namespacecheck: automated fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / mmu.c
blob7246b60afb96a19d32e2d158749bf10fad553470
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
20 #include "vmx.h"
21 #include "mmu.h"
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled = false;
46 #undef MMU_DEBUG
48 #undef AUDIT
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
56 #ifdef MMU_DEBUG
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
61 #else
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
66 #endif
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 1;
70 #endif
72 #ifndef MMU_DEBUG
73 #define ASSERT(x) do { } while (0)
74 #else
75 #define ASSERT(x) \
76 if (!(x)) { \
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
80 #endif
82 #define PT_FIRST_AVAIL_BITS_SHIFT 9
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87 #define PT64_LEVEL_BITS 9
89 #define PT64_LEVEL_SHIFT(level) \
90 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92 #define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
99 #define PT32_LEVEL_BITS 10
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104 #define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
120 | PT64_NX_MASK)
122 #define PFERR_PRESENT_MASK (1U << 0)
123 #define PFERR_WRITE_MASK (1U << 1)
124 #define PFERR_USER_MASK (1U << 2)
125 #define PFERR_FETCH_MASK (1U << 4)
127 #define PT_DIRECTORY_LEVEL 2
128 #define PT_PAGE_TABLE_LEVEL 1
130 #define RMAP_EXT 4
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137 struct kvm_pv_mmu_op_buffer {
138 void *ptr;
139 unsigned len;
140 unsigned processed;
141 char buf[512] __aligned(sizeof(long));
144 struct kvm_rmap_desc {
145 u64 *shadow_ptes[RMAP_EXT];
146 struct kvm_rmap_desc *more;
149 static struct kmem_cache *pte_chain_cache;
150 static struct kmem_cache *rmap_desc_cache;
151 static struct kmem_cache *mmu_page_header_cache;
153 static u64 __read_mostly shadow_trap_nonpresent_pte;
154 static u64 __read_mostly shadow_notrap_nonpresent_pte;
155 static u64 __read_mostly shadow_base_present_pte;
156 static u64 __read_mostly shadow_nx_mask;
157 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
158 static u64 __read_mostly shadow_user_mask;
159 static u64 __read_mostly shadow_accessed_mask;
160 static u64 __read_mostly shadow_dirty_mask;
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
164 shadow_trap_nonpresent_pte = trap_pte;
165 shadow_notrap_nonpresent_pte = notrap_pte;
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
169 void kvm_mmu_set_base_ptes(u64 base_pte)
171 shadow_base_present_pte = base_pte;
173 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
175 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
176 u64 dirty_mask, u64 nx_mask, u64 x_mask)
178 shadow_user_mask = user_mask;
179 shadow_accessed_mask = accessed_mask;
180 shadow_dirty_mask = dirty_mask;
181 shadow_nx_mask = nx_mask;
182 shadow_x_mask = x_mask;
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
186 static int is_write_protection(struct kvm_vcpu *vcpu)
188 return vcpu->arch.cr0 & X86_CR0_WP;
191 static int is_cpuid_PSE36(void)
193 return 1;
196 static int is_nx(struct kvm_vcpu *vcpu)
198 return vcpu->arch.shadow_efer & EFER_NX;
201 static int is_present_pte(unsigned long pte)
203 return pte & PT_PRESENT_MASK;
206 static int is_shadow_present_pte(u64 pte)
208 return pte != shadow_trap_nonpresent_pte
209 && pte != shadow_notrap_nonpresent_pte;
212 static int is_large_pte(u64 pte)
214 return pte & PT_PAGE_SIZE_MASK;
217 static int is_writeble_pte(unsigned long pte)
219 return pte & PT_WRITABLE_MASK;
222 static int is_dirty_pte(unsigned long pte)
224 return pte & shadow_dirty_mask;
227 static int is_rmap_pte(u64 pte)
229 return is_shadow_present_pte(pte);
232 static pfn_t spte_to_pfn(u64 pte)
234 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
237 static gfn_t pse36_gfn_delta(u32 gpte)
239 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
241 return (gpte & PT32_DIR_PSE36_MASK) << shift;
244 static void set_shadow_pte(u64 *sptep, u64 spte)
246 #ifdef CONFIG_X86_64
247 set_64bit((unsigned long *)sptep, spte);
248 #else
249 set_64bit((unsigned long long *)sptep, spte);
250 #endif
253 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
254 struct kmem_cache *base_cache, int min)
256 void *obj;
258 if (cache->nobjs >= min)
259 return 0;
260 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
261 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
262 if (!obj)
263 return -ENOMEM;
264 cache->objects[cache->nobjs++] = obj;
266 return 0;
269 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
271 while (mc->nobjs)
272 kfree(mc->objects[--mc->nobjs]);
275 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
276 int min)
278 struct page *page;
280 if (cache->nobjs >= min)
281 return 0;
282 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
283 page = alloc_page(GFP_KERNEL);
284 if (!page)
285 return -ENOMEM;
286 set_page_private(page, 0);
287 cache->objects[cache->nobjs++] = page_address(page);
289 return 0;
292 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
294 while (mc->nobjs)
295 free_page((unsigned long)mc->objects[--mc->nobjs]);
298 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
300 int r;
302 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
303 pte_chain_cache, 4);
304 if (r)
305 goto out;
306 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
307 rmap_desc_cache, 1);
308 if (r)
309 goto out;
310 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
311 if (r)
312 goto out;
313 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
314 mmu_page_header_cache, 4);
315 out:
316 return r;
319 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
321 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
322 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
323 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
324 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
327 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
328 size_t size)
330 void *p;
332 BUG_ON(!mc->nobjs);
333 p = mc->objects[--mc->nobjs];
334 memset(p, 0, size);
335 return p;
338 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
340 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
341 sizeof(struct kvm_pte_chain));
344 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
346 kfree(pc);
349 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
351 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
352 sizeof(struct kvm_rmap_desc));
355 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
357 kfree(rd);
361 * Return the pointer to the largepage write count for a given
362 * gfn, handling slots that are not large page aligned.
364 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
366 unsigned long idx;
368 idx = (gfn / KVM_PAGES_PER_HPAGE) -
369 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
370 return &slot->lpage_info[idx].write_count;
373 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
375 int *write_count;
377 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
378 *write_count += 1;
381 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
383 int *write_count;
385 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
386 *write_count -= 1;
387 WARN_ON(*write_count < 0);
390 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
392 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
393 int *largepage_idx;
395 if (slot) {
396 largepage_idx = slot_largepage_idx(gfn, slot);
397 return *largepage_idx;
400 return 1;
403 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
405 struct vm_area_struct *vma;
406 unsigned long addr;
408 addr = gfn_to_hva(kvm, gfn);
409 if (kvm_is_error_hva(addr))
410 return 0;
412 vma = find_vma(current->mm, addr);
413 if (vma && is_vm_hugetlb_page(vma))
414 return 1;
416 return 0;
419 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
421 struct kvm_memory_slot *slot;
423 if (has_wrprotected_page(vcpu->kvm, large_gfn))
424 return 0;
426 if (!host_largepage_backed(vcpu->kvm, large_gfn))
427 return 0;
429 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
430 if (slot && slot->dirty_bitmap)
431 return 0;
433 return 1;
437 * Take gfn and return the reverse mapping to it.
