intel-iommu: Fix device-to-iommu mapping for PCI-PCI bridges.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / intel-iommu.c
blob6262c198e56eb9c1ff69f4293c12afea6101956d
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
58 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
59 #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
60 #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
62 /* global iommu list, set NULL for ignored DMAR units */
63 static struct intel_iommu **g_iommus;
65 static int rwbf_quirk;
68 * 0: Present
69 * 1-11: Reserved
70 * 12-63: Context Ptr (12 - (haw-1))
71 * 64-127: Reserved
73 struct root_entry {
74 u64 val;
75 u64 rsvd1;
77 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
78 static inline bool root_present(struct root_entry *root)
80 return (root->val & 1);
82 static inline void set_root_present(struct root_entry *root)
84 root->val |= 1;
86 static inline void set_root_value(struct root_entry *root, unsigned long value)
88 root->val |= value & VTD_PAGE_MASK;
91 static inline struct context_entry *
92 get_context_addr_from_root(struct root_entry *root)
94 return (struct context_entry *)
95 (root_present(root)?phys_to_virt(
96 root->val & VTD_PAGE_MASK) :
97 NULL);
101 * low 64 bits:
102 * 0: present
103 * 1: fault processing disable
104 * 2-3: translation type
105 * 12-63: address space root
106 * high 64 bits:
107 * 0-2: address width
108 * 3-6: aval
109 * 8-23: domain id
111 struct context_entry {
112 u64 lo;
113 u64 hi;
116 static inline bool context_present(struct context_entry *context)
118 return (context->lo & 1);
120 static inline void context_set_present(struct context_entry *context)
122 context->lo |= 1;
125 static inline void context_set_fault_enable(struct context_entry *context)
127 context->lo &= (((u64)-1) << 2) | 1;
130 #define CONTEXT_TT_MULTI_LEVEL 0
132 static inline void context_set_translation_type(struct context_entry *context,
133 unsigned long value)
135 context->lo &= (((u64)-1) << 4) | 3;
136 context->lo |= (value & 3) << 2;
139 static inline void context_set_address_root(struct context_entry *context,
140 unsigned long value)
142 context->lo |= value & VTD_PAGE_MASK;
145 static inline void context_set_address_width(struct context_entry *context,
146 unsigned long value)
148 context->hi |= value & 7;
151 static inline void context_set_domain_id(struct context_entry *context,
152 unsigned long value)
154 context->hi |= (value & ((1 << 16) - 1)) << 8;
157 static inline void context_clear_entry(struct context_entry *context)
159 context->lo = 0;
160 context->hi = 0;
164 * 0: readable
165 * 1: writable
166 * 2-6: reserved
167 * 7: super page
168 * 8-10: available
169 * 11: snoop behavior
170 * 12-63: Host physcial address
172 struct dma_pte {
173 u64 val;
176 static inline void dma_clear_pte(struct dma_pte *pte)
178 pte->val = 0;
181 static inline void dma_set_pte_readable(struct dma_pte *pte)
183 pte->val |= DMA_PTE_READ;
186 static inline void dma_set_pte_writable(struct dma_pte *pte)
188 pte->val |= DMA_PTE_WRITE;
191 static inline void dma_set_pte_snp(struct dma_pte *pte)
193 pte->val |= DMA_PTE_SNP;
196 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
198 pte->val = (pte->val & ~3) | (prot & 3);
201 static inline u64 dma_pte_addr(struct dma_pte *pte)
203 return (pte->val & VTD_PAGE_MASK);
206 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
208 pte->val |= (addr & VTD_PAGE_MASK);
211 static inline bool dma_pte_present(struct dma_pte *pte)
213 return (pte->val & 3) != 0;
216 /* devices under the same p2p bridge are owned in one domain */
217 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
219 /* domain represents a virtual machine, more than one devices
220 * across iommus may be owned in one domain, e.g. kvm guest.
222 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
224 struct dmar_domain {
225 int id; /* domain id */
226 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
228 struct list_head devices; /* all devices' list */
229 struct iova_domain iovad; /* iova's that belong to this domain */
231 struct dma_pte *pgd; /* virtual address */
232 spinlock_t mapping_lock; /* page table lock */
233 int gaw; /* max guest address width */
235 /* adjusted guest address width, 0 is level 2 30-bit */
236 int agaw;
238 int flags; /* flags to find out type of domain */
240 int iommu_coherency;/* indicate coherency of iommu access */
241 int iommu_snooping; /* indicate snooping control feature*/
242 int iommu_count; /* reference count of iommu */
243 spinlock_t iommu_lock; /* protect iommu set in domain */
244 u64 max_addr; /* maximum mapped address */
247 /* PCI domain-device relationship */
248 struct device_domain_info {
249 struct list_head link; /* link to domain siblings */
250 struct list_head global; /* link to global list */
251 u8 bus; /* PCI bus numer */
252 u8 devfn; /* PCI devfn number */
253 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
254 struct dmar_domain *domain; /* pointer to domain */
257 static void flush_unmaps_timeout(unsigned long data);
259 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
261 #define HIGH_WATER_MARK 250
262 struct deferred_flush_tables {
263 int next;
264 struct iova *iova[HIGH_WATER_MARK];
265 struct dmar_domain *domain[HIGH_WATER_MARK];
268 static struct deferred_flush_tables *deferred_flush;
270 /* bitmap for indexing intel_iommus */
271 static int g_num_of_iommus;
273 static DEFINE_SPINLOCK(async_umap_flush_lock);
274 static LIST_HEAD(unmaps_to_do);
276 static int timer_on;
277 static long list_size;
279 static void domain_remove_dev_info(struct dmar_domain *domain);
281 #ifdef CONFIG_DMAR_DEFAULT_ON
282 int dmar_disabled = 0;
283 #else
284 int dmar_disabled = 1;
285 #endif /*CONFIG_DMAR_DEFAULT_ON*/
287 static int __initdata dmar_map_gfx = 1;
288 static int dmar_forcedac;
289 static int intel_iommu_strict;
291 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
292 static DEFINE_SPINLOCK(device_domain_lock);
293 static LIST_HEAD(device_domain_list);
295 static struct iommu_ops intel_iommu_ops;
297 static int __init intel_iommu_setup(char *str)
299 if (!str)
300 return -EINVAL;
301 while (*str) {
302 if (!strncmp(str, "on", 2)) {
303 dmar_disabled = 0;
304 printk(KERN_INFO "Intel-IOMMU: enabled\n");
305 } else if (!strncmp(str, "off", 3)) {
306 dmar_disabled = 1;
307 printk(KERN_INFO "Intel-IOMMU: disabled\n");
308 } else if (!strncmp(str, "igfx_off", 8)) {
309 dmar_map_gfx = 0;
310 printk(KERN_INFO
311 "Intel-IOMMU: disable GFX device mapping\n");
312 } else if (!strncmp(str, "forcedac", 8)) {
313 printk(KERN_INFO
314 "Intel-IOMMU: Forcing DAC for PCI devices\n");
315 dmar_forcedac = 1;
316 } else if (!strncmp(str, "strict", 6)) {
317 printk(KERN_INFO
318 "Intel-IOMMU: disable batched IOTLB flush\n");
319 intel_iommu_strict = 1;
322 str += strcspn(str, ",");
323 while (*str == ',')
324 str++;
326 return 0;
328 __setup("intel_iommu=", intel_iommu_setup);
330 static struct kmem_cache *iommu_domain_cache;
331 static struct kmem_cache *iommu_devinfo_cache;
332 static struct kmem_cache *iommu_iova_cache;
334 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
336 unsigned int flags;
337 void *vaddr;
339 /* trying to avoid low memory issues */
340 flags = current->flags & PF_MEMALLOC;
341 current->flags |= PF_MEMALLOC;
342 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
343 current->flags &= (~PF_MEMALLOC | flags);
344 return vaddr;
348 static inline void *alloc_pgtable_page(void)
350 unsigned int flags;
351 void *vaddr;
353 /* trying to avoid low memory issues */
354 flags = current->flags & PF_MEMALLOC;
355 current->flags |= PF_MEMALLOC;
356 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
357 current->flags &= (~PF_MEMALLOC | flags);
358 return vaddr;
361 static inline void free_pgtable_page(void *vaddr)
363 free_page((unsigned long)vaddr);
366 static inline void *alloc_domain_mem(void)
368 return iommu_kmem_cache_alloc(iommu_domain_cache);
371 static void free_domain_mem(void *vaddr)
373 kmem_cache_free(iommu_domain_cache, vaddr);
376 static inline void * alloc_devinfo_mem(void)
378 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
381 static inline void free_devinfo_mem(void *vaddr)
383 kmem_cache_free(iommu_devinfo_cache, vaddr);
386 struct iova *alloc_iova_mem(void)
388 return iommu_kmem_cache_alloc(iommu_iova_cache);
391 void free_iova_mem(struct iova *iova)
393 kmem_cache_free(iommu_iova_cache, iova);
397 static inline int width_to_agaw(int width);
399 /* calculate agaw for each iommu.
400 * "SAGAW" may be different across iommus, use a default agaw, and
401 * get a supported less agaw for iommus that don't support the default agaw.
