ARM: PL08x: move callback outside spinlock'd region
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / amba-pl08x.c
blob660165dd945a592c91bae2b132641d8623593b4a
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
89 #include <asm/hardware/pl080.h>
91 #define DRIVER_NAME "pl08xdmac"
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
133 struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
149 * PL08X specific defines
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
157 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
160 /* Minimum period between work queue runs */
161 #define PL08X_WQ_PERIODMIN 20
163 /* Size (bytes) of each LLI buffer allocated for one transfer */
164 # define PL08X_LLI_TSFR_SIZE 0x2000
166 /* Maximum times we call dma_pool_alloc on this pool without freeing */
167 #define PL08X_MAX_ALLOCS 0x40
168 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
169 #define PL08X_ALIGN 8
171 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
173 return container_of(chan, struct pl08x_dma_chan, chan);
177 * Physical channel handling
180 /* Whether a certain channel is busy or not */
181 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183 unsigned int val;
185 val = readl(ch->base + PL080_CH_CONFIG);
186 return val & PL080_CONFIG_ACTIVE;
190 * Set the initial DMA register values i.e. those for the first LLI
191 * The next LLI pointer and the configuration interrupt bit have
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
195 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
196 struct pl08x_txd *txd)
198 struct pl08x_driver_data *pl08x = plchan->host;
199 struct pl08x_phy_chan *phychan = plchan->phychan;
200 struct pl08x_lli *lli = &txd->llis_va[0];
201 u32 val;
203 plchan->at = txd;
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan))
207 cpu_relax();
209 dev_vdbg(&pl08x->adev->dev,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
213 txd->ccfg);
215 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
216 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
217 writel(lli->lli, phychan->base + PL080_CH_LLI);
218 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
219 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
224 cpu_relax();
226 /* Do not access config register until channel shows as inactive */
227 val = readl(phychan->base + PL080_CH_CONFIG);
228 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
229 val = readl(phychan->base + PL080_CH_CONFIG);
231 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
235 * Overall DMAC remains enabled always.
237 * Disabling individual channels could lose data.
239 * Disable the peripheral DMA after disabling the DMAC
240 * in order to allow the DMAC FIFO to drain, and
241 * hence allow the channel to show inactive
244 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246 u32 val;
248 /* Set the HALT bit and wait for the FIFO to drain */
249 val = readl(ch->base + PL080_CH_CONFIG);
250 val |= PL080_CONFIG_HALT;
251 writel(val, ch->base + PL080_CH_CONFIG);
253 /* Wait for channel inactive */
254 while (pl08x_phy_channel_busy(ch))
255 cpu_relax();
258 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
260 u32 val;
262 /* Clear the HALT bit */
263 val = readl(ch->base + PL080_CH_CONFIG);
264 val &= ~PL080_CONFIG_HALT;
265 writel(val, ch->base + PL080_CH_CONFIG);
269 /* Stops the channel */
270 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
272 u32 val;
274 pl08x_pause_phy_chan(ch);
276 /* Disable channel */
277 val = readl(ch->base + PL080_CH_CONFIG);
278 val &= ~PL080_CONFIG_ENABLE;
279 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
280 val &= ~PL080_CONFIG_TC_IRQ_MASK;
281 writel(val, ch->base + PL080_CH_CONFIG);
284 static inline u32 get_bytes_in_cctl(u32 cctl)
286 /* The source width defines the number of bytes */
287 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
289 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
290 case PL080_WIDTH_8BIT:
291 break;
292 case PL080_WIDTH_16BIT:
293 bytes *= 2;
294 break;
295 case PL080_WIDTH_32BIT:
296 bytes *= 4;
297 break;
299 return bytes;
302 /* The channel should be paused when calling this */
303 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
305 struct pl08x_phy_chan *ch;
306 struct pl08x_txd *txd;
307 unsigned long flags;
308 size_t bytes = 0;
310 spin_lock_irqsave(&plchan->lock, flags);
311 ch = plchan->phychan;
312 txd = plchan->at;
315 * Follow the LLIs to get the number of remaining
316 * bytes in the currently active transaction.
318 if (ch && txd) {
319 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
321 /* First get the remaining bytes in the active transfer */
322 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
324 if (clli) {
325 struct pl08x_lli *llis_va = txd->llis_va;
326 dma_addr_t llis_bus = txd->llis_bus;
327 int index;
329 BUG_ON(clli < llis_bus || clli >= llis_bus +
330 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
333 * Locate the next LLI - as this is an array,
334 * it's simple maths to find.
336 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
338 for (; index < MAX_NUM_TSFR_LLIS; index++) {
339 bytes += get_bytes_in_cctl(llis_va[index].cctl);
342 * A LLI pointer of 0 terminates the LLI list
344 if (!llis_va[index].lli)
345 break;
350 /* Sum up all queued transactions */
351 if (!list_empty(&plchan->desc_list)) {
352 struct pl08x_txd *txdi;
353 list_for_each_entry(txdi, &plchan->desc_list, node) {
354 bytes += txdi->len;
358 spin_unlock_irqrestore(&plchan->lock, flags);
360 return bytes;
364 * Allocate a physical channel for a virtual channel
366 static struct pl08x_phy_chan *
367 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
368 struct pl08x_dma_chan *virt_chan)
370 struct pl08x_phy_chan *ch = NULL;
371 unsigned long flags;
372 int i;
375 * Try to locate a physical channel to be used for
376 * this transfer. If all are taken return NULL and
377 * the requester will have to cope by using some fallback
378 * PIO mode or retrying later.