438 * Note: gfn must be unaliased before this function get called
441 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
443 struct kvm_memory_slot *slot;
444 unsigned long idx;
446 slot = gfn_to_memslot(kvm, gfn);
447 if (!lpage)
448 return &slot->rmap[gfn - slot->base_gfn];
450 idx = (gfn / KVM_PAGES_PER_HPAGE) -
451 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
453 return &slot->lpage_info[idx].rmap_pde;
457 * Reverse mapping data structures:
459 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
460 * that points to page_address(page).
462 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
463 * containing more mappings.
465 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
467 struct kvm_mmu_page *sp;
468 struct kvm_rmap_desc *desc;
469 unsigned long *rmapp;
470 int i;
472 if (!is_rmap_pte(*spte))
473 return;
474 gfn = unalias_gfn(vcpu->kvm, gfn);
475 sp = page_header(__pa(spte));
476 sp->gfns[spte - sp->spt] = gfn;
477 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
478 if (!*rmapp) {
479 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
480 *rmapp = (unsigned long)spte;
481 } else if (!(*rmapp & 1)) {
482 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
483 desc = mmu_alloc_rmap_desc(vcpu);
484 desc->shadow_ptes[0] = (u64 *)*rmapp;
485 desc->shadow_ptes[1] = spte;
486 *rmapp = (unsigned long)desc | 1;
487 } else {
488 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
489 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
490 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
491 desc = desc->more;
492 if (desc->shadow_ptes[RMAP_EXT-1]) {
493 desc->more = mmu_alloc_rmap_desc(vcpu);
494 desc = desc->more;
496 for (i = 0; desc->shadow_ptes[i]; ++i)
498 desc->shadow_ptes[i] = spte;
502 static void rmap_desc_remove_entry(unsigned long *rmapp,
503 struct kvm_rmap_desc *desc,
504 int i,
505 struct kvm_rmap_desc *prev_desc)
507 int j;
509 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
511 desc->shadow_ptes[i] = desc->shadow_ptes[j];
512 desc->shadow_ptes[j] = NULL;
513 if (j != 0)
514 return;
515 if (!prev_desc && !desc->more)
516 *rmapp = (unsigned long)desc->shadow_ptes[0];
517 else
518 if (prev_desc)
519 prev_desc->more = desc->more;
520 else
521 *rmapp = (unsigned long)desc->more | 1;
522 mmu_free_rmap_desc(desc);
525 static void rmap_remove(struct kvm *kvm, u64 *spte)
527 struct kvm_rmap_desc *desc;
528 struct kvm_rmap_desc *prev_desc;
529 struct kvm_mmu_page *sp;
530 pfn_t pfn;
531 unsigned long *rmapp;
532 int i;
534 if (!is_rmap_pte(*spte))
535 return;
536 sp = page_header(__pa(spte));
537 pfn = spte_to_pfn(*spte);
538 if (*spte & shadow_accessed_mask)
539 kvm_set_pfn_accessed(pfn);
540 if (is_writeble_pte(*spte))
541 kvm_release_pfn_dirty(pfn);
542 else
543 kvm_release_pfn_clean(pfn);
544 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
545 if (!*rmapp) {
546 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
547 BUG();
548 } else if (!(*rmapp & 1)) {
549 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
550 if ((u64 *)*rmapp != spte) {
551 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
552 spte, *spte);
553 BUG();
555 *rmapp = 0;
556 } else {
557 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
558 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
559 prev_desc = NULL;
560 while (desc) {
561 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
562 if (desc->shadow_ptes[i] == spte) {
563 rmap_desc_remove_entry(rmapp,
564 desc, i,
565 prev_desc);
566 return;
568 prev_desc = desc;
569 desc = desc->more;
571 BUG();
575 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
577 struct kvm_rmap_desc *desc;
578 struct kvm_rmap_desc *prev_desc;
579 u64 *prev_spte;
580 int i;
582 if (!*rmapp)
583 return NULL;
584 else if (!(*rmapp & 1)) {
585 if (!spte)
586 return (u64 *)*rmapp;
587 return NULL;
589 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
590 prev_desc = NULL;
591 prev_spte = NULL;
592 while (desc) {
593 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
594 if (prev_spte == spte)
595 return desc->shadow_ptes[i];
596 prev_spte = desc->shadow_ptes[i];
598 desc = desc->more;
600 return NULL;
603 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
605 unsigned long *rmapp;
606 u64 *spte;
607 int write_protected = 0;
609 gfn = unalias_gfn(kvm, gfn);
610 rmapp = gfn_to_rmap(kvm, gfn, 0);
612 spte = rmap_next(kvm, rmapp, NULL);
613 while (spte) {
614 BUG_ON(!spte);
615 BUG_ON(!(*spte & PT_PRESENT_MASK));
616 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
617 if (is_writeble_pte(*spte)) {
618 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
619 write_protected = 1;
621 spte = rmap_next(kvm, rmapp, spte);
623 if (write_protected) {
624 pfn_t pfn;
626 spte = rmap_next(kvm, rmapp, NULL);
627 pfn = spte_to_pfn(*spte);
628 kvm_set_pfn_dirty(pfn);
631 /* check for huge page mappings */
632 rmapp = gfn_to_rmap(kvm, gfn, 1);
633 spte = rmap_next(kvm, rmapp, NULL);
634 while (spte) {
635 BUG_ON(!spte);
636 BUG_ON(!(*spte & PT_PRESENT_MASK));
637 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
638 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
639 if (is_writeble_pte(*spte)) {
640 rmap_remove(kvm, spte);
641 --kvm->stat.lpages;
642 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
643 write_protected = 1;
645 spte = rmap_next(kvm, rmapp, spte);
648 if (write_protected)
649 kvm_flush_remote_tlbs(kvm);
651 account_shadowed(kvm, gfn);
654 #ifdef MMU_DEBUG
655 static int is_empty_shadow_page(u64 *spt)
657 u64 *pos;
658 u64 *end;
660 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
661 if (*pos != shadow_trap_nonpresent_pte) {
662 printk(KERN_ERR "%s: %p %llx\n", __func__,
663 pos, *pos);
664 return 0;
666 return 1;
668 #endif
670 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
672 ASSERT(is_empty_shadow_page(sp->spt));
673 list_del(&sp->link);
674 __free_page(virt_to_page(sp->spt));
675 __free_page(virt_to_page(sp->gfns));
676 kfree(sp);
677 ++kvm->arch.n_free_mmu_pages;
680 static unsigned kvm_page_table_hashfn(gfn_t gfn)
682 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
685 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
686 u64 *parent_pte)
688 struct kvm_mmu_page *sp;
690 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
691 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
692 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
693 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
694 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
695 ASSERT(is_empty_shadow_page(sp->spt));
696 sp->slot_bitmap = 0;
697 sp->multimapped = 0;
698 sp->parent_pte = parent_pte;
699 --vcpu->kvm->arch.n_free_mmu_pages;
700 return sp;
703 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
704 struct kvm_mmu_page *sp, u64 *parent_pte)
706 struct kvm_pte_chain *pte_chain;
707 struct hlist_node *node;
708 int i;
710 if (!parent_pte)
711 return;
712 if (!sp->multimapped) {
713 u64 *old = sp->parent_pte;
715 if (!old) {
716 sp->parent_pte = parent_pte;
717 return;
719 sp->multimapped = 1;
720 pte_chain = mmu_alloc_pte_chain(vcpu);
721 INIT_HLIST_HEAD(&sp->parent_ptes);
722 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
723 pte_chain->parent_ptes[0] = old;
725 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
726 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
727 continue;
728 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
729 if (!pte_chain->parent_ptes[i]) {
730 pte_chain->parent_ptes[i] = parent_pte;
731 return;
734 pte_chain = mmu_alloc_pte_chain(vcpu);
735 BUG_ON(!pte_chain);
736 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
737 pte_chain->parent_ptes[0] = parent_pte;
740 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