403 int iommu_calculate_agaw(struct intel_iommu *iommu)
405 unsigned long sagaw;
406 int agaw = -1;
408 sagaw = cap_sagaw(iommu->cap);
409 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
410 agaw >= 0; agaw--) {
411 if (test_bit(agaw, &sagaw))
412 break;
415 return agaw;
418 /* in native case, each domain is related to only one iommu */
419 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
421 int iommu_id;
423 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
425 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
426 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
427 return NULL;
429 return g_iommus[iommu_id];
432 static void domain_update_iommu_coherency(struct dmar_domain *domain)
434 int i;
436 domain->iommu_coherency = 1;
438 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
439 for (; i < g_num_of_iommus; ) {
440 if (!ecap_coherent(g_iommus[i]->ecap)) {
441 domain->iommu_coherency = 0;
442 break;
444 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
448 static void domain_update_iommu_snooping(struct dmar_domain *domain)
450 int i;
452 domain->iommu_snooping = 1;
454 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
455 for (; i < g_num_of_iommus; ) {
456 if (!ecap_sc_support(g_iommus[i]->ecap)) {
457 domain->iommu_snooping = 0;
458 break;
460 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
464 /* Some capabilities may be different across iommus */
465 static void domain_update_iommu_cap(struct dmar_domain *domain)
467 domain_update_iommu_coherency(domain);
468 domain_update_iommu_snooping(domain);
471 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
473 struct dmar_drhd_unit *drhd = NULL;
474 int i;
476 for_each_drhd_unit(drhd) {
477 if (drhd->ignored)
478 continue;
480 for (i = 0; i < drhd->devices_cnt; i++) {
481 if (drhd->devices[i] &&
482 drhd->devices[i]->bus->number == bus &&
483 drhd->devices[i]->devfn == devfn)
484 return drhd->iommu;
485 if (drhd->devices[i]->subordinate &&
486 drhd->devices[i]->subordinate->number <= bus &&
487 drhd->devices[i]->subordinate->subordinate >= bus)
488 return drhd->iommu;
491 if (drhd->include_all)
492 return drhd->iommu;
495 return NULL;
498 static void domain_flush_cache(struct dmar_domain *domain,
499 void *addr, int size)
501 if (!domain->iommu_coherency)
502 clflush_cache_range(addr, size);
505 /* Gets context entry for a given bus and devfn */
506 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
507 u8 bus, u8 devfn)
509 struct root_entry *root;
510 struct context_entry *context;
511 unsigned long phy_addr;
512 unsigned long flags;
514 spin_lock_irqsave(&iommu->lock, flags);
515 root = &iommu->root_entry[bus];
516 context = get_context_addr_from_root(root);
517 if (!context) {
518 context = (struct context_entry *)alloc_pgtable_page();
519 if (!context) {
520 spin_unlock_irqrestore(&iommu->lock, flags);
521 return NULL;
523 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
524 phy_addr = virt_to_phys((void *)context);
525 set_root_value(root, phy_addr);
526 set_root_present(root);
527 __iommu_flush_cache(iommu, root, sizeof(*root));
529 spin_unlock_irqrestore(&iommu->lock, flags);
530 return &context[devfn];
533 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
535 struct root_entry *root;
536 struct context_entry *context;
537 int ret;
538 unsigned long flags;
540 spin_lock_irqsave(&iommu->lock, flags);
541 root = &iommu->root_entry[bus];
542 context = get_context_addr_from_root(root);
543 if (!context) {
544 ret = 0;
545 goto out;
547 ret = context_present(&context[devfn]);
548 out:
549 spin_unlock_irqrestore(&iommu->lock, flags);
550 return ret;
553 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
555 struct root_entry *root;
556 struct context_entry *context;
557 unsigned long flags;
559 spin_lock_irqsave(&iommu->lock, flags);
560 root = &iommu->root_entry[bus];
561 context = get_context_addr_from_root(root);
562 if (context) {
563 context_clear_entry(&context[devfn]);
564 __iommu_flush_cache(iommu, &context[devfn], \
565 sizeof(*context));
567 spin_unlock_irqrestore(&iommu->lock, flags);
570 static void free_context_table(struct intel_iommu *iommu)
572 struct root_entry *root;
573 int i;
574 unsigned long flags;
575 struct context_entry *context;
577 spin_lock_irqsave(&iommu->lock, flags);
578 if (!iommu->root_entry) {
579 goto out;
581 for (i = 0; i < ROOT_ENTRY_NR; i++) {
582 root = &iommu->root_entry[i];
583 context = get_context_addr_from_root(root);
584 if (context)
585 free_pgtable_page(context);
587 free_pgtable_page(iommu->root_entry);
588 iommu->root_entry = NULL;
589 out:
590 spin_unlock_irqrestore(&iommu->lock, flags);
593 /* page table handling */
594 #define LEVEL_STRIDE (9)
595 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
597 static inline int agaw_to_level(int agaw)
599 return agaw + 2;
602 static inline int agaw_to_width(int agaw)
604 return 30 + agaw * LEVEL_STRIDE;
608 static inline int width_to_agaw(int width)
610 return (width - 30) / LEVEL_STRIDE;
613 static inline unsigned int level_to_offset_bits(int level)
615 return (12 + (level - 1) * LEVEL_STRIDE);
618 static inline int address_level_offset(u64 addr, int level)
620 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
623 static inline u64 level_mask(int level)
625 return ((u64)-1 << level_to_offset_bits(level));
628 static inline u64 level_size(int level)
630 return ((u64)1 << level_to_offset_bits(level));
633 static inline u64 align_to_level(u64 addr, int level)
635 return ((addr + level_size(level) - 1) & level_mask(level));
638 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
640 int addr_width = agaw_to_width(domain->agaw);
641 struct dma_pte *parent, *pte = NULL;
642 int level = agaw_to_level(domain->agaw);
643 int offset;
644 unsigned long flags;
646 BUG_ON(!domain->pgd);
648 addr &= (((u64)1) << addr_width) - 1;
649 parent = domain->pgd;
651 spin_lock_irqsave(&domain->mapping_lock, flags);
652 while (level > 0) {
653 void *tmp_page;
655 offset = address_level_offset(addr, level);
656 pte = &parent[offset];
657 if (level == 1)
658 break;
660 if (!dma_pte_present(pte)) {
661 tmp_page = alloc_pgtable_page();
663 if (!tmp_page) {
664 spin_unlock_irqrestore(&domain->mapping_lock,
665 flags);
666 return NULL;
668 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
669 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
671 * high level table always sets r/w, last level page
672 * table control read/write
674 dma_set_pte_readable(pte);
675 dma_set_pte_writable(pte);
676 domain_flush_cache(domain, pte, sizeof(*pte));
678 parent = phys_to_virt(dma_pte_addr(pte));
679 level--;
682 spin_unlock_irqrestore(&domain->mapping_lock, flags);
683 return pte;
686 /* return address's pte at specific level */
687 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
688 int level)
690 struct dma_pte *parent, *pte = NULL;
691 int total = agaw_to_level(domain->agaw);
692 int offset;
694 parent = domain->pgd;
695 while (level <= total) {
696 offset = address_level_offset(addr, total);
697 pte = &parent[offset];
698 if (level == total)
699 return pte;
701 if (!dma_pte_present(pte))
702 break;
703 parent = phys_to_virt(dma_pte_addr(pte));
704 total--;
706 return NULL;
709 /* clear one page's page table */
710 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
712 struct dma_pte *pte = NULL;
714 /* get last level pte */
715 pte = dma_addr_level_pte(domain, addr, 1);
717 if (pte) {
718 dma_clear_pte(pte);
719 domain_flush_cache(domain, pte, sizeof(*pte));
723 /* clear last level pte, a tlb flush should be followed */
724 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
726 int addr_width = agaw_to_width(domain->agaw);
727 int npages;
729 start &= (((u64)1) << addr_width) - 1;
730 end &= (((u64)1) << addr_width) - 1;
731 /* in case it's partial page */
732 start = PAGE_ALIGN(start);
733 end &= PAGE_MASK;
734 npages = (end - start) / VTD_PAGE_SIZE;
736 /* we don't need lock here, nobody else touches the iova range */
737 while (npages--) {
738 dma_pte_clear_one(domain, start);
739 start += VTD_PAGE_SIZE;
743 /* free page table pages. last level pte should already be cleared */
744 static void dma_pte_free_pagetable(struct dmar_domain *domain,
745 u64 start, u64 end)
747 int addr_width = agaw_to_width(domain->agaw);
748 struct dma_pte *pte;
749 int total = agaw_to_level(domain->agaw);
750 int level;
751 u64 tmp;
753 start &= (((u64)1) << addr_width) - 1;
754 end &= (((u64)1) << addr_width) - 1;
756 /* we don't need lock here, nobody else touches the iova range */
757 level = 2;
758 while (level <= total) {
759 tmp = align_to_level(start, level);
760 if (tmp >= end || (tmp + level_size(level) > end))
761 return;
763 while (tmp < end) {
764 pte = dma_addr_level_pte(domain, tmp, level);
765 if (pte) {
766 free_pgtable_page(
767 phys_to_virt(dma_pte_addr(pte)));
768 dma_clear_pte(pte);
769 domain_flush_cache(domain, pte, sizeof(*pte));
771 tmp += level_size(level);
773 level++;
775 /* free pgd */
776 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
777 free_pgtable_page(domain->pgd);
778 domain->pgd = NULL;
782 /* iommu handling */
783 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
785 struct root_entry *root;
786 unsigned long flags;
788 root = (struct root_entry *)alloc_pgtable_page();
789 if (!root)
790 return -ENOMEM;
792 __iommu_flush_cache(iommu, root, ROOT_SIZE);
794 spin_lock_irqsave(&iommu->lock, flags);
795 iommu->root_entry = root;
796 spin_unlock_irqrestore(&iommu->lock, flags);
798 return 0;
801 static void iommu_set_root_entry(struct intel_iommu *iommu)
803 void *addr;
804 u32 cmd, sts;
805 unsigned long flag;
807 addr = iommu->root_entry;
809 spin_lock_irqsave(&iommu->register_lock, flag);
810 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
812 cmd = iommu->gcmd | DMA_GCMD_SRTP;
813 writel(cmd, iommu->reg + DMAR_GCMD_REG);
815 /* Make sure hardware complete it */
816 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
817 readl, (sts & DMA_GSTS_RTPS), sts);
819 spin_unlock_irqrestore(&iommu->register_lock, flag);
822 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
824 u32 val;
825 unsigned long flag;
827 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
828 return;
829 val = iommu->gcmd | DMA_GCMD_WBF;
831 spin_lock_irqsave(&iommu->register_lock, flag);
832 writel(val, iommu->reg + DMAR_GCMD_REG);
834 /* Make sure hardware complete it */
835 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
836 readl, (!(val & DMA_GSTS_WBFS)), val);
838 spin_unlock_irqrestore(&iommu->register_lock, flag);
841 /* return value determine if we need a write buffer flush */
842 static int __iommu_flush_context(struct intel_iommu *iommu,
843 u16 did, u16 source_id, u8 function_mask, u64 type,
844 int non_present_entry_flush)
846 u64 val = 0;
847 unsigned long flag;
850 * In the non-present entry flush case, if hardware doesn't cache
851 * non-present entry we do nothing and if hardware cache non-present
852 * entry, we flush entries of domain 0 (the domain id is used to cache
853 * any non-present entries)
855 if (non_present_entry_flush) {
856 if (!cap_caching_mode(iommu->cap))
857 return 1;
858 else
859 did = 0;
862 switch (type) {
863 case DMA_CCMD_GLOBAL_INVL:
864 val = DMA_CCMD_GLOBAL_INVL;
865 break;
866 case DMA_CCMD_DOMAIN_INVL:
867 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
868 break;
869 case DMA_CCMD_DEVICE_INVL:
870 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
871 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
872 break;
873 default:
874 BUG();
876 val |= DMA_CCMD_ICC;
878 spin_lock_irqsave(&iommu->register_lock, flag);
879 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
881 /* Make sure hardware complete it */
882 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
883 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
885 spin_unlock_irqrestore(&iommu->register_lock, flag);
887 /* flush context entry will implicitly flush write buffer */
888 return 0;
891 /* return value determine if we need a write buffer flush */
892 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
893 u64 addr, unsigned int size_order, u64 type,
894 int non_present_entry_flush)
896 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
897 u64 val = 0, val_iva = 0;
898 unsigned long flag;
901 * In the non-present entry flush case, if hardware doesn't cache
902 * non-present entry we do nothing and if hardware cache non-present
903 * entry, we flush entries of domain 0 (the domain id is used to cache
904 * any non-present entries)
906 if (non_present_entry_flush) {
907 if (!cap_caching_mode(iommu->cap))
908 return 1;
909 else
910 did = 0;
913 switch (type) {
914 case DMA_TLB_GLOBAL_FLUSH:
915 /* global flush doesn't need set IVA_REG */
916 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
917 break;
918 case DMA_TLB_DSI_FLUSH:
919 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
920 break;
921 case DMA_TLB_PSI_FLUSH:
922 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
923 /* Note: always flush non-leaf currently */
924 val_iva = size_order | addr;
925 break;
926 default:
927 BUG();
929 /* Note: set drain read/write */
930 #if 0
932 * This is probably to be super secure.. Looks like we can
933 * ignore it without any impact.
