libertas if_usb: Fix crash on 64-bit machines
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob8715136aca464cce1ca8f8969aef4ab519cc20f4
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
56 static void exit_mm(struct task_struct * tsk);
58 static inline int task_detached(struct task_struct *p)
60 return p->exit_signal == -1;
63 static void __unhash_process(struct task_struct *p)
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
79 * This function expects the tasklist_lock write-locked.
81 static void __exit_signal(struct task_struct *tsk)
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
97 * If there is any task waiting for the group exit
98 * then notify it:
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
115 sig->utime = cputime_add(sig->utime, task_utime(tsk));
116 sig->stime = cputime_add(sig->stime, task_stime(tsk));
117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 sig = NULL; /* Marker for below. */
129 __unhash_process(tsk);
132 * Do this under ->siglock, we can race with another thread
133 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 flush_sigqueue(&tsk->pending);
137 tsk->signal = NULL;
138 tsk->sighand = NULL;
139 spin_unlock(&sighand->siglock);
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
150 static void delayed_put_task_struct(struct rcu_head *rhp)
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
156 void release_task(struct task_struct * p)
158 struct task_struct *leader;
159 int zap_leader;
160 repeat:
161 tracehook_prepare_release_task(p);
162 atomic_dec(&p->user->processes);
163 proc_flush_task(p);
164 write_lock_irq(&tasklist_lock);
165 tracehook_finish_release_task(p);
166 __exit_signal(p);
169 * If we are the last non-leader member of the thread
170 * group, and the leader is zombie, then notify the
171 * group leader's parent process. (if it wants notification.)
173 zap_leader = 0;
174 leader = p->group_leader;
175 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
176 BUG_ON(task_detached(leader));
177 do_notify_parent(leader, leader->exit_signal);
179 * If we were the last child thread and the leader has
180 * exited already, and the leader's parent ignores SIGCHLD,
181 * then we are the one who should release the leader.
183 * do_notify_parent() will have marked it self-reaping in
184 * that case.
186 zap_leader = task_detached(leader);
189 * This maintains the invariant that release_task()
190 * only runs on a task in EXIT_DEAD, just for sanity.
192 if (zap_leader)
193 leader->exit_state = EXIT_DEAD;
196 write_unlock_irq(&tasklist_lock);
197 release_thread(p);
198 call_rcu(&p->rcu, delayed_put_task_struct);
200 p = leader;
201 if (unlikely(zap_leader))
202 goto repeat;
206 * This checks not only the pgrp, but falls back on the pid if no
207 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
208 * without this...
210 * The caller must hold rcu lock or the tasklist lock.
212 struct pid *session_of_pgrp(struct pid *pgrp)
214 struct task_struct *p;
215 struct pid *sid = NULL;
217 p = pid_task(pgrp, PIDTYPE_PGID);
218 if (p == NULL)
219 p = pid_task(pgrp, PIDTYPE_PID);
220 if (p != NULL)
221 sid = task_session(p);
223 return sid;
227 * Determine if a process group is "orphaned", according to the POSIX
228 * definition in 2.2.2.52. Orphaned process groups are not to be affected
229 * by terminal-generated stop signals. Newly orphaned process groups are
230 * to receive a SIGHUP and a SIGCONT.
232 * "I ask you, have you ever known what it is to be an orphan?"
234 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
236 struct task_struct *p;
238 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
239 if ((p == ignored_task) ||
240 (p->exit_state && thread_group_empty(p)) ||
241 is_global_init(p->real_parent))
242 continue;
244 if (task_pgrp(p->real_parent) != pgrp &&
245 task_session(p->real_parent) == task_session(p))
246 return 0;
247 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
249 return 1;
252 int is_current_pgrp_orphaned(void)
254 int retval;
256 read_lock(&tasklist_lock);
257 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
258 read_unlock(&tasklist_lock);
260 return retval;
263 static int has_stopped_jobs(struct pid *pgrp)
265 int retval = 0;
266 struct task_struct *p;
268 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
269 if (!task_is_stopped(p))
270 continue;
271 retval = 1;
272 break;
273 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
274 return retval;
278 * Check to see if any process groups have become orphaned as
279 * a result of our exiting, and if they have any stopped jobs,
280 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
282 static void
283 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
285 struct pid *pgrp = task_pgrp(tsk);
286 struct task_struct *ignored_task = tsk;
288 if (!parent)
289 /* exit: our father is in a different pgrp than
290 * we are and we were the only connection outside.
292 parent = tsk->real_parent;
293 else
294 /* reparent: our child is in a different pgrp than
295 * we are, and it was the only connection outside.
297 ignored_task = NULL;
299 if (task_pgrp(parent) != pgrp &&
300 task_session(parent) == task_session(tsk) &&
301 will_become_orphaned_pgrp(pgrp, ignored_task) &&
302 has_stopped_jobs(pgrp)) {
303 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
304 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
309 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
311 * If a kernel thread is launched as a result of a system call, or if
312 * it ever exits, it should generally reparent itself to kthreadd so it
313 * isn't in the way of other processes and is correctly cleaned up on exit.
315 * The various task state such as scheduling policy and priority may have
316 * been inherited from a user process, so we reset them to sane values here.
318 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
320 static void reparent_to_kthreadd(void)
322 write_lock_irq(&tasklist_lock);
324 ptrace_unlink(current);
325 /* Reparent to init */
326 current->real_parent = current->parent = kthreadd_task;
327 list_move_tail(&current->sibling, &current->real_parent->children);
329 /* Set the exit signal to SIGCHLD so we signal init on exit */
330 current->exit_signal = SIGCHLD;
332 if (task_nice(current) < 0)
333 set_user_nice(current, 0);
334 /* cpus_allowed? */
335 /* rt_priority? */
336 /* signals? */
337 security_task_reparent_to_init(current);
338 memcpy(current->signal->rlim, init_task.signal->rlim,
339 sizeof(current->signal->rlim));
340 atomic_inc(&(INIT_USER->__count));
341 write_unlock_irq(&tasklist_lock);
342 switch_uid(INIT_USER);
345 void __set_special_pids(struct pid *pid)
347 struct task_struct *curr = current->group_leader;
348 pid_t nr = pid_nr(pid);
350 if (task_session(curr) != pid) {
351 change_pid(curr, PIDTYPE_SID, pid);
352 set_task_session(curr, nr);
354 if (task_pgrp(curr) != pid) {
355 change_pid(curr, PIDTYPE_PGID, pid);
356 set_task_pgrp(curr, nr);
360 static void set_special_pids(struct pid *pid)
362 write_lock_irq(&tasklist_lock);
363 __set_special_pids(pid);
364 write_unlock_irq(&tasklist_lock);
368 * Let kernel threads use this to say that they
369 * allow a certain signal (since daemonize() will
370 * have disabled all of them by default).