741 u64 *parent_pte)
743 struct kvm_pte_chain *pte_chain;
744 struct hlist_node *node;
745 int i;
747 if (!sp->multimapped) {
748 BUG_ON(sp->parent_pte != parent_pte);
749 sp->parent_pte = NULL;
750 return;
752 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
753 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
754 if (!pte_chain->parent_ptes[i])
755 break;
756 if (pte_chain->parent_ptes[i] != parent_pte)
757 continue;
758 while (i + 1 < NR_PTE_CHAIN_ENTRIES
759 && pte_chain->parent_ptes[i + 1]) {
760 pte_chain->parent_ptes[i]
761 = pte_chain->parent_ptes[i + 1];
762 ++i;
764 pte_chain->parent_ptes[i] = NULL;
765 if (i == 0) {
766 hlist_del(&pte_chain->link);
767 mmu_free_pte_chain(pte_chain);
768 if (hlist_empty(&sp->parent_ptes)) {
769 sp->multimapped = 0;
770 sp->parent_pte = NULL;
773 return;
775 BUG();
778 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
780 unsigned index;
781 struct hlist_head *bucket;
782 struct kvm_mmu_page *sp;
783 struct hlist_node *node;
785 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
786 index = kvm_page_table_hashfn(gfn);
787 bucket = &kvm->arch.mmu_page_hash[index];
788 hlist_for_each_entry(sp, node, bucket, hash_link)
789 if (sp->gfn == gfn && !sp->role.metaphysical
790 && !sp->role.invalid) {
791 pgprintk("%s: found role %x\n",
792 __func__, sp->role.word);
793 return sp;
795 return NULL;
798 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
799 gfn_t gfn,
800 gva_t gaddr,
801 unsigned level,
802 int metaphysical,
803 unsigned access,
804 u64 *parent_pte)
806 union kvm_mmu_page_role role;
807 unsigned index;
808 unsigned quadrant;
809 struct hlist_head *bucket;
810 struct kvm_mmu_page *sp;
811 struct hlist_node *node;
813 role.word = 0;
814 role.glevels = vcpu->arch.mmu.root_level;
815 role.level = level;
816 role.metaphysical = metaphysical;
817 role.access = access;
818 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
819 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
820 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
821 role.quadrant = quadrant;
823 pgprintk("%s: looking gfn %lx role %x\n", __func__,
824 gfn, role.word);
825 index = kvm_page_table_hashfn(gfn);
826 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
827 hlist_for_each_entry(sp, node, bucket, hash_link)
828 if (sp->gfn == gfn && sp->role.word == role.word) {
829 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
830 pgprintk("%s: found\n", __func__);
831 return sp;
833 ++vcpu->kvm->stat.mmu_cache_miss;
834 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
835 if (!sp)
836 return sp;
837 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
838 sp->gfn = gfn;
839 sp->role = role;
840 hlist_add_head(&sp->hash_link, bucket);
841 if (!metaphysical)
842 rmap_write_protect(vcpu->kvm, gfn);
843 vcpu->arch.mmu.prefetch_page(vcpu, sp);
844 return sp;
847 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
848 struct kvm_mmu_page *sp)
850 unsigned i;
851 u64 *pt;
852 u64 ent;
854 pt = sp->spt;
856 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
857 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
858 if (is_shadow_present_pte(pt[i]))
859 rmap_remove(kvm, &pt[i]);
860 pt[i] = shadow_trap_nonpresent_pte;
862 kvm_flush_remote_tlbs(kvm);
863 return;
866 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
867 ent = pt[i];
869 if (is_shadow_present_pte(ent)) {
870 if (!is_large_pte(ent)) {
871 ent &= PT64_BASE_ADDR_MASK;
872 mmu_page_remove_parent_pte(page_header(ent),
873 &pt[i]);
874 } else {
875 --kvm->stat.lpages;
876 rmap_remove(kvm, &pt[i]);
879 pt[i] = shadow_trap_nonpresent_pte;
881 kvm_flush_remote_tlbs(kvm);
884 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
886 mmu_page_remove_parent_pte(sp, parent_pte);
889 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
891 int i;
893 for (i = 0; i < KVM_MAX_VCPUS; ++i)
894 if (kvm->vcpus[i])
895 kvm->vcpus[i]->arch.last_pte_updated = NULL;
898 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
900 u64 *parent_pte;
902 ++kvm->stat.mmu_shadow_zapped;
903 while (sp->multimapped || sp->parent_pte) {
904 if (!sp->multimapped)
905 parent_pte = sp->parent_pte;
906 else {
907 struct kvm_pte_chain *chain;
909 chain = container_of(sp->parent_ptes.first,
910 struct kvm_pte_chain, link);
911 parent_pte = chain->parent_ptes[0];
913 BUG_ON(!parent_pte);
914 kvm_mmu_put_page(sp, parent_pte);
915 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
917 kvm_mmu_page_unlink_children(kvm, sp);
918 if (!sp->root_count) {
919 if (!sp->role.metaphysical)
920 unaccount_shadowed(kvm, sp->gfn);
921 hlist_del(&sp->hash_link);
922 kvm_mmu_free_page(kvm, sp);
923 } else {
924 list_move(&sp->link, &kvm->arch.active_mmu_pages);
925 sp->role.invalid = 1;
926 kvm_reload_remote_mmus(kvm);
928 kvm_mmu_reset_last_pte_updated(kvm);
932 * Changing the number of mmu pages allocated to the vm
933 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
935 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
938 * If we set the number of mmu pages to be smaller be than the
939 * number of actived pages , we must to free some mmu pages before we
940 * change the value
943 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
944 kvm_nr_mmu_pages) {
945 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
946 - kvm->arch.n_free_mmu_pages;
948 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
949 struct kvm_mmu_page *page;
951 page = container_of(kvm->arch.active_mmu_pages.prev,
952 struct kvm_mmu_page, link);
953 kvm_mmu_zap_page(kvm, page);
954 n_used_mmu_pages--;
956 kvm->arch.n_free_mmu_pages = 0;
958 else
959 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
960 - kvm->arch.n_alloc_mmu_pages;
962 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
965 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
967 unsigned index;
968 struct hlist_head *bucket;
969 struct kvm_mmu_page *sp;
970 struct hlist_node *node, *n;
971 int r;
973 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
974 r = 0;
975 index = kvm_page_table_hashfn(gfn);
976 bucket = &kvm->arch.mmu_page_hash[index];
977 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
978 if (sp->gfn == gfn && !sp->role.metaphysical) {
979 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
980 sp->role.word);
981 kvm_mmu_zap_page(kvm, sp);
982 r = 1;
984 return r;
987 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
989 struct kvm_mmu_page *sp;
991 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
992 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
993 kvm_mmu_zap_page(kvm, sp);
997 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
999 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1000 struct kvm_mmu_page *sp = page_header(__pa(pte));
1002 __set_bit(slot, &sp->slot_bitmap);
1005 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1007 struct page *page;
1009 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1011 if (gpa == UNMAPPED_GVA)
1012 return NULL;
1014 down_read(&current->mm->mmap_sem);
1015 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1016 up_read(&current->mm->mmap_sem);
1018 return page;
1021 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1022 unsigned pt_access, unsigned pte_access,
1023 int user_fault, int write_fault, int dirty,
1024 int *ptwrite, int largepage, gfn_t gfn,
1025 pfn_t pfn, bool speculative)
1027 u64 spte;
1028 int was_rmapped = 0;
1029 int was_writeble = is_writeble_pte(*shadow_pte);
1031 pgprintk("%s: spte %llx access %x write_fault %d"
1032 " user_fault %d gfn %lx\n",
1033 __func__, *shadow_pte, pt_access,
1034 write_fault, user_fault, gfn);
1036 if (is_rmap_pte(*shadow_pte)) {
1038 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1039 * the parent of the now unreachable PTE.