935 if (cap_read_drain(iommu->cap))
936 val |= DMA_TLB_READ_DRAIN;
937 #endif
938 if (cap_write_drain(iommu->cap))
939 val |= DMA_TLB_WRITE_DRAIN;
941 spin_lock_irqsave(&iommu->register_lock, flag);
942 /* Note: Only uses first TLB reg currently */
943 if (val_iva)
944 dmar_writeq(iommu->reg + tlb_offset, val_iva);
945 dmar_writeq(iommu->reg + tlb_offset + 8, val);
947 /* Make sure hardware complete it */
948 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
949 dmar_readq, (!(val & DMA_TLB_IVT)), val);
951 spin_unlock_irqrestore(&iommu->register_lock, flag);
953 /* check IOTLB invalidation granularity */
954 if (DMA_TLB_IAIG(val) == 0)
955 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
956 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
957 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
958 (unsigned long long)DMA_TLB_IIRG(type),
959 (unsigned long long)DMA_TLB_IAIG(val));
960 /* flush iotlb entry will implicitly flush write buffer */
961 return 0;
964 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
965 u64 addr, unsigned int pages, int non_present_entry_flush)
967 unsigned int mask;
969 BUG_ON(addr & (~VTD_PAGE_MASK));
970 BUG_ON(pages == 0);
972 /* Fallback to domain selective flush if no PSI support */
973 if (!cap_pgsel_inv(iommu->cap))
974 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
975 DMA_TLB_DSI_FLUSH,
976 non_present_entry_flush);
979 * PSI requires page size to be 2 ^ x, and the base address is naturally
980 * aligned to the size
982 mask = ilog2(__roundup_pow_of_two(pages));
983 /* Fallback to domain selective flush if size is too big */
984 if (mask > cap_max_amask_val(iommu->cap))
985 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
986 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
988 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
989 DMA_TLB_PSI_FLUSH,
990 non_present_entry_flush);
993 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
995 u32 pmen;
996 unsigned long flags;
998 spin_lock_irqsave(&iommu->register_lock, flags);
999 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1000 pmen &= ~DMA_PMEN_EPM;
1001 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1003 /* wait for the protected region status bit to clear */
1004 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1005 readl, !(pmen & DMA_PMEN_PRS), pmen);
1007 spin_unlock_irqrestore(&iommu->register_lock, flags);
1010 static int iommu_enable_translation(struct intel_iommu *iommu)
1012 u32 sts;
1013 unsigned long flags;
1015 spin_lock_irqsave(&iommu->register_lock, flags);
1016 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1018 /* Make sure hardware complete it */
1019 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1020 readl, (sts & DMA_GSTS_TES), sts);
1022 iommu->gcmd |= DMA_GCMD_TE;
1023 spin_unlock_irqrestore(&iommu->register_lock, flags);
1024 return 0;
1027 static int iommu_disable_translation(struct intel_iommu *iommu)
1029 u32 sts;
1030 unsigned long flag;
1032 spin_lock_irqsave(&iommu->register_lock, flag);
1033 iommu->gcmd &= ~DMA_GCMD_TE;
1034 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1036 /* Make sure hardware complete it */
1037 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1038 readl, (!(sts & DMA_GSTS_TES)), sts);
1040 spin_unlock_irqrestore(&iommu->register_lock, flag);
1041 return 0;
1045 static int iommu_init_domains(struct intel_iommu *iommu)
1047 unsigned long ndomains;
1048 unsigned long nlongs;
1050 ndomains = cap_ndoms(iommu->cap);
1051 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1052 nlongs = BITS_TO_LONGS(ndomains);
1054 /* TBD: there might be 64K domains,
1055 * consider other allocation for future chip
1057 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1058 if (!iommu->domain_ids) {
1059 printk(KERN_ERR "Allocating domain id array failed\n");
1060 return -ENOMEM;
1062 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1063 GFP_KERNEL);
1064 if (!iommu->domains) {
1065 printk(KERN_ERR "Allocating domain array failed\n");
1066 kfree(iommu->domain_ids);
1067 return -ENOMEM;
1070 spin_lock_init(&iommu->lock);
1073 * if Caching mode is set, then invalid translations are tagged
1074 * with domainid 0. Hence we need to pre-allocate it.
1076 if (cap_caching_mode(iommu->cap))
1077 set_bit(0, iommu->domain_ids);
1078 return 0;
1082 static void domain_exit(struct dmar_domain *domain);
1083 static void vm_domain_exit(struct dmar_domain *domain);
1085 void free_dmar_iommu(struct intel_iommu *iommu)
1087 struct dmar_domain *domain;
1088 int i;
1089 unsigned long flags;
1091 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1092 for (; i < cap_ndoms(iommu->cap); ) {
1093 domain = iommu->domains[i];
1094 clear_bit(i, iommu->domain_ids);
1096 spin_lock_irqsave(&domain->iommu_lock, flags);
1097 if (--domain->iommu_count == 0) {
1098 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1099 vm_domain_exit(domain);
1100 else
1101 domain_exit(domain);
1103 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1105 i = find_next_bit(iommu->domain_ids,
1106 cap_ndoms(iommu->cap), i+1);
1109 if (iommu->gcmd & DMA_GCMD_TE)
1110 iommu_disable_translation(iommu);
1112 if (iommu->irq) {
1113 set_irq_data(iommu->irq, NULL);
1114 /* This will mask the irq */
1115 free_irq(iommu->irq, iommu);
1116 destroy_irq(iommu->irq);
1119 kfree(iommu->domains);
1120 kfree(iommu->domain_ids);
1122 g_iommus[iommu->seq_id] = NULL;
1124 /* if all iommus are freed, free g_iommus */
1125 for (i = 0; i < g_num_of_iommus; i++) {
1126 if (g_iommus[i])
1127 break;
1130 if (i == g_num_of_iommus)
1131 kfree(g_iommus);
1133 /* free context mapping */
1134 free_context_table(iommu);
1137 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1139 unsigned long num;
1140 unsigned long ndomains;
1141 struct dmar_domain *domain;
1142 unsigned long flags;
1144 domain = alloc_domain_mem();
1145 if (!domain)
1146 return NULL;
1148 ndomains = cap_ndoms(iommu->cap);
1150 spin_lock_irqsave(&iommu->lock, flags);
1151 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1152 if (num >= ndomains) {
1153 spin_unlock_irqrestore(&iommu->lock, flags);
1154 free_domain_mem(domain);
1155 printk(KERN_ERR "IOMMU: no free domain ids\n");
1156 return NULL;
1159 set_bit(num, iommu->domain_ids);
1160 domain->id = num;
1161 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1162 set_bit(iommu->seq_id, &domain->iommu_bmp);
1163 domain->flags = 0;
1164 iommu->domains[num] = domain;
1165 spin_unlock_irqrestore(&iommu->lock, flags);
1167 return domain;
1170 static void iommu_free_domain(struct dmar_domain *domain)
1172 unsigned long flags;
1173 struct intel_iommu *iommu;
1175 iommu = domain_get_iommu(domain);
1177 spin_lock_irqsave(&iommu->lock, flags);
1178 clear_bit(domain->id, iommu->domain_ids);
1179 spin_unlock_irqrestore(&iommu->lock, flags);
1182 static struct iova_domain reserved_iova_list;
1183 static struct lock_class_key reserved_alloc_key;
1184 static struct lock_class_key reserved_rbtree_key;
1186 static void dmar_init_reserved_ranges(void)
1188 struct pci_dev *pdev = NULL;
1189 struct iova *iova;
1190 int i;
1191 u64 addr, size;
1193 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1195 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1196 &reserved_alloc_key);
1197 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1198 &reserved_rbtree_key);
1200 /* IOAPIC ranges shouldn't be accessed by DMA */
1201 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1202 IOVA_PFN(IOAPIC_RANGE_END));
1203 if (!iova)
1204 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1206 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1207 for_each_pci_dev(pdev) {
1208 struct resource *r;
1210 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1211 r = &pdev->resource[i];
1212 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1213 continue;
1214 addr = r->start;
1215 addr &= PAGE_MASK;
1216 size = r->end - addr;
1217 size = PAGE_ALIGN(size);
1218 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1219 IOVA_PFN(size + addr) - 1);
1220 if (!iova)
1221 printk(KERN_ERR "Reserve iova failed\n");
1227 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1229 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1232 static inline int guestwidth_to_adjustwidth(int gaw)
1234 int agaw;
1235 int r = (gaw - 12) % 9;
1237 if (r == 0)
1238 agaw = gaw;
1239 else
1240 agaw = gaw + 9 - r;
1241 if (agaw > 64)
1242 agaw = 64;
1243 return agaw;
1246 static int domain_init(struct dmar_domain *domain, int guest_width)
1248 struct intel_iommu *iommu;
1249 int adjust_width, agaw;
1250 unsigned long sagaw;
1252 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1253 spin_lock_init(&domain->mapping_lock);
1254 spin_lock_init(&domain->iommu_lock);
1256 domain_reserve_special_ranges(domain);
1258 /* calculate AGAW */
1259 iommu = domain_get_iommu(domain);
1260 if (guest_width > cap_mgaw(iommu->cap))
1261 guest_width = cap_mgaw(iommu->cap);
1262 domain->gaw = guest_width;
1263 adjust_width = guestwidth_to_adjustwidth(guest_width);
1264 agaw = width_to_agaw(adjust_width);
1265 sagaw = cap_sagaw(iommu->cap);
1266 if (!test_bit(agaw, &sagaw)) {
1267 /* hardware doesn't support it, choose a bigger one */
1268 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1269 agaw = find_next_bit(&sagaw, 5, agaw);
1270 if (agaw >= 5)
1271 return -ENODEV;
1273 domain->agaw = agaw;
1274 INIT_LIST_HEAD(&domain->devices);
1276 if (ecap_coherent(iommu->ecap))
1277 domain->iommu_coherency = 1;
1278 else
1279 domain->iommu_coherency = 0;
1281 if (ecap_sc_support(iommu->ecap))
1282 domain->iommu_snooping = 1;
1283 else
1284 domain->iommu_snooping = 0;
1286 domain->iommu_count = 1;
1288 /* always allocate the top pgd */
1289 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1290 if (!domain->pgd)
1291 return -ENOMEM;
1292 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1293 return 0;
1296 static void domain_exit(struct dmar_domain *domain)
1298 u64 end;
1300 /* Domain 0 is reserved, so dont process it */
1301 if (!domain)
1302 return;
1304 domain_remove_dev_info(domain);
1305 /* destroy iovas */
1306 put_iova_domain(&domain->iovad);
1307 end = DOMAIN_MAX_ADDR(domain->gaw);
1308 end = end & (~PAGE_MASK);
1310 /* clear ptes */
1311 dma_pte_clear_range(domain, 0, end);
1313 /* free page tables */
1314 dma_pte_free_pagetable(domain, 0, end);
