ide-cd: use whole request_sense buffer in EH
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blob41179c0a655bbf579e0a673b7d645fadbff9dbe4
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 pipe_lock(pipe);
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 pipe_unlock(pipe);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
259 return ret;
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 page_cache_release(spd->pages[i]);
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
313 page = find_get_page(mapping, index);
314 if (!page) {
316 * page didn't exist, allocate one.
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
334 unlock_page(page);
337 pages[spd.nr_pages++] = page;
338 index++;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
351 if (!len)
352 break;
355 * this_len is the max we'll use from this page
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page)) {
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
377 } else
378 lock_page(page);
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
391 if (!page) {
392 error = -ENOMEM;
393 break;
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
399 * page was already under io and is now done, great
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
407 * need to read in the page
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
420 break;
423 fill_it:
425 * i_size must be checked after PageUptodate.
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
433 * if this is the last page, see if we need to shrink
434 * the length and stop
436 if (end_index == index) {
437 unsigned int plen;
440 * max good bytes in this page
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
447 * force quit after adding this page
449 this_len = min(this_len, plen - loff);
450 len = this_len;
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
472 return error;
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
493 loff_t isize, left;
494 int ret;
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0)
506 *ppos += ret;
508 return ret;
510 EXPORT_SYMBOL(generic_file_splice_read);
512 static const struct pipe_buf_operations default_pipe_buf_ops = {
513 .can_merge = 0,
514 .map = generic_pipe_buf_map,
515 .unmap = generic_pipe_buf_unmap,
516 .confirm = generic_pipe_buf_confirm,
517 .release = generic_pipe_buf_release,
518 .steal = generic_pipe_buf_steal,
519 .get = generic_pipe_buf_get,
522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
523 unsigned long vlen, loff_t offset)
525 mm_segment_t old_fs;
526 loff_t pos = offset;
527 ssize_t res;
529 old_fs = get_fs();
530 set_fs(get_ds());
531 /* The cast to a user pointer is valid due to the set_fs() */
532 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
533 set_fs(old_fs);
535 return res;
538 static ssize_t kernel_writev(struct file *file, const struct iovec *vec,
539 unsigned long vlen, loff_t *ppos)
541 mm_segment_t old_fs;
542 ssize_t res;
544 old_fs = get_fs();
545 set_fs(get_ds());
546 /* The cast to a user pointer is valid due to the set_fs() */
547 res = vfs_writev(file, (const struct iovec __user *)vec, vlen, ppos);
548 set_fs(old_fs);
550 return res;
553 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
554 struct pipe_inode_info *pipe, size_t len,
555 unsigned int flags)
557 unsigned int nr_pages;
558 unsigned int nr_freed;
559 size_t offset;
560 struct page *pages[PIPE_BUFFERS];
561 struct partial_page partial[PIPE_BUFFERS];
562 struct iovec vec[PIPE_BUFFERS];
563 pgoff_t index;
564 ssize_t res;
565 size_t this_len;
566 int error;
567 int i;
568 struct splice_pipe_desc spd = {
569 .pages = pages,
570 .partial = partial,
571 .flags = flags,
572 .ops = &default_pipe_buf_ops,
573 .spd_release = spd_release_page,
576 index = *ppos >> PAGE_CACHE_SHIFT;
577 offset = *ppos & ~PAGE_CACHE_MASK;
578 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
580 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
581 struct page *page;
583 page = alloc_page(GFP_USER);
584 error = -ENOMEM;
585 if (!page)
586 goto err;
588 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
589 vec[i].iov_base = (void __user *) page_address(page);
590 vec[i].iov_len = this_len;
591 pages[i] = page;
592 spd.nr_pages++;
593 len -= this_len;
594 offset = 0;
597 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
598 if (res < 0) {
599 error = res;
600 goto err;
603 error = 0;
604 if (!res)
605 goto err;
607 nr_freed = 0;
608 for (i = 0; i < spd.nr_pages; i++) {
609 this_len = min_t(size_t, vec[i].iov_len, res);
610 partial[i].offset = 0;
611 partial[i].len = this_len;
612 if (!this_len) {
613 __free_page(pages[i]);
614 pages[i] = NULL;
615 nr_freed++;
617 res -= this_len;
619 spd.nr_pages -= nr_freed;
621 res = splice_to_pipe(pipe, &spd);
622 if (res > 0)
623 *ppos += res;
625 return res;
627 err:
628 for (i = 0; i < spd.nr_pages; i++)
629 __free_page(pages[i]);
631 return error;
633 EXPORT_SYMBOL(default_file_splice_read);
636 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
637 * using sendpage(). Return the number of bytes sent.