1041 if (largepage && !is_large_pte(*shadow_pte)) {
1042 struct kvm_mmu_page *child;
1043 u64 pte = *shadow_pte;
1045 child = page_header(pte & PT64_BASE_ADDR_MASK);
1046 mmu_page_remove_parent_pte(child, shadow_pte);
1047 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1048 pgprintk("hfn old %lx new %lx\n",
1049 spte_to_pfn(*shadow_pte), pfn);
1050 rmap_remove(vcpu->kvm, shadow_pte);
1051 } else {
1052 if (largepage)
1053 was_rmapped = is_large_pte(*shadow_pte);
1054 else
1055 was_rmapped = 1;
1060 * We don't set the accessed bit, since we sometimes want to see
1061 * whether the guest actually used the pte (in order to detect
1062 * demand paging).
1064 spte = shadow_base_present_pte | shadow_dirty_mask;
1065 if (!speculative)
1066 pte_access |= PT_ACCESSED_MASK;
1067 if (!dirty)
1068 pte_access &= ~ACC_WRITE_MASK;
1069 if (pte_access & ACC_EXEC_MASK)
1070 spte |= shadow_x_mask;
1071 else
1072 spte |= shadow_nx_mask;
1073 if (pte_access & ACC_USER_MASK)
1074 spte |= shadow_user_mask;
1075 if (largepage)
1076 spte |= PT_PAGE_SIZE_MASK;
1078 spte |= (u64)pfn << PAGE_SHIFT;
1080 if ((pte_access & ACC_WRITE_MASK)
1081 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1082 struct kvm_mmu_page *shadow;
1084 spte |= PT_WRITABLE_MASK;
1085 if (user_fault) {
1086 mmu_unshadow(vcpu->kvm, gfn);
1087 goto unshadowed;
1090 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1091 if (shadow ||
1092 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1093 pgprintk("%s: found shadow page for %lx, marking ro\n",
1094 __func__, gfn);
1095 pte_access &= ~ACC_WRITE_MASK;
1096 if (is_writeble_pte(spte)) {
1097 spte &= ~PT_WRITABLE_MASK;
1098 kvm_x86_ops->tlb_flush(vcpu);
1100 if (write_fault)
1101 *ptwrite = 1;
1105 unshadowed:
1107 if (pte_access & ACC_WRITE_MASK)
1108 mark_page_dirty(vcpu->kvm, gfn);
1110 pgprintk("%s: setting spte %llx\n", __func__, spte);
1111 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1112 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1113 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1114 set_shadow_pte(shadow_pte, spte);
1115 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1116 && (spte & PT_PRESENT_MASK))
1117 ++vcpu->kvm->stat.lpages;
1119 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1120 if (!was_rmapped) {
1121 rmap_add(vcpu, shadow_pte, gfn, largepage);
1122 if (!is_rmap_pte(*shadow_pte))
1123 kvm_release_pfn_clean(pfn);
1124 } else {
1125 if (was_writeble)
1126 kvm_release_pfn_dirty(pfn);
1127 else
1128 kvm_release_pfn_clean(pfn);
1130 if (!ptwrite || !*ptwrite)
1131 vcpu->arch.last_pte_updated = shadow_pte;
1134 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1138 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1139 int largepage, gfn_t gfn, pfn_t pfn,
1140 int level)
1142 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1143 int pt_write = 0;
1145 for (; ; level--) {
1146 u32 index = PT64_INDEX(v, level);
1147 u64 *table;
1149 ASSERT(VALID_PAGE(table_addr));
1150 table = __va(table_addr);
1152 if (level == 1) {
1153 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1154 0, write, 1, &pt_write, 0, gfn, pfn, false);
1155 return pt_write;
1158 if (largepage && level == 2) {
1159 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1160 0, write, 1, &pt_write, 1, gfn, pfn, false);
1161 return pt_write;
1164 if (table[index] == shadow_trap_nonpresent_pte) {
1165 struct kvm_mmu_page *new_table;
1166 gfn_t pseudo_gfn;
1168 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1169 >> PAGE_SHIFT;
1170 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1171 v, level - 1,
1172 1, ACC_ALL, &table[index]);
1173 if (!new_table) {
1174 pgprintk("nonpaging_map: ENOMEM\n");
1175 kvm_release_pfn_clean(pfn);
1176 return -ENOMEM;
1179 table[index] = __pa(new_table->spt)
1180 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1181 | shadow_user_mask | shadow_x_mask;
1183 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1187 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1189 int r;
1190 int largepage = 0;
1191 pfn_t pfn;
1193 down_read(&current->mm->mmap_sem);
1194 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1195 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1196 largepage = 1;
1199 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1200 up_read(&current->mm->mmap_sem);
1202 /* mmio */
1203 if (is_error_pfn(pfn)) {
1204 kvm_release_pfn_clean(pfn);
1205 return 1;
1208 spin_lock(&vcpu->kvm->mmu_lock);
1209 kvm_mmu_free_some_pages(vcpu);
1210 r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
1211 PT32E_ROOT_LEVEL);
1212 spin_unlock(&vcpu->kvm->mmu_lock);
1215 return r;
1219 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1220 struct kvm_mmu_page *sp)
1222 int i;
1224 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1225 sp->spt[i] = shadow_trap_nonpresent_pte;
1228 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1230 int i;
1231 struct kvm_mmu_page *sp;
1233 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1234 return;
1235 spin_lock(&vcpu->kvm->mmu_lock);
1236 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1237 hpa_t root = vcpu->arch.mmu.root_hpa;
1239 sp = page_header(root);
1240 --sp->root_count;
1241 if (!sp->root_count && sp->role.invalid)
1242 kvm_mmu_zap_page(vcpu->kvm, sp);
1243 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1244 spin_unlock(&vcpu->kvm->mmu_lock);
1245 return;
1247 for (i = 0; i < 4; ++i) {
1248 hpa_t root = vcpu->arch.mmu.pae_root[i];
1250 if (root) {
1251 root &= PT64_BASE_ADDR_MASK;
1252 sp = page_header(root);
1253 --sp->root_count;
1254 if (!sp->root_count && sp->role.invalid)
1255 kvm_mmu_zap_page(vcpu->kvm, sp);
1257 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1259 spin_unlock(&vcpu->kvm->mmu_lock);
1260 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1263 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1265 int i;
1266 gfn_t root_gfn;
1267 struct kvm_mmu_page *sp;
1268 int metaphysical = 0;
1270 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1272 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1273 hpa_t root = vcpu->arch.mmu.root_hpa;
1275 ASSERT(!VALID_PAGE(root));
1276 if (tdp_enabled)
1277 metaphysical = 1;
1278 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1279 PT64_ROOT_LEVEL, metaphysical,