372 int allow_signal(int sig)
374 if (!valid_signal(sig) || sig < 1)
375 return -EINVAL;
377 spin_lock_irq(&current->sighand->siglock);
378 sigdelset(&current->blocked, sig);
379 if (!current->mm) {
380 /* Kernel threads handle their own signals.
381 Let the signal code know it'll be handled, so
382 that they don't get converted to SIGKILL or
383 just silently dropped */
384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 recalc_sigpending();
387 spin_unlock_irq(&current->sighand->siglock);
388 return 0;
391 EXPORT_SYMBOL(allow_signal);
393 int disallow_signal(int sig)
395 if (!valid_signal(sig) || sig < 1)
396 return -EINVAL;
398 spin_lock_irq(&current->sighand->siglock);
399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
405 EXPORT_SYMBOL(disallow_signal);
408 * Put all the gunge required to become a kernel thread without
409 * attached user resources in one place where it belongs.
412 void daemonize(const char *name, ...)
414 va_list args;
415 struct fs_struct *fs;
416 sigset_t blocked;
418 va_start(args, name);
419 vsnprintf(current->comm, sizeof(current->comm), name, args);
420 va_end(args);
423 * If we were started as result of loading a module, close all of the
424 * user space pages. We don't need them, and if we didn't close them
425 * they would be locked into memory.
427 exit_mm(current);
429 * We don't want to have TIF_FREEZE set if the system-wide hibernation
430 * or suspend transition begins right now.
432 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434 if (current->nsproxy != &init_nsproxy) {
435 get_nsproxy(&init_nsproxy);
436 switch_task_namespaces(current, &init_nsproxy);
438 set_special_pids(&init_struct_pid);
439 proc_clear_tty(current);
441 /* Block and flush all signals */
442 sigfillset(&blocked);
443 sigprocmask(SIG_BLOCK, &blocked, NULL);
444 flush_signals(current);
446 /* Become as one with the init task */
448 exit_fs(current); /* current->fs->count--; */
449 fs = init_task.fs;
450 current->fs = fs;
451 atomic_inc(&fs->count);
453 exit_files(current);
454 current->files = init_task.files;
455 atomic_inc(&current->files->count);
457 reparent_to_kthreadd();
460 EXPORT_SYMBOL(daemonize);
462 static void close_files(struct files_struct * files)
464 int i, j;
465 struct fdtable *fdt;
467 j = 0;
470 * It is safe to dereference the fd table without RCU or
471 * ->file_lock because this is the last reference to the
472 * files structure.
474 fdt = files_fdtable(files);
475 for (;;) {
476 unsigned long set;
477 i = j * __NFDBITS;
478 if (i >= fdt->max_fds)
479 break;
480 set = fdt->open_fds->fds_bits[j++];
481 while (set) {
482 if (set & 1) {
483 struct file * file = xchg(&fdt->fd[i], NULL);
484 if (file) {
485 filp_close(file, files);
486 cond_resched();
489 i++;
490 set >>= 1;
495 struct files_struct *get_files_struct(struct task_struct *task)
497 struct files_struct *files;
499 task_lock(task);
500 files = task->files;
501 if (files)
502 atomic_inc(&files->count);
503 task_unlock(task);
505 return files;
508 void put_files_struct(struct files_struct *files)
510 struct fdtable *fdt;
512 if (atomic_dec_and_test(&files->count)) {
513 close_files(files);
515 * Free the fd and fdset arrays if we expanded them.
516 * If the fdtable was embedded, pass files for freeing
517 * at the end of the RCU grace period. Otherwise,
518 * you can free files immediately.
520 fdt = files_fdtable(files);
521 if (fdt != &files->fdtab)
522 kmem_cache_free(files_cachep, files);
523 free_fdtable(fdt);
527 void reset_files_struct(struct files_struct *files)
529 struct task_struct *tsk = current;
530 struct files_struct *old;
532 old = tsk->files;
533 task_lock(tsk);
534 tsk->files = files;
535 task_unlock(tsk);
536 put_files_struct(old);
539 void exit_files(struct task_struct *tsk)
541 struct files_struct * files = tsk->files;
543 if (files) {
544 task_lock(tsk);
545 tsk->files = NULL;
546 task_unlock(tsk);
547 put_files_struct(files);
551 void put_fs_struct(struct fs_struct *fs)
553 /* No need to hold fs->lock if we are killing it */
554 if (atomic_dec_and_test(&fs->count)) {
555 path_put(&fs->root);
556 path_put(&fs->pwd);
557 kmem_cache_free(fs_cachep, fs);
561 void exit_fs(struct task_struct *tsk)
563 struct fs_struct * fs = tsk->fs;
565 if (fs) {
566 task_lock(tsk);
567 tsk->fs = NULL;
568 task_unlock(tsk);
569 put_fs_struct(fs);
573 EXPORT_SYMBOL_GPL(exit_fs);
575 #ifdef CONFIG_MM_OWNER
577 * Task p is exiting and it owned mm, lets find a new owner for it
579 static inline int
580 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
583 * If there are other users of the mm and the owner (us) is exiting
584 * we need to find a new owner to take on the responsibility.