639 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
640 struct pipe_buffer *buf, struct splice_desc *sd)
642 struct file *file = sd->u.file;
643 loff_t pos = sd->pos;
644 int ret, more;
646 ret = buf->ops->confirm(pipe, buf);
647 if (!ret) {
648 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
650 ret = file->f_op->sendpage(file, buf->page, buf->offset,
651 sd->len, &pos, more);
654 return ret;
658 * This is a little more tricky than the file -> pipe splicing. There are
659 * basically three cases:
661 * - Destination page already exists in the address space and there
662 * are users of it. For that case we have no other option that
663 * copying the data. Tough luck.
664 * - Destination page already exists in the address space, but there
665 * are no users of it. Make sure it's uptodate, then drop it. Fall
666 * through to last case.
667 * - Destination page does not exist, we can add the pipe page to
668 * the page cache and avoid the copy.
670 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
671 * sd->flags), we attempt to migrate pages from the pipe to the output
672 * file address space page cache. This is possible if no one else has
673 * the pipe page referenced outside of the pipe and page cache. If
674 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
675 * a new page in the output file page cache and fill/dirty that.
677 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
678 struct splice_desc *sd)
680 struct file *file = sd->u.file;
681 struct address_space *mapping = file->f_mapping;
682 unsigned int offset, this_len;
683 struct page *page;
684 void *fsdata;
685 int ret;
688 * make sure the data in this buffer is uptodate
690 ret = buf->ops->confirm(pipe, buf);
691 if (unlikely(ret))
692 return ret;
694 offset = sd->pos & ~PAGE_CACHE_MASK;
696 this_len = sd->len;
697 if (this_len + offset > PAGE_CACHE_SIZE)
698 this_len = PAGE_CACHE_SIZE - offset;
700 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
701 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
702 if (unlikely(ret))
703 goto out;
705 if (buf->page != page) {
707 * Careful, ->map() uses KM_USER0!
709 char *src = buf->ops->map(pipe, buf, 1);
710 char *dst = kmap_atomic(page, KM_USER1);
712 memcpy(dst + offset, src + buf->offset, this_len);
713 flush_dcache_page(page);
714 kunmap_atomic(dst, KM_USER1);
715 buf->ops->unmap(pipe, buf, src);
717 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
718 page, fsdata);
719 out:
720 return ret;
722 EXPORT_SYMBOL(pipe_to_file);
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726 smp_mb();
727 if (waitqueue_active(&pipe->wait))
728 wake_up_interruptible(&pipe->wait);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733 * splice_from_pipe_feed - feed available data from a pipe to a file
734 * @pipe: pipe to splice from
735 * @sd: information to @actor
736 * @actor: handler that splices the data
738 * Description:
739 * This function loops over the pipe and calls @actor to do the
740 * actual moving of a single struct pipe_buffer to the desired
741 * destination. It returns when there's no more buffers left in
742 * the pipe or if the requested number of bytes (@sd->total_len)
743 * have been copied. It returns a positive number (one) if the
744 * pipe needs to be filled with more data, zero if the required
745 * number of bytes have been copied and -errno on error.
747 * This, together with splice_from_pipe_{begin,end,next}, may be
748 * used to implement the functionality of __splice_from_pipe() when
749 * locking is required around copying the pipe buffers to the
750 * destination.