1280 ACC_ALL, NULL);
1281 root = __pa(sp->spt);
1282 ++sp->root_count;
1283 vcpu->arch.mmu.root_hpa = root;
1284 return;
1286 metaphysical = !is_paging(vcpu);
1287 if (tdp_enabled)
1288 metaphysical = 1;
1289 for (i = 0; i < 4; ++i) {
1290 hpa_t root = vcpu->arch.mmu.pae_root[i];
1292 ASSERT(!VALID_PAGE(root));
1293 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1294 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1295 vcpu->arch.mmu.pae_root[i] = 0;
1296 continue;
1298 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1299 } else if (vcpu->arch.mmu.root_level == 0)
1300 root_gfn = 0;
1301 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1302 PT32_ROOT_LEVEL, metaphysical,
1303 ACC_ALL, NULL);
1304 root = __pa(sp->spt);
1305 ++sp->root_count;
1306 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1308 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1311 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1313 return vaddr;
1316 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1317 u32 error_code)
1319 gfn_t gfn;
1320 int r;
1322 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1323 r = mmu_topup_memory_caches(vcpu);
1324 if (r)
1325 return r;
1327 ASSERT(vcpu);
1328 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1330 gfn = gva >> PAGE_SHIFT;
1332 return nonpaging_map(vcpu, gva & PAGE_MASK,
1333 error_code & PFERR_WRITE_MASK, gfn);
1336 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1337 u32 error_code)
1339 pfn_t pfn;
1340 int r;
1341 int largepage = 0;
1342 gfn_t gfn = gpa >> PAGE_SHIFT;
1344 ASSERT(vcpu);
1345 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1347 r = mmu_topup_memory_caches(vcpu);
1348 if (r)
1349 return r;
1351 down_read(&current->mm->mmap_sem);
1352 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1353 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1354 largepage = 1;
1356 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1357 up_read(&current->mm->mmap_sem);
1358 if (is_error_pfn(pfn)) {
1359 kvm_release_pfn_clean(pfn);
1360 return 1;
1362 spin_lock(&vcpu->kvm->mmu_lock);
1363 kvm_mmu_free_some_pages(vcpu);
1364 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1365 largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
1366 spin_unlock(&vcpu->kvm->mmu_lock);
1368 return r;
1371 static void nonpaging_free(struct kvm_vcpu *vcpu)
1373 mmu_free_roots(vcpu);
1376 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1378 struct kvm_mmu *context = &vcpu->arch.mmu;
1380 context->new_cr3 = nonpaging_new_cr3;
1381 context->page_fault = nonpaging_page_fault;
1382 context->gva_to_gpa = nonpaging_gva_to_gpa;
1383 context->free = nonpaging_free;
1384 context->prefetch_page = nonpaging_prefetch_page;
1385 context->root_level = 0;
1386 context->shadow_root_level = PT32E_ROOT_LEVEL;
1387 context->root_hpa = INVALID_PAGE;
1388 return 0;
1391 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1393 ++vcpu->stat.tlb_flush;
1394 kvm_x86_ops->tlb_flush(vcpu);
1397 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1399 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1400 mmu_free_roots(vcpu);
1403 static void inject_page_fault(struct kvm_vcpu *vcpu,
1404 u64 addr,
1405 u32 err_code)
1407 kvm_inject_page_fault(vcpu, addr, err_code);
1410 static void paging_free(struct kvm_vcpu *vcpu)
1412 nonpaging_free(vcpu);
1415 #define PTTYPE 64
1416 #include "paging_tmpl.h"
1417 #undef PTTYPE
1419 #define PTTYPE 32
1420 #include "paging_tmpl.h"
1421 #undef PTTYPE
1423 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1425 struct kvm_mmu *context = &vcpu->arch.mmu;
1427 ASSERT(is_pae(vcpu));
1428 context->new_cr3 = paging_new_cr3;
1429 context->page_fault = paging64_page_fault;
1430 context->gva_to_gpa = paging64_gva_to_gpa;
1431 context->prefetch_page = paging64_prefetch_page;
1432 context->free = paging_free;
1433 context->root_level = level;
1434 context->shadow_root_level = level;
1435 context->root_hpa = INVALID_PAGE;
1436 return 0;
1439 static int paging64_init_context(struct kvm_vcpu *vcpu)
1441 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1444 static int paging32_init_context(struct kvm_vcpu *vcpu)
1446 struct kvm_mmu *context = &vcpu->arch.mmu;
1448 context->new_cr3 = paging_new_cr3;
1449 context->page_fault = paging32_page_fault;
1450 context->gva_to_gpa = paging32_gva_to_gpa;
1451 context->free = paging_free;
1452 context->prefetch_page = paging32_prefetch_page;
1453 context->root_level = PT32_ROOT_LEVEL;
1454 context->shadow_root_level = PT32E_ROOT_LEVEL;
1455 context->root_hpa = INVALID_PAGE;
1456 return 0;
1459 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1461 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1464 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1466 struct kvm_mmu *context = &vcpu->arch.mmu;
1468 context->new_cr3 = nonpaging_new_cr3;
1469 context->page_fault = tdp_page_fault;
1470 context->free = nonpaging_free;
1471 context->prefetch_page = nonpaging_prefetch_page;
1472 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1473 context->root_hpa = INVALID_PAGE;
1475 if (!is_paging(vcpu)) {
1476 context->gva_to_gpa = nonpaging_gva_to_gpa;
1477 context->root_level = 0;
1478 } else if (is_long_mode(vcpu)) {
1479 context->gva_to_gpa = paging64_gva_to_gpa;
1480 context->root_level = PT64_ROOT_LEVEL;
1481 } else if (is_pae(vcpu)) {
1482 context->gva_to_gpa = paging64_gva_to_gpa;
1483 context->root_level = PT32E_ROOT_LEVEL;
1484 } else {
1485 context->gva_to_gpa = paging32_gva_to_gpa;
1486 context->root_level = PT32_ROOT_LEVEL;
1489 return 0;
1492 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1494 ASSERT(vcpu);
1495 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1497 if (!is_paging(vcpu))
1498 return nonpaging_init_context(vcpu);
1499 else if (is_long_mode(vcpu))
1500 return paging64_init_context(vcpu);
1501 else if (is_pae(vcpu))
1502 return paging32E_init_context(vcpu);
1503 else
1504 return paging32_init_context(vcpu);
1507 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1509 vcpu->arch.update_pte.pfn = bad_pfn;
1511 if (tdp_enabled)
1512 return init_kvm_tdp_mmu(vcpu);
1513 else
1514 return init_kvm_softmmu(vcpu);
1517 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1519 ASSERT(vcpu);