1316 iommu_free_domain(domain);
1317 free_domain_mem(domain);
1320 static int domain_context_mapping_one(struct dmar_domain *domain,
1321 u8 bus, u8 devfn)
1323 struct context_entry *context;
1324 unsigned long flags;
1325 struct intel_iommu *iommu;
1326 struct dma_pte *pgd;
1327 unsigned long num;
1328 unsigned long ndomains;
1329 int id;
1330 int agaw;
1332 pr_debug("Set context mapping for %02x:%02x.%d\n",
1333 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1334 BUG_ON(!domain->pgd);
1336 iommu = device_to_iommu(bus, devfn);
1337 if (!iommu)
1338 return -ENODEV;
1340 context = device_to_context_entry(iommu, bus, devfn);
1341 if (!context)
1342 return -ENOMEM;
1343 spin_lock_irqsave(&iommu->lock, flags);
1344 if (context_present(context)) {
1345 spin_unlock_irqrestore(&iommu->lock, flags);
1346 return 0;
1349 id = domain->id;
1350 pgd = domain->pgd;
1352 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1353 int found = 0;
1355 /* find an available domain id for this device in iommu */
1356 ndomains = cap_ndoms(iommu->cap);
1357 num = find_first_bit(iommu->domain_ids, ndomains);
1358 for (; num < ndomains; ) {
1359 if (iommu->domains[num] == domain) {
1360 id = num;
1361 found = 1;
1362 break;
1364 num = find_next_bit(iommu->domain_ids,
1365 cap_ndoms(iommu->cap), num+1);
1368 if (found == 0) {
1369 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1370 if (num >= ndomains) {
1371 spin_unlock_irqrestore(&iommu->lock, flags);
1372 printk(KERN_ERR "IOMMU: no free domain ids\n");
1373 return -EFAULT;
1376 set_bit(num, iommu->domain_ids);
1377 iommu->domains[num] = domain;
1378 id = num;
1381 /* Skip top levels of page tables for
1382 * iommu which has less agaw than default.
1384 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1385 pgd = phys_to_virt(dma_pte_addr(pgd));
1386 if (!dma_pte_present(pgd)) {
1387 spin_unlock_irqrestore(&iommu->lock, flags);
1388 return -ENOMEM;
1393 context_set_domain_id(context, id);
1394 context_set_address_width(context, iommu->agaw);
1395 context_set_address_root(context, virt_to_phys(pgd));
1396 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1397 context_set_fault_enable(context);
1398 context_set_present(context);
1399 domain_flush_cache(domain, context, sizeof(*context));
1401 /* it's a non-present to present mapping */
1402 if (iommu->flush.flush_context(iommu, domain->id,
1403 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1404 DMA_CCMD_DEVICE_INVL, 1))
1405 iommu_flush_write_buffer(iommu);
1406 else
1407 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1409 spin_unlock_irqrestore(&iommu->lock, flags);
1411 spin_lock_irqsave(&domain->iommu_lock, flags);
1412 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1413 domain->iommu_count++;
1414 domain_update_iommu_cap(domain);
1416 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1417 return 0;
1420 static int
1421 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1423 int ret;
1424 struct pci_dev *tmp, *parent;
1426 ret = domain_context_mapping_one(domain, pdev->bus->number,
1427 pdev->devfn);
1428 if (ret)
1429 return ret;
1431 /* dependent device mapping */
1432 tmp = pci_find_upstream_pcie_bridge(pdev);
1433 if (!tmp)
1434 return 0;
1435 /* Secondary interface's bus number and devfn 0 */
1436 parent = pdev->bus->self;
1437 while (parent != tmp) {
1438 ret = domain_context_mapping_one(domain, parent->bus->number,
1439 parent->devfn);
1440 if (ret)
1441 return ret;
1442 parent = parent->bus->self;
1444 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1445 return domain_context_mapping_one(domain,
1446 tmp->subordinate->number, 0);
1447 else /* this is a legacy PCI bridge */
1448 return domain_context_mapping_one(domain,
1449 tmp->bus->number, tmp->devfn);
1452 static int domain_context_mapped(struct pci_dev *pdev)
1454 int ret;
1455 struct pci_dev *tmp, *parent;
1456 struct intel_iommu *iommu;
1458 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1459 if (!iommu)
1460 return -ENODEV;
1462 ret = device_context_mapped(iommu,
1463 pdev->bus->number, pdev->devfn);
1464 if (!ret)
1465 return ret;
1466 /* dependent device mapping */
1467 tmp = pci_find_upstream_pcie_bridge(pdev);
1468 if (!tmp)
1469 return ret;
1470 /* Secondary interface's bus number and devfn 0 */
1471 parent = pdev->bus->self;
1472 while (parent != tmp) {
1473 ret = device_context_mapped(iommu, parent->bus->number,
1474 parent->devfn);
1475 if (!ret)
1476 return ret;
1477 parent = parent->bus->self;
1479 if (tmp->is_pcie)
1480 return device_context_mapped(iommu,
1481 tmp->subordinate->number, 0);
1482 else
1483 return device_context_mapped(iommu,
1484 tmp->bus->number, tmp->devfn);
1487 static int
1488 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1489 u64 hpa, size_t size, int prot)
1491 u64 start_pfn, end_pfn;
1492 struct dma_pte *pte;
1493 int index;
1494 int addr_width = agaw_to_width(domain->agaw);
1496 hpa &= (((u64)1) << addr_width) - 1;
1498 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1499 return -EINVAL;
1500 iova &= PAGE_MASK;
1501 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1502 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1503 index = 0;
1504 while (start_pfn < end_pfn) {
1505 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1506 if (!pte)
1507 return -ENOMEM;
1508 /* We don't need lock here, nobody else
1509 * touches the iova range
1511 BUG_ON(dma_pte_addr(pte));
1512 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1513 dma_set_pte_prot(pte, prot);
1514 if (prot & DMA_PTE_SNP)
1515 dma_set_pte_snp(pte);
1516 domain_flush_cache(domain, pte, sizeof(*pte));
1517 start_pfn++;
1518 index++;
1520 return 0;
1523 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1525 if (!iommu)
1526 return;
1528 clear_context_table(iommu, bus, devfn);
1529 iommu->flush.flush_context(iommu, 0, 0, 0,
1530 DMA_CCMD_GLOBAL_INVL, 0);
1531 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1532 DMA_TLB_GLOBAL_FLUSH, 0);
1535 static void domain_remove_dev_info(struct dmar_domain *domain)
1537 struct device_domain_info *info;
1538 unsigned long flags;
1539 struct intel_iommu *iommu;
1541 spin_lock_irqsave(&device_domain_lock, flags);
1542 while (!list_empty(&domain->devices)) {
1543 info = list_entry(domain->devices.next,
1544 struct device_domain_info, link);
1545 list_del(&info->link);
1546 list_del(&info->global);
1547 if (info->dev)
1548 info->dev->dev.archdata.iommu = NULL;
1549 spin_unlock_irqrestore(&device_domain_lock, flags);
1551 iommu = device_to_iommu(info->bus, info->devfn);
1552 iommu_detach_dev(iommu, info->bus, info->devfn);
1553 free_devinfo_mem(info);
1555 spin_lock_irqsave(&device_domain_lock, flags);
1557 spin_unlock_irqrestore(&device_domain_lock, flags);
1561 * find_domain
1562 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1564 static struct dmar_domain *
1565 find_domain(struct pci_dev *pdev)
1567 struct device_domain_info *info;
1569 /* No lock here, assumes no domain exit in normal case */
1570 info = pdev->dev.archdata.iommu;
1571 if (info)
1572 return info->domain;
1573 return NULL;
1576 /* domain is initialized */
1577 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1579 struct dmar_domain *domain, *found = NULL;
1580 struct intel_iommu *iommu;
1581 struct dmar_drhd_unit *drhd;
1582 struct device_domain_info *info, *tmp;
1583 struct pci_dev *dev_tmp;
1584 unsigned long flags;
1585 int bus = 0, devfn = 0;
1587 domain = find_domain(pdev);
1588 if (domain)
1589 return domain;
1591 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1592 if (dev_tmp) {
1593 if (dev_tmp->is_pcie) {
1594 bus = dev_tmp->subordinate->number;
1595 devfn = 0;
1596 } else {
1597 bus = dev_tmp->bus->number;
1598 devfn = dev_tmp->devfn;
1600 spin_lock_irqsave(&device_domain_lock, flags);
1601 list_for_each_entry(info, &device_domain_list, global) {
1602 if (info->bus == bus && info->devfn == devfn) {
1603 found = info->domain;
1604 break;
1607 spin_unlock_irqrestore(&device_domain_lock, flags);
1608 /* pcie-pci bridge already has a domain, uses it */
1609 if (found) {
1610 domain = found;
1611 goto found_domain;
1615 /* Allocate new domain for the device */
1616 drhd = dmar_find_matched_drhd_unit(pdev);
1617 if (!drhd) {
1618 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1619 pci_name(pdev));
1620 return NULL;
1622 iommu = drhd->iommu;
1624 domain = iommu_alloc_domain(iommu);
1625 if (!domain)
1626 goto error;
1628 if (domain_init(domain, gaw)) {
1629 domain_exit(domain);
1630 goto error;
1633 /* register pcie-to-pci device */
1634 if (dev_tmp) {
1635 info = alloc_devinfo_mem();
1636 if (!info) {
1637 domain_exit(domain);
1638 goto error;
1640 info->bus = bus;
1641 info->devfn = devfn;
1642 info->dev = NULL;
1643 info->domain = domain;
1644 /* This domain is shared by devices under p2p bridge */
1645 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1647 /* pcie-to-pci bridge already has a domain, uses it */
1648 found = NULL;
1649 spin_lock_irqsave(&device_domain_lock, flags);
1650 list_for_each_entry(tmp, &device_domain_list, global) {
1651 if (tmp->bus == bus && tmp->devfn == devfn) {
1652 found = tmp->domain;
1653 break;
1656 if (found) {
1657 free_devinfo_mem(info);
1658 domain_exit(domain);
1659 domain = found;
1660 } else {
1661 list_add(&info->link, &domain->devices);
1662 list_add(&info->global, &device_domain_list);
1664 spin_unlock_irqrestore(&device_domain_lock, flags);
1667 found_domain:
1668 info = alloc_devinfo_mem();
1669 if (!info)
1670 goto error;
1671 info->bus = pdev->bus->number;
1672 info->devfn = pdev->devfn;
1673 info->dev = pdev;
1674 info->domain = domain;
1675 spin_lock_irqsave(&device_domain_lock, flags);
1676 /* somebody is fast */
1677 found = find_domain(pdev);
1678 if (found != NULL) {
1679 spin_unlock_irqrestore(&device_domain_lock, flags);
1680 if (found != domain) {
1681 domain_exit(domain);
1682 domain = found;
1684 free_devinfo_mem(info);
1685 return domain;
1687 list_add(&info->link, &domain->devices);
1688 list_add(&info->global, &device_domain_list);
1689 pdev->dev.archdata.iommu = info;
1690 spin_unlock_irqrestore(&device_domain_lock, flags);
1691 return domain;
1692 error:
1693 /* recheck it here, maybe others set it */
1694 return find_domain(pdev);
1697 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1698 unsigned long long start,