752 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 splice_actor *actor)
755 int ret;
757 while (pipe->nrbufs) {
758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 const struct pipe_buf_operations *ops = buf->ops;
761 sd->len = buf->len;
762 if (sd->len > sd->total_len)
763 sd->len = sd->total_len;
765 ret = actor(pipe, buf, sd);
766 if (ret <= 0) {
767 if (ret == -ENODATA)
768 ret = 0;
769 return ret;
771 buf->offset += ret;
772 buf->len -= ret;
774 sd->num_spliced += ret;
775 sd->len -= ret;
776 sd->pos += ret;
777 sd->total_len -= ret;
779 if (!buf->len) {
780 buf->ops = NULL;
781 ops->release(pipe, buf);
782 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
783 pipe->nrbufs--;
784 if (pipe->inode)
785 sd->need_wakeup = true;
788 if (!sd->total_len)
789 return 0;
792 return 1;
794 EXPORT_SYMBOL(splice_from_pipe_feed);
797 * splice_from_pipe_next - wait for some data to splice from
798 * @pipe: pipe to splice from
799 * @sd: information about the splice operation
801 * Description:
802 * This function will wait for some data and return a positive
803 * value (one) if pipe buffers are available. It will return zero
804 * or -errno if no more data needs to be spliced.
806 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
808 while (!pipe->nrbufs) {
809 if (!pipe->writers)
810 return 0;
812 if (!pipe->waiting_writers && sd->num_spliced)
813 return 0;
815 if (sd->flags & SPLICE_F_NONBLOCK)
816 return -EAGAIN;
818 if (signal_pending(current))
819 return -ERESTARTSYS;
821 if (sd->need_wakeup) {
822 wakeup_pipe_writers(pipe);
823 sd->need_wakeup = false;
826 pipe_wait(pipe);
829 return 1;
831 EXPORT_SYMBOL(splice_from_pipe_next);
834 * splice_from_pipe_begin - start splicing from pipe
835 * @sd: information about the splice operation
837 * Description:
838 * This function should be called before a loop containing
839 * splice_from_pipe_next() and splice_from_pipe_feed() to
840 * initialize the necessary fields of @sd.
842 void splice_from_pipe_begin(struct splice_desc *sd)
844 sd->num_spliced = 0;
845 sd->need_wakeup = false;
847 EXPORT_SYMBOL(splice_from_pipe_begin);
850 * splice_from_pipe_end - finish splicing from pipe
851 * @pipe: pipe to splice from
852 * @sd: information about the splice operation
854 * Description:
855 * This function will wake up pipe writers if necessary. It should
856 * be called after a loop containing splice_from_pipe_next() and
857 * splice_from_pipe_feed().
859 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
861 if (sd->need_wakeup)
862 wakeup_pipe_writers(pipe);
864 EXPORT_SYMBOL(splice_from_pipe_end);
867 * __splice_from_pipe - splice data from a pipe to given actor
868 * @pipe: pipe to splice from
869 * @sd: information to @actor
870 * @actor: handler that splices the data
872 * Description:
873 * This function does little more than loop over the pipe and call
874 * @actor to do the actual moving of a single struct pipe_buffer to
875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
876 * pipe_to_user.
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880 splice_actor *actor)
882 int ret;
884 splice_from_pipe_begin(sd);
885 do {
886 ret = splice_from_pipe_next(pipe, sd);
887 if (ret > 0)
888 ret = splice_from_pipe_feed(pipe, sd, actor);
889 } while (ret > 0);
890 splice_from_pipe_end(pipe, sd);
892 return sd->num_spliced ? sd->num_spliced : ret;
894 EXPORT_SYMBOL(__splice_from_pipe);
897 * splice_from_pipe - splice data from a pipe to a file
898 * @pipe: pipe to splice from
899 * @out: file to splice to
900 * @ppos: position in @out
901 * @len: how many bytes to splice
902 * @flags: splice modifier flags
903 * @actor: handler that splices the data
905 * Description:
906 * See __splice_from_pipe. This function locks the pipe inode,
907 * otherwise it's identical to __splice_from_pipe().