1520 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1521 vcpu->arch.mmu.free(vcpu);
1522 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1526 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1528 destroy_kvm_mmu(vcpu);
1529 return init_kvm_mmu(vcpu);
1531 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1533 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1535 int r;
1537 r = mmu_topup_memory_caches(vcpu);
1538 if (r)
1539 goto out;
1540 spin_lock(&vcpu->kvm->mmu_lock);
1541 kvm_mmu_free_some_pages(vcpu);
1542 mmu_alloc_roots(vcpu);
1543 spin_unlock(&vcpu->kvm->mmu_lock);
1544 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1545 kvm_mmu_flush_tlb(vcpu);
1546 out:
1547 return r;
1549 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1551 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1553 mmu_free_roots(vcpu);
1556 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1557 struct kvm_mmu_page *sp,
1558 u64 *spte)
1560 u64 pte;
1561 struct kvm_mmu_page *child;
1563 pte = *spte;
1564 if (is_shadow_present_pte(pte)) {
1565 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1566 is_large_pte(pte))
1567 rmap_remove(vcpu->kvm, spte);
1568 else {
1569 child = page_header(pte & PT64_BASE_ADDR_MASK);
1570 mmu_page_remove_parent_pte(child, spte);
1573 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1574 if (is_large_pte(pte))
1575 --vcpu->kvm->stat.lpages;
1578 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1579 struct kvm_mmu_page *sp,
1580 u64 *spte,
1581 const void *new)
1583 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1584 && !vcpu->arch.update_pte.largepage) {
1585 ++vcpu->kvm->stat.mmu_pde_zapped;
1586 return;
1589 ++vcpu->kvm->stat.mmu_pte_updated;
1590 if (sp->role.glevels == PT32_ROOT_LEVEL)
1591 paging32_update_pte(vcpu, sp, spte, new);
1592 else
1593 paging64_update_pte(vcpu, sp, spte, new);
1596 static bool need_remote_flush(u64 old, u64 new)
1598 if (!is_shadow_present_pte(old))
1599 return false;
1600 if (!is_shadow_present_pte(new))
1601 return true;
1602 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1603 return true;
1604 old ^= PT64_NX_MASK;
1605 new ^= PT64_NX_MASK;
1606 return (old & ~new & PT64_PERM_MASK) != 0;
1609 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1611 if (need_remote_flush(old, new))
1612 kvm_flush_remote_tlbs(vcpu->kvm);
1613 else
1614 kvm_mmu_flush_tlb(vcpu);
1617 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1619 u64 *spte = vcpu->arch.last_pte_updated;
1621 return !!(spte && (*spte & shadow_accessed_mask));
1624 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1625 const u8 *new, int bytes)
1627 gfn_t gfn;
1628 int r;
1629 u64 gpte = 0;
1630 pfn_t pfn;
1632 vcpu->arch.update_pte.largepage = 0;
1634 if (bytes != 4 && bytes != 8)
1635 return;
1638 * Assume that the pte write on a page table of the same type
1639 * as the current vcpu paging mode. This is nearly always true
1640 * (might be false while changing modes). Note it is verified later
1641 * by update_pte().
1643 if (is_pae(vcpu)) {
1644 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1645 if ((bytes == 4) && (gpa % 4 == 0)) {
1646 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1647 if (r)
1648 return;
1649 memcpy((void *)&gpte + (gpa % 8), new, 4);
1650 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1651 memcpy((void *)&gpte, new, 8);
1653 } else {
1654 if ((bytes == 4) && (gpa % 4 == 0))
1655 memcpy((void *)&gpte, new, 4);
1657 if (!is_present_pte(gpte))
1658 return;
1659 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1661 down_read(&current->mm->mmap_sem);
1662 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1663 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1664 vcpu->arch.update_pte.largepage = 1;
1666 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1667 up_read(&current->mm->mmap_sem);
1669 if (is_error_pfn(pfn)) {
1670 kvm_release_pfn_clean(pfn);
1671 return;
1673 vcpu->arch.update_pte.gfn = gfn;
1674 vcpu->arch.update_pte.pfn = pfn;
1677 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1678 const u8 *new, int bytes)
1680 gfn_t gfn = gpa >> PAGE_SHIFT;
1681 struct kvm_mmu_page *sp;
1682 struct hlist_node *node, *n;
1683 struct hlist_head *bucket;
1684 unsigned index;
1685 u64 entry, gentry;
1686 u64 *spte;
1687 unsigned offset = offset_in_page(gpa);
1688 unsigned pte_size;
1689 unsigned page_offset;
1690 unsigned misaligned;
1691 unsigned quadrant;
1692 int level;
1693 int flooded = 0;
1694 int npte;
1695 int r;
1697 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1698 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1699 spin_lock(&vcpu->kvm->mmu_lock);
1700 kvm_mmu_free_some_pages(vcpu);
1701 ++vcpu->kvm->stat.mmu_pte_write;
1702 kvm_mmu_audit(vcpu, "pre pte write");
1703 if (gfn == vcpu->arch.last_pt_write_gfn
1704 && !last_updated_pte_accessed(vcpu)) {
1705 ++vcpu->arch.last_pt_write_count;
1706 if (vcpu->arch.last_pt_write_count >= 3)
1707 flooded = 1;
1708 } else {
1709 vcpu->arch.last_pt_write_gfn = gfn;
1710 vcpu->arch.last_pt_write_count = 1;
1711 vcpu->arch.last_pte_updated = NULL;
1713 index = kvm_page_table_hashfn(gfn);
1714 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1715 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1716 if (sp->gfn != gfn || sp->role.metaphysical)
1717 continue;
1718 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1719 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1720 misaligned |= bytes < 4;
1721 if (misaligned || flooded) {
1723 * Misaligned accesses are too much trouble to fix
1724 * up; also, they usually indicate a page is not used
1725 * as a page table.
1727 * If we're seeing too many writes to a page,
1728 * it may no longer be a page table, or we may be
1729 * forking, in which case it is better to unmap the
1730 * page.
1732 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1733 gpa, bytes, sp->role.word);
1734 kvm_mmu_zap_page(vcpu->kvm, sp);
1735 ++vcpu->kvm->stat.mmu_flooded;
1736 continue;
1738 page_offset = offset;
1739 level = sp->role.level;
1740 npte = 1;
1741 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1742 page_offset <<= 1; /* 32->64 */
1744 * A 32-bit pde maps 4MB while the shadow pdes map
1745 * only 2MB. So we need to double the offset again
1746 * and zap two pdes instead of one.