586 if (atomic_read(&mm->mm_users) <= 1)
587 return 0;
588 if (mm->owner != p)
589 return 0;
590 return 1;
593 void mm_update_next_owner(struct mm_struct *mm)
595 struct task_struct *c, *g, *p = current;
597 retry:
598 if (!mm_need_new_owner(mm, p))
599 return;
601 read_lock(&tasklist_lock);
603 * Search in the children
605 list_for_each_entry(c, &p->children, sibling) {
606 if (c->mm == mm)
607 goto assign_new_owner;
611 * Search in the siblings
613 list_for_each_entry(c, &p->parent->children, sibling) {
614 if (c->mm == mm)
615 goto assign_new_owner;
619 * Search through everything else. We should not get
620 * here often
622 do_each_thread(g, c) {
623 if (c->mm == mm)
624 goto assign_new_owner;
625 } while_each_thread(g, c);
627 read_unlock(&tasklist_lock);
629 * We found no owner yet mm_users > 1: this implies that we are
630 * most likely racing with swapoff (try_to_unuse()) or /proc or
631 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
632 * so that subsystems can understand the callback and take action.
634 down_write(&mm->mmap_sem);
635 cgroup_mm_owner_callbacks(mm->owner, NULL);
636 mm->owner = NULL;
637 up_write(&mm->mmap_sem);
638 return;
640 assign_new_owner:
641 BUG_ON(c == p);
642 get_task_struct(c);
644 * The task_lock protects c->mm from changing.
645 * We always want mm->owner->mm == mm
647 task_lock(c);
649 * Delay read_unlock() till we have the task_lock()
650 * to ensure that c does not slip away underneath us
652 read_unlock(&tasklist_lock);
653 if (c->mm != mm) {
654 task_unlock(c);
655 put_task_struct(c);
656 goto retry;
658 cgroup_mm_owner_callbacks(mm->owner, c);
659 mm->owner = c;
660 task_unlock(c);
661 put_task_struct(c);
663 #endif /* CONFIG_MM_OWNER */
666 * Turn us into a lazy TLB process if we
667 * aren't already..
669 static void exit_mm(struct task_struct * tsk)
671 struct mm_struct *mm = tsk->mm;
672 struct core_state *core_state;
674 mm_release(tsk, mm);
675 if (!mm)
676 return;
678 * Serialize with any possible pending coredump.
679 * We must hold mmap_sem around checking core_state
680 * and clearing tsk->mm. The core-inducing thread
681 * will increment ->nr_threads for each thread in the
682 * group with ->mm != NULL.
684 down_read(&mm->mmap_sem);
685 core_state = mm->core_state;
686 if (core_state) {
687 struct core_thread self;
688 up_read(&mm->mmap_sem);
690 self.task = tsk;
691 self.next = xchg(&core_state->dumper.next, &self);
693 * Implies mb(), the result of xchg() must be visible
694 * to core_state->dumper.
696 if (atomic_dec_and_test(&core_state->nr_threads))
697 complete(&core_state->startup);
699 for (;;) {
700 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
701 if (!self.task) /* see coredump_finish() */
702 break;
703 schedule();
705 __set_task_state(tsk, TASK_RUNNING);
706 down_read(&mm->mmap_sem);
708 atomic_inc(&mm->mm_count);
709 BUG_ON(mm != tsk->active_mm);
710 /* more a memory barrier than a real lock */
711 task_lock(tsk);
712 tsk->mm = NULL;
713 up_read(&mm->mmap_sem);
714 enter_lazy_tlb(mm, current);
715 /* We don't want this task to be frozen prematurely */
716 clear_freeze_flag(tsk);
717 task_unlock(tsk);
718 mm_update_next_owner(mm);
719 mmput(mm);
723 * Return nonzero if @parent's children should reap themselves.
725 * Called with write_lock_irq(&tasklist_lock) held.
727 static int ignoring_children(struct task_struct *parent)
729 int ret;
730 struct sighand_struct *psig = parent->sighand;
731 unsigned long flags;
732 spin_lock_irqsave(&psig->siglock, flags);
733 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
734 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
735 spin_unlock_irqrestore(&psig->siglock, flags);
736 return ret;
740 * Detach all tasks we were using ptrace on.
741 * Any that need to be release_task'd are put on the @dead list.
743 * Called with write_lock(&tasklist_lock) held.
745 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
747 struct task_struct *p, *n;
748 int ign = -1;
750 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
751 __ptrace_unlink(p);
753 if (p->exit_state != EXIT_ZOMBIE)
754 continue;
757 * If it's a zombie, our attachedness prevented normal
758 * parent notification or self-reaping. Do notification
759 * now if it would have happened earlier. If it should
760 * reap itself, add it to the @dead list. We can't call
761 * release_task() here because we already hold tasklist_lock.
763 * If it's our own child, there is no notification to do.
764 * But if our normal children self-reap, then this child
765 * was prevented by ptrace and we must reap it now.
767 if (!task_detached(p) && thread_group_empty(p)) {
768 if (!same_thread_group(p->real_parent, parent))
769 do_notify_parent(p, p->exit_signal);
770 else {
771 if (ign < 0)
772 ign = ignoring_children(parent);
773 if (ign)
774 p->exit_signal = -1;
778 if (task_detached(p)) {
780 * Mark it as in the process of being reaped.
782 p->exit_state = EXIT_DEAD;
783 list_add(&p->ptrace_entry, dead);
789 * Finish up exit-time ptrace cleanup.
791 * Called without locks.
793 static void ptrace_exit_finish(struct task_struct *parent,
794 struct list_head *dead)
796 struct task_struct *p, *n;
798 BUG_ON(!list_empty(&parent->ptraced));
800 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
801 list_del_init(&p->ptrace_entry);
802 release_task(p);
806 static void reparent_thread(struct task_struct *p, struct task_struct *father)
808 if (p->pdeath_signal)
809 /* We already hold the tasklist_lock here. */
810 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
812 list_move_tail(&p->sibling, &p->real_parent->children);
814 /* If this is a threaded reparent there is no need to
815 * notify anyone anything has happened.