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911 loff_t *ppos, size_t len, unsigned int flags,
912 splice_actor *actor)
914 ssize_t ret;
915 struct splice_desc sd = {
916 .total_len = len,
917 .flags = flags,
918 .pos = *ppos,
919 .u.file = out,
922 pipe_lock(pipe);
923 ret = __splice_from_pipe(pipe, &sd, actor);
924 pipe_unlock(pipe);
926 return ret;
930 * generic_file_splice_write - splice data from a pipe to a file
931 * @pipe: pipe info
932 * @out: file to write to
933 * @ppos: position in @out
934 * @len: number of bytes to splice
935 * @flags: splice modifier flags
937 * Description:
938 * Will either move or copy pages (determined by @flags options) from
939 * the given pipe inode to the given file.
942 ssize_t
943 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
944 loff_t *ppos, size_t len, unsigned int flags)
946 struct address_space *mapping = out->f_mapping;
947 struct inode *inode = mapping->host;
948 struct splice_desc sd = {
949 .total_len = len,
950 .flags = flags,
951 .pos = *ppos,
952 .u.file = out,
954 ssize_t ret;
956 pipe_lock(pipe);
958 splice_from_pipe_begin(&sd);
959 do {
960 ret = splice_from_pipe_next(pipe, &sd);
961 if (ret <= 0)
962 break;
964 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
965 ret = file_remove_suid(out);
966 if (!ret)
967 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
968 mutex_unlock(&inode->i_mutex);
969 } while (ret > 0);
970 splice_from_pipe_end(pipe, &sd);
972 pipe_unlock(pipe);
974 if (sd.num_spliced)
975 ret = sd.num_spliced;
977 if (ret > 0) {
978 unsigned long nr_pages;
980 *ppos += ret;
981 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
984 * If file or inode is SYNC and we actually wrote some data,
985 * sync it.
987 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
988 int err;
990 mutex_lock(&inode->i_mutex);
991 err = generic_osync_inode(inode, mapping,
992 OSYNC_METADATA|OSYNC_DATA);
993 mutex_unlock(&inode->i_mutex);
995 if (err)
996 ret = err;
998 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1001 return ret;
1004 EXPORT_SYMBOL(generic_file_splice_write);
1006 static struct pipe_buffer *nth_pipe_buf(struct pipe_inode_info *pipe, int n)
1008 return &pipe->bufs[(pipe->curbuf + n) % PIPE_BUFFERS];
1011 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1012 struct file *out, loff_t *ppos,
1013 size_t len, unsigned int flags)
1015 ssize_t ret = 0;
1016 ssize_t total_len = 0;
1017 int do_wakeup = 0;
1019 pipe_lock(pipe);
1020 while (len) {
1021 struct pipe_buffer *buf;
1022 void *data[PIPE_BUFFERS];
1023 struct iovec vec[PIPE_BUFFERS];
1024 unsigned int nr_pages = 0;
1025 unsigned int write_len = 0;
1026 unsigned int now_len = len;
1027 unsigned int this_len;
1028 int i;
1030 BUG_ON(pipe->nrbufs > PIPE_BUFFERS);
1031 for (i = 0; i < pipe->nrbufs && now_len; i++) {
1032 buf = nth_pipe_buf(pipe, i);
1034 ret = buf->ops->confirm(pipe, buf);
1035 if (ret)
1036 break;
1038 data[i] = buf->ops->map(pipe, buf, 0);
1039 this_len = min(buf->len, now_len);
1040 vec[i].iov_base = (void __user *) data[i] + buf->offset;
1041 vec[i].iov_len = this_len;
1042 now_len -= this_len;
1043 write_len += this_len;
1044 nr_pages++;
1047 if (nr_pages) {
1048 ret = kernel_writev(out, vec, nr_pages, ppos);
1049 if (ret == 0)
1050 ret = -EIO;
1051 if (ret > 0) {
1052 len -= ret;
1053 total_len += ret;
1057 for (i = 0; i < nr_pages; i++) {
1058 buf = nth_pipe_buf(pipe, i);