1748 if (level == PT32_ROOT_LEVEL) {
1749 page_offset &= ~7; /* kill rounding error */
1750 page_offset <<= 1;
1751 npte = 2;
1753 quadrant = page_offset >> PAGE_SHIFT;
1754 page_offset &= ~PAGE_MASK;
1755 if (quadrant != sp->role.quadrant)
1756 continue;
1758 spte = &sp->spt[page_offset / sizeof(*spte)];
1759 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1760 gentry = 0;
1761 r = kvm_read_guest_atomic(vcpu->kvm,
1762 gpa & ~(u64)(pte_size - 1),
1763 &gentry, pte_size);
1764 new = (const void *)&gentry;
1765 if (r < 0)
1766 new = NULL;
1768 while (npte--) {
1769 entry = *spte;
1770 mmu_pte_write_zap_pte(vcpu, sp, spte);
1771 if (new)
1772 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1773 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1774 ++spte;
1777 kvm_mmu_audit(vcpu, "post pte write");
1778 spin_unlock(&vcpu->kvm->mmu_lock);
1779 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1780 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1781 vcpu->arch.update_pte.pfn = bad_pfn;
1785 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1787 gpa_t gpa;
1788 int r;
1790 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1792 spin_lock(&vcpu->kvm->mmu_lock);
1793 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1794 spin_unlock(&vcpu->kvm->mmu_lock);
1795 return r;
1798 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1800 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1801 struct kvm_mmu_page *sp;
1803 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1804 struct kvm_mmu_page, link);
1805 kvm_mmu_zap_page(vcpu->kvm, sp);
1806 ++vcpu->kvm->stat.mmu_recycled;
1810 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1812 int r;
1813 enum emulation_result er;
1815 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1816 if (r < 0)
1817 goto out;
1819 if (!r) {
1820 r = 1;
1821 goto out;
1824 r = mmu_topup_memory_caches(vcpu);
1825 if (r)
1826 goto out;
1828 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1830 switch (er) {
1831 case EMULATE_DONE:
1832 return 1;
1833 case EMULATE_DO_MMIO:
1834 ++vcpu->stat.mmio_exits;
1835 return 0;
1836 case EMULATE_FAIL:
1837 kvm_report_emulation_failure(vcpu, "pagetable");
1838 return 1;
1839 default:
1840 BUG();
1842 out:
1843 return r;
1845 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1847 void kvm_enable_tdp(void)
1849 tdp_enabled = true;
1851 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1853 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1855 struct kvm_mmu_page *sp;
1857 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1858 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1859 struct kvm_mmu_page, link);
1860 kvm_mmu_zap_page(vcpu->kvm, sp);
1862 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1865 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1867 struct page *page;
1868 int i;
1870 ASSERT(vcpu);
1872 if (vcpu->kvm->arch.n_requested_mmu_pages)
1873 vcpu->kvm->arch.n_free_mmu_pages =
1874 vcpu->kvm->arch.n_requested_mmu_pages;
1875 else
1876 vcpu->kvm->arch.n_free_mmu_pages =
1877 vcpu->kvm->arch.n_alloc_mmu_pages;
1879 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1880 * Therefore we need to allocate shadow page tables in the first
1881 * 4GB of memory, which happens to fit the DMA32 zone.
1883 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1884 if (!page)
1885 goto error_1;
1886 vcpu->arch.mmu.pae_root = page_address(page);
1887 for (i = 0; i < 4; ++i)
1888 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1890 return 0;
1892 error_1:
1893 free_mmu_pages(vcpu);
1894 return -ENOMEM;
1897 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1899 ASSERT(vcpu);
1900 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1902 return alloc_mmu_pages(vcpu);
1905 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1907 ASSERT(vcpu);
1908 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1910 return init_kvm_mmu(vcpu);
1913 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1915 ASSERT(vcpu);
1917 destroy_kvm_mmu(vcpu);
1918 free_mmu_pages(vcpu);
1919 mmu_free_memory_caches(vcpu);
1922 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1924 struct kvm_mmu_page *sp;
1926 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1927 int i;
1928 u64 *pt;
1930 if (!test_bit(slot, &sp->slot_bitmap))
1931 continue;
1933 pt = sp->spt;
1934 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1935 /* avoid RMW */
1936 if (pt[i] & PT_WRITABLE_MASK)
1937 pt[i] &= ~PT_WRITABLE_MASK;
1941 void kvm_mmu_zap_all(struct kvm *kvm)
1943 struct kvm_mmu_page *sp, *node;
1945 spin_lock(&kvm->mmu_lock);
1946 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1947 kvm_mmu_zap_page(kvm, sp);
1948 spin_unlock(&kvm->mmu_lock);
1950 kvm_flush_remote_tlbs(kvm);
1953 void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
1955 struct kvm_mmu_page *page;
1957 page = container_of(kvm->arch.active_mmu_pages.prev,
1958 struct kvm_mmu_page, link);
1959 kvm_mmu_zap_page(kvm, page);
1962 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
1964 struct kvm *kvm;
1965 struct kvm *kvm_freed = NULL;
1966 int cache_count = 0;
1968 spin_lock(&kvm_lock);
1970 list_for_each_entry(kvm, &vm_list, vm_list) {
1971 int npages;
1973 spin_lock(&kvm->mmu_lock);
1974 npages = kvm->arch.n_alloc_mmu_pages -
1975 kvm->arch.n_free_mmu_pages;
1976 cache_count += npages;
1977 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
1978 kvm_mmu_remove_one_alloc_mmu_page(kvm);
1979 cache_count--;
1980 kvm_freed = kvm;
1982 nr_to_scan--;
1984 spin_unlock(&kvm->mmu_lock);
1986 if (kvm_freed)
1987 list_move_tail(&kvm_freed->vm_list, &vm_list);
1989 spin_unlock(&kvm_lock);
1991 return cache_count;
1994 static struct shrinker mmu_shrinker = {
1995 .shrink = mmu_shrink,
1996 .seeks = DEFAULT_SEEKS * 10,
1999 static void mmu_destroy_caches(void)
2001 if (pte_chain_cache)
2002 kmem_cache_destroy(pte_chain_cache);
2003 if (rmap_desc_cache)
2004 kmem_cache_destroy(rmap_desc_cache);
2005 if (mmu_page_header_cache)
2006 kmem_cache_destroy(mmu_page_header_cache);
2009 void kvm_mmu_module_exit(void)
2011 mmu_destroy_caches();
2012 unregister_shrinker(&mmu_shrinker);
2015 int kvm_mmu_module_init(void)
2017 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2018 sizeof(struct kvm_pte_chain),
2019 0, 0, NULL);
2020 if (!pte_chain_cache)
2021 goto nomem;
2022 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2023 sizeof(struct kvm_rmap_desc),
2024 0, 0, NULL);
2025 if (!rmap_desc_cache)
2026 goto nomem;
2028 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2029 sizeof(struct kvm_mmu_page),
2030 0, 0, NULL);
2031 if (!mmu_page_header_cache)
2032 goto nomem;
2034 register_shrinker(&mmu_shrinker);
2036 return 0;
2038 nomem:
2039 mmu_destroy_caches();
2040 return -ENOMEM;
2044 * Caculate mmu pages needed for kvm.
