sparc64: kill page table quicklists
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob73bb192a3d32d2aab43c572697d61af68de2d268
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
60 static void exit_mm(struct task_struct * tsk);
62 static void __unhash_process(struct task_struct *p, bool group_dead)
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
74 list_del_rcu(&p->thread_group);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct *tsk)
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
107 * If there is any task waiting for the group exit
108 * then notify it:
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
157 static void delayed_put_task_struct(struct rcu_head *rhp)
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
167 void release_task(struct task_struct * p)
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock();
178 proc_flush_task(p);
180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p);
182 __exit_signal(p);
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
197 zap_leader = do_notify_parent(leader, leader->exit_signal);
198 if (zap_leader)
199 leader->exit_state = EXIT_DEAD;
202 write_unlock_irq(&tasklist_lock);
203 release_thread(p);
204 call_rcu(&p->rcu, delayed_put_task_struct);
206 p = leader;
207 if (unlikely(zap_leader))
208 goto repeat;
212 * This checks not only the pgrp, but falls back on the pid if no
213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
214 * without this...
216 * The caller must hold rcu lock or the tasklist lock.
218 struct pid *session_of_pgrp(struct pid *pgrp)
220 struct task_struct *p;
221 struct pid *sid = NULL;
223 p = pid_task(pgrp, PIDTYPE_PGID);
224 if (p == NULL)
225 p = pid_task(pgrp, PIDTYPE_PID);
226 if (p != NULL)
227 sid = task_session(p);
229 return sid;
233 * Determine if a process group is "orphaned", according to the POSIX
234 * definition in 2.2.2.52. Orphaned process groups are not to be affected
235 * by terminal-generated stop signals. Newly orphaned process groups are
236 * to receive a SIGHUP and a SIGCONT.
238 * "I ask you, have you ever known what it is to be an orphan?"
240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 struct task_struct *p;
244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
245 if ((p == ignored_task) ||
246 (p->exit_state && thread_group_empty(p)) ||
247 is_global_init(p->real_parent))
248 continue;
250 if (task_pgrp(p->real_parent) != pgrp &&
251 task_session(p->real_parent) == task_session(p))
252 return 0;
253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 return 1;
258 int is_current_pgrp_orphaned(void)
260 int retval;
262 read_lock(&tasklist_lock);
263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
264 read_unlock(&tasklist_lock);
266 return retval;
269 static bool has_stopped_jobs(struct pid *pgrp)
271 struct task_struct *p;
273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 if (p->signal->flags & SIGNAL_STOP_STOPPED)
275 return true;
276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 return false;
282 * Check to see if any process groups have become orphaned as
283 * a result of our exiting, and if they have any stopped jobs,
284 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286 static void
287 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 struct pid *pgrp = task_pgrp(tsk);
290 struct task_struct *ignored_task = tsk;
292 if (!parent)
293 /* exit: our father is in a different pgrp than
294 * we are and we were the only connection outside.
296 parent = tsk->real_parent;
297 else
298 /* reparent: our child is in a different pgrp than
299 * we are, and it was the only connection outside.
301 ignored_task = NULL;
303 if (task_pgrp(parent) != pgrp &&
304 task_session(parent) == task_session(tsk) &&
305 will_become_orphaned_pgrp(pgrp, ignored_task) &&
306 has_stopped_jobs(pgrp)) {
307 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
308 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315 * If a kernel thread is launched as a result of a system call, or if
316 * it ever exits, it should generally reparent itself to kthreadd so it
317 * isn't in the way of other processes and is correctly cleaned up on exit.
319 * The various task state such as scheduling policy and priority may have
320 * been inherited from a user process, so we reset them to sane values here.
322 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324 static void reparent_to_kthreadd(void)
326 write_lock_irq(&tasklist_lock);
328 ptrace_unlink(current);
329 /* Reparent to init */
330 current->real_parent = current->parent = kthreadd_task;
331 list_move_tail(&current->sibling, &current->real_parent->children);
333 /* Set the exit signal to SIGCHLD so we signal init on exit */
334 current->exit_signal = SIGCHLD;
336 if (task_nice(current) < 0)
337 set_user_nice(current, 0);
338 /* cpus_allowed? */
339 /* rt_priority? */
340 /* signals? */
341 memcpy(current->signal->rlim, init_task.signal->rlim,
342 sizeof(current->signal->rlim));
344 atomic_inc(&init_cred.usage);
345 commit_creds(&init_cred);
346 write_unlock_irq(&tasklist_lock);
349 void __set_special_pids(struct pid *pid)
351 struct task_struct *curr = current->group_leader;
353 if (task_session(curr) != pid)
354 change_pid(curr, PIDTYPE_SID, pid);
356 if (task_pgrp(curr) != pid)
357 change_pid(curr, PIDTYPE_PGID, pid);
360 static void set_special_pids(struct pid *pid)
362 write_lock_irq(&tasklist_lock);
363 __set_special_pids(pid);
364 write_unlock_irq(&tasklist_lock);
368 * Let kernel threads use this to say that they allow a certain signal.
369 * Must not be used if kthread was cloned with CLONE_SIGHAND.
371 int allow_signal(int sig)
373 if (!valid_signal(sig) || sig < 1)
374 return -EINVAL;
376 spin_lock_irq(&current->sighand->siglock);
377 /* This is only needed for daemonize()'ed kthreads */
378 sigdelset(&current->blocked, sig);
380 * Kernel threads handle their own signals. Let the signal code
381 * know it'll be handled, so that they don't get converted to
382 * SIGKILL or just silently dropped.
384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
385 recalc_sigpending();
386 spin_unlock_irq(&current->sighand->siglock);
387 return 0;
390 EXPORT_SYMBOL(allow_signal);
392 int disallow_signal(int sig)
394 if (!valid_signal(sig) || sig < 1)
395 return -EINVAL;
397 spin_lock_irq(&current->sighand->siglock);
398 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
399 recalc_sigpending();
400 spin_unlock_irq(&current->sighand->siglock);
401 return 0;
404 EXPORT_SYMBOL(disallow_signal);
407 * Put all the gunge required to become a kernel thread without
408 * attached user resources in one place where it belongs.