1059 buf->ops->unmap(pipe, buf, data[i]);
1061 if (ret > 0) {
1062 this_len = min_t(unsigned, vec[i].iov_len, ret);
1063 buf->offset += this_len;
1064 buf->len -= this_len;
1065 ret -= this_len;
1069 if (ret < 0)
1070 break;
1072 while (pipe->nrbufs) {
1073 const struct pipe_buf_operations *ops;
1075 buf = nth_pipe_buf(pipe, 0);
1076 if (buf->len)
1077 break;
1079 ops = buf->ops;
1080 buf->ops = NULL;
1081 ops->release(pipe, buf);
1082 pipe->curbuf = (pipe->curbuf + 1) % PIPE_BUFFERS;
1083 pipe->nrbufs--;
1084 if (pipe->inode)
1085 do_wakeup = 1;
1088 if (pipe->nrbufs)
1089 continue;
1090 if (!pipe->writers)
1091 break;
1092 if (!pipe->waiting_writers) {
1093 if (total_len)
1094 break;
1097 if (flags & SPLICE_F_NONBLOCK) {
1098 ret = -EAGAIN;
1099 break;
1102 if (signal_pending(current)) {
1103 ret = -ERESTARTSYS;
1104 break;
1107 if (do_wakeup) {
1108 wakeup_pipe_writers(pipe);
1109 do_wakeup = 0;
1112 pipe_wait(pipe);
1114 pipe_unlock(pipe);
1116 if (do_wakeup)
1117 wakeup_pipe_writers(pipe);
1119 return total_len ? total_len : ret;
1123 * generic_splice_sendpage - splice data from a pipe to a socket
1124 * @pipe: pipe to splice from
1125 * @out: socket to write to
1126 * @ppos: position in @out
1127 * @len: number of bytes to splice
1128 * @flags: splice modifier flags
1130 * Description:
1131 * Will send @len bytes from the pipe to a network socket. No data copying
1132 * is involved.
1135 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1136 loff_t *ppos, size_t len, unsigned int flags)
1138 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1141 EXPORT_SYMBOL(generic_splice_sendpage);
1144 * Attempt to initiate a splice from pipe to file.
1146 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1147 loff_t *ppos, size_t len, unsigned int flags)
1149 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1150 loff_t *, size_t, unsigned int);
1151 int ret;
1153 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1154 return -EBADF;
1156 if (unlikely(out->f_flags & O_APPEND))
1157 return -EINVAL;
1159 ret = rw_verify_area(WRITE, out, ppos, len);
1160 if (unlikely(ret < 0))
1161 return ret;
1163 splice_write = out->f_op->splice_write;
1164 if (!splice_write)
1165 splice_write = default_file_splice_write;
1167 return splice_write(pipe, out, ppos, len, flags);
1171 * Attempt to initiate a splice from a file to a pipe.
1173 static long do_splice_to(struct file *in, loff_t *ppos,
1174 struct pipe_inode_info *pipe, size_t len,
1175 unsigned int flags)
1177 ssize_t (*splice_read)(struct file *, loff_t *,
1178 struct pipe_inode_info *, size_t, unsigned int);
1179 int ret;
1181 if (unlikely(!(in->f_mode & FMODE_READ)))
1182 return -EBADF;
1184 ret = rw_verify_area(READ, in, ppos, len);
1185 if (unlikely(ret < 0))
1186 return ret;
1188 splice_read = in->f_op->splice_read;
1189 if (!splice_read)
1190 splice_read = default_file_splice_read;
1192 return splice_read(in, ppos, pipe, len, flags);
1196 * splice_direct_to_actor - splices data directly between two non-pipes
1197 * @in: file to splice from
1198 * @sd: actor information on where to splice to
1199 * @actor: handles the data splicing
1201 * Description:
1202 * This is a special case helper to splice directly between two
1203 * points, without requiring an explicit pipe. Internally an allocated
1204 * pipe is cached in the process, and reused during the lifetime of
1205 * that process.