1699 unsigned long long end)
1701 struct dmar_domain *domain;
1702 unsigned long size;
1703 unsigned long long base;
1704 int ret;
1706 printk(KERN_INFO
1707 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1708 pci_name(pdev), start, end);
1709 /* page table init */
1710 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1711 if (!domain)
1712 return -ENOMEM;
1714 /* The address might not be aligned */
1715 base = start & PAGE_MASK;
1716 size = end - base;
1717 size = PAGE_ALIGN(size);
1718 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1719 IOVA_PFN(base + size) - 1)) {
1720 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1721 ret = -ENOMEM;
1722 goto error;
1725 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1726 size, base, pci_name(pdev));
1728 * RMRR range might have overlap with physical memory range,
1729 * clear it first
1731 dma_pte_clear_range(domain, base, base + size);
1733 ret = domain_page_mapping(domain, base, base, size,
1734 DMA_PTE_READ|DMA_PTE_WRITE);
1735 if (ret)
1736 goto error;
1738 /* context entry init */
1739 ret = domain_context_mapping(domain, pdev);
1740 if (!ret)
1741 return 0;
1742 error:
1743 domain_exit(domain);
1744 return ret;
1748 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1749 struct pci_dev *pdev)
1751 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1752 return 0;
1753 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1754 rmrr->end_address + 1);
1757 #ifdef CONFIG_DMAR_GFX_WA
1758 struct iommu_prepare_data {
1759 struct pci_dev *pdev;
1760 int ret;
1763 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1764 unsigned long end_pfn, void *datax)
1766 struct iommu_prepare_data *data;
1768 data = (struct iommu_prepare_data *)datax;
1770 data->ret = iommu_prepare_identity_map(data->pdev,
1771 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1772 return data->ret;
1776 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1778 int nid;
1779 struct iommu_prepare_data data;
1781 data.pdev = pdev;
1782 data.ret = 0;
1784 for_each_online_node(nid) {
1785 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1786 if (data.ret)
1787 return data.ret;
1789 return data.ret;
1792 static void __init iommu_prepare_gfx_mapping(void)
1794 struct pci_dev *pdev = NULL;
1795 int ret;
1797 for_each_pci_dev(pdev) {
1798 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1799 !IS_GFX_DEVICE(pdev))
1800 continue;
1801 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1802 pci_name(pdev));
1803 ret = iommu_prepare_with_active_regions(pdev);
1804 if (ret)
1805 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1808 #else /* !CONFIG_DMAR_GFX_WA */
1809 static inline void iommu_prepare_gfx_mapping(void)
1811 return;
1813 #endif
1815 #ifdef CONFIG_DMAR_FLOPPY_WA
1816 static inline void iommu_prepare_isa(void)
1818 struct pci_dev *pdev;
1819 int ret;
1821 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1822 if (!pdev)
1823 return;
1825 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1826 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1828 if (ret)
1829 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1830 "floppy might not work\n");
1833 #else
1834 static inline void iommu_prepare_isa(void)
1836 return;
1838 #endif /* !CONFIG_DMAR_FLPY_WA */
1840 static int __init init_dmars(void)
1842 struct dmar_drhd_unit *drhd;
1843 struct dmar_rmrr_unit *rmrr;
1844 struct pci_dev *pdev;
1845 struct intel_iommu *iommu;
1846 int i, ret;
1849 * for each drhd
1850 * allocate root
1851 * initialize and program root entry to not present
1852 * endfor
1854 for_each_drhd_unit(drhd) {
1855 g_num_of_iommus++;
1857 * lock not needed as this is only incremented in the single
1858 * threaded kernel __init code path all other access are read
1859 * only
1863 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1864 GFP_KERNEL);
1865 if (!g_iommus) {
1866 printk(KERN_ERR "Allocating global iommu array failed\n");
1867 ret = -ENOMEM;
1868 goto error;
1871 deferred_flush = kzalloc(g_num_of_iommus *
1872 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1873 if (!deferred_flush) {
1874 kfree(g_iommus);
1875 ret = -ENOMEM;
1876 goto error;
1879 for_each_drhd_unit(drhd) {
1880 if (drhd->ignored)
1881 continue;
1883 iommu = drhd->iommu;
1884 g_iommus[iommu->seq_id] = iommu;
1886 ret = iommu_init_domains(iommu);
1887 if (ret)
1888 goto error;
1891 * TBD:
1892 * we could share the same root & context tables
1893 * amoung all IOMMU's. Need to Split it later.
1895 ret = iommu_alloc_root_entry(iommu);
1896 if (ret) {
1897 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1898 goto error;
1903 * Start from the sane iommu hardware state.
1905 for_each_drhd_unit(drhd) {
1906 if (drhd->ignored)
1907 continue;
1909 iommu = drhd->iommu;
1912 * If the queued invalidation is already initialized by us
1913 * (for example, while enabling interrupt-remapping) then
1914 * we got the things already rolling from a sane state.
1916 if (iommu->qi)
1917 continue;
1920 * Clear any previous faults.
1922 dmar_fault(-1, iommu);
1924 * Disable queued invalidation if supported and already enabled
1925 * before OS handover.
1927 dmar_disable_qi(iommu);
1930 for_each_drhd_unit(drhd) {
1931 if (drhd->ignored)
1932 continue;
1934 iommu = drhd->iommu;
1936 if (dmar_enable_qi(iommu)) {
1938 * Queued Invalidate not enabled, use Register Based
1939 * Invalidate
1941 iommu->flush.flush_context = __iommu_flush_context;
1942 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1943 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1944 "invalidation\n",
1945 (unsigned long long)drhd->reg_base_addr);
1946 } else {
1947 iommu->flush.flush_context = qi_flush_context;
1948 iommu->flush.flush_iotlb = qi_flush_iotlb;
1949 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1950 "invalidation\n",
1951 (unsigned long long)drhd->reg_base_addr);
1955 #ifdef CONFIG_INTR_REMAP
1956 if (!intr_remapping_enabled) {
1957 ret = enable_intr_remapping(0);
1958 if (ret)
1959 printk(KERN_ERR
1960 "IOMMU: enable interrupt remapping failed\n");
1962 #endif
1965 * For each rmrr
1966 * for each dev attached to rmrr
1967 * do
1968 * locate drhd for dev, alloc domain for dev
1969 * allocate free domain
1970 * allocate page table entries for rmrr
1971 * if context not allocated for bus
1972 * allocate and init context
1973 * set present in root table for this bus
1974 * init context with domain, translation etc
1975 * endfor
1976 * endfor
1978 for_each_rmrr_units(rmrr) {
1979 for (i = 0; i < rmrr->devices_cnt; i++) {
1980 pdev = rmrr->devices[i];
1981 /* some BIOS lists non-exist devices in DMAR table */
1982 if (!pdev)
1983 continue;
1984 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1985 if (ret)
1986 printk(KERN_ERR
1987 "IOMMU: mapping reserved region failed\n");
1991 iommu_prepare_gfx_mapping();
1993 iommu_prepare_isa();
1996 * for each drhd
1997 * enable fault log
1998 * global invalidate context cache
1999 * global invalidate iotlb
2000 * enable translation
2002 for_each_drhd_unit(drhd) {
2003 if (drhd->ignored)
2004 continue;
2005 iommu = drhd->iommu;
2007 iommu_flush_write_buffer(iommu);
2009 ret = dmar_set_interrupt(iommu);
2010 if (ret)
2011 goto error;
2013 iommu_set_root_entry(iommu);
2015 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2017 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2019 iommu_disable_protect_mem_regions(iommu);
2021 ret = iommu_enable_translation(iommu);
2022 if (ret)
2023 goto error;
2026 return 0;
2027 error:
2028 for_each_drhd_unit(drhd) {
2029 if (drhd->ignored)
2030 continue;
2031 iommu = drhd->iommu;
2032 free_iommu(iommu);
2034 kfree(g_iommus);
2035 return ret;
2038 static inline u64 aligned_size(u64 host_addr, size_t size)
2040 u64 addr;
2041 addr = (host_addr & (~PAGE_MASK)) + size;
2042 return PAGE_ALIGN(addr);
2045 struct iova *
2046 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2048 struct iova *piova;
2050 /* Make sure it's in range */
2051 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2052 if (!size || (IOVA_START_ADDR + size > end))
2053 return NULL;
2055 piova = alloc_iova(&domain->iovad,
2056 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2057 return piova;
2060 static struct iova *
2061 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2062 size_t size, u64 dma_mask)
2064 struct pci_dev *pdev = to_pci_dev(dev);
2065 struct iova *iova = NULL;
2067 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2068 iova = iommu_alloc_iova(domain, size, dma_mask);
2069 else {
2071 * First try to allocate an io virtual address in
2072 * DMA_32BIT_MASK and if that fails then try allocating
2073 * from higher range
2075 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
2076 if (!iova)
2077 iova = iommu_alloc_iova(domain, size, dma_mask);
2080 if (!iova) {
2081 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2082 return NULL;
2085 return iova;
2088 static struct dmar_domain *
2089 get_valid_domain_for_dev(struct pci_dev *pdev)
2091 struct dmar_domain *domain;
2092 int ret;
2094 domain = get_domain_for_dev(pdev,
2095 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2096 if (!domain) {
2097 printk(KERN_ERR
2098 "Allocating domain for %s failed", pci_name(pdev));
2099 return NULL;
2102 /* make sure context mapping is ok */
2103 if (unlikely(!domain_context_mapped(pdev))) {
2104 ret = domain_context_mapping(domain, pdev);
2105 if (ret) {
2106 printk(KERN_ERR
2107 "Domain context map for %s failed",
2108 pci_name(pdev));
2109 return NULL;
2113 return domain;
2116 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2117 size_t size, int dir, u64 dma_mask)
2119 struct pci_dev *pdev = to_pci_dev(hwdev);
2120 struct dmar_domain *domain;
2121 phys_addr_t start_paddr;
2122 struct iova *iova;
2123 int prot = 0;
2124 int ret;
2125 struct intel_iommu *iommu;
2127 BUG_ON(dir == DMA_NONE);
2128 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2129 return paddr;
2131 domain = get_valid_domain_for_dev(pdev);
2132 if (!domain)
2133 return 0;
2135 iommu = domain_get_iommu(domain);
2136 size = aligned_size((u64)paddr, size);
2138 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2139 if (!iova)
2140 goto error;
2142 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2145 * Check if DMAR supports zero-length reads on write only
2146 * mappings..