817 if (same_thread_group(p->real_parent, father))
818 return;
820 /* We don't want people slaying init. */
821 if (!task_detached(p))
822 p->exit_signal = SIGCHLD;
824 /* If we'd notified the old parent about this child's death,
825 * also notify the new parent.
827 if (!ptrace_reparented(p) &&
828 p->exit_state == EXIT_ZOMBIE &&
829 !task_detached(p) && thread_group_empty(p))
830 do_notify_parent(p, p->exit_signal);
832 kill_orphaned_pgrp(p, father);
836 * When we die, we re-parent all our children.
837 * Try to give them to another thread in our thread
838 * group, and if no such member exists, give it to
839 * the child reaper process (ie "init") in our pid
840 * space.
842 static struct task_struct *find_new_reaper(struct task_struct *father)
844 struct pid_namespace *pid_ns = task_active_pid_ns(father);
845 struct task_struct *thread;
847 thread = father;
848 while_each_thread(father, thread) {
849 if (thread->flags & PF_EXITING)
850 continue;
851 if (unlikely(pid_ns->child_reaper == father))
852 pid_ns->child_reaper = thread;
853 return thread;
856 if (unlikely(pid_ns->child_reaper == father)) {
857 write_unlock_irq(&tasklist_lock);
858 if (unlikely(pid_ns == &init_pid_ns))
859 panic("Attempted to kill init!");
861 zap_pid_ns_processes(pid_ns);
862 write_lock_irq(&tasklist_lock);
864 * We can not clear ->child_reaper or leave it alone.
865 * There may by stealth EXIT_DEAD tasks on ->children,
866 * forget_original_parent() must move them somewhere.
868 pid_ns->child_reaper = init_pid_ns.child_reaper;
871 return pid_ns->child_reaper;
874 static void forget_original_parent(struct task_struct *father)
876 struct task_struct *p, *n, *reaper;
877 LIST_HEAD(ptrace_dead);
879 write_lock_irq(&tasklist_lock);
880 reaper = find_new_reaper(father);
882 * First clean up ptrace if we were using it.
884 ptrace_exit(father, &ptrace_dead);
886 list_for_each_entry_safe(p, n, &father->children, sibling) {
887 p->real_parent = reaper;
888 if (p->parent == father) {
889 BUG_ON(p->ptrace);
890 p->parent = p->real_parent;
892 reparent_thread(p, father);
895 write_unlock_irq(&tasklist_lock);
896 BUG_ON(!list_empty(&father->children));
898 ptrace_exit_finish(father, &ptrace_dead);
902 * Send signals to all our closest relatives so that they know
903 * to properly mourn us..
905 static void exit_notify(struct task_struct *tsk, int group_dead)
907 int signal;
908 void *cookie;
911 * This does two things:
913 * A. Make init inherit all the child processes
914 * B. Check to see if any process groups have become orphaned
915 * as a result of our exiting, and if they have any stopped
916 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
918 forget_original_parent(tsk);
919 exit_task_namespaces(tsk);
921 write_lock_irq(&tasklist_lock);
922 if (group_dead)
923 kill_orphaned_pgrp(tsk->group_leader, NULL);
925 /* Let father know we died
927 * Thread signals are configurable, but you aren't going to use
928 * that to send signals to arbitary processes.
929 * That stops right now.
931 * If the parent exec id doesn't match the exec id we saved
932 * when we started then we know the parent has changed security
933 * domain.
935 * If our self_exec id doesn't match our parent_exec_id then
936 * we have changed execution domain as these two values started
937 * the same after a fork.
939 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
940 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
941 tsk->self_exec_id != tsk->parent_exec_id))
942 tsk->exit_signal = SIGCHLD;
944 signal = tracehook_notify_death(tsk, &cookie, group_dead);
945 if (signal >= 0)
946 signal = do_notify_parent(tsk, signal);
948 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
950 /* mt-exec, de_thread() is waiting for us */
951 if (thread_group_leader(tsk) &&
952 tsk->signal->group_exit_task &&
953 tsk->signal->notify_count < 0)
954 wake_up_process(tsk->signal->group_exit_task);
956 write_unlock_irq(&tasklist_lock);
958 tracehook_report_death(tsk, signal, cookie, group_dead);
960 /* If the process is dead, release it - nobody will wait for it */
961 if (signal == DEATH_REAP)
962 release_task(tsk);
965 #ifdef CONFIG_DEBUG_STACK_USAGE
966 static void check_stack_usage(void)
968 static DEFINE_SPINLOCK(low_water_lock);
969 static int lowest_to_date = THREAD_SIZE;
970 unsigned long *n = end_of_stack(current);
971 unsigned long free;
973 while (*n == 0)
974 n++;
975 free = (unsigned long)n - (unsigned long)end_of_stack(current);
977 if (free >= lowest_to_date)
978 return;
980 spin_lock(&low_water_lock);
981 if (free < lowest_to_date) {
982 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
983 "left\n",
984 current->comm, free);
985 lowest_to_date = free;
987 spin_unlock(&low_water_lock);
989 #else
990 static inline void check_stack_usage(void) {}
991 #endif
993 NORET_TYPE void do_exit(long code)
995 struct task_struct *tsk = current;
996 int group_dead;
998 profile_task_exit(tsk);
1000 WARN_ON(atomic_read(&tsk->fs_excl));
1002 if (unlikely(in_interrupt()))
1003 panic("Aiee, killing interrupt handler!");
1004 if (unlikely(!tsk->pid))
1005 panic("Attempted to kill the idle task!");
1007 tracehook_report_exit(&code);
1010 * We're taking recursive faults here in do_exit. Safest is to just
1011 * leave this task alone and wait for reboot.
1013 if (unlikely(tsk->flags & PF_EXITING)) {
1014 printk(KERN_ALERT
1015 "Fixing recursive fault but reboot is needed!\n");
1017 * We can do this unlocked here. The futex code uses
1018 * this flag just to verify whether the pi state
1019 * cleanup has been done or not. In the worst case it
1020 * loops once more. We pretend that the cleanup was
1021 * done as there is no way to return. Either the
1022 * OWNER_DIED bit is set by now or we push the blocked
1023 * task into the wait for ever nirwana as well.