411 void daemonize(const char *name, ...)
413 va_list args;
414 sigset_t blocked;
416 va_start(args, name);
417 vsnprintf(current->comm, sizeof(current->comm), name, args);
418 va_end(args);
421 * If we were started as result of loading a module, close all of the
422 * user space pages. We don't need them, and if we didn't close them
423 * they would be locked into memory.
425 exit_mm(current);
427 * We don't want to have TIF_FREEZE set if the system-wide hibernation
428 * or suspend transition begins right now.
430 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432 if (current->nsproxy != &init_nsproxy) {
433 get_nsproxy(&init_nsproxy);
434 switch_task_namespaces(current, &init_nsproxy);
436 set_special_pids(&init_struct_pid);
437 proc_clear_tty(current);
439 /* Block and flush all signals */
440 sigfillset(&blocked);
441 sigprocmask(SIG_BLOCK, &blocked, NULL);
442 flush_signals(current);
444 /* Become as one with the init task */
446 daemonize_fs_struct();
447 exit_files(current);
448 current->files = init_task.files;
449 atomic_inc(&current->files->count);
451 reparent_to_kthreadd();
454 EXPORT_SYMBOL(daemonize);
456 static void close_files(struct files_struct * files)
458 int i, j;
459 struct fdtable *fdt;
461 j = 0;
464 * It is safe to dereference the fd table without RCU or
465 * ->file_lock because this is the last reference to the
466 * files structure. But use RCU to shut RCU-lockdep up.
468 rcu_read_lock();
469 fdt = files_fdtable(files);
470 rcu_read_unlock();
471 for (;;) {
472 unsigned long set;
473 i = j * __NFDBITS;
474 if (i >= fdt->max_fds)
475 break;
476 set = fdt->open_fds->fds_bits[j++];
477 while (set) {
478 if (set & 1) {
479 struct file * file = xchg(&fdt->fd[i], NULL);
480 if (file) {
481 filp_close(file, files);
482 cond_resched();
485 i++;
486 set >>= 1;
491 struct files_struct *get_files_struct(struct task_struct *task)
493 struct files_struct *files;
495 task_lock(task);
496 files = task->files;
497 if (files)
498 atomic_inc(&files->count);
499 task_unlock(task);
501 return files;
504 void put_files_struct(struct files_struct *files)
506 struct fdtable *fdt;
508 if (atomic_dec_and_test(&files->count)) {
509 close_files(files);
511 * Free the fd and fdset arrays if we expanded them.
512 * If the fdtable was embedded, pass files for freeing
513 * at the end of the RCU grace period. Otherwise,
514 * you can free files immediately.
516 rcu_read_lock();
517 fdt = files_fdtable(files);
518 if (fdt != &files->fdtab)
519 kmem_cache_free(files_cachep, files);
520 free_fdtable(fdt);
521 rcu_read_unlock();
525 void reset_files_struct(struct files_struct *files)
527 struct task_struct *tsk = current;
528 struct files_struct *old;
530 old = tsk->files;
531 task_lock(tsk);
532 tsk->files = files;
533 task_unlock(tsk);
534 put_files_struct(old);
537 void exit_files(struct task_struct *tsk)
539 struct files_struct * files = tsk->files;
541 if (files) {
542 task_lock(tsk);
543 tsk->files = NULL;
544 task_unlock(tsk);
545 put_files_struct(files);
549 #ifdef CONFIG_MM_OWNER
551 * A task is exiting. If it owned this mm, find a new owner for the mm.
553 void mm_update_next_owner(struct mm_struct *mm)
555 struct task_struct *c, *g, *p = current;
557 retry:
559 * If the exiting or execing task is not the owner, it's
560 * someone else's problem.
562 if (mm->owner != p)
563 return;
565 * The current owner is exiting/execing and there are no other
566 * candidates. Do not leave the mm pointing to a possibly
567 * freed task structure.
569 if (atomic_read(&mm->mm_users) <= 1) {
570 mm->owner = NULL;
571 return;
574 read_lock(&tasklist_lock);
576 * Search in the children
578 list_for_each_entry(c, &p->children, sibling) {
579 if (c->mm == mm)
580 goto assign_new_owner;
584 * Search in the siblings
586 list_for_each_entry(c, &p->real_parent->children, sibling) {
587 if (c->mm == mm)
588 goto assign_new_owner;
592 * Search through everything else. We should not get
593 * here often
595 do_each_thread(g, c) {
596 if (c->mm == mm)
597 goto assign_new_owner;
598 } while_each_thread(g, c);
600 read_unlock(&tasklist_lock);
602 * We found no owner yet mm_users > 1: this implies that we are
603 * most likely racing with swapoff (try_to_unuse()) or /proc or
604 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
606 mm->owner = NULL;
607 return;
609 assign_new_owner:
610 BUG_ON(c == p);
611 get_task_struct(c);
613 * The task_lock protects c->mm from changing.
614 * We always want mm->owner->mm == mm
616 task_lock(c);
618 * Delay read_unlock() till we have the task_lock()
619 * to ensure that c does not slip away underneath us
621 read_unlock(&tasklist_lock);
622 if (c->mm != mm) {
623 task_unlock(c);
624 put_task_struct(c);
625 goto retry;
627 mm->owner = c;
628 task_unlock(c);
629 put_task_struct(c);
631 #endif /* CONFIG_MM_OWNER */
634 * Turn us into a lazy TLB process if we
635 * aren't already..
637 static void exit_mm(struct task_struct * tsk)
639 struct mm_struct *mm = tsk->mm;
640 struct core_state *core_state;
642 mm_release(tsk, mm);
643 if (!mm)
644 return;
646 * Serialize with any possible pending coredump.