2148 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2149 !cap_zlr(iommu->cap))
2150 prot |= DMA_PTE_READ;
2151 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2152 prot |= DMA_PTE_WRITE;
2154 * paddr - (paddr + size) might be partial page, we should map the whole
2155 * page. Note: if two part of one page are separately mapped, we
2156 * might have two guest_addr mapping to the same host paddr, but this
2157 * is not a big problem
2159 ret = domain_page_mapping(domain, start_paddr,
2160 ((u64)paddr) & PAGE_MASK, size, prot);
2161 if (ret)
2162 goto error;
2164 /* it's a non-present to present mapping */
2165 ret = iommu_flush_iotlb_psi(iommu, domain->id,
2166 start_paddr, size >> VTD_PAGE_SHIFT, 1);
2167 if (ret)
2168 iommu_flush_write_buffer(iommu);
2170 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2172 error:
2173 if (iova)
2174 __free_iova(&domain->iovad, iova);
2175 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2176 pci_name(pdev), size, (unsigned long long)paddr, dir);
2177 return 0;
2180 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2181 unsigned long offset, size_t size,
2182 enum dma_data_direction dir,
2183 struct dma_attrs *attrs)
2185 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2186 dir, to_pci_dev(dev)->dma_mask);
2189 static void flush_unmaps(void)
2191 int i, j;
2193 timer_on = 0;
2195 /* just flush them all */
2196 for (i = 0; i < g_num_of_iommus; i++) {
2197 struct intel_iommu *iommu = g_iommus[i];
2198 if (!iommu)
2199 continue;
2201 if (deferred_flush[i].next) {
2202 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2203 DMA_TLB_GLOBAL_FLUSH, 0);
2204 for (j = 0; j < deferred_flush[i].next; j++) {
2205 __free_iova(&deferred_flush[i].domain[j]->iovad,
2206 deferred_flush[i].iova[j]);
2208 deferred_flush[i].next = 0;
2212 list_size = 0;
2215 static void flush_unmaps_timeout(unsigned long data)
2217 unsigned long flags;
2219 spin_lock_irqsave(&async_umap_flush_lock, flags);
2220 flush_unmaps();
2221 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2224 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2226 unsigned long flags;
2227 int next, iommu_id;
2228 struct intel_iommu *iommu;
2230 spin_lock_irqsave(&async_umap_flush_lock, flags);
2231 if (list_size == HIGH_WATER_MARK)
2232 flush_unmaps();
2234 iommu = domain_get_iommu(dom);
2235 iommu_id = iommu->seq_id;
2237 next = deferred_flush[iommu_id].next;
2238 deferred_flush[iommu_id].domain[next] = dom;
2239 deferred_flush[iommu_id].iova[next] = iova;
2240 deferred_flush[iommu_id].next++;
2242 if (!timer_on) {
2243 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2244 timer_on = 1;
2246 list_size++;
2247 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2250 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2251 size_t size, enum dma_data_direction dir,
2252 struct dma_attrs *attrs)
2254 struct pci_dev *pdev = to_pci_dev(dev);
2255 struct dmar_domain *domain;
2256 unsigned long start_addr;
2257 struct iova *iova;
2258 struct intel_iommu *iommu;
2260 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2261 return;
2262 domain = find_domain(pdev);
2263 BUG_ON(!domain);
2265 iommu = domain_get_iommu(domain);
2267 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2268 if (!iova)
2269 return;
2271 start_addr = iova->pfn_lo << PAGE_SHIFT;
2272 size = aligned_size((u64)dev_addr, size);
2274 pr_debug("Device %s unmapping: %zx@%llx\n",
2275 pci_name(pdev), size, (unsigned long long)start_addr);
2277 /* clear the whole page */
2278 dma_pte_clear_range(domain, start_addr, start_addr + size);
2279 /* free page tables */
2280 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2281 if (intel_iommu_strict) {
2282 if (iommu_flush_iotlb_psi(iommu,
2283 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2284 iommu_flush_write_buffer(iommu);
2285 /* free iova */
2286 __free_iova(&domain->iovad, iova);
2287 } else {
2288 add_unmap(domain, iova);
2290 * queue up the release of the unmap to save the 1/6th of the
2291 * cpu used up by the iotlb flush operation...
2296 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2297 int dir)
2299 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2302 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2303 dma_addr_t *dma_handle, gfp_t flags)
2305 void *vaddr;
2306 int order;
2308 size = PAGE_ALIGN(size);
2309 order = get_order(size);
2310 flags &= ~(GFP_DMA | GFP_DMA32);
2312 vaddr = (void *)__get_free_pages(flags, order);
2313 if (!vaddr)
2314 return NULL;
2315 memset(vaddr, 0, size);
2317 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2318 DMA_BIDIRECTIONAL,
2319 hwdev->coherent_dma_mask);
2320 if (*dma_handle)
2321 return vaddr;
2322 free_pages((unsigned long)vaddr, order);
2323 return NULL;
2326 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2327 dma_addr_t dma_handle)
2329 int order;
2331 size = PAGE_ALIGN(size);
2332 order = get_order(size);
2334 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2335 free_pages((unsigned long)vaddr, order);
2338 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2339 int nelems, enum dma_data_direction dir,
2340 struct dma_attrs *attrs)
2342 int i;
2343 struct pci_dev *pdev = to_pci_dev(hwdev);
2344 struct dmar_domain *domain;
2345 unsigned long start_addr;
2346 struct iova *iova;
2347 size_t size = 0;
2348 phys_addr_t addr;
2349 struct scatterlist *sg;
2350 struct intel_iommu *iommu;
2352 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2353 return;
2355 domain = find_domain(pdev);
2356 BUG_ON(!domain);
2358 iommu = domain_get_iommu(domain);
2360 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2361 if (!iova)
2362 return;
2363 for_each_sg(sglist, sg, nelems, i) {
2364 addr = page_to_phys(sg_page(sg)) + sg->offset;
2365 size += aligned_size((u64)addr, sg->length);
2368 start_addr = iova->pfn_lo << PAGE_SHIFT;
2370 /* clear the whole page */
2371 dma_pte_clear_range(domain, start_addr, start_addr + size);
2372 /* free page tables */
2373 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2375 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2376 size >> VTD_PAGE_SHIFT, 0))
2377 iommu_flush_write_buffer(iommu);
2379 /* free iova */
2380 __free_iova(&domain->iovad, iova);
2383 static int intel_nontranslate_map_sg(struct device *hddev,
2384 struct scatterlist *sglist, int nelems, int dir)
2386 int i;
2387 struct scatterlist *sg;
2389 for_each_sg(sglist, sg, nelems, i) {
2390 BUG_ON(!sg_page(sg));
2391 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2392 sg->dma_length = sg->length;
2394 return nelems;
2397 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2398 enum dma_data_direction dir, struct dma_attrs *attrs)
2400 phys_addr_t addr;
2401 int i;
2402 struct pci_dev *pdev = to_pci_dev(hwdev);
2403 struct dmar_domain *domain;
2404 size_t size = 0;
2405 int prot = 0;
2406 size_t offset = 0;
2407 struct iova *iova = NULL;
2408 int ret;
2409 struct scatterlist *sg;
2410 unsigned long start_addr;
2411 struct intel_iommu *iommu;
2413 BUG_ON(dir == DMA_NONE);
2414 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2415 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2417 domain = get_valid_domain_for_dev(pdev);
2418 if (!domain)
2419 return 0;
2421 iommu = domain_get_iommu(domain);
2423 for_each_sg(sglist, sg, nelems, i) {
2424 addr = page_to_phys(sg_page(sg)) + sg->offset;
2425 size += aligned_size((u64)addr, sg->length);
2428 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2429 if (!iova) {
2430 sglist->dma_length = 0;
2431 return 0;
2435 * Check if DMAR supports zero-length reads on write only
2436 * mappings..