1025 tsk->flags |= PF_EXITPIDONE;
1026 if (tsk->io_context)
1027 exit_io_context();
1028 set_current_state(TASK_UNINTERRUPTIBLE);
1029 schedule();
1032 exit_signals(tsk); /* sets PF_EXITING */
1034 * tsk->flags are checked in the futex code to protect against
1035 * an exiting task cleaning up the robust pi futexes.
1037 smp_mb();
1038 spin_unlock_wait(&tsk->pi_lock);
1040 if (unlikely(in_atomic()))
1041 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1042 current->comm, task_pid_nr(current),
1043 preempt_count());
1045 acct_update_integrals(tsk);
1046 if (tsk->mm) {
1047 update_hiwater_rss(tsk->mm);
1048 update_hiwater_vm(tsk->mm);
1050 group_dead = atomic_dec_and_test(&tsk->signal->live);
1051 if (group_dead) {
1052 hrtimer_cancel(&tsk->signal->real_timer);
1053 exit_itimers(tsk->signal);
1055 acct_collect(code, group_dead);
1056 #ifdef CONFIG_FUTEX
1057 if (unlikely(tsk->robust_list))
1058 exit_robust_list(tsk);
1059 #ifdef CONFIG_COMPAT
1060 if (unlikely(tsk->compat_robust_list))
1061 compat_exit_robust_list(tsk);
1062 #endif
1063 #endif
1064 if (group_dead)
1065 tty_audit_exit();
1066 if (unlikely(tsk->audit_context))
1067 audit_free(tsk);
1069 tsk->exit_code = code;
1070 taskstats_exit(tsk, group_dead);
1072 exit_mm(tsk);
1074 if (group_dead)
1075 acct_process();
1076 exit_sem(tsk);
1077 exit_files(tsk);
1078 exit_fs(tsk);
1079 check_stack_usage();
1080 exit_thread();
1081 cgroup_exit(tsk, 1);
1082 exit_keys(tsk);
1084 if (group_dead && tsk->signal->leader)
1085 disassociate_ctty(1);
1087 module_put(task_thread_info(tsk)->exec_domain->module);
1088 if (tsk->binfmt)
1089 module_put(tsk->binfmt->module);
1091 proc_exit_connector(tsk);
1092 exit_notify(tsk, group_dead);
1093 #ifdef CONFIG_NUMA
1094 mpol_put(tsk->mempolicy);
1095 tsk->mempolicy = NULL;
1096 #endif
1097 #ifdef CONFIG_FUTEX
1099 * This must happen late, after the PID is not
1100 * hashed anymore:
1102 if (unlikely(!list_empty(&tsk->pi_state_list)))
1103 exit_pi_state_list(tsk);
1104 if (unlikely(current->pi_state_cache))
1105 kfree(current->pi_state_cache);
1106 #endif
1108 * Make sure we are holding no locks:
1110 debug_check_no_locks_held(tsk);
1112 * We can do this unlocked here. The futex code uses this flag
1113 * just to verify whether the pi state cleanup has been done
1114 * or not. In the worst case it loops once more.
1116 tsk->flags |= PF_EXITPIDONE;
1118 if (tsk->io_context)
1119 exit_io_context();
1121 if (tsk->splice_pipe)
1122 __free_pipe_info(tsk->splice_pipe);
1124 preempt_disable();
1125 /* causes final put_task_struct in finish_task_switch(). */
1126 tsk->state = TASK_DEAD;
1128 schedule();
1129 BUG();
1130 /* Avoid "noreturn function does return". */
1131 for (;;)
1132 cpu_relax(); /* For when BUG is null */
1135 EXPORT_SYMBOL_GPL(do_exit);
1137 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1139 if (comp)
1140 complete(comp);
1142 do_exit(code);
1145 EXPORT_SYMBOL(complete_and_exit);
1147 SYSCALL_DEFINE1(exit, int, error_code)
1149 do_exit((error_code&0xff)<<8);
1153 * Take down every thread in the group. This is called by fatal signals
1154 * as well as by sys_exit_group (below).
1156 NORET_TYPE void
1157 do_group_exit(int exit_code)
1159 struct signal_struct *sig = current->signal;
1161 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1163 if (signal_group_exit(sig))
1164 exit_code = sig->group_exit_code;
1165 else if (!thread_group_empty(current)) {
1166 struct sighand_struct *const sighand = current->sighand;
1167 spin_lock_irq(&sighand->siglock);
1168 if (signal_group_exit(sig))
1169 /* Another thread got here before we took the lock. */
1170 exit_code = sig->group_exit_code;
1171 else {
1172 sig->group_exit_code = exit_code;
1173 sig->flags = SIGNAL_GROUP_EXIT;
1174 zap_other_threads(current);
1176 spin_unlock_irq(&sighand->siglock);
1179 do_exit(exit_code);
1180 /* NOTREACHED */
1184 * this kills every thread in the thread group. Note that any externally
1185 * wait4()-ing process will get the correct exit code - even if this
1186 * thread is not the thread group leader.