647 * We must hold mmap_sem around checking core_state
648 * and clearing tsk->mm. The core-inducing thread
649 * will increment ->nr_threads for each thread in the
650 * group with ->mm != NULL.
652 down_read(&mm->mmap_sem);
653 core_state = mm->core_state;
654 if (core_state) {
655 struct core_thread self;
656 up_read(&mm->mmap_sem);
658 self.task = tsk;
659 self.next = xchg(&core_state->dumper.next, &self);
661 * Implies mb(), the result of xchg() must be visible
662 * to core_state->dumper.
664 if (atomic_dec_and_test(&core_state->nr_threads))
665 complete(&core_state->startup);
667 for (;;) {
668 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
669 if (!self.task) /* see coredump_finish() */
670 break;
671 schedule();
673 __set_task_state(tsk, TASK_RUNNING);
674 down_read(&mm->mmap_sem);
676 atomic_inc(&mm->mm_count);
677 BUG_ON(mm != tsk->active_mm);
678 /* more a memory barrier than a real lock */
679 task_lock(tsk);
680 tsk->mm = NULL;
681 up_read(&mm->mmap_sem);
682 enter_lazy_tlb(mm, current);
683 /* We don't want this task to be frozen prematurely */
684 clear_freeze_flag(tsk);
685 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
686 atomic_dec(&mm->oom_disable_count);
687 task_unlock(tsk);
688 mm_update_next_owner(mm);
689 mmput(mm);
693 * When we die, we re-parent all our children.
694 * Try to give them to another thread in our thread
695 * group, and if no such member exists, give it to
696 * the child reaper process (ie "init") in our pid
697 * space.
699 static struct task_struct *find_new_reaper(struct task_struct *father)
700 __releases(&tasklist_lock)
701 __acquires(&tasklist_lock)
703 struct pid_namespace *pid_ns = task_active_pid_ns(father);
704 struct task_struct *thread;
706 thread = father;
707 while_each_thread(father, thread) {
708 if (thread->flags & PF_EXITING)
709 continue;
710 if (unlikely(pid_ns->child_reaper == father))
711 pid_ns->child_reaper = thread;
712 return thread;
715 if (unlikely(pid_ns->child_reaper == father)) {
716 write_unlock_irq(&tasklist_lock);
717 if (unlikely(pid_ns == &init_pid_ns))
718 panic("Attempted to kill init!");
720 zap_pid_ns_processes(pid_ns);
721 write_lock_irq(&tasklist_lock);
723 * We can not clear ->child_reaper or leave it alone.
724 * There may by stealth EXIT_DEAD tasks on ->children,
725 * forget_original_parent() must move them somewhere.
727 pid_ns->child_reaper = init_pid_ns.child_reaper;
730 return pid_ns->child_reaper;
734 * Any that need to be release_task'd are put on the @dead list.
736 static void reparent_leader(struct task_struct *father, struct task_struct *p,
737 struct list_head *dead)
739 list_move_tail(&p->sibling, &p->real_parent->children);
741 if (p->exit_state == EXIT_DEAD)
742 return;
744 * If this is a threaded reparent there is no need to
745 * notify anyone anything has happened.
747 if (same_thread_group(p->real_parent, father))
748 return;
750 /* We don't want people slaying init. */
751 p->exit_signal = SIGCHLD;
753 /* If it has exited notify the new parent about this child's death. */
754 if (!p->ptrace &&
755 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
756 if (do_notify_parent(p, p->exit_signal)) {
757 p->exit_state = EXIT_DEAD;
758 list_move_tail(&p->sibling, dead);
762 kill_orphaned_pgrp(p, father);
765 static void forget_original_parent(struct task_struct *father)
767 struct task_struct *p, *n, *reaper;
768 LIST_HEAD(dead_children);
770 write_lock_irq(&tasklist_lock);
772 * Note that exit_ptrace() and find_new_reaper() might
773 * drop tasklist_lock and reacquire it.
775 exit_ptrace(father);
776 reaper = find_new_reaper(father);
778 list_for_each_entry_safe(p, n, &father->children, sibling) {
779 struct task_struct *t = p;
780 do {
781 t->real_parent = reaper;
782 if (t->parent == father) {
783 BUG_ON(t->ptrace);
784 t->parent = t->real_parent;
786 if (t->pdeath_signal)
787 group_send_sig_info(t->pdeath_signal,
788 SEND_SIG_NOINFO, t);
789 } while_each_thread(p, t);
790 reparent_leader(father, p, &dead_children);
792 write_unlock_irq(&tasklist_lock);
794 BUG_ON(!list_empty(&father->children));
796 list_for_each_entry_safe(p, n, &dead_children, sibling) {
797 list_del_init(&p->sibling);
798 release_task(p);
803 * Send signals to all our closest relatives so that they know
804 * to properly mourn us..
806 static void exit_notify(struct task_struct *tsk, int group_dead)
808 bool autoreap;
811 * This does two things:
813 * A. Make init inherit all the child processes
814 * B. Check to see if any process groups have become orphaned
815 * as a result of our exiting, and if they have any stopped
816 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
818 forget_original_parent(tsk);
819 exit_task_namespaces(tsk);
821 write_lock_irq(&tasklist_lock);
822 if (group_dead)
823 kill_orphaned_pgrp(tsk->group_leader, NULL);
825 /* Let father know we died
827 * Thread signals are configurable, but you aren't going to use
828 * that to send signals to arbitrary processes.
829 * That stops right now.
831 * If the parent exec id doesn't match the exec id we saved
832 * when we started then we know the parent has changed security
833 * domain.
835 * If our self_exec id doesn't match our parent_exec_id then
836 * we have changed execution domain as these two values started
837 * the same after a fork.