2438 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2439 !cap_zlr(iommu->cap))
2440 prot |= DMA_PTE_READ;
2441 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2442 prot |= DMA_PTE_WRITE;
2444 start_addr = iova->pfn_lo << PAGE_SHIFT;
2445 offset = 0;
2446 for_each_sg(sglist, sg, nelems, i) {
2447 addr = page_to_phys(sg_page(sg)) + sg->offset;
2448 size = aligned_size((u64)addr, sg->length);
2449 ret = domain_page_mapping(domain, start_addr + offset,
2450 ((u64)addr) & PAGE_MASK,
2451 size, prot);
2452 if (ret) {
2453 /* clear the page */
2454 dma_pte_clear_range(domain, start_addr,
2455 start_addr + offset);
2456 /* free page tables */
2457 dma_pte_free_pagetable(domain, start_addr,
2458 start_addr + offset);
2459 /* free iova */
2460 __free_iova(&domain->iovad, iova);
2461 return 0;
2463 sg->dma_address = start_addr + offset +
2464 ((u64)addr & (~PAGE_MASK));
2465 sg->dma_length = sg->length;
2466 offset += size;
2469 /* it's a non-present to present mapping */
2470 if (iommu_flush_iotlb_psi(iommu, domain->id,
2471 start_addr, offset >> VTD_PAGE_SHIFT, 1))
2472 iommu_flush_write_buffer(iommu);
2473 return nelems;
2476 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2478 return !dma_addr;
2481 struct dma_map_ops intel_dma_ops = {
2482 .alloc_coherent = intel_alloc_coherent,
2483 .free_coherent = intel_free_coherent,
2484 .map_sg = intel_map_sg,
2485 .unmap_sg = intel_unmap_sg,
2486 .map_page = intel_map_page,
2487 .unmap_page = intel_unmap_page,
2488 .mapping_error = intel_mapping_error,
2491 static inline int iommu_domain_cache_init(void)
2493 int ret = 0;
2495 iommu_domain_cache = kmem_cache_create("iommu_domain",
2496 sizeof(struct dmar_domain),
2498 SLAB_HWCACHE_ALIGN,
2500 NULL);
2501 if (!iommu_domain_cache) {
2502 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2503 ret = -ENOMEM;
2506 return ret;
2509 static inline int iommu_devinfo_cache_init(void)
2511 int ret = 0;
2513 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2514 sizeof(struct device_domain_info),
2516 SLAB_HWCACHE_ALIGN,
2517 NULL);
2518 if (!iommu_devinfo_cache) {
2519 printk(KERN_ERR "Couldn't create devinfo cache\n");
2520 ret = -ENOMEM;
2523 return ret;
2526 static inline int iommu_iova_cache_init(void)
2528 int ret = 0;
2530 iommu_iova_cache = kmem_cache_create("iommu_iova",
2531 sizeof(struct iova),
2533 SLAB_HWCACHE_ALIGN,
2534 NULL);
2535 if (!iommu_iova_cache) {
2536 printk(KERN_ERR "Couldn't create iova cache\n");
2537 ret = -ENOMEM;
2540 return ret;
2543 static int __init iommu_init_mempool(void)
2545 int ret;
2546 ret = iommu_iova_cache_init();
2547 if (ret)
2548 return ret;
2550 ret = iommu_domain_cache_init();
2551 if (ret)
2552 goto domain_error;
2554 ret = iommu_devinfo_cache_init();
2555 if (!ret)
2556 return ret;
2558 kmem_cache_destroy(iommu_domain_cache);
2559 domain_error:
2560 kmem_cache_destroy(iommu_iova_cache);
2562 return -ENOMEM;
2565 static void __init iommu_exit_mempool(void)
2567 kmem_cache_destroy(iommu_devinfo_cache);
2568 kmem_cache_destroy(iommu_domain_cache);
2569 kmem_cache_destroy(iommu_iova_cache);
2573 static void __init init_no_remapping_devices(void)
2575 struct dmar_drhd_unit *drhd;
2577 for_each_drhd_unit(drhd) {
2578 if (!drhd->include_all) {
2579 int i;
2580 for (i = 0; i < drhd->devices_cnt; i++)
2581 if (drhd->devices[i] != NULL)
2582 break;
2583 /* ignore DMAR unit if no pci devices exist */
2584 if (i == drhd->devices_cnt)
2585 drhd->ignored = 1;
2589 if (dmar_map_gfx)
2590 return;
2592 for_each_drhd_unit(drhd) {
2593 int i;
2594 if (drhd->ignored || drhd->include_all)
2595 continue;
2597 for (i = 0; i < drhd->devices_cnt; i++)
2598 if (drhd->devices[i] &&
2599 !IS_GFX_DEVICE(drhd->devices[i]))
2600 break;
2602 if (i < drhd->devices_cnt)
2603 continue;
2605 /* bypass IOMMU if it is just for gfx devices */
2606 drhd->ignored = 1;
2607 for (i = 0; i < drhd->devices_cnt; i++) {
2608 if (!drhd->devices[i])
2609 continue;
2610 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2615 #ifdef CONFIG_SUSPEND
2616 static int init_iommu_hw(void)
2618 struct dmar_drhd_unit *drhd;
2619 struct intel_iommu *iommu = NULL;
2621 for_each_active_iommu(iommu, drhd)
2622 if (iommu->qi)
2623 dmar_reenable_qi(iommu);
2625 for_each_active_iommu(iommu, drhd) {
2626 iommu_flush_write_buffer(iommu);
2628 iommu_set_root_entry(iommu);
2630 iommu->flush.flush_context(iommu, 0, 0, 0,
2631 DMA_CCMD_GLOBAL_INVL, 0);
2632 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2633 DMA_TLB_GLOBAL_FLUSH, 0);
2634 iommu_disable_protect_mem_regions(iommu);
2635 iommu_enable_translation(iommu);
2638 return 0;
2641 static void iommu_flush_all(void)
2643 struct dmar_drhd_unit *drhd;
2644 struct intel_iommu *iommu;
2646 for_each_active_iommu(iommu, drhd) {
2647 iommu->flush.flush_context(iommu, 0, 0, 0,
2648 DMA_CCMD_GLOBAL_INVL, 0);
2649 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2650 DMA_TLB_GLOBAL_FLUSH, 0);
2654 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2656 struct dmar_drhd_unit *drhd;
2657 struct intel_iommu *iommu = NULL;
2658 unsigned long flag;
2660 for_each_active_iommu(iommu, drhd) {
2661 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2662 GFP_ATOMIC);
2663 if (!iommu->iommu_state)
2664 goto nomem;
2667 iommu_flush_all();
2669 for_each_active_iommu(iommu, drhd) {
2670 iommu_disable_translation(iommu);
2672 spin_lock_irqsave(&iommu->register_lock, flag);
2674 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2675 readl(iommu->reg + DMAR_FECTL_REG);
2676 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2677 readl(iommu->reg + DMAR_FEDATA_REG);
2678 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2679 readl(iommu->reg + DMAR_FEADDR_REG);
2680 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2681 readl(iommu->reg + DMAR_FEUADDR_REG);
2683 spin_unlock_irqrestore(&iommu->register_lock, flag);
2685 return 0;
2687 nomem:
2688 for_each_active_iommu(iommu, drhd)
2689 kfree(iommu->iommu_state);
2691 return -ENOMEM;
2694 static int iommu_resume(struct sys_device *dev)
2696 struct dmar_drhd_unit *drhd;
2697 struct intel_iommu *iommu = NULL;
2698 unsigned long flag;
2700 if (init_iommu_hw()) {
2701 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2702 return -EIO;
2705 for_each_active_iommu(iommu, drhd) {
2707 spin_lock_irqsave(&iommu->register_lock, flag);
2709 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2710 iommu->reg + DMAR_FECTL_REG);
2711 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2712 iommu->reg + DMAR_FEDATA_REG);
2713 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2714 iommu->reg + DMAR_FEADDR_REG);
2715 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2716 iommu->reg + DMAR_FEUADDR_REG);
2718 spin_unlock_irqrestore(&iommu->register_lock, flag);
2721 for_each_active_iommu(iommu, drhd)
2722 kfree(iommu->iommu_state);
2724 return 0;
2727 static struct sysdev_class iommu_sysclass = {
2728 .name = "iommu",
2729 .resume = iommu_resume,
2730 .suspend = iommu_suspend,
2733 static struct sys_device device_iommu = {
2734 .cls = &iommu_sysclass,
2737 static int __init init_iommu_sysfs(void)
2739 int error;
2741 error = sysdev_class_register(&iommu_sysclass);
2742 if (error)
2743 return error;
2745 error = sysdev_register(&device_iommu);
2746 if (error)
2747 sysdev_class_unregister(&iommu_sysclass);
2749 return error;
2752 #else
2753 static int __init init_iommu_sysfs(void)
2755 return 0;
2757 #endif /* CONFIG_PM */
2759 int __init intel_iommu_init(void)
2761 int ret = 0;
2763 if (dmar_table_init())
2764 return -ENODEV;
2766 if (dmar_dev_scope_init())
2767 return -ENODEV;
2770 * Check the need for DMA-remapping initialization now.
2771 * Above initialization will also be used by Interrupt-remapping.