1188 SYSCALL_DEFINE1(exit_group, int, error_code)
1190 do_group_exit((error_code & 0xff) << 8);
1191 /* NOTREACHED */
1192 return 0;
1195 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1197 struct pid *pid = NULL;
1198 if (type == PIDTYPE_PID)
1199 pid = task->pids[type].pid;
1200 else if (type < PIDTYPE_MAX)
1201 pid = task->group_leader->pids[type].pid;
1202 return pid;
1205 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1206 struct task_struct *p)
1208 int err;
1210 if (type < PIDTYPE_MAX) {
1211 if (task_pid_type(p, type) != pid)
1212 return 0;
1215 /* Wait for all children (clone and not) if __WALL is set;
1216 * otherwise, wait for clone children *only* if __WCLONE is
1217 * set; otherwise, wait for non-clone children *only*. (Note:
1218 * A "clone" child here is one that reports to its parent
1219 * using a signal other than SIGCHLD.) */
1220 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1221 && !(options & __WALL))
1222 return 0;
1224 err = security_task_wait(p);
1225 if (err)
1226 return err;
1228 return 1;
1231 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1232 int why, int status,
1233 struct siginfo __user *infop,
1234 struct rusage __user *rusagep)
1236 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1238 put_task_struct(p);
1239 if (!retval)
1240 retval = put_user(SIGCHLD, &infop->si_signo);
1241 if (!retval)
1242 retval = put_user(0, &infop->si_errno);
1243 if (!retval)
1244 retval = put_user((short)why, &infop->si_code);
1245 if (!retval)
1246 retval = put_user(pid, &infop->si_pid);
1247 if (!retval)
1248 retval = put_user(uid, &infop->si_uid);
1249 if (!retval)
1250 retval = put_user(status, &infop->si_status);
1251 if (!retval)
1252 retval = pid;
1253 return retval;
1257 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1258 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1259 * the lock and this task is uninteresting. If we return nonzero, we have
1260 * released the lock and the system call should return.
1262 static int wait_task_zombie(struct task_struct *p, int options,
1263 struct siginfo __user *infop,
1264 int __user *stat_addr, struct rusage __user *ru)
1266 unsigned long state;
1267 int retval, status, traced;
1268 pid_t pid = task_pid_vnr(p);
1270 if (!likely(options & WEXITED))
1271 return 0;
1273 if (unlikely(options & WNOWAIT)) {
1274 uid_t uid = p->uid;
1275 int exit_code = p->exit_code;
1276 int why, status;
1278 get_task_struct(p);
1279 read_unlock(&tasklist_lock);
1280 if ((exit_code & 0x7f) == 0) {
1281 why = CLD_EXITED;
1282 status = exit_code >> 8;
1283 } else {
1284 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 status = exit_code & 0x7f;
1287 return wait_noreap_copyout(p, pid, uid, why,
1288 status, infop, ru);
1292 * Try to move the task's state to DEAD
1293 * only one thread is allowed to do this:
1295 state = xchg(&p->exit_state, EXIT_DEAD);
1296 if (state != EXIT_ZOMBIE) {
1297 BUG_ON(state != EXIT_DEAD);
1298 return 0;
1301 traced = ptrace_reparented(p);
1303 if (likely(!traced)) {
1304 struct signal_struct *psig;
1305 struct signal_struct *sig;
1308 * The resource counters for the group leader are in its
1309 * own task_struct. Those for dead threads in the group
1310 * are in its signal_struct, as are those for the child
1311 * processes it has previously reaped. All these
1312 * accumulate in the parent's signal_struct c* fields.
1314 * We don't bother to take a lock here to protect these
1315 * p->signal fields, because they are only touched by
1316 * __exit_signal, which runs with tasklist_lock
1317 * write-locked anyway, and so is excluded here. We do
1318 * need to protect the access to p->parent->signal fields,
1319 * as other threads in the parent group can be right
1320 * here reaping other children at the same time.
1322 spin_lock_irq(&p->parent->sighand->siglock);
1323 psig = p->parent->signal;
1324 sig = p->signal;
1325 psig->cutime =
1326 cputime_add(psig->cutime,
1327 cputime_add(p->utime,
1328 cputime_add(sig->utime,
1329 sig->cutime)));
1330 psig->cstime =
1331 cputime_add(psig->cstime,
1332 cputime_add(p->stime,
1333 cputime_add(sig->stime,
1334 sig->cstime)));
1335 psig->cgtime =
1336 cputime_add(psig->cgtime,
1337 cputime_add(p->gtime,
1338 cputime_add(sig->gtime,
1339 sig->cgtime)));
1340 psig->cmin_flt +=
1341 p->min_flt + sig->min_flt + sig->cmin_flt;
1342 psig->cmaj_flt +=
1343 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1344 psig->cnvcsw +=
1345 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1346 psig->cnivcsw +=
1347 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1348 psig->cinblock +=
1349 task_io_get_inblock(p) +
1350 sig->inblock + sig->cinblock;
1351 psig->coublock +=
1352 task_io_get_oublock(p) +
1353 sig->oublock + sig->coublock;
1354 task_io_accounting_add(&psig->ioac, &p->ioac);
1355 task_io_accounting_add(&psig->ioac, &sig->ioac);
1356 spin_unlock_irq(&p->parent->sighand->siglock);
1360 * Now we are sure this task is interesting, and no other
1361 * thread can reap it because we set its state to EXIT_DEAD.
1363 read_unlock(&tasklist_lock);
1365 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1366 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1367 ? p->signal->group_exit_code : p->exit_code;
1368 if (!retval && stat_addr)
1369 retval = put_user(status, stat_addr);
1370 if (!retval && infop)
1371 retval = put_user(SIGCHLD, &infop->si_signo);
1372 if (!retval && infop)
1373 retval = put_user(0, &infop->si_errno);
1374 if (!retval && infop) {
1375 int why;
1377 if ((status & 0x7f) == 0) {
1378 why = CLD_EXITED;
1379 status >>= 8;
1380 } else {
1381 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1382 status &= 0x7f;
1384 retval = put_user((short)why, &infop->si_code);
1385 if (!retval)
1386 retval = put_user(status, &infop->si_status);
1388 if (!retval && infop)
1389 retval = put_user(pid, &infop->si_pid);
1390 if (!retval && infop)
1391 retval = put_user(p->uid, &infop->si_uid);
1392 if (!retval)
1393 retval = pid;
1395 if (traced) {
1396 write_lock_irq(&tasklist_lock);
1397 /* We dropped tasklist, ptracer could die and untrace */
1398 ptrace_unlink(p);
1400 * If this is not a detached task, notify the parent.
1401 * If it's still not detached after that, don't release
1402 * it now.