2046 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2048 int i;
2049 unsigned int nr_mmu_pages;
2050 unsigned int nr_pages = 0;
2052 for (i = 0; i < kvm->nmemslots; i++)
2053 nr_pages += kvm->memslots[i].npages;
2055 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2056 nr_mmu_pages = max(nr_mmu_pages,
2057 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2059 return nr_mmu_pages;
2062 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2063 unsigned len)
2065 if (len > buffer->len)
2066 return NULL;
2067 return buffer->ptr;
2070 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2071 unsigned len)
2073 void *ret;
2075 ret = pv_mmu_peek_buffer(buffer, len);
2076 if (!ret)
2077 return ret;
2078 buffer->ptr += len;
2079 buffer->len -= len;
2080 buffer->processed += len;
2081 return ret;
2084 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2085 gpa_t addr, gpa_t value)
2087 int bytes = 8;
2088 int r;
2090 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2091 bytes = 4;
2093 r = mmu_topup_memory_caches(vcpu);
2094 if (r)
2095 return r;
2097 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2098 return -EFAULT;
2100 return 1;
2103 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2105 kvm_x86_ops->tlb_flush(vcpu);
2106 return 1;
2109 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2111 spin_lock(&vcpu->kvm->mmu_lock);
2112 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2113 spin_unlock(&vcpu->kvm->mmu_lock);
2114 return 1;
2117 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2118 struct kvm_pv_mmu_op_buffer *buffer)
2120 struct kvm_mmu_op_header *header;
2122 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2123 if (!header)
2124 return 0;
2125 switch (header->op) {
2126 case KVM_MMU_OP_WRITE_PTE: {
2127 struct kvm_mmu_op_write_pte *wpte;
2129 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2130 if (!wpte)
2131 return 0;
2132 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2133 wpte->pte_val);
2135 case KVM_MMU_OP_FLUSH_TLB: {
2136 struct kvm_mmu_op_flush_tlb *ftlb;
2138 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2139 if (!ftlb)
2140 return 0;
2141 return kvm_pv_mmu_flush_tlb(vcpu);
2143 case KVM_MMU_OP_RELEASE_PT: {
2144 struct kvm_mmu_op_release_pt *rpt;
2146 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2147 if (!rpt)
2148 return 0;
2149 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2151 default: return 0;
2155 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2156 gpa_t addr, unsigned long *ret)
2158 int r;
2159 struct kvm_pv_mmu_op_buffer buffer;
2161 buffer.ptr = buffer.buf;
2162 buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2163 buffer.processed = 0;
2165 r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2166 if (r)
2167 goto out;
2169 while (buffer.len) {
2170 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2171 if (r < 0)
2172 goto out;
2173 if (r == 0)
2174 break;
2177 r = 1;
2178 out:
2179 *ret = buffer.processed;
2180 return r;
2183 #ifdef AUDIT
2185 static const char *audit_msg;
2187 static gva_t canonicalize(gva_t gva)
2189 #ifdef CONFIG_X86_64
2190 gva = (long long)(gva << 16) >> 16;
2191 #endif
2192 return gva;
2195 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2196 gva_t va, int level)
2198 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2199 int i;
2200 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2202 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2203 u64 ent = pt[i];
2205 if (ent == shadow_trap_nonpresent_pte)
2206 continue;
2208 va = canonicalize(va);
2209 if (level > 1) {
2210 if (ent == shadow_notrap_nonpresent_pte)
2211 printk(KERN_ERR "audit: (%s) nontrapping pte"
2212 " in nonleaf level: levels %d gva %lx"
2213 " level %d pte %llx\n", audit_msg,
2214 vcpu->arch.mmu.root_level, va, level, ent);
2216 audit_mappings_page(vcpu, ent, va, level - 1);
2217 } else {
2218 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2219 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2221 if (is_shadow_present_pte(ent)
2222 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2223 printk(KERN_ERR "xx audit error: (%s) levels %d"
2224 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2225 audit_msg, vcpu->arch.mmu.root_level,
2226 va, gpa, hpa, ent,
2227 is_shadow_present_pte(ent));
2228 else if (ent == shadow_notrap_nonpresent_pte
2229 && !is_error_hpa(hpa))
2230 printk(KERN_ERR "audit: (%s) notrap shadow,"
2231 " valid guest gva %lx\n", audit_msg, va);
2232 kvm_release_pfn_clean(pfn);
2238 static void audit_mappings(struct kvm_vcpu *vcpu)
2240 unsigned i;
2242 if (vcpu->arch.mmu.root_level == 4)
2243 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2244 else
2245 for (i = 0; i < 4; ++i)
2246 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2247 audit_mappings_page(vcpu,
2248 vcpu->arch.mmu.pae_root[i],
2249 i << 30,
2253 static int count_rmaps(struct kvm_vcpu *vcpu)
2255 int nmaps = 0;
2256 int i, j, k;
2258 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2259 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2260 struct kvm_rmap_desc *d;
2262 for (j = 0; j < m->npages; ++j) {
2263 unsigned long *rmapp = &m->rmap[j];
2265 if (!*rmapp)
2266 continue;
2267 if (!(*rmapp & 1)) {
2268 ++nmaps;
2269 continue;
2271 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2272 while (d) {
2273 for (k = 0; k < RMAP_EXT; ++k)
2274 if (d->shadow_ptes[k])
2275 ++nmaps;
2276 else
2277 break;
2278 d = d->more;
2282 return nmaps;
2285 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2287 int nmaps = 0;
2288 struct kvm_mmu_page *sp;
2289 int i;
2291 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2292 u64 *pt = sp->spt;
2294 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2295 continue;
2297 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2298 u64 ent = pt[i];
2300 if (!(ent & PT_PRESENT_MASK))
2301 continue;
2302 if (!(ent & PT_WRITABLE_MASK))
2303 continue;
2304 ++nmaps;
2307 return nmaps;
2310 static void audit_rmap(struct kvm_vcpu *vcpu)
2312 int n_rmap = count_rmaps(vcpu);
2313 int n_actual = count_writable_mappings(vcpu);
2315 if (n_rmap != n_actual)
2316 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2317 __func__, audit_msg, n_rmap, n_actual);
2320 static void audit_write_protection(struct kvm_vcpu *vcpu)
2322 struct kvm_mmu_page *sp;
2323 struct kvm_memory_slot *slot;
2324 unsigned long *rmapp;
2325 gfn_t gfn;
2327 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2328 if (sp->role.metaphysical)
2329 continue;
2331 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2332 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2333 rmapp = &slot->rmap[gfn - slot->base_gfn];
2334 if (*rmapp)
2335 printk(KERN_ERR "%s: (%s) shadow page has writable"
2336 " mappings: gfn %lx role %x\n",
2337 __func__, audit_msg, sp->gfn,
2338 sp->role.word);
2342 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2344 int olddbg = dbg;
2346 dbg = 0;
2347 audit_msg = msg;
2348 audit_rmap(vcpu);
2349 audit_write_protection(vcpu);
2350 audit_mappings(vcpu);
2351 dbg = olddbg;
2354 #endif