1208 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1209 splice_direct_actor *actor)
1211 struct pipe_inode_info *pipe;
1212 long ret, bytes;
1213 umode_t i_mode;
1214 size_t len;
1215 int i, flags;
1218 * We require the input being a regular file, as we don't want to
1219 * randomly drop data for eg socket -> socket splicing. Use the
1220 * piped splicing for that!
1222 i_mode = in->f_path.dentry->d_inode->i_mode;
1223 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1224 return -EINVAL;
1227 * neither in nor out is a pipe, setup an internal pipe attached to
1228 * 'out' and transfer the wanted data from 'in' to 'out' through that
1230 pipe = current->splice_pipe;
1231 if (unlikely(!pipe)) {
1232 pipe = alloc_pipe_info(NULL);
1233 if (!pipe)
1234 return -ENOMEM;
1237 * We don't have an immediate reader, but we'll read the stuff
1238 * out of the pipe right after the splice_to_pipe(). So set
1239 * PIPE_READERS appropriately.
1241 pipe->readers = 1;
1243 current->splice_pipe = pipe;
1247 * Do the splice.
1249 ret = 0;
1250 bytes = 0;
1251 len = sd->total_len;
1252 flags = sd->flags;
1255 * Don't block on output, we have to drain the direct pipe.
1257 sd->flags &= ~SPLICE_F_NONBLOCK;
1259 while (len) {
1260 size_t read_len;
1261 loff_t pos = sd->pos, prev_pos = pos;
1263 ret = do_splice_to(in, &pos, pipe, len, flags);
1264 if (unlikely(ret <= 0))
1265 goto out_release;
1267 read_len = ret;
1268 sd->total_len = read_len;
1271 * NOTE: nonblocking mode only applies to the input. We
1272 * must not do the output in nonblocking mode as then we
1273 * could get stuck data in the internal pipe:
1275 ret = actor(pipe, sd);
1276 if (unlikely(ret <= 0)) {
1277 sd->pos = prev_pos;
1278 goto out_release;
1281 bytes += ret;
1282 len -= ret;
1283 sd->pos = pos;
1285 if (ret < read_len) {
1286 sd->pos = prev_pos + ret;
1287 goto out_release;
1291 done:
1292 pipe->nrbufs = pipe->curbuf = 0;
1293 file_accessed(in);
1294 return bytes;
1296 out_release:
1298 * If we did an incomplete transfer we must release
1299 * the pipe buffers in question:
1301 for (i = 0; i < PIPE_BUFFERS; i++) {
1302 struct pipe_buffer *buf = pipe->bufs + i;
1304 if (buf->ops) {
1305 buf->ops->release(pipe, buf);
1306 buf->ops = NULL;
1310 if (!bytes)
1311 bytes = ret;
1313 goto done;
1315 EXPORT_SYMBOL(splice_direct_to_actor);
1317 static int direct_splice_actor(struct pipe_inode_info *pipe,
1318 struct splice_desc *sd)
1320 struct file *file = sd->u.file;
1322 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1326 * do_splice_direct - splices data directly between two files
1327 * @in: file to splice from
1328 * @ppos: input file offset
1329 * @out: file to splice to
1330 * @len: number of bytes to splice
1331 * @flags: splice modifier flags
1333 * Description:
1334 * For use by do_sendfile(). splice can easily emulate sendfile, but
1335 * doing it in the application would incur an extra system call
1336 * (splice in + splice out, as compared to just sendfile()). So this helper
1337 * can splice directly through a process-private pipe.
1340 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1341 size_t len, unsigned int flags)
1343 struct splice_desc sd = {
1344 .len = len,
1345 .total_len = len,
1346 .flags = flags,
1347 .pos = *ppos,
1348 .u.file = out,
1350 long ret;
1352 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1353 if (ret > 0)
1354 *ppos = sd.pos;
1356 return ret;
1359 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1360 struct pipe_inode_info *opipe,
1361 size_t len, unsigned int flags);
1363 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1364 * location, so checking ->i_pipe is not enough to verify that this is a
1365 * pipe.