1404 if (!task_detached(p)) {
1405 do_notify_parent(p, p->exit_signal);
1406 if (!task_detached(p)) {
1407 p->exit_state = EXIT_ZOMBIE;
1408 p = NULL;
1411 write_unlock_irq(&tasklist_lock);
1413 if (p != NULL)
1414 release_task(p);
1416 return retval;
1420 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1421 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1422 * the lock and this task is uninteresting. If we return nonzero, we have
1423 * released the lock and the system call should return.
1425 static int wait_task_stopped(int ptrace, struct task_struct *p,
1426 int options, struct siginfo __user *infop,
1427 int __user *stat_addr, struct rusage __user *ru)
1429 int retval, exit_code, why;
1430 uid_t uid = 0; /* unneeded, required by compiler */
1431 pid_t pid;
1433 if (!(options & WUNTRACED))
1434 return 0;
1436 exit_code = 0;
1437 spin_lock_irq(&p->sighand->siglock);
1439 if (unlikely(!task_is_stopped_or_traced(p)))
1440 goto unlock_sig;
1442 if (!ptrace && p->signal->group_stop_count > 0)
1444 * A group stop is in progress and this is the group leader.
1445 * We won't report until all threads have stopped.
1447 goto unlock_sig;
1449 exit_code = p->exit_code;
1450 if (!exit_code)
1451 goto unlock_sig;
1453 if (!unlikely(options & WNOWAIT))
1454 p->exit_code = 0;
1456 uid = p->uid;
1457 unlock_sig:
1458 spin_unlock_irq(&p->sighand->siglock);
1459 if (!exit_code)
1460 return 0;
1463 * Now we are pretty sure this task is interesting.
1464 * Make sure it doesn't get reaped out from under us while we
1465 * give up the lock and then examine it below. We don't want to
1466 * keep holding onto the tasklist_lock while we call getrusage and
1467 * possibly take page faults for user memory.
1469 get_task_struct(p);
1470 pid = task_pid_vnr(p);
1471 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1472 read_unlock(&tasklist_lock);
1474 if (unlikely(options & WNOWAIT))
1475 return wait_noreap_copyout(p, pid, uid,
1476 why, exit_code,
1477 infop, ru);
1479 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1480 if (!retval && stat_addr)
1481 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1482 if (!retval && infop)
1483 retval = put_user(SIGCHLD, &infop->si_signo);
1484 if (!retval && infop)
1485 retval = put_user(0, &infop->si_errno);
1486 if (!retval && infop)
1487 retval = put_user((short)why, &infop->si_code);
1488 if (!retval && infop)
1489 retval = put_user(exit_code, &infop->si_status);
1490 if (!retval && infop)
1491 retval = put_user(pid, &infop->si_pid);
1492 if (!retval && infop)
1493 retval = put_user(uid, &infop->si_uid);
1494 if (!retval)
1495 retval = pid;
1496 put_task_struct(p);
1498 BUG_ON(!retval);
1499 return retval;
1503 * Handle do_wait work for one task in a live, non-stopped state.
1504 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1505 * the lock and this task is uninteresting. If we return nonzero, we have
1506 * released the lock and the system call should return.
1508 static int wait_task_continued(struct task_struct *p, int options,
1509 struct siginfo __user *infop,
1510 int __user *stat_addr, struct rusage __user *ru)
1512 int retval;
1513 pid_t pid;
1514 uid_t uid;
1516 if (!unlikely(options & WCONTINUED))
1517 return 0;
1519 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1520 return 0;
1522 spin_lock_irq(&p->sighand->siglock);
1523 /* Re-check with the lock held. */
1524 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1525 spin_unlock_irq(&p->sighand->siglock);
1526 return 0;
1528 if (!unlikely(options & WNOWAIT))
1529 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1530 spin_unlock_irq(&p->sighand->siglock);
1532 pid = task_pid_vnr(p);
1533 uid = p->uid;
1534 get_task_struct(p);
1535 read_unlock(&tasklist_lock);
1537 if (!infop) {
1538 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1539 put_task_struct(p);
1540 if (!retval && stat_addr)
1541 retval = put_user(0xffff, stat_addr);
1542 if (!retval)
1543 retval = pid;
1544 } else {
1545 retval = wait_noreap_copyout(p, pid, uid,
1546 CLD_CONTINUED, SIGCONT,
1547 infop, ru);
1548 BUG_ON(retval == 0);
1551 return retval;
1555 * Consider @p for a wait by @parent.
1557 * -ECHILD should be in *@notask_error before the first call.
1558 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1559 * Returns zero if the search for a child should continue;
1560 * then *@notask_error is 0 if @p is an eligible child,
1561 * or another error from security_task_wait(), or still -ECHILD.
1563 static int wait_consider_task(struct task_struct *parent, int ptrace,
1564 struct task_struct *p, int *notask_error,
1565 enum pid_type type, struct pid *pid, int options,
1566 struct siginfo __user *infop,
1567 int __user *stat_addr, struct rusage __user *ru)
1569 int ret = eligible_child(type, pid, options, p);
1570 if (!ret)
1571 return ret;
1573 if (unlikely(ret < 0)) {
1575 * If we have not yet seen any eligible child,
1576 * then let this error code replace -ECHILD.
1577 * A permission error will give the user a clue
1578 * to look for security policy problems, rather
1579 * than for mysterious wait bugs.
1581 if (*notask_error)
1582 *notask_error = ret;
1585 if (likely(!ptrace) && unlikely(p->ptrace)) {
1587 * This child is hidden by ptrace.
1588 * We aren't allowed to see it now, but eventually we will.
1590 *notask_error = 0;
1591 return 0;
1594 if (p->exit_state == EXIT_DEAD)
1595 return 0;
1598 * We don't reap group leaders with subthreads.
1600 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1601 return wait_task_zombie(p, options, infop, stat_addr, ru);
1604 * It's stopped or running now, so it might
1605 * later continue, exit, or stop again.
1607 *notask_error = 0;
1609 if (task_is_stopped_or_traced(p))
1610 return wait_task_stopped(ptrace, p, options,
1611 infop, stat_addr, ru);
1613 return wait_task_continued(p, options, infop, stat_addr, ru);
1617 * Do the work of do_wait() for one thread in the group, @tsk.