839 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
840 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
841 tsk->self_exec_id != tsk->parent_exec_id))
842 tsk->exit_signal = SIGCHLD;
844 if (unlikely(tsk->ptrace)) {
845 int sig = thread_group_leader(tsk) &&
846 thread_group_empty(tsk) &&
847 !ptrace_reparented(tsk) ?
848 tsk->exit_signal : SIGCHLD;
849 autoreap = do_notify_parent(tsk, sig);
850 } else if (thread_group_leader(tsk)) {
851 autoreap = thread_group_empty(tsk) &&
852 do_notify_parent(tsk, tsk->exit_signal);
853 } else {
854 autoreap = true;
857 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
859 /* mt-exec, de_thread() is waiting for group leader */
860 if (unlikely(tsk->signal->notify_count < 0))
861 wake_up_process(tsk->signal->group_exit_task);
862 write_unlock_irq(&tasklist_lock);
864 /* If the process is dead, release it - nobody will wait for it */
865 if (autoreap)
866 release_task(tsk);
869 #ifdef CONFIG_DEBUG_STACK_USAGE
870 static void check_stack_usage(void)
872 static DEFINE_SPINLOCK(low_water_lock);
873 static int lowest_to_date = THREAD_SIZE;
874 unsigned long free;
876 free = stack_not_used(current);
878 if (free >= lowest_to_date)
879 return;
881 spin_lock(&low_water_lock);
882 if (free < lowest_to_date) {
883 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
884 "left\n",
885 current->comm, free);
886 lowest_to_date = free;
888 spin_unlock(&low_water_lock);
890 #else
891 static inline void check_stack_usage(void) {}
892 #endif
894 NORET_TYPE void do_exit(long code)
896 struct task_struct *tsk = current;
897 int group_dead;
899 profile_task_exit(tsk);
901 WARN_ON(atomic_read(&tsk->fs_excl));
902 WARN_ON(blk_needs_flush_plug(tsk));
904 if (unlikely(in_interrupt()))
905 panic("Aiee, killing interrupt handler!");
906 if (unlikely(!tsk->pid))
907 panic("Attempted to kill the idle task!");
910 * If do_exit is called because this processes oopsed, it's possible
911 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
912 * continuing. Amongst other possible reasons, this is to prevent
913 * mm_release()->clear_child_tid() from writing to a user-controlled
914 * kernel address.
916 set_fs(USER_DS);
918 ptrace_event(PTRACE_EVENT_EXIT, code);
920 validate_creds_for_do_exit(tsk);
923 * We're taking recursive faults here in do_exit. Safest is to just
924 * leave this task alone and wait for reboot.
926 if (unlikely(tsk->flags & PF_EXITING)) {
927 printk(KERN_ALERT
928 "Fixing recursive fault but reboot is needed!\n");
930 * We can do this unlocked here. The futex code uses
931 * this flag just to verify whether the pi state
932 * cleanup has been done or not. In the worst case it
933 * loops once more. We pretend that the cleanup was
934 * done as there is no way to return. Either the
935 * OWNER_DIED bit is set by now or we push the blocked
936 * task into the wait for ever nirwana as well.
938 tsk->flags |= PF_EXITPIDONE;
939 set_current_state(TASK_UNINTERRUPTIBLE);
940 schedule();
943 exit_irq_thread();
945 exit_signals(tsk); /* sets PF_EXITING */
947 * tsk->flags are checked in the futex code to protect against
948 * an exiting task cleaning up the robust pi futexes.
950 smp_mb();
951 raw_spin_unlock_wait(&tsk->pi_lock);
953 if (unlikely(in_atomic()))
954 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
955 current->comm, task_pid_nr(current),
956 preempt_count());
958 acct_update_integrals(tsk);
959 /* sync mm's RSS info before statistics gathering */
960 if (tsk->mm)
961 sync_mm_rss(tsk, tsk->mm);
962 group_dead = atomic_dec_and_test(&tsk->signal->live);
963 if (group_dead) {
964 hrtimer_cancel(&tsk->signal->real_timer);
965 exit_itimers(tsk->signal);
966 if (tsk->mm)
967 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
969 acct_collect(code, group_dead);
970 if (group_dead)
971 tty_audit_exit();
972 if (unlikely(tsk->audit_context))
973 audit_free(tsk);
975 tsk->exit_code = code;
976 taskstats_exit(tsk, group_dead);
978 exit_mm(tsk);
980 if (group_dead)
981 acct_process();
982 trace_sched_process_exit(tsk);
984 exit_sem(tsk);
985 exit_files(tsk);
986 exit_fs(tsk);
987 check_stack_usage();
988 exit_thread();
991 * Flush inherited counters to the parent - before the parent
992 * gets woken up by child-exit notifications.
994 * because of cgroup mode, must be called before cgroup_exit()
996 perf_event_exit_task(tsk);
998 cgroup_exit(tsk, 1);
1000 if (group_dead)
1001 disassociate_ctty(1);
1003 module_put(task_thread_info(tsk)->exec_domain->module);
1005 proc_exit_connector(tsk);
1008 * FIXME: do that only when needed, using sched_exit tracepoint
1010 ptrace_put_breakpoints(tsk);
1012 exit_notify(tsk, group_dead);
1013 #ifdef CONFIG_NUMA
1014 task_lock(tsk);
1015 mpol_put(tsk->mempolicy);
1016 tsk->mempolicy = NULL;
1017 task_unlock(tsk);
1018 #endif
1019 #ifdef CONFIG_FUTEX
1020 if (unlikely(current->pi_state_cache))
1021 kfree(current->pi_state_cache);
1022 #endif
1024 * Make sure we are holding no locks:
1026 debug_check_no_locks_held(tsk);
1028 * We can do this unlocked here. The futex code uses this flag
1029 * just to verify whether the pi state cleanup has been done
1030 * or not. In the worst case it loops once more.