2773 if (no_iommu || swiotlb || dmar_disabled)
2774 return -ENODEV;
2776 iommu_init_mempool();
2777 dmar_init_reserved_ranges();
2779 init_no_remapping_devices();
2781 ret = init_dmars();
2782 if (ret) {
2783 printk(KERN_ERR "IOMMU: dmar init failed\n");
2784 put_iova_domain(&reserved_iova_list);
2785 iommu_exit_mempool();
2786 return ret;
2788 printk(KERN_INFO
2789 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2791 init_timer(&unmap_timer);
2792 force_iommu = 1;
2793 dma_ops = &intel_dma_ops;
2794 init_iommu_sysfs();
2796 register_iommu(&intel_iommu_ops);
2798 return 0;
2801 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2802 struct pci_dev *pdev)
2804 struct device_domain_info *info;
2805 unsigned long flags;
2807 info = alloc_devinfo_mem();
2808 if (!info)
2809 return -ENOMEM;
2811 info->bus = pdev->bus->number;
2812 info->devfn = pdev->devfn;
2813 info->dev = pdev;
2814 info->domain = domain;
2816 spin_lock_irqsave(&device_domain_lock, flags);
2817 list_add(&info->link, &domain->devices);
2818 list_add(&info->global, &device_domain_list);
2819 pdev->dev.archdata.iommu = info;
2820 spin_unlock_irqrestore(&device_domain_lock, flags);
2822 return 0;
2825 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2826 struct pci_dev *pdev)
2828 struct pci_dev *tmp, *parent;
2830 if (!iommu || !pdev)
2831 return;
2833 /* dependent device detach */
2834 tmp = pci_find_upstream_pcie_bridge(pdev);
2835 /* Secondary interface's bus number and devfn 0 */
2836 if (tmp) {
2837 parent = pdev->bus->self;
2838 while (parent != tmp) {
2839 iommu_detach_dev(iommu, parent->bus->number,
2840 parent->devfn);
2841 parent = parent->bus->self;
2843 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
2844 iommu_detach_dev(iommu,
2845 tmp->subordinate->number, 0);
2846 else /* this is a legacy PCI bridge */
2847 iommu_detach_dev(iommu,
2848 tmp->bus->number, tmp->devfn);
2852 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2853 struct pci_dev *pdev)
2855 struct device_domain_info *info;
2856 struct intel_iommu *iommu;
2857 unsigned long flags;
2858 int found = 0;
2859 struct list_head *entry, *tmp;
2861 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2862 if (!iommu)
2863 return;
2865 spin_lock_irqsave(&device_domain_lock, flags);
2866 list_for_each_safe(entry, tmp, &domain->devices) {
2867 info = list_entry(entry, struct device_domain_info, link);
2868 if (info->bus == pdev->bus->number &&
2869 info->devfn == pdev->devfn) {
2870 list_del(&info->link);
2871 list_del(&info->global);
2872 if (info->dev)
2873 info->dev->dev.archdata.iommu = NULL;
2874 spin_unlock_irqrestore(&device_domain_lock, flags);
2876 iommu_detach_dev(iommu, info->bus, info->devfn);
2877 iommu_detach_dependent_devices(iommu, pdev);
2878 free_devinfo_mem(info);
2880 spin_lock_irqsave(&device_domain_lock, flags);
2882 if (found)
2883 break;
2884 else
2885 continue;
2888 /* if there is no other devices under the same iommu
2889 * owned by this domain, clear this iommu in iommu_bmp
2890 * update iommu count and coherency
2892 if (device_to_iommu(info->bus, info->devfn) == iommu)
2893 found = 1;
2896 if (found == 0) {
2897 unsigned long tmp_flags;
2898 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2899 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2900 domain->iommu_count--;
2901 domain_update_iommu_cap(domain);
2902 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2905 spin_unlock_irqrestore(&device_domain_lock, flags);
2908 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2910 struct device_domain_info *info;
2911 struct intel_iommu *iommu;
2912 unsigned long flags1, flags2;
2914 spin_lock_irqsave(&device_domain_lock, flags1);
2915 while (!list_empty(&domain->devices)) {
2916 info = list_entry(domain->devices.next,
2917 struct device_domain_info, link);
2918 list_del(&info->link);
2919 list_del(&info->global);
2920 if (info->dev)
2921 info->dev->dev.archdata.iommu = NULL;
2923 spin_unlock_irqrestore(&device_domain_lock, flags1);
2925 iommu = device_to_iommu(info->bus, info->devfn);
2926 iommu_detach_dev(iommu, info->bus, info->devfn);
2927 iommu_detach_dependent_devices(iommu, info->dev);
2929 /* clear this iommu in iommu_bmp, update iommu count
2930 * and capabilities
2932 spin_lock_irqsave(&domain->iommu_lock, flags2);
2933 if (test_and_clear_bit(iommu->seq_id,
2934 &domain->iommu_bmp)) {
2935 domain->iommu_count--;
2936 domain_update_iommu_cap(domain);
2938 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2940 free_devinfo_mem(info);
2941 spin_lock_irqsave(&device_domain_lock, flags1);
2943 spin_unlock_irqrestore(&device_domain_lock, flags1);
2946 /* domain id for virtual machine, it won't be set in context */
2947 static unsigned long vm_domid;
2949 static int vm_domain_min_agaw(struct dmar_domain *domain)
2951 int i;
2952 int min_agaw = domain->agaw;
2954 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2955 for (; i < g_num_of_iommus; ) {
2956 if (min_agaw > g_iommus[i]->agaw)
2957 min_agaw = g_iommus[i]->agaw;
2959 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2962 return min_agaw;
2965 static struct dmar_domain *iommu_alloc_vm_domain(void)
2967 struct dmar_domain *domain;
2969 domain = alloc_domain_mem();
2970 if (!domain)
2971 return NULL;
2973 domain->id = vm_domid++;
2974 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2975 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2977 return domain;
2980 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2982 int adjust_width;
2984 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2985 spin_lock_init(&domain->mapping_lock);
2986 spin_lock_init(&domain->iommu_lock);
2988 domain_reserve_special_ranges(domain);
2990 /* calculate AGAW */
2991 domain->gaw = guest_width;
2992 adjust_width = guestwidth_to_adjustwidth(guest_width);
2993 domain->agaw = width_to_agaw(adjust_width);
2995 INIT_LIST_HEAD(&domain->devices);
2997 domain->iommu_count = 0;
2998 domain->iommu_coherency = 0;
2999 domain->max_addr = 0;
3001 /* always allocate the top pgd */
3002 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3003 if (!domain->pgd)
3004 return -ENOMEM;
3005 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3006 return 0;
3009 static void iommu_free_vm_domain(struct dmar_domain *domain)
3011 unsigned long flags;
3012 struct dmar_drhd_unit *drhd;
3013 struct intel_iommu *iommu;
3014 unsigned long i;
3015 unsigned long ndomains;
3017 for_each_drhd_unit(drhd) {
3018 if (drhd->ignored)
3019 continue;
3020 iommu = drhd->iommu;
3022 ndomains = cap_ndoms(iommu->cap);
3023 i = find_first_bit(iommu->domain_ids, ndomains);
3024 for (; i < ndomains; ) {
3025 if (iommu->domains[i] == domain) {
3026 spin_lock_irqsave(&iommu->lock, flags);
3027 clear_bit(i, iommu->domain_ids);
3028 iommu->domains[i] = NULL;
3029 spin_unlock_irqrestore(&iommu->lock, flags);
3030 break;
3032 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3037 static void vm_domain_exit(struct dmar_domain *domain)
3039 u64 end;
3041 /* Domain 0 is reserved, so dont process it */
3042 if (!domain)
3043 return;
3045 vm_domain_remove_all_dev_info(domain);
3046 /* destroy iovas */
3047 put_iova_domain(&domain->iovad);
3048 end = DOMAIN_MAX_ADDR(domain->gaw);
3049 end = end & (~VTD_PAGE_MASK);
3051 /* clear ptes */
3052 dma_pte_clear_range(domain, 0, end);
3054 /* free page tables */
3055 dma_pte_free_pagetable(domain, 0, end);
3057 iommu_free_vm_domain(domain);
3058 free_domain_mem(domain);
3061 static int intel_iommu_domain_init(struct iommu_domain *domain)
3063 struct dmar_domain *dmar_domain;
3065 dmar_domain = iommu_alloc_vm_domain();
3066 if (!dmar_domain) {
3067 printk(KERN_ERR
3068 "intel_iommu_domain_init: dmar_domain == NULL\n");
3069 return -ENOMEM;
3071 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3072 printk(KERN_ERR
3073 "intel_iommu_domain_init() failed\n");
3074 vm_domain_exit(dmar_domain);
3075 return -ENOMEM;
3077 domain->priv = dmar_domain;
3079 return 0;
3082 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3084 struct dmar_domain *dmar_domain = domain->priv;
3086 domain->priv = NULL;
3087 vm_domain_exit(dmar_domain);
3090 static int intel_iommu_attach_device(struct iommu_domain *domain,
3091 struct device *dev)
3093 struct dmar_domain *dmar_domain = domain->priv;
3094 struct pci_dev *pdev = to_pci_dev(dev);
3095 struct intel_iommu *iommu;
3096 int addr_width;
3097 u64 end;
3098 int ret;
3100 /* normally pdev is not mapped */
3101 if (unlikely(domain_context_mapped(pdev))) {
3102 struct dmar_domain *old_domain;
3104 old_domain = find_domain(pdev);
3105 if (old_domain) {
3106 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3107 vm_domain_remove_one_dev_info(old_domain, pdev);
3108 else
3109 domain_remove_dev_info(old_domain);
3113 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
3114 if (!iommu)
3115 return -ENODEV;
3117 /* check if this iommu agaw is sufficient for max mapped address */
3118 addr_width = agaw_to_width(iommu->agaw);
3119 end = DOMAIN_MAX_ADDR(addr_width);
3120 end = end & VTD_PAGE_MASK;
3121 if (end < dmar_domain->max_addr) {
3122 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3123 "sufficient for the mapped address (%llx)\n",
3124 __func__, iommu->agaw, dmar_domain->max_addr);
3125 return -EFAULT;
3128 ret = domain_context_mapping(dmar_domain, pdev);
3129 if (ret)
3130 return ret;
3132 ret = vm_domain_add_dev_info(dmar_domain, pdev);
3133 return ret;
3136 static void intel_iommu_detach_device(struct iommu_domain *domain,
3137 struct device *dev)
3139 struct dmar_domain *dmar_domain = domain->priv;
3140 struct pci_dev *pdev = to_pci_dev(dev);
3142 vm_domain_remove_one_dev_info(dmar_domain, pdev);
3145 static int intel_iommu_map_range(struct iommu_domain *domain,
3146 unsigned long iova, phys_addr_t hpa,
3147 size_t size, int iommu_prot)
3149 struct dmar_domain *dmar_domain = domain->priv;
3150 u64 max_addr;
3151 int addr_width;
3152 int prot = 0;
3153 int ret;
3155 if (iommu_prot & IOMMU_READ)
3156 prot |= DMA_PTE_READ;
3157 if (iommu_prot & IOMMU_WRITE)
3158 prot |= DMA_PTE_WRITE;
3159 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3160 prot |= DMA_PTE_SNP;
3162 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3163 if (dmar_domain->max_addr < max_addr) {
3164 int min_agaw;
3165 u64 end;
3167 /* check if minimum agaw is sufficient for mapped address */
3168 min_agaw = vm_domain_min_agaw(dmar_domain);
3169 addr_width = agaw_to_width(min_agaw);
3170 end = DOMAIN_MAX_ADDR(addr_width);
3171 end = end & VTD_PAGE_MASK;
3172 if (end < max_addr) {
3173 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3174 "sufficient for the mapped address (%llx)\n",
3175 __func__, min_agaw, max_addr);
3176 return -EFAULT;
3178 dmar_domain->max_addr = max_addr;
3181 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3182 return ret;
3185 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3186 unsigned long iova, size_t size)
3188 struct dmar_domain *dmar_domain = domain->priv;
3189 dma_addr_t base;
3191 /* The address might not be aligned */
3192 base = iova & VTD_PAGE_MASK;
3193 size = VTD_PAGE_ALIGN(size);
3194 dma_pte_clear_range(dmar_domain, base, base + size);
3196 if (dmar_domain->max_addr == base + size)
3197 dmar_domain->max_addr = base;
3200 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3201 unsigned long iova)
3203 struct dmar_domain *dmar_domain = domain->priv;
3204 struct dma_pte *pte;
3205 u64 phys = 0;
3207 pte = addr_to_dma_pte(dmar_domain, iova);
3208 if (pte)
3209 phys = dma_pte_addr(pte);
3211 return phys;
3214 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3215 unsigned long cap)
3217 struct dmar_domain *dmar_domain = domain->priv;
3219 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3220 return dmar_domain->iommu_snooping;
3222 return 0;
3225 static struct iommu_ops intel_iommu_ops = {
3226 .domain_init = intel_iommu_domain_init,
3227 .domain_destroy = intel_iommu_domain_destroy,
3228 .attach_dev = intel_iommu_attach_device,
3229 .detach_dev = intel_iommu_detach_device,
3230 .map = intel_iommu_map_range,
3231 .unmap = intel_iommu_unmap_range,
3232 .iova_to_phys = intel_iommu_iova_to_phys,
3233 .domain_has_cap = intel_iommu_domain_has_cap,
3236 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3239 * Mobile 4 Series Chipset neglects to set RWBF capability,
3240 * but needs it:
3242 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3243 rwbf_quirk = 1;
3246 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);