1619 * -ECHILD should be in *@notask_error before the first call.
1620 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1621 * Returns zero if the search for a child should continue; then
1622 * *@notask_error is 0 if there were any eligible children,
1623 * or another error from security_task_wait(), or still -ECHILD.
1625 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1626 enum pid_type type, struct pid *pid, int options,
1627 struct siginfo __user *infop, int __user *stat_addr,
1628 struct rusage __user *ru)
1630 struct task_struct *p;
1632 list_for_each_entry(p, &tsk->children, sibling) {
1634 * Do not consider detached threads.
1636 if (!task_detached(p)) {
1637 int ret = wait_consider_task(tsk, 0, p, notask_error,
1638 type, pid, options,
1639 infop, stat_addr, ru);
1640 if (ret)
1641 return ret;
1645 return 0;
1648 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1649 enum pid_type type, struct pid *pid, int options,
1650 struct siginfo __user *infop, int __user *stat_addr,
1651 struct rusage __user *ru)
1653 struct task_struct *p;
1656 * Traditionally we see ptrace'd stopped tasks regardless of options.
1658 options |= WUNTRACED;
1660 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1661 int ret = wait_consider_task(tsk, 1, p, notask_error,
1662 type, pid, options,
1663 infop, stat_addr, ru);
1664 if (ret)
1665 return ret;
1668 return 0;
1671 static long do_wait(enum pid_type type, struct pid *pid, int options,
1672 struct siginfo __user *infop, int __user *stat_addr,
1673 struct rusage __user *ru)
1675 DECLARE_WAITQUEUE(wait, current);
1676 struct task_struct *tsk;
1677 int retval;
1679 add_wait_queue(&current->signal->wait_chldexit,&wait);
1680 repeat:
1682 * If there is nothing that can match our critiera just get out.
1683 * We will clear @retval to zero if we see any child that might later
1684 * match our criteria, even if we are not able to reap it yet.
1686 retval = -ECHILD;
1687 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1688 goto end;
1690 current->state = TASK_INTERRUPTIBLE;
1691 read_lock(&tasklist_lock);
1692 tsk = current;
1693 do {
1694 int tsk_result = do_wait_thread(tsk, &retval,
1695 type, pid, options,
1696 infop, stat_addr, ru);
1697 if (!tsk_result)
1698 tsk_result = ptrace_do_wait(tsk, &retval,
1699 type, pid, options,
1700 infop, stat_addr, ru);
1701 if (tsk_result) {
1703 * tasklist_lock is unlocked and we have a final result.
1705 retval = tsk_result;
1706 goto end;
1709 if (options & __WNOTHREAD)
1710 break;
1711 tsk = next_thread(tsk);
1712 BUG_ON(tsk->signal != current->signal);
1713 } while (tsk != current);
1714 read_unlock(&tasklist_lock);
1716 if (!retval && !(options & WNOHANG)) {
1717 retval = -ERESTARTSYS;
1718 if (!signal_pending(current)) {
1719 schedule();
1720 goto repeat;
1724 end:
1725 current->state = TASK_RUNNING;
1726 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1727 if (infop) {
1728 if (retval > 0)
1729 retval = 0;
1730 else {
1732 * For a WNOHANG return, clear out all the fields
1733 * we would set so the user can easily tell the
1734 * difference.
1736 if (!retval)
1737 retval = put_user(0, &infop->si_signo);
1738 if (!retval)
1739 retval = put_user(0, &infop->si_errno);
1740 if (!retval)
1741 retval = put_user(0, &infop->si_code);
1742 if (!retval)
1743 retval = put_user(0, &infop->si_pid);
1744 if (!retval)
1745 retval = put_user(0, &infop->si_uid);
1746 if (!retval)
1747 retval = put_user(0, &infop->si_status);
1750 return retval;
1753 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1754 infop, int, options, struct rusage __user *, ru)
1756 struct pid *pid = NULL;
1757 enum pid_type type;
1758 long ret;
1760 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1761 return -EINVAL;
1762 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1763 return -EINVAL;
1765 switch (which) {
1766 case P_ALL:
1767 type = PIDTYPE_MAX;
1768 break;
1769 case P_PID:
1770 type = PIDTYPE_PID;
1771 if (upid <= 0)
1772 return -EINVAL;
1773 break;
1774 case P_PGID:
1775 type = PIDTYPE_PGID;
1776 if (upid <= 0)
1777 return -EINVAL;
1778 break;
1779 default:
1780 return -EINVAL;
1783 if (type < PIDTYPE_MAX)
1784 pid = find_get_pid(upid);
1785 ret = do_wait(type, pid, options, infop, NULL, ru);
1786 put_pid(pid);
1788 /* avoid REGPARM breakage on x86: */
1789 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1790 return ret;
1793 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1794 int, options, struct rusage __user *, ru)
1796 struct pid *pid = NULL;
1797 enum pid_type type;
1798 long ret;
1800 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1801 __WNOTHREAD|__WCLONE|__WALL))
1802 return -EINVAL;
1804 if (upid == -1)
1805 type = PIDTYPE_MAX;
1806 else if (upid < 0) {
1807 type = PIDTYPE_PGID;
1808 pid = find_get_pid(-upid);
1809 } else if (upid == 0) {
1810 type = PIDTYPE_PGID;
1811 pid = get_pid(task_pgrp(current));
1812 } else /* upid > 0 */ {
1813 type = PIDTYPE_PID;
1814 pid = find_get_pid(upid);
1817 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1818 put_pid(pid);
1820 /* avoid REGPARM breakage on x86: */
1821 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1822 return ret;
1825 #ifdef __ARCH_WANT_SYS_WAITPID
1828 * sys_waitpid() remains for compatibility. waitpid() should be
1829 * implemented by calling sys_wait4() from libc.a.
1831 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1833 return sys_wait4(pid, stat_addr, options, NULL);
1836 #endif