1032 tsk->flags |= PF_EXITPIDONE;
1034 if (tsk->io_context)
1035 exit_io_context(tsk);
1037 if (tsk->splice_pipe)
1038 __free_pipe_info(tsk->splice_pipe);
1040 validate_creds_for_do_exit(tsk);
1042 preempt_disable();
1043 exit_rcu();
1044 /* causes final put_task_struct in finish_task_switch(). */
1045 tsk->state = TASK_DEAD;
1046 schedule();
1047 BUG();
1048 /* Avoid "noreturn function does return". */
1049 for (;;)
1050 cpu_relax(); /* For when BUG is null */
1053 EXPORT_SYMBOL_GPL(do_exit);
1055 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1057 if (comp)
1058 complete(comp);
1060 do_exit(code);
1063 EXPORT_SYMBOL(complete_and_exit);
1065 SYSCALL_DEFINE1(exit, int, error_code)
1067 do_exit((error_code&0xff)<<8);
1071 * Take down every thread in the group. This is called by fatal signals
1072 * as well as by sys_exit_group (below).
1074 NORET_TYPE void
1075 do_group_exit(int exit_code)
1077 struct signal_struct *sig = current->signal;
1079 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1081 if (signal_group_exit(sig))
1082 exit_code = sig->group_exit_code;
1083 else if (!thread_group_empty(current)) {
1084 struct sighand_struct *const sighand = current->sighand;
1085 spin_lock_irq(&sighand->siglock);
1086 if (signal_group_exit(sig))
1087 /* Another thread got here before we took the lock. */
1088 exit_code = sig->group_exit_code;
1089 else {
1090 sig->group_exit_code = exit_code;
1091 sig->flags = SIGNAL_GROUP_EXIT;
1092 zap_other_threads(current);
1094 spin_unlock_irq(&sighand->siglock);
1097 do_exit(exit_code);
1098 /* NOTREACHED */
1102 * this kills every thread in the thread group. Note that any externally
1103 * wait4()-ing process will get the correct exit code - even if this
1104 * thread is not the thread group leader.
1106 SYSCALL_DEFINE1(exit_group, int, error_code)
1108 do_group_exit((error_code & 0xff) << 8);
1109 /* NOTREACHED */
1110 return 0;
1113 struct wait_opts {
1114 enum pid_type wo_type;
1115 int wo_flags;
1116 struct pid *wo_pid;
1118 struct siginfo __user *wo_info;
1119 int __user *wo_stat;
1120 struct rusage __user *wo_rusage;
1122 wait_queue_t child_wait;
1123 int notask_error;
1126 static inline
1127 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1129 if (type != PIDTYPE_PID)
1130 task = task->group_leader;
1131 return task->pids[type].pid;
1134 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1136 return wo->wo_type == PIDTYPE_MAX ||
1137 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1140 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1142 if (!eligible_pid(wo, p))
1143 return 0;
1144 /* Wait for all children (clone and not) if __WALL is set;
1145 * otherwise, wait for clone children *only* if __WCLONE is
1146 * set; otherwise, wait for non-clone children *only*. (Note:
1147 * A "clone" child here is one that reports to its parent
1148 * using a signal other than SIGCHLD.) */
1149 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1150 && !(wo->wo_flags & __WALL))
1151 return 0;
1153 return 1;
1156 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1157 pid_t pid, uid_t uid, int why, int status)
1159 struct siginfo __user *infop;
1160 int retval = wo->wo_rusage
1161 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1163 put_task_struct(p);
1164 infop = wo->wo_info;
1165 if (infop) {
1166 if (!retval)
1167 retval = put_user(SIGCHLD, &infop->si_signo);
1168 if (!retval)
1169 retval = put_user(0, &infop->si_errno);
1170 if (!retval)
1171 retval = put_user((short)why, &infop->si_code);
1172 if (!retval)
1173 retval = put_user(pid, &infop->si_pid);
1174 if (!retval)
1175 retval = put_user(uid, &infop->si_uid);
1176 if (!retval)
1177 retval = put_user(status, &infop->si_status);
1179 if (!retval)
1180 retval = pid;
1181 return retval;
1185 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1186 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1187 * the lock and this task is uninteresting. If we return nonzero, we have
1188 * released the lock and the system call should return.
1190 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1192 unsigned long state;
1193 int retval, status, traced;
1194 pid_t pid = task_pid_vnr(p);
1195 uid_t uid = __task_cred(p)->uid;
1196 struct siginfo __user *infop;
1198 if (!likely(wo->wo_flags & WEXITED))
1199 return 0;
1201 if (unlikely(wo->wo_flags & WNOWAIT)) {
1202 int exit_code = p->exit_code;
1203 int why;
1205 get_task_struct(p);
1206 read_unlock(&tasklist_lock);
1207 if ((exit_code & 0x7f) == 0) {
1208 why = CLD_EXITED;
1209 status = exit_code >> 8;
1210 } else {
1211 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1212 status = exit_code & 0x7f;
1214 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1218 * Try to move the task's state to DEAD
1219 * only one thread is allowed to do this:
1221 state = xchg(&p->exit_state, EXIT_DEAD);
1222 if (state != EXIT_ZOMBIE) {
1223 BUG_ON(state != EXIT_DEAD);
1224 return 0;
1227 traced = ptrace_reparented(p);
1229 * It can be ptraced but not reparented, check
1230 * thread_group_leader() to filter out sub-threads.
1232 if (likely(!traced) && thread_group_leader(p)) {
1233 struct signal_struct *psig;
1234 struct signal_struct *sig;
1235 unsigned long maxrss;
1236 cputime_t tgutime, tgstime;
1239 * The resource counters for the group leader are in its
1240 * own task_struct. Those for dead threads in the group
1241 * are in its signal_struct, as are those for the child
1242 * processes it has previously reaped. All these
1243 * accumulate in the parent's signal_struct c* fields.