1367 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1369 if (S_ISFIFO(inode->i_mode))
1370 return inode->i_pipe;
1372 return NULL;
1376 * Determine where to splice to/from.
1378 static long do_splice(struct file *in, loff_t __user *off_in,
1379 struct file *out, loff_t __user *off_out,
1380 size_t len, unsigned int flags)
1382 struct pipe_inode_info *ipipe;
1383 struct pipe_inode_info *opipe;
1384 loff_t offset, *off;
1385 long ret;
1387 ipipe = pipe_info(in->f_path.dentry->d_inode);
1388 opipe = pipe_info(out->f_path.dentry->d_inode);
1390 if (ipipe && opipe) {
1391 if (off_in || off_out)
1392 return -ESPIPE;
1394 if (!(in->f_mode & FMODE_READ))
1395 return -EBADF;
1397 if (!(out->f_mode & FMODE_WRITE))
1398 return -EBADF;
1400 /* Splicing to self would be fun, but... */
1401 if (ipipe == opipe)
1402 return -EINVAL;
1404 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1407 if (ipipe) {
1408 if (off_in)
1409 return -ESPIPE;
1410 if (off_out) {
1411 if (out->f_op->llseek == no_llseek)
1412 return -EINVAL;
1413 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1414 return -EFAULT;
1415 off = &offset;
1416 } else
1417 off = &out->f_pos;
1419 ret = do_splice_from(ipipe, out, off, len, flags);
1421 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1422 ret = -EFAULT;
1424 return ret;
1427 if (opipe) {
1428 if (off_out)
1429 return -ESPIPE;
1430 if (off_in) {
1431 if (in->f_op->llseek == no_llseek)
1432 return -EINVAL;
1433 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1434 return -EFAULT;
1435 off = &offset;
1436 } else
1437 off = &in->f_pos;
1439 ret = do_splice_to(in, off, opipe, len, flags);
1441 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1442 ret = -EFAULT;
1444 return ret;
1447 return -EINVAL;
1451 * Map an iov into an array of pages and offset/length tupples. With the
1452 * partial_page structure, we can map several non-contiguous ranges into
1453 * our ones pages[] map instead of splitting that operation into pieces.
1454 * Could easily be exported as a generic helper for other users, in which
1455 * case one would probably want to add a 'max_nr_pages' parameter as well.
1457 static int get_iovec_page_array(const struct iovec __user *iov,
1458 unsigned int nr_vecs, struct page **pages,
1459 struct partial_page *partial, int aligned)
1461 int buffers = 0, error = 0;
1463 while (nr_vecs) {
1464 unsigned long off, npages;
1465 struct iovec entry;
1466 void __user *base;
1467 size_t len;
1468 int i;
1470 error = -EFAULT;
1471 if (copy_from_user(&entry, iov, sizeof(entry)))
1472 break;
1474 base = entry.iov_base;
1475 len = entry.iov_len;
1478 * Sanity check this iovec. 0 read succeeds.
1480 error = 0;
1481 if (unlikely(!len))
1482 break;
1483 error = -EFAULT;
1484 if (!access_ok(VERIFY_READ, base, len))
1485 break;
1488 * Get this base offset and number of pages, then map
1489 * in the user pages.
1491 off = (unsigned long) base & ~PAGE_MASK;
1494 * If asked for alignment, the offset must be zero and the
1495 * length a multiple of the PAGE_SIZE.
1497 error = -EINVAL;
1498 if (aligned && (off || len & ~PAGE_MASK))
1499 break;
1501 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 if (npages > PIPE_BUFFERS - buffers)
1503 npages = PIPE_BUFFERS - buffers;
1505 error = get_user_pages_fast((unsigned long)base, npages,
1506 0, &pages[buffers]);
1508 if (unlikely(error <= 0))
1509 break;
1512 * Fill this contiguous range into the partial page map.