380 for (i = 0; i < pl08x->vd->channels; i++) {
381 ch = &pl08x->phy_chans[i];
383 spin_lock_irqsave(&ch->lock, flags);
385 if (!ch->serving) {
386 ch->serving = virt_chan;
387 ch->signal = -1;
388 spin_unlock_irqrestore(&ch->lock, flags);
389 break;
392 spin_unlock_irqrestore(&ch->lock, flags);
395 if (i == pl08x->vd->channels) {
396 /* No physical channel available, cope with it */
397 return NULL;
400 return ch;
403 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
404 struct pl08x_phy_chan *ch)
406 unsigned long flags;
408 /* Stop the channel and clear its interrupts */
409 pl08x_stop_phy_chan(ch);
410 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
411 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
413 /* Mark it as free */
414 spin_lock_irqsave(&ch->lock, flags);
415 ch->serving = NULL;
416 spin_unlock_irqrestore(&ch->lock, flags);
420 * LLI handling
423 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
425 switch (coded) {
426 case PL080_WIDTH_8BIT:
427 return 1;
428 case PL080_WIDTH_16BIT:
429 return 2;
430 case PL080_WIDTH_32BIT:
431 return 4;
432 default:
433 break;
435 BUG();
436 return 0;
439 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
440 size_t tsize)
442 u32 retbits = cctl;
444 /* Remove all src, dst and transfer size bits */
445 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
446 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
447 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
449 /* Then set the bits according to the parameters */
450 switch (srcwidth) {
451 case 1:
452 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
453 break;
454 case 2:
455 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 4:
458 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 default:
461 BUG();
462 break;
465 switch (dstwidth) {
466 case 1:
467 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
468 break;
469 case 2:
470 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 4:
473 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 default:
476 BUG();
477 break;
480 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
481 return retbits;
485 * Autoselect a master bus to use for the transfer
486 * this prefers the destination bus if both available
487 * if fixed address on one bus the other will be chosen
489 static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
490 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
491 struct pl08x_bus_data **sbus, u32 cctl)
493 if (!(cctl & PL080_CONTROL_DST_INCR)) {
494 *mbus = src_bus;
495 *sbus = dst_bus;
496 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
497 *mbus = dst_bus;
498 *sbus = src_bus;
499 } else {
500 if (dst_bus->buswidth == 4) {
501 *mbus = dst_bus;
502 *sbus = src_bus;
503 } else if (src_bus->buswidth == 4) {
504 *mbus = src_bus;
505 *sbus = dst_bus;
506 } else if (dst_bus->buswidth == 2) {
507 *mbus = dst_bus;
508 *sbus = src_bus;
509 } else if (src_bus->buswidth == 2) {
510 *mbus = src_bus;
511 *sbus = dst_bus;
512 } else {
513 /* src_bus->buswidth == 1 */
514 *mbus = dst_bus;
515 *sbus = src_bus;
521 * Fills in one LLI for a certain transfer descriptor
522 * and advance the counter
524 static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
525 struct pl08x_txd *txd, int num_llis, int len,
526 u32 cctl, u32 *remainder)
528 struct pl08x_lli *llis_va = txd->llis_va;
529 dma_addr_t llis_bus = txd->llis_bus;
531 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
533 llis_va[num_llis].cctl = cctl;
534 llis_va[num_llis].src = txd->srcbus.addr;
535 llis_va[num_llis].dst = txd->dstbus.addr;
536 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
537 if (pl08x->lli_buses & PL08X_AHB2)
538 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
540 if (cctl & PL080_CONTROL_SRC_INCR)
541 txd->srcbus.addr += len;
542 if (cctl & PL080_CONTROL_DST_INCR)
543 txd->dstbus.addr += len;
545 BUG_ON(*remainder < len);
547 *remainder -= len;
549 return num_llis + 1;
553 * Return number of bytes to fill to boundary, or len
555 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
557 u32 boundary;
559 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
560 << PL08X_BOUNDARY_SHIFT;
562 if (boundary < addr + len)
563 return boundary - addr;
564 else
565 return len;
569 * This fills in the table of LLIs for the transfer descriptor
570 * Note that we assume we never have to change the burst sizes
571 * Return 0 for error
573 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
574 struct pl08x_txd *txd)
576 struct pl08x_bus_data *mbus, *sbus;
577 size_t remainder;
578 int num_llis = 0;
579 u32 cctl;
580 size_t max_bytes_per_lli;
581 size_t total_bytes = 0;
582 struct pl08x_lli *llis_va;
584 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
585 &txd->llis_bus);
586 if (!txd->llis_va) {
587 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
588 return 0;
591 pl08x->pool_ctr++;
593 /* Get the default CCTL */
594 cctl = txd->cctl;
596 /* Find maximum width of the source bus */
597 txd->srcbus.maxwidth =
598 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
599 PL080_CONTROL_SWIDTH_SHIFT);
601 /* Find maximum width of the destination bus */
602 txd->dstbus.maxwidth =
603 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
604 PL080_CONTROL_DWIDTH_SHIFT);
606 /* Set up the bus widths to the maximum */
607 txd->srcbus.buswidth = txd->srcbus.maxwidth;
608 txd->dstbus.buswidth = txd->dstbus.maxwidth;
609 dev_vdbg(&pl08x->adev->dev,
610 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
611 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
615 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
617 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
618 PL080_CONTROL_TRANSFER_SIZE_MASK;
619 dev_vdbg(&pl08x->adev->dev,
620 "%s max bytes per lli = %zu\n",
621 __func__, max_bytes_per_lli);
623 /* We need to count this down to zero */
624 remainder = txd->len;
625 dev_vdbg(&pl08x->adev->dev,
626 "%s remainder = %zu\n",
627 __func__, remainder);
630 * Choose bus to align to
631 * - prefers destination bus if both available
632 * - if fixed address on one bus chooses other
633 * - modifies cctl to choose an appropriate master
635 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
636 &mbus, &sbus, cctl);
638 if (txd->len < mbus->buswidth) {
640 * Less than a bus width available
641 * - send as single bytes
643 while (remainder) {
644 dev_vdbg(&pl08x->adev->dev,
645 "%s single byte LLIs for a transfer of "
646 "less than a bus width (remain 0x%08x)\n",