1245 * We don't bother to take a lock here to protect these
1246 * p->signal fields, because they are only touched by
1247 * __exit_signal, which runs with tasklist_lock
1248 * write-locked anyway, and so is excluded here. We do
1249 * need to protect the access to parent->signal fields,
1250 * as other threads in the parent group can be right
1251 * here reaping other children at the same time.
1253 * We use thread_group_times() to get times for the thread
1254 * group, which consolidates times for all threads in the
1255 * group including the group leader.
1257 thread_group_times(p, &tgutime, &tgstime);
1258 spin_lock_irq(&p->real_parent->sighand->siglock);
1259 psig = p->real_parent->signal;
1260 sig = p->signal;
1261 psig->cutime =
1262 cputime_add(psig->cutime,
1263 cputime_add(tgutime,
1264 sig->cutime));
1265 psig->cstime =
1266 cputime_add(psig->cstime,
1267 cputime_add(tgstime,
1268 sig->cstime));
1269 psig->cgtime =
1270 cputime_add(psig->cgtime,
1271 cputime_add(p->gtime,
1272 cputime_add(sig->gtime,
1273 sig->cgtime)));
1274 psig->cmin_flt +=
1275 p->min_flt + sig->min_flt + sig->cmin_flt;
1276 psig->cmaj_flt +=
1277 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1278 psig->cnvcsw +=
1279 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1280 psig->cnivcsw +=
1281 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1282 psig->cinblock +=
1283 task_io_get_inblock(p) +
1284 sig->inblock + sig->cinblock;
1285 psig->coublock +=
1286 task_io_get_oublock(p) +
1287 sig->oublock + sig->coublock;
1288 maxrss = max(sig->maxrss, sig->cmaxrss);
1289 if (psig->cmaxrss < maxrss)
1290 psig->cmaxrss = maxrss;
1291 task_io_accounting_add(&psig->ioac, &p->ioac);
1292 task_io_accounting_add(&psig->ioac, &sig->ioac);
1293 spin_unlock_irq(&p->real_parent->sighand->siglock);
1297 * Now we are sure this task is interesting, and no other
1298 * thread can reap it because we set its state to EXIT_DEAD.
1300 read_unlock(&tasklist_lock);
1302 retval = wo->wo_rusage
1303 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1304 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1305 ? p->signal->group_exit_code : p->exit_code;
1306 if (!retval && wo->wo_stat)
1307 retval = put_user(status, wo->wo_stat);
1309 infop = wo->wo_info;
1310 if (!retval && infop)
1311 retval = put_user(SIGCHLD, &infop->si_signo);
1312 if (!retval && infop)
1313 retval = put_user(0, &infop->si_errno);
1314 if (!retval && infop) {
1315 int why;
1317 if ((status & 0x7f) == 0) {
1318 why = CLD_EXITED;
1319 status >>= 8;
1320 } else {
1321 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1322 status &= 0x7f;
1324 retval = put_user((short)why, &infop->si_code);
1325 if (!retval)
1326 retval = put_user(status, &infop->si_status);
1328 if (!retval && infop)
1329 retval = put_user(pid, &infop->si_pid);
1330 if (!retval && infop)
1331 retval = put_user(uid, &infop->si_uid);
1332 if (!retval)
1333 retval = pid;
1335 if (traced) {
1336 write_lock_irq(&tasklist_lock);
1337 /* We dropped tasklist, ptracer could die and untrace */
1338 ptrace_unlink(p);
1340 * If this is not a sub-thread, notify the parent.
1341 * If parent wants a zombie, don't release it now.
1343 if (thread_group_leader(p) &&
1344 !do_notify_parent(p, p->exit_signal)) {
1345 p->exit_state = EXIT_ZOMBIE;
1346 p = NULL;
1348 write_unlock_irq(&tasklist_lock);
1350 if (p != NULL)
1351 release_task(p);
1353 return retval;
1356 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1358 if (ptrace) {
1359 if (task_is_stopped_or_traced(p) &&
1360 !(p->jobctl & JOBCTL_LISTENING))
1361 return &p->exit_code;
1362 } else {
1363 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1364 return &p->signal->group_exit_code;
1366 return NULL;
1370 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1371 * @wo: wait options
1372 * @ptrace: is the wait for ptrace
1373 * @p: task to wait for
1375 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1377 * CONTEXT:
1378 * read_lock(&tasklist_lock), which is released if return value is
1379 * non-zero. Also, grabs and releases @p->sighand->siglock.
1381 * RETURNS:
1382 * 0 if wait condition didn't exist and search for other wait conditions
1383 * should continue. Non-zero return, -errno on failure and @p's pid on
1384 * success, implies that tasklist_lock is released and wait condition
1385 * search should terminate.
1387 static int wait_task_stopped(struct wait_opts *wo,
1388 int ptrace, struct task_struct *p)
1390 struct siginfo __user *infop;
1391 int retval, exit_code, *p_code, why;
1392 uid_t uid = 0; /* unneeded, required by compiler */
1393 pid_t pid;
1396 * Traditionally we see ptrace'd stopped tasks regardless of options.
1398 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1399 return 0;
1401 if (!task_stopped_code(p, ptrace))
1402 return 0;
1404 exit_code = 0;
1405 spin_lock_irq(&p->sighand->siglock);
1407 p_code = task_stopped_code(p, ptrace);
1408 if (unlikely(!p_code))
1409 goto unlock_sig;
1411 exit_code = *p_code;
1412 if (!exit_code)
1413 goto unlock_sig;
1415 if (!unlikely(wo->wo_flags & WNOWAIT))
1416 *p_code = 0;
1418 uid = task_uid(p);
1419 unlock_sig:
1420 spin_unlock_irq(&p->sighand->siglock);
1421 if (!exit_code)
1422 return 0;
1425 * Now we are pretty sure this task is interesting.
1426 * Make sure it doesn't get reaped out from under us while we
1427 * give up the lock and then examine it below. We don't want to
1428 * keep holding onto the tasklist_lock while we call getrusage and
1429 * possibly take page faults for user memory.