1514 for (i = 0; i < error; i++) {
1515 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1517 partial[buffers].offset = off;
1518 partial[buffers].len = plen;
1520 off = 0;
1521 len -= plen;
1522 buffers++;
1526 * We didn't complete this iov, stop here since it probably
1527 * means we have to move some of this into a pipe to
1528 * be able to continue.
1530 if (len)
1531 break;
1534 * Don't continue if we mapped fewer pages than we asked for,
1535 * or if we mapped the max number of pages that we have
1536 * room for.
1538 if (error < npages || buffers == PIPE_BUFFERS)
1539 break;
1541 nr_vecs--;
1542 iov++;
1545 if (buffers)
1546 return buffers;
1548 return error;
1551 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1552 struct splice_desc *sd)
1554 char *src;
1555 int ret;
1557 ret = buf->ops->confirm(pipe, buf);
1558 if (unlikely(ret))
1559 return ret;
1562 * See if we can use the atomic maps, by prefaulting in the
1563 * pages and doing an atomic copy
1565 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1566 src = buf->ops->map(pipe, buf, 1);
1567 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1568 sd->len);
1569 buf->ops->unmap(pipe, buf, src);
1570 if (!ret) {
1571 ret = sd->len;
1572 goto out;
1577 * No dice, use slow non-atomic map and copy
1579 src = buf->ops->map(pipe, buf, 0);
1581 ret = sd->len;
1582 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1583 ret = -EFAULT;
1585 buf->ops->unmap(pipe, buf, src);
1586 out:
1587 if (ret > 0)
1588 sd->u.userptr += ret;
1589 return ret;
1593 * For lack of a better implementation, implement vmsplice() to userspace
1594 * as a simple copy of the pipes pages to the user iov.
1596 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1597 unsigned long nr_segs, unsigned int flags)
1599 struct pipe_inode_info *pipe;
1600 struct splice_desc sd;
1601 ssize_t size;
1602 int error;
1603 long ret;
1605 pipe = pipe_info(file->f_path.dentry->d_inode);
1606 if (!pipe)
1607 return -EBADF;
1609 pipe_lock(pipe);
1611 error = ret = 0;
1612 while (nr_segs) {
1613 void __user *base;
1614 size_t len;
1617 * Get user address base and length for this iovec.
1619 error = get_user(base, &iov->iov_base);
1620 if (unlikely(error))
1621 break;
1622 error = get_user(len, &iov->iov_len);
1623 if (unlikely(error))
1624 break;
1627 * Sanity check this iovec. 0 read succeeds.
1629 if (unlikely(!len))
1630 break;
1631 if (unlikely(!base)) {
1632 error = -EFAULT;
1633 break;
1636 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1637 error = -EFAULT;
1638 break;
1641 sd.len = 0;
1642 sd.total_len = len;
1643 sd.flags = flags;
1644 sd.u.userptr = base;
1645 sd.pos = 0;
1647 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1648 if (size < 0) {
1649 if (!ret)
1650 ret = size;
1652 break;
1655 ret += size;
1657 if (size < len)
1658 break;
1660 nr_segs--;
1661 iov++;
1664 pipe_unlock(pipe);
1666 if (!ret)
1667 ret = error;
1669 return ret;
1673 * vmsplice splices a user address range into a pipe. It can be thought of
1674 * as splice-from-memory, where the regular splice is splice-from-file (or
1675 * to file). In both cases the output is a pipe, naturally.
1677 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1678 unsigned long nr_segs, unsigned int flags)
1680 struct pipe_inode_info *pipe;
1681 struct page *pages[PIPE_BUFFERS];
1682 struct partial_page partial[PIPE_BUFFERS];
1683 struct splice_pipe_desc spd = {
1684 .pages = pages,
1685 .partial = partial,
1686 .flags = flags,
1687 .ops = &user_page_pipe_buf_ops,
1688 .spd_release = spd_release_page,
1691 pipe = pipe_info(file->f_path.dentry->d_inode);
1692 if (!pipe)
1693 return -EBADF;
1695 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1696 flags & SPLICE_F_GIFT);
1697