3838 BUG_ON(atomic_read(&src->refcount) == 0);
3839 atomic_inc(&src->refcount);
3840 put_io_context(dst);
3841 *pdst = src;
3844 EXPORT_SYMBOL(copy_io_context);
3846 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3848 struct io_context *temp;
3849 temp = *ioc1;
3850 *ioc1 = *ioc2;
3851 *ioc2 = temp;
3853 EXPORT_SYMBOL(swap_io_context);
3856 * sysfs parts below
3858 struct queue_sysfs_entry {
3859 struct attribute attr;
3860 ssize_t (*show)(struct request_queue *, char *);
3861 ssize_t (*store)(struct request_queue *, const char *, size_t);
3864 static ssize_t
3865 queue_var_show(unsigned int var, char *page)
3867 return sprintf(page, "%d\n", var);
3870 static ssize_t
3871 queue_var_store(unsigned long *var, const char *page, size_t count)
3873 char *p = (char *) page;
3875 *var = simple_strtoul(p, &p, 10);
3876 return count;
3879 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3881 return queue_var_show(q->nr_requests, (page));
3884 static ssize_t
3885 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3887 struct request_list *rl = &q->rq;
3888 unsigned long nr;
3889 int ret = queue_var_store(&nr, page, count);
3890 if (nr < BLKDEV_MIN_RQ)
3891 nr = BLKDEV_MIN_RQ;
3893 spin_lock_irq(q->queue_lock);
3894 q->nr_requests = nr;
3895 blk_queue_congestion_threshold(q);
3897 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3898 blk_set_queue_congested(q, READ);
3899 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3900 blk_clear_queue_congested(q, READ);
3902 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3903 blk_set_queue_congested(q, WRITE);
3904 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3905 blk_clear_queue_congested(q, WRITE);
3907 if (rl->count[READ] >= q->nr_requests) {
3908 blk_set_queue_full(q, READ);
3909 } else if (rl->count[READ]+1 <= q->nr_requests) {
3910 blk_clear_queue_full(q, READ);
3911 wake_up(&rl->wait[READ]);
3914 if (rl->count[WRITE] >= q->nr_requests) {
3915 blk_set_queue_full(q, WRITE);
3916 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3917 blk_clear_queue_full(q, WRITE);
3918 wake_up(&rl->wait[WRITE]);
3920 spin_unlock_irq(q->queue_lock);
3921 return ret;
3924 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3926 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3928 return queue_var_show(ra_kb, (page));
3931 static ssize_t
3932 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3934 unsigned long ra_kb;
3935 ssize_t ret = queue_var_store(&ra_kb, page, count);
3937 spin_lock_irq(q->queue_lock);
3938 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3939 spin_unlock_irq(q->queue_lock);
3941 return ret;
3944 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3946 int max_sectors_kb = q->max_sectors >> 1;
3948 return queue_var_show(max_sectors_kb, (page));
3951 static ssize_t
3952 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3954 unsigned long max_sectors_kb,
3955 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3956 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3957 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3958 int ra_kb;
3960 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3961 return -EINVAL;
3963 * Take the queue lock to update the readahead and max_sectors
3964 * values synchronously:
3966 spin_lock_irq(q->queue_lock);
3968 * Trim readahead window as well, if necessary:
3970 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3971 if (ra_kb > max_sectors_kb)
3972 q->backing_dev_info.ra_pages =
3973 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3975 q->max_sectors = max_sectors_kb << 1;
3976 spin_unlock_irq(q->queue_lock);
3978 return ret;
3981 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3983 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3985 return queue_var_show(max_hw_sectors_kb, (page));
3989 static struct queue_sysfs_entry queue_requests_entry = {
3990 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3991 .show = queue_requests_show,
3992 .store = queue_requests_store,
3995 static struct queue_sysfs_entry queue_ra_entry = {
3996 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3997 .show = queue_ra_show,
3998 .store = queue_ra_store,
4001 static struct queue_sysfs_entry queue_max_sectors_entry = {
4002 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4003 .show = queue_max_sectors_show,
4004 .store = queue_max_sectors_store,
4007 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4008 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4009 .show = queue_max_hw_sectors_show,
4012 static struct queue_sysfs_entry queue_iosched_entry = {
4013 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4014 .show = elv_iosched_show,
4015 .store = elv_iosched_store,
4018 static struct attribute *default_attrs[] = {
4019 &queue_requests_entry.attr,
4020 &queue_ra_entry.attr,
4021 &queue_max_hw_sectors_entry.attr,
4022 &queue_max_sectors_entry.attr,
4023 &queue_iosched_entry.attr,
4024 NULL,
4027 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4029 static ssize_t
4030 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4032 struct queue_sysfs_entry *entry = to_queue(attr);
4033 struct request_queue *q =
4034 container_of(kobj, struct request_queue, kobj);
4035 ssize_t res;
4037 if (!entry->show)
4038 return -EIO;
4039 mutex_lock(&q->sysfs_lock);
4040 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4041 mutex_unlock(&q->sysfs_lock);
4042 return -ENOENT;
4044 res = entry->show(q, page);
4045 mutex_unlock(&q->sysfs_lock);
4046 return res;
4049 static ssize_t
4050 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4051 const char *page, size_t length)
4053 struct queue_sysfs_entry *entry = to_queue(attr);
4054 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4056 ssize_t res;
4058 if (!entry->store)
4059 return -EIO;
4060 mutex_lock(&q->sysfs_lock);
4061 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4062 mutex_unlock(&q->sysfs_lock);
4063 return -ENOENT;
4065 res = entry->store(q, page, length);
4066 mutex_unlock(&q->sysfs_lock);
4067 return res;
4070 static struct sysfs_ops queue_sysfs_ops = {
4071 .show = queue_attr_show,
4072 .store = queue_attr_store,
4075 static struct kobj_type queue_ktype = {
4076 .sysfs_ops = &queue_sysfs_ops,
4077 .default_attrs = default_attrs,
4078 .release = blk_release_queue,
4081 int blk_register_queue(struct gendisk *disk)
4083 int ret;
4085 struct request_queue *q = disk->queue;
4087 if (!q || !q->request_fn)
4088 return -ENXIO;
4090 q->kobj.parent = kobject_get(&disk->kobj);
4092 ret = kobject_add(&q->kobj);
4093 if (ret < 0)
4094 return ret;
4096 kobject_uevent(&q->kobj, KOBJ_ADD);
4098 ret = elv_register_queue(q);
4099 if (ret) {
4100 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4101 kobject_del(&q->kobj);
4102 return ret;
4105 return 0;
4108 void blk_unregister_queue(struct gendisk *disk)
4110 struct request_queue *q = disk->queue;
4112 if (q && q->request_fn) {
4113 elv_unregister_queue(q);
4115 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4116 kobject_del(&q->kobj);
4117 kobject_put(&disk->kobj);