647 __func__, remainder);
648 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
649 num_llis =
650 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
651 cctl, &remainder);
652 total_bytes++;
654 } else {
656 * Make one byte LLIs until master bus is aligned
657 * - slave will then be aligned also
659 while ((mbus->addr) % (mbus->buswidth)) {
660 dev_vdbg(&pl08x->adev->dev,
661 "%s adjustment lli for less than bus width "
662 "(remain 0x%08x)\n",
663 __func__, remainder);
664 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
665 num_llis = pl08x_fill_lli_for_desc
666 (pl08x, txd, num_llis, 1, cctl, &remainder);
667 total_bytes++;
671 * Master now aligned
672 * - if slave is not then we must set its width down
674 if (sbus->addr % sbus->buswidth) {
675 dev_dbg(&pl08x->adev->dev,
676 "%s set down bus width to one byte\n",
677 __func__);
679 sbus->buswidth = 1;
683 * Make largest possible LLIs until less than one bus
684 * width left
686 while (remainder > (mbus->buswidth - 1)) {
687 size_t lli_len, target_len, tsize, odd_bytes;
690 * If enough left try to send max possible,
691 * otherwise try to send the remainder
693 target_len = remainder;
694 if (remainder > max_bytes_per_lli)
695 target_len = max_bytes_per_lli;
698 * Set bus lengths for incrementing buses
699 * to number of bytes which fill to next memory
700 * boundary
702 if (cctl & PL080_CONTROL_SRC_INCR)
703 txd->srcbus.fill_bytes =
704 pl08x_pre_boundary(
705 txd->srcbus.addr,
706 remainder);
707 else
708 txd->srcbus.fill_bytes =
709 max_bytes_per_lli;
711 if (cctl & PL080_CONTROL_DST_INCR)
712 txd->dstbus.fill_bytes =
713 pl08x_pre_boundary(
714 txd->dstbus.addr,
715 remainder);
716 else
717 txd->dstbus.fill_bytes =
718 max_bytes_per_lli;
721 * Find the nearest
723 lli_len = min(txd->srcbus.fill_bytes,
724 txd->dstbus.fill_bytes);
726 BUG_ON(lli_len > remainder);
728 if (lli_len <= 0) {
729 dev_err(&pl08x->adev->dev,
730 "%s lli_len is %zu, <= 0\n",
731 __func__, lli_len);
732 return 0;
735 if (lli_len == target_len) {
737 * Can send what we wanted
740 * Maintain alignment
742 lli_len = (lli_len/mbus->buswidth) *
743 mbus->buswidth;
744 odd_bytes = 0;
745 } else {
747 * So now we know how many bytes to transfer
748 * to get to the nearest boundary
749 * The next LLI will past the boundary
750 * - however we may be working to a boundary
751 * on the slave bus
752 * We need to ensure the master stays aligned
754 odd_bytes = lli_len % mbus->buswidth;
756 * - and that we are working in multiples
757 * of the bus widths
759 lli_len -= odd_bytes;
763 if (lli_len) {
765 * Check against minimum bus alignment:
766 * Calculate actual transfer size in relation
767 * to bus width an get a maximum remainder of
768 * the smallest bus width - 1
770 /* FIXME: use round_down()? */
771 tsize = lli_len / min(mbus->buswidth,
772 sbus->buswidth);
773 lli_len = tsize * min(mbus->buswidth,
774 sbus->buswidth);
776 if (target_len != lli_len) {
777 dev_vdbg(&pl08x->adev->dev,
778 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
779 __func__, target_len, lli_len, txd->len);
782 cctl = pl08x_cctl_bits(cctl,
783 txd->srcbus.buswidth,
784 txd->dstbus.buswidth,
785 tsize);
787 dev_vdbg(&pl08x->adev->dev,
788 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
789 __func__, lli_len, remainder);
790 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
791 num_llis, lli_len, cctl,
792 &remainder);
793 total_bytes += lli_len;
797 if (odd_bytes) {
799 * Creep past the boundary,
800 * maintaining master alignment
802 int j;
803 for (j = 0; (j < mbus->buswidth)
804 && (remainder); j++) {
805 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
806 dev_vdbg(&pl08x->adev->dev,
807 "%s align with boundary, single byte (remain 0x%08zx)\n",
808 __func__, remainder);
809 num_llis =
810 pl08x_fill_lli_for_desc(pl08x,
811 txd, num_llis, 1,
812 cctl, &remainder);
813 total_bytes++;
819 * Send any odd bytes
821 while (remainder) {
822 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
823 dev_vdbg(&pl08x->adev->dev,
824 "%s align with boundary, single odd byte (remain %zu)\n",
825 __func__, remainder);
826 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
827 1, cctl, &remainder);
828 total_bytes++;
831 if (total_bytes != txd->len) {
832 dev_err(&pl08x->adev->dev,
833 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
834 __func__, total_bytes, txd->len);
835 return 0;
838 if (num_llis >= MAX_NUM_TSFR_LLIS) {
839 dev_err(&pl08x->adev->dev,
840 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
841 __func__, (u32) MAX_NUM_TSFR_LLIS);
842 return 0;
845 llis_va = txd->llis_va;
847 * The final LLI terminates the LLI.
849 llis_va[num_llis - 1].lli = 0;
851 * The final LLI element shall also fire an interrupt
853 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
855 #ifdef VERBOSE_DEBUG
857 int i;
859 for (i = 0; i < num_llis; i++) {
860 dev_vdbg(&pl08x->adev->dev,
861 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
863 &llis_va[i],
864 llis_va[i].src,
865 llis_va[i].dst,
866 llis_va[i].cctl,
867 llis_va[i].lli
871 #endif
873 return num_llis;
876 /* You should call this with the struct pl08x lock held */
877 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
878 struct pl08x_txd *txd)
880 /* Free the LLI */
881 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
883 pl08x->pool_ctr--;
885 kfree(txd);
888 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
889 struct pl08x_dma_chan *plchan)
891 struct pl08x_txd *txdi = NULL;
892 struct pl08x_txd *next;
894 if (!list_empty(&plchan->desc_list)) {
895 list_for_each_entry_safe(txdi,
896 next, &plchan->desc_list, node) {
897 list_del(&txdi->node);
898 pl08x_free_txd(pl08x, txdi);
905 * The DMA ENGINE API
907 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
909 return 0;
912 static void pl08x_free_chan_resources(struct dma_chan *chan)
917 * This should be called with the channel plchan->lock held
919 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
920 struct pl08x_txd *txd)
922 struct pl08x_driver_data *pl08x = plchan->host;
923 struct pl08x_phy_chan *ch;
924 int ret;
926 /* Check if we already have a channel */
927 if (plchan->phychan)
928 return 0;
930 ch = pl08x_get_phy_channel(pl08x, plchan);
931 if (!ch) {
932 /* No physical channel available, cope with it */
933 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
934 return -EBUSY;
938 * OK we have a physical channel: for memcpy() this is all we
939 * need, but for slaves the physical signals may be muxed!