1431 get_task_struct(p);
1432 pid = task_pid_vnr(p);
1433 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1434 read_unlock(&tasklist_lock);
1436 if (unlikely(wo->wo_flags & WNOWAIT))
1437 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1439 retval = wo->wo_rusage
1440 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1441 if (!retval && wo->wo_stat)
1442 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1444 infop = wo->wo_info;
1445 if (!retval && infop)
1446 retval = put_user(SIGCHLD, &infop->si_signo);
1447 if (!retval && infop)
1448 retval = put_user(0, &infop->si_errno);
1449 if (!retval && infop)
1450 retval = put_user((short)why, &infop->si_code);
1451 if (!retval && infop)
1452 retval = put_user(exit_code, &infop->si_status);
1453 if (!retval && infop)
1454 retval = put_user(pid, &infop->si_pid);
1455 if (!retval && infop)
1456 retval = put_user(uid, &infop->si_uid);
1457 if (!retval)
1458 retval = pid;
1459 put_task_struct(p);
1461 BUG_ON(!retval);
1462 return retval;
1466 * Handle do_wait work for one task in a live, non-stopped state.
1467 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1468 * the lock and this task is uninteresting. If we return nonzero, we have
1469 * released the lock and the system call should return.
1471 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1473 int retval;
1474 pid_t pid;
1475 uid_t uid;
1477 if (!unlikely(wo->wo_flags & WCONTINUED))
1478 return 0;
1480 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1481 return 0;
1483 spin_lock_irq(&p->sighand->siglock);
1484 /* Re-check with the lock held. */
1485 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1486 spin_unlock_irq(&p->sighand->siglock);
1487 return 0;
1489 if (!unlikely(wo->wo_flags & WNOWAIT))
1490 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1491 uid = task_uid(p);
1492 spin_unlock_irq(&p->sighand->siglock);
1494 pid = task_pid_vnr(p);
1495 get_task_struct(p);
1496 read_unlock(&tasklist_lock);
1498 if (!wo->wo_info) {
1499 retval = wo->wo_rusage
1500 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1501 put_task_struct(p);
1502 if (!retval && wo->wo_stat)
1503 retval = put_user(0xffff, wo->wo_stat);
1504 if (!retval)
1505 retval = pid;
1506 } else {
1507 retval = wait_noreap_copyout(wo, p, pid, uid,
1508 CLD_CONTINUED, SIGCONT);
1509 BUG_ON(retval == 0);
1512 return retval;
1516 * Consider @p for a wait by @parent.
1518 * -ECHILD should be in ->notask_error before the first call.
1519 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1520 * Returns zero if the search for a child should continue;
1521 * then ->notask_error is 0 if @p is an eligible child,
1522 * or another error from security_task_wait(), or still -ECHILD.
1524 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1525 struct task_struct *p)
1527 int ret = eligible_child(wo, p);
1528 if (!ret)
1529 return ret;
1531 ret = security_task_wait(p);
1532 if (unlikely(ret < 0)) {
1534 * If we have not yet seen any eligible child,
1535 * then let this error code replace -ECHILD.
1536 * A permission error will give the user a clue
1537 * to look for security policy problems, rather
1538 * than for mysterious wait bugs.
1540 if (wo->notask_error)
1541 wo->notask_error = ret;
1542 return 0;
1545 /* dead body doesn't have much to contribute */
1546 if (p->exit_state == EXIT_DEAD)
1547 return 0;
1549 /* slay zombie? */
1550 if (p->exit_state == EXIT_ZOMBIE) {
1552 * A zombie ptracee is only visible to its ptracer.
1553 * Notification and reaping will be cascaded to the real
1554 * parent when the ptracer detaches.
1556 if (likely(!ptrace) && unlikely(p->ptrace)) {
1557 /* it will become visible, clear notask_error */
1558 wo->notask_error = 0;
1559 return 0;
1562 /* we don't reap group leaders with subthreads */
1563 if (!delay_group_leader(p))
1564 return wait_task_zombie(wo, p);
1567 * Allow access to stopped/continued state via zombie by
1568 * falling through. Clearing of notask_error is complex.
1570 * When !@ptrace:
1572 * If WEXITED is set, notask_error should naturally be
1573 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1574 * so, if there are live subthreads, there are events to
1575 * wait for. If all subthreads are dead, it's still safe
1576 * to clear - this function will be called again in finite
1577 * amount time once all the subthreads are released and
1578 * will then return without clearing.
1580 * When @ptrace:
1582 * Stopped state is per-task and thus can't change once the
1583 * target task dies. Only continued and exited can happen.
1584 * Clear notask_error if WCONTINUED | WEXITED.
1586 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1587 wo->notask_error = 0;
1588 } else {
1590 * If @p is ptraced by a task in its real parent's group,
1591 * hide group stop/continued state when looking at @p as
1592 * the real parent; otherwise, a single stop can be
1593 * reported twice as group and ptrace stops.
1595 * If a ptracer wants to distinguish the two events for its
1596 * own children, it should create a separate process which
1597 * takes the role of real parent.
1599 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1600 return 0;
1603 * @p is alive and it's gonna stop, continue or exit, so
1604 * there always is something to wait for.
1606 wo->notask_error = 0;
1610 * Wait for stopped. Depending on @ptrace, different stopped state
1611 * is used and the two don't interact with each other.
1613 ret = wait_task_stopped(wo, ptrace, p);
1614 if (ret)
1615 return ret;
1618 * Wait for continued. There's only one continued state and the
1619 * ptracer can consume it which can confuse the real parent. Don't
1620 * use WCONTINUED from ptracer. You don't need or want it.
1622 return wait_task_continued(wo, p);
1626 * Do the work of do_wait() for one thread in the group, @tsk.
1628 * -ECHILD should be in ->notask_error before the first call.
1629 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1630 * Returns zero if the search for a child should continue; then
1631 * ->notask_error is 0 if there were any eligible children,
1632 * or another error from security_task_wait(), or still -ECHILD.
1634 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1636 struct task_struct *p;
1638 list_for_each_entry(p, &tsk->children, sibling) {
1639 int ret = wait_consider_task(wo, 0, p);
1640 if (ret)
1641 return ret;
1644 return 0;
1647 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1649 struct task_struct *p;
1651 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1652 int ret = wait_consider_task(wo, 1, p);
1653 if (ret)
1654 return ret;
1657 return 0;
1660 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1661 int sync, void *key)
1663 struct wait_opts *wo = container_of(wait, struct wait_opts,
1664 child_wait);
1665 struct task_struct *p = key;
1667 if (!eligible_pid(wo, p))
1668 return 0;
1670 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1671 return 0;
1673 return default_wake_function(wait, mode, sync, key);
1676 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1678 __wake_up_sync_key(&parent->signal->wait_chldexit,
1679 TASK_INTERRUPTIBLE, 1, p);
1682 static long do_wait(struct wait_opts *wo)
1684 struct task_struct *tsk;
1685 int retval;
1687 trace_sched_process_wait(wo->wo_pid);
1689 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1690 wo->child_wait.private = current;
1691 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1692 repeat:
1694 * If there is nothing that can match our critiera just get out.
1695 * We will clear ->notask_error to zero if we see any child that
1696 * might later match our criteria, even if we are not able to reap
1697 * it yet.
1699 wo->notask_error = -ECHILD;
1700 if ((wo->wo_type < PIDTYPE_MAX) &&
1701 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1702 goto notask;
1704 set_current_state(TASK_INTERRUPTIBLE);
1705 read_lock(&tasklist_lock);
1706 tsk = current;
1707 do {
1708 retval = do_wait_thread(wo, tsk);
1709 if (retval)
1710 goto end;
1712 retval = ptrace_do_wait(wo, tsk);
1713 if (retval)
1714 goto end;
1716 if (wo->wo_flags & __WNOTHREAD)
1717 break;
1718 } while_each_thread(current, tsk);
1719 read_unlock(&tasklist_lock);
1721 notask:
1722 retval = wo->notask_error;
1723 if (!retval && !(wo->wo_flags & WNOHANG)) {
1724 retval = -ERESTARTSYS;
1725 if (!signal_pending(current)) {
1726 schedule();
1727 goto repeat;
1730 end:
1731 __set_current_state(TASK_RUNNING);
1732 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1733 return retval;
1736 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1737 infop, int, options, struct rusage __user *, ru)
1739 struct wait_opts wo;
1740 struct pid *pid = NULL;
1741 enum pid_type type;
1742 long ret;
1744 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1745 return -EINVAL;
1746 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1747 return -EINVAL;
1749 switch (which) {
1750 case P_ALL:
1751 type = PIDTYPE_MAX;
1752 break;
1753 case P_PID:
1754 type = PIDTYPE_PID;
1755 if (upid <= 0)
1756 return -EINVAL;
1757 break;
1758 case P_PGID:
1759 type = PIDTYPE_PGID;
1760 if (upid <= 0)
1761 return -EINVAL;
1762 break;
1763 default:
1764 return -EINVAL;
1767 if (type < PIDTYPE_MAX)
1768 pid = find_get_pid(upid);
1770 wo.wo_type = type;
1771 wo.wo_pid = pid;
1772 wo.wo_flags = options;
1773 wo.wo_info = infop;
1774 wo.wo_stat = NULL;
1775 wo.wo_rusage = ru;
1776 ret = do_wait(&wo);
1778 if (ret > 0) {
1779 ret = 0;
1780 } else if (infop) {
1782 * For a WNOHANG return, clear out all the fields
1783 * we would set so the user can easily tell the
1784 * difference.
1786 if (!ret)
1787 ret = put_user(0, &infop->si_signo);
1788 if (!ret)
1789 ret = put_user(0, &infop->si_errno);
1790 if (!ret)
1791 ret = put_user(0, &infop->si_code);
1792 if (!ret)
1793 ret = put_user(0, &infop->si_pid);
1794 if (!ret)
1795 ret = put_user(0, &infop->si_uid);
1796 if (!ret)
1797 ret = put_user(0, &infop->si_status);
1800 put_pid(pid);
1802 /* avoid REGPARM breakage on x86: */
1803 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1804 return ret;
1807 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1808 int, options, struct rusage __user *, ru)
1810 struct wait_opts wo;
1811 struct pid *pid = NULL;
1812 enum pid_type type;
1813 long ret;
1815 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1816 __WNOTHREAD|__WCLONE|__WALL))
1817 return -EINVAL;
1819 if (upid == -1)
1820 type = PIDTYPE_MAX;
1821 else if (upid < 0) {
1822 type = PIDTYPE_PGID;
1823 pid = find_get_pid(-upid);
1824 } else if (upid == 0) {
1825 type = PIDTYPE_PGID;
1826 pid = get_task_pid(current, PIDTYPE_PGID);
1827 } else /* upid > 0 */ {
1828 type = PIDTYPE_PID;
1829 pid = find_get_pid(upid);
1832 wo.wo_type = type;
1833 wo.wo_pid = pid;
1834 wo.wo_flags = options | WEXITED;
1835 wo.wo_info = NULL;
1836 wo.wo_stat = stat_addr;
1837 wo.wo_rusage = ru;
1838 ret = do_wait(&wo);
1839 put_pid(pid);
1841 /* avoid REGPARM breakage on x86: */
1842 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1843 return ret;
1846 #ifdef __ARCH_WANT_SYS_WAITPID
1849 * sys_waitpid() remains for compatibility. waitpid() should be
1850 * implemented by calling sys_wait4() from libc.a.
1852 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1854 return sys_wait4(pid, stat_addr, options, NULL);
1857 #endif