940 * Can the platform allow us to use this channel?
942 if (plchan->slave &&
943 ch->signal < 0 &&
944 pl08x->pd->get_signal) {
945 ret = pl08x->pd->get_signal(plchan);
946 if (ret < 0) {
947 dev_dbg(&pl08x->adev->dev,
948 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
949 ch->id, plchan->name);
950 /* Release physical channel & return */
951 pl08x_put_phy_channel(pl08x, ch);
952 return -EBUSY;
954 ch->signal = ret;
956 /* Assign the flow control signal to this channel */
957 if (txd->direction == DMA_TO_DEVICE)
958 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
959 else if (txd->direction == DMA_FROM_DEVICE)
960 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
963 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
964 ch->id,
965 ch->signal,
966 plchan->name);
968 plchan->phychan = ch;
970 return 0;
973 static void release_phy_channel(struct pl08x_dma_chan *plchan)
975 struct pl08x_driver_data *pl08x = plchan->host;
977 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
978 pl08x->pd->put_signal(plchan);
979 plchan->phychan->signal = -1;
981 pl08x_put_phy_channel(pl08x, plchan->phychan);
982 plchan->phychan = NULL;
985 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
987 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
989 plchan->chan.cookie += 1;
990 if (plchan->chan.cookie < 0)
991 plchan->chan.cookie = 1;
992 tx->cookie = plchan->chan.cookie;
993 /* This unlock follows the lock in the prep() function */
994 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
996 return tx->cookie;
999 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1000 struct dma_chan *chan, unsigned long flags)
1002 struct dma_async_tx_descriptor *retval = NULL;
1004 return retval;
1008 * Code accessing dma_async_is_complete() in a tight loop
1009 * may give problems - could schedule where indicated.
1010 * If slaves are relying on interrupts to signal completion this
1011 * function must not be called with interrupts disabled
1013 static enum dma_status
1014 pl08x_dma_tx_status(struct dma_chan *chan,
1015 dma_cookie_t cookie,
1016 struct dma_tx_state *txstate)
1018 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1019 dma_cookie_t last_used;
1020 dma_cookie_t last_complete;
1021 enum dma_status ret;
1022 u32 bytesleft = 0;
1024 last_used = plchan->chan.cookie;
1025 last_complete = plchan->lc;
1027 ret = dma_async_is_complete(cookie, last_complete, last_used);
1028 if (ret == DMA_SUCCESS) {
1029 dma_set_tx_state(txstate, last_complete, last_used, 0);
1030 return ret;
1034 * schedule(); could be inserted here
1038 * This cookie not complete yet
1040 last_used = plchan->chan.cookie;
1041 last_complete = plchan->lc;
1043 /* Get number of bytes left in the active transactions and queue */
1044 bytesleft = pl08x_getbytes_chan(plchan);
1046 dma_set_tx_state(txstate, last_complete, last_used,
1047 bytesleft);
1049 if (plchan->state == PL08X_CHAN_PAUSED)
1050 return DMA_PAUSED;
1052 /* Whether waiting or running, we're in progress */
1053 return DMA_IN_PROGRESS;
1056 /* PrimeCell DMA extension */
1057 struct burst_table {
1058 int burstwords;
1059 u32 reg;
1062 static const struct burst_table burst_sizes[] = {
1064 .burstwords = 256,
1065 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1066 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1069 .burstwords = 128,
1070 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1071 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1074 .burstwords = 64,
1075 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1076 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1079 .burstwords = 32,
1080 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1081 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1084 .burstwords = 16,
1085 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1086 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1089 .burstwords = 8,
1090 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1091 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1094 .burstwords = 4,
1095 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1096 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1099 .burstwords = 1,
1100 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1101 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1105 static void dma_set_runtime_config(struct dma_chan *chan,
1106 struct dma_slave_config *config)
1108 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1109 struct pl08x_driver_data *pl08x = plchan->host;
1110 struct pl08x_channel_data *cd = plchan->cd;
1111 enum dma_slave_buswidth addr_width;
1112 u32 maxburst;
1113 u32 cctl = 0;
1114 int i;
1116 /* Transfer direction */
1117 plchan->runtime_direction = config->direction;
1118 if (config->direction == DMA_TO_DEVICE) {
1119 plchan->runtime_addr = config->dst_addr;
1120 addr_width = config->dst_addr_width;
1121 maxburst = config->dst_maxburst;
1122 } else if (config->direction == DMA_FROM_DEVICE) {
1123 plchan->runtime_addr = config->src_addr;
1124 addr_width = config->src_addr_width;
1125 maxburst = config->src_maxburst;
1126 } else {
1127 dev_err(&pl08x->adev->dev,
1128 "bad runtime_config: alien transfer direction\n");
1129 return;
1132 switch (addr_width) {
1133 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1134 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1135 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1136 break;
1137 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1138 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1139 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1140 break;
1141 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1142 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1143 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1144 break;
1145 default:
1146 dev_err(&pl08x->adev->dev,
1147 "bad runtime_config: alien address width\n");
1148 return;
1152 * Now decide on a maxburst:
1153 * If this channel will only request single transfers, set this
1154 * down to ONE element. Also select one element if no maxburst
1155 * is specified.
1157 if (plchan->cd->single || maxburst == 0) {
1158 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1159 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1160 } else {
1161 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1162 if (burst_sizes[i].burstwords <= maxburst)
1163 break;
1164 cctl |= burst_sizes[i].reg;
1167 /* Modify the default channel data to fit PrimeCell request */
1168 cd->cctl = cctl;
1170 dev_dbg(&pl08x->adev->dev,
1171 "configured channel %s (%s) for %s, data width %d, "
1172 "maxburst %d words, LE, CCTL=0x%08x\n",
1173 dma_chan_name(chan), plchan->name,
1174 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1175 addr_width,
1176 maxburst,
1177 cctl);
1181 * Slave transactions callback to the slave device to allow
1182 * synchronization of slave DMA signals with the DMAC enable
1184 static void pl08x_issue_pending(struct dma_chan *chan)
1186 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1187 unsigned long flags;
1189 spin_lock_irqsave(&plchan->lock, flags);
1190 /* Something is already active, or we're waiting for a channel... */
1191 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1192 spin_unlock_irqrestore(&plchan->lock, flags);
1193 return;
1196 /* Take the first element in the queue and execute it */
1197 if (!list_empty(&plchan->desc_list)) {
1198 struct pl08x_txd *next;
1200 next = list_first_entry(&plchan->desc_list,
1201 struct pl08x_txd,
1202 node);
1203 list_del(&next->node);
1204 plchan->state = PL08X_CHAN_RUNNING;
1206 pl08x_start_txd(plchan, next);
1209 spin_unlock_irqrestore(&plchan->lock, flags);
1212 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1213 struct pl08x_txd *txd)
1215 int num_llis;
1216 struct pl08x_driver_data *pl08x = plchan->host;
1217 int ret;
1219 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1220 if (!num_llis) {
1221 kfree(txd);
1222 return -EINVAL;
1225 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1227 list_add_tail(&txd->node, &plchan->desc_list);
1230 * See if we already have a physical channel allocated,
1231 * else this is the time to try to get one.
1233 ret = prep_phy_channel(plchan, txd);
1234 if (ret) {
1236 * No physical channel available, we will
1237 * stack up the memcpy channels until there is a channel
1238 * available to handle it whereas slave transfers may
1239 * have been denied due to platform channel muxing restrictions
1240 * and since there is no guarantee that this will ever be
1241 * resolved, and since the signal must be acquired AFTER
1242 * acquiring the physical channel, we will let them be NACK:ed
1243 * with -EBUSY here. The drivers can alway retry the prep()
1244 * call if they are eager on doing this using DMA.
1246 if (plchan->slave) {
1247 pl08x_free_txd_list(pl08x, plchan);
1248 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1249 return -EBUSY;
1251 /* Do this memcpy whenever there is a channel ready */
1252 plchan->state = PL08X_CHAN_WAITING;
1253 plchan->waiting = txd;
1254 } else
1256 * Else we're all set, paused and ready to roll,
1257 * status will switch to PL08X_CHAN_RUNNING when
1258 * we call issue_pending(). If there is something
1259 * running on the channel already we don't change
1260 * its state.
1262 if (plchan->state == PL08X_CHAN_IDLE)
1263 plchan->state = PL08X_CHAN_PAUSED;
1266 * Notice that we leave plchan->lock locked on purpose:
1267 * it will be unlocked in the subsequent tx_submit()
1268 * call. This is a consequence of the current API.
1271 return 0;
1275 * Given the source and destination available bus masks, select which
1276 * will be routed to each port. We try to have source and destination
1277 * on separate ports, but always respect the allowable settings.
1279 static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1281 u32 cctl = 0;
1283 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1284 cctl |= PL080_CONTROL_DST_AHB2;
1285 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1286 cctl |= PL080_CONTROL_SRC_AHB2;
1288 return cctl;
1291 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1293 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1295 if (txd) {
1296 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1297 txd->tx.tx_submit = pl08x_tx_submit;
1298 INIT_LIST_HEAD(&txd->node);
1300 /* Always enable error and terminal interrupts */
1301 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1302 PL080_CONFIG_TC_IRQ_MASK;
1304 return txd;
1308 * Initialize a descriptor to be used by memcpy submit
1310 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1311 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1312 size_t len, unsigned long flags)
1314 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1315 struct pl08x_driver_data *pl08x = plchan->host;
1316 struct pl08x_txd *txd;
1317 int ret;
1319 txd = pl08x_get_txd(plchan);
1320 if (!txd) {
1321 dev_err(&pl08x->adev->dev,
1322 "%s no memory for descriptor\n", __func__);
1323 return NULL;
1326 txd->direction = DMA_NONE;
1327 txd->srcbus.addr = src;
1328 txd->dstbus.addr = dest;
1329 txd->len = len;
1331 /* Set platform data for m2m */
1332 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1333 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1334 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1336 /* Both to be incremented or the code will break */
1337 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1339 if (pl08x->vd->dualmaster)
1340 txd->cctl |= pl08x_select_bus(pl08x,
1341 pl08x->mem_buses, pl08x->mem_buses);
1343 ret = pl08x_prep_channel_resources(plchan, txd);
1344 if (ret)
1345 return NULL;
1347 * NB: the channel lock is held at this point so tx_submit()
1348 * must be called in direct succession.
1351 return &txd->tx;
1354 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1355 struct dma_chan *chan, struct scatterlist *sgl,
1356 unsigned int sg_len, enum dma_data_direction direction,
1357 unsigned long flags)
1359 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1360 struct pl08x_driver_data *pl08x = plchan->host;
1361 struct pl08x_txd *txd;
1362 u8 src_buses, dst_buses;
1363 int ret;
1366 * Current implementation ASSUMES only one sg
1368 if (sg_len != 1) {
1369 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1370 __func__);
1371 BUG();
1374 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1375 __func__, sgl->length, plchan->name);
1377 txd = pl08x_get_txd(plchan);
1378 if (!txd) {
1379 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1380 return NULL;
1383 if (direction != plchan->runtime_direction)
1384 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1385 "the direction configured for the PrimeCell\n",
1386 __func__);
1389 * Set up addresses, the PrimeCell configured address
1390 * will take precedence since this may configure the
1391 * channel target address dynamically at runtime.
1393 txd->direction = direction;
1394 txd->len = sgl->length;
1396 txd->cctl = plchan->cd->cctl &
1397 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1398 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1399 PL080_CONTROL_PROT_MASK);
1401 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1402 txd->cctl |= PL080_CONTROL_PROT_SYS;
1404 if (direction == DMA_TO_DEVICE) {
1405 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1406 txd->cctl |= PL080_CONTROL_SRC_INCR;
1407 txd->srcbus.addr = sgl->dma_address;
1408 if (plchan->runtime_addr)
1409 txd->dstbus.addr = plchan->runtime_addr;
1410 else
1411 txd->dstbus.addr = plchan->cd->addr;
1412 src_buses = pl08x->mem_buses;
1413 dst_buses = plchan->cd->periph_buses;
1414 } else if (direction == DMA_FROM_DEVICE) {
1415 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1416 txd->cctl |= PL080_CONTROL_DST_INCR;
1417 if (plchan->runtime_addr)
1418 txd->srcbus.addr = plchan->runtime_addr;
1419 else
1420 txd->srcbus.addr = plchan->cd->addr;
1421 txd->dstbus.addr = sgl->dma_address;
1422 src_buses = plchan->cd->periph_buses;
1423 dst_buses = pl08x->mem_buses;
1424 } else {
1425 dev_err(&pl08x->adev->dev,
1426 "%s direction unsupported\n", __func__);
1427 return NULL;
1430 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1432 ret = pl08x_prep_channel_resources(plchan, txd);
1433 if (ret)
1434 return NULL;
1436 * NB: the channel lock is held at this point so tx_submit()
1437 * must be called in direct succession.
1440 return &txd->tx;
1443 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1444 unsigned long arg)
1446 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1447 struct pl08x_driver_data *pl08x = plchan->host;
1448 unsigned long flags;
1449 int ret = 0;
1451 /* Controls applicable to inactive channels */
1452 if (cmd == DMA_SLAVE_CONFIG) {
1453 dma_set_runtime_config(chan,
1454 (struct dma_slave_config *)
1455 arg);
1456 return 0;
1460 * Anything succeeds on channels with no physical allocation and
1461 * no queued transfers.
1463 spin_lock_irqsave(&plchan->lock, flags);
1464 if (!plchan->phychan && !plchan->at) {
1465 spin_unlock_irqrestore(&plchan->lock, flags);
1466 return 0;
1469 switch (cmd) {
1470 case DMA_TERMINATE_ALL:
1471 plchan->state = PL08X_CHAN_IDLE;
1473 if (plchan->phychan) {
1474 pl08x_stop_phy_chan(plchan->phychan);
1477 * Mark physical channel as free and free any slave
1478 * signal
1480 release_phy_channel(plchan);
1482 /* Dequeue jobs and free LLIs */
1483 if (plchan->at) {
1484 pl08x_free_txd(pl08x, plchan->at);
1485 plchan->at = NULL;
1487 /* Dequeue jobs not yet fired as well */
1488 pl08x_free_txd_list(pl08x, plchan);
1489 break;
1490 case DMA_PAUSE:
1491 pl08x_pause_phy_chan(plchan->phychan);
1492 plchan->state = PL08X_CHAN_PAUSED;
1493 break;
1494 case DMA_RESUME:
1495 pl08x_resume_phy_chan(plchan->phychan);
1496 plchan->state = PL08X_CHAN_RUNNING;
1497 break;
1498 default:
1499 /* Unknown command */
1500 ret = -ENXIO;
1501 break;
1504 spin_unlock_irqrestore(&plchan->lock, flags);
1506 return ret;
1509 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1511 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1512 char *name = chan_id;
1514 /* Check that the channel is not taken! */
1515 if (!strcmp(plchan->name, name))
1516 return true;
1518 return false;
1522 * Just check that the device is there and active
1523 * TODO: turn this bit on/off depending on the number of
1524 * physical channels actually used, if it is zero... well
1525 * shut it off. That will save some power. Cut the clock
1526 * at the same time.
1528 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1530 u32 val;
1532 val = readl(pl08x->base + PL080_CONFIG);
1533 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1534 /* We implicitly clear bit 1 and that means little-endian mode */
1535 val |= PL080_CONFIG_ENABLE;
1536 writel(val, pl08x->base + PL080_CONFIG);
1539 static void pl08x_tasklet(unsigned long data)
1541 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1542 struct pl08x_driver_data *pl08x = plchan->host;
1543 struct pl08x_txd *txd;
1544 dma_async_tx_callback callback = NULL;
1545 void *callback_param = NULL;
1546 unsigned long flags;
1548 spin_lock_irqsave(&plchan->lock, flags);
1550 txd = plchan->at;
1551 plchan->at = NULL;
1553 if (txd) {
1554 callback = txd->tx.callback;
1555 callback_param = txd->tx.callback_param;
1558 * Update last completed
1560 plchan->lc = txd->tx.cookie;
1563 * Free the descriptor
1565 pl08x_free_txd(pl08x, txd);
1568 * If a new descriptor is queued, set it up
1569 * plchan->at is NULL here
1571 if (!list_empty(&plchan->desc_list)) {
1572 struct pl08x_txd *next;
1574 next = list_first_entry(&plchan->desc_list,
1575 struct pl08x_txd,
1576 node);
1577 list_del(&next->node);
1579 pl08x_start_txd(plchan, next);
1580 } else {
1581 struct pl08x_dma_chan *waiting = NULL;
1584 * No more jobs, so free up the physical channel
1585 * Free any allocated signal on slave transfers too
1587 release_phy_channel(plchan);
1588 plchan->state = PL08X_CHAN_IDLE;
1591 * And NOW before anyone else can grab that free:d
1592 * up physical channel, see if there is some memcpy
1593 * pending that seriously needs to start because of
1594 * being stacked up while we were choking the
1595 * physical channels with data.
1597 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1598 chan.device_node) {
1599 if (waiting->state == PL08X_CHAN_WAITING &&
1600 waiting->waiting != NULL) {
1601 int ret;
1603 /* This should REALLY not fail now */
1604 ret = prep_phy_channel(waiting,
1605 waiting->waiting);
1606 BUG_ON(ret);
1607 waiting->state = PL08X_CHAN_RUNNING;
1608 waiting->waiting = NULL;
1609 pl08x_issue_pending(&waiting->chan);
1610 break;
1615 spin_unlock_irqrestore(&plchan->lock, flags);
1617 /* Callback to signal completion */
1618 if (callback)
1619 callback(callback_param);
1622 static irqreturn_t pl08x_irq(int irq, void *dev)
1624 struct pl08x_driver_data *pl08x = dev;
1625 u32 mask = 0;
1626 u32 val;
1627 int i;
1629 val = readl(pl08x->base + PL080_ERR_STATUS);
1630 if (val) {
1632 * An error interrupt (on one or more channels)
1634 dev_err(&pl08x->adev->dev,
1635 "%s error interrupt, register value 0x%08x\n",
1636 __func__, val);
1638 * Simply clear ALL PL08X error interrupts,
1639 * regardless of channel and cause
1640 * FIXME: should be 0x00000003 on PL081 really.
1642 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1644 val = readl(pl08x->base + PL080_INT_STATUS);
1645 for (i = 0; i < pl08x->vd->channels; i++) {
1646 if ((1 << i) & val) {
1647 /* Locate physical channel */
1648 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1649 struct pl08x_dma_chan *plchan = phychan->serving;
1651 /* Schedule tasklet on this channel */
1652 tasklet_schedule(&plchan->tasklet);
1654 mask |= (1 << i);
1658 * Clear only the terminal interrupts on channels we processed
1660 writel(mask, pl08x->base + PL080_TC_CLEAR);
1662 return mask ? IRQ_HANDLED : IRQ_NONE;
1666 * Initialise the DMAC memcpy/slave channels.
1667 * Make a local wrapper to hold required data
1669 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1670 struct dma_device *dmadev,
1671 unsigned int channels,
1672 bool slave)
1674 struct pl08x_dma_chan *chan;
1675 int i;
1677 INIT_LIST_HEAD(&dmadev->channels);
1679 * Register as many many memcpy as we have physical channels,
1680 * we won't always be able to use all but the code will have
1681 * to cope with that situation.
1683 for (i = 0; i < channels; i++) {
1684 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1685 if (!chan) {
1686 dev_err(&pl08x->adev->dev,
1687 "%s no memory for channel\n", __func__);
1688 return -ENOMEM;
1691 chan->host = pl08x;
1692 chan->state = PL08X_CHAN_IDLE;
1694 if (slave) {
1695 chan->slave = true;
1696 chan->name = pl08x->pd->slave_channels[i].bus_id;
1697 chan->cd = &pl08x->pd->slave_channels[i];
1698 } else {
1699 chan->cd = &pl08x->pd->memcpy_channel;
1700 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1701 if (!chan->name) {
1702 kfree(chan);
1703 return -ENOMEM;
1706 if (chan->cd->circular_buffer) {
1707 dev_err(&pl08x->adev->dev,
1708 "channel %s: circular buffers not supported\n",
1709 chan->name);
1710 kfree(chan);
1711 continue;
1713 dev_info(&pl08x->adev->dev,
1714 "initialize virtual channel \"%s\"\n",
1715 chan->name);
1717 chan->chan.device = dmadev;
1718 chan->chan.cookie = 0;
1719 chan->lc = 0;
1721 spin_lock_init(&chan->lock);
1722 INIT_LIST_HEAD(&chan->desc_list);
1723 tasklet_init(&chan->tasklet, pl08x_tasklet,
1724 (unsigned long) chan);
1726 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1728 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1729 i, slave ? "slave" : "memcpy");
1730 return i;
1733 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1735 struct pl08x_dma_chan *chan = NULL;
1736 struct pl08x_dma_chan *next;
1738 list_for_each_entry_safe(chan,
1739 next, &dmadev->channels, chan.device_node) {
1740 list_del(&chan->chan.device_node);
1741 kfree(chan);
1745 #ifdef CONFIG_DEBUG_FS
1746 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1748 switch (state) {
1749 case PL08X_CHAN_IDLE:
1750 return "idle";
1751 case PL08X_CHAN_RUNNING:
1752 return "running";
1753 case PL08X_CHAN_PAUSED:
1754 return "paused";
1755 case PL08X_CHAN_WAITING:
1756 return "waiting";
1757 default:
1758 break;
1760 return "UNKNOWN STATE";
1763 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1765 struct pl08x_driver_data *pl08x = s->private;
1766 struct pl08x_dma_chan *chan;
1767 struct pl08x_phy_chan *ch;
1768 unsigned long flags;
1769 int i;
1771 seq_printf(s, "PL08x physical channels:\n");
1772 seq_printf(s, "CHANNEL:\tUSER:\n");
1773 seq_printf(s, "--------\t-----\n");
1774 for (i = 0; i < pl08x->vd->channels; i++) {
1775 struct pl08x_dma_chan *virt_chan;
1777 ch = &pl08x->phy_chans[i];
1779 spin_lock_irqsave(&ch->lock, flags);
1780 virt_chan = ch->serving;
1782 seq_printf(s, "%d\t\t%s\n",
1783 ch->id, virt_chan ? virt_chan->name : "(none)");
1785 spin_unlock_irqrestore(&ch->lock, flags);
1788 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1789 seq_printf(s, "CHANNEL:\tSTATE:\n");
1790 seq_printf(s, "--------\t------\n");
1791 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1792 seq_printf(s, "%s\t\t%s\n", chan->name,
1793 pl08x_state_str(chan->state));
1796 seq_printf(s, "\nPL08x virtual slave channels:\n");
1797 seq_printf(s, "CHANNEL:\tSTATE:\n");
1798 seq_printf(s, "--------\t------\n");
1799 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1800 seq_printf(s, "%s\t\t%s\n", chan->name,
1801 pl08x_state_str(chan->state));
1804 return 0;
1807 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1809 return single_open(file, pl08x_debugfs_show, inode->i_private);
1812 static const struct file_operations pl08x_debugfs_operations = {
1813 .open = pl08x_debugfs_open,
1814 .read = seq_read,
1815 .llseek = seq_lseek,
1816 .release = single_release,
1819 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1821 /* Expose a simple debugfs interface to view all clocks */
1822 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1823 NULL, pl08x,
1824 &pl08x_debugfs_operations);
1827 #else
1828 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1831 #endif
1833 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1835 struct pl08x_driver_data *pl08x;
1836 const struct vendor_data *vd = id->data;
1837 int ret = 0;
1838 int i;
1840 ret = amba_request_regions(adev, NULL);
1841 if (ret)
1842 return ret;
1844 /* Create the driver state holder */
1845 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1846 if (!pl08x) {
1847 ret = -ENOMEM;
1848 goto out_no_pl08x;
1851 /* Initialize memcpy engine */
1852 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1853 pl08x->memcpy.dev = &adev->dev;
1854 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1855 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1856 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1857 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1858 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1859 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1860 pl08x->memcpy.device_control = pl08x_control;
1862 /* Initialize slave engine */
1863 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1864 pl08x->slave.dev = &adev->dev;
1865 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1866 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1867 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1868 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1869 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1870 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1871 pl08x->slave.device_control = pl08x_control;
1873 /* Get the platform data */
1874 pl08x->pd = dev_get_platdata(&adev->dev);
1875 if (!pl08x->pd) {
1876 dev_err(&adev->dev, "no platform data supplied\n");
1877 goto out_no_platdata;
1880 /* Assign useful pointers to the driver state */
1881 pl08x->adev = adev;
1882 pl08x->vd = vd;
1884 /* By default, AHB1 only. If dualmaster, from platform */
1885 pl08x->lli_buses = PL08X_AHB1;
1886 pl08x->mem_buses = PL08X_AHB1;
1887 if (pl08x->vd->dualmaster) {
1888 pl08x->lli_buses = pl08x->pd->lli_buses;
1889 pl08x->mem_buses = pl08x->pd->mem_buses;
1892 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1893 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1894 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1895 if (!pl08x->pool) {
1896 ret = -ENOMEM;
1897 goto out_no_lli_pool;
1900 spin_lock_init(&pl08x->lock);
1902 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1903 if (!pl08x->base) {
1904 ret = -ENOMEM;
1905 goto out_no_ioremap;
1908 /* Turn on the PL08x */
1909 pl08x_ensure_on(pl08x);
1912 * Attach the interrupt handler
1914 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1915 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1917 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1918 DRIVER_NAME, pl08x);
1919 if (ret) {
1920 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1921 __func__, adev->irq[0]);
1922 goto out_no_irq;
1925 /* Initialize physical channels */
1926 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1927 GFP_KERNEL);
1928 if (!pl08x->phy_chans) {
1929 dev_err(&adev->dev, "%s failed to allocate "
1930 "physical channel holders\n",
1931 __func__);
1932 goto out_no_phychans;
1935 for (i = 0; i < vd->channels; i++) {
1936 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1938 ch->id = i;
1939 ch->base = pl08x->base + PL080_Cx_BASE(i);
1940 spin_lock_init(&ch->lock);
1941 ch->serving = NULL;
1942 ch->signal = -1;
1943 dev_info(&adev->dev,
1944 "physical channel %d is %s\n", i,
1945 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1948 /* Register as many memcpy channels as there are physical channels */
1949 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1950 pl08x->vd->channels, false);
1951 if (ret <= 0) {
1952 dev_warn(&pl08x->adev->dev,
1953 "%s failed to enumerate memcpy channels - %d\n",
1954 __func__, ret);
1955 goto out_no_memcpy;
1957 pl08x->memcpy.chancnt = ret;
1959 /* Register slave channels */
1960 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1961 pl08x->pd->num_slave_channels,
1962 true);
1963 if (ret <= 0) {
1964 dev_warn(&pl08x->adev->dev,
1965 "%s failed to enumerate slave channels - %d\n",
1966 __func__, ret);
1967 goto out_no_slave;
1969 pl08x->slave.chancnt = ret;
1971 ret = dma_async_device_register(&pl08x->memcpy);
1972 if (ret) {
1973 dev_warn(&pl08x->adev->dev,
1974 "%s failed to register memcpy as an async device - %d\n",
1975 __func__, ret);
1976 goto out_no_memcpy_reg;
1979 ret = dma_async_device_register(&pl08x->slave);
1980 if (ret) {
1981 dev_warn(&pl08x->adev->dev,
1982 "%s failed to register slave as an async device - %d\n",
1983 __func__, ret);
1984 goto out_no_slave_reg;
1987 amba_set_drvdata(adev, pl08x);
1988 init_pl08x_debugfs(pl08x);
1989 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1990 amba_part(adev), amba_rev(adev),
1991 (unsigned long long)adev->res.start, adev->irq[0]);
1992 return 0;
1994 out_no_slave_reg:
1995 dma_async_device_unregister(&pl08x->memcpy);
1996 out_no_memcpy_reg:
1997 pl08x_free_virtual_channels(&pl08x->slave);
1998 out_no_slave:
1999 pl08x_free_virtual_channels(&pl08x->memcpy);
2000 out_no_memcpy:
2001 kfree(pl08x->phy_chans);
2002 out_no_phychans:
2003 free_irq(adev->irq[0], pl08x);
2004 out_no_irq:
2005 iounmap(pl08x->base);
2006 out_no_ioremap:
2007 dma_pool_destroy(pl08x->pool);
2008 out_no_lli_pool:
2009 out_no_platdata:
2010 kfree(pl08x);
2011 out_no_pl08x:
2012 amba_release_regions(adev);
2013 return ret;
2016 /* PL080 has 8 channels and the PL080 have just 2 */
2017 static struct vendor_data vendor_pl080 = {
2018 .channels = 8,
2019 .dualmaster = true,
2022 static struct vendor_data vendor_pl081 = {
2023 .channels = 2,
2024 .dualmaster = false,
2027 static struct amba_id pl08x_ids[] = {
2028 /* PL080 */
2030 .id = 0x00041080,
2031 .mask = 0x000fffff,
2032 .data = &vendor_pl080,
2034 /* PL081 */
2036 .id = 0x00041081,
2037 .mask = 0x000fffff,
2038 .data = &vendor_pl081,
2040 /* Nomadik 8815 PL080 variant */
2042 .id = 0x00280880,
2043 .mask = 0x00ffffff,
2044 .data = &vendor_pl080,
2046 { 0, 0 },
2049 static struct amba_driver pl08x_amba_driver = {
2050 .drv.name = DRIVER_NAME,
2051 .id_table = pl08x_ids,
2052 .probe = pl08x_probe,
2055 static int __init pl08x_init(void)
2057 int retval;
2058 retval = amba_driver_register(&pl08x_amba_driver);
2059 if (retval)
2060 printk(KERN_WARNING DRIVER_NAME
2061 "failed to register as an AMBA device (%d)\n",
2062 retval);
2063 return retval;
2065 subsys_initcall(pl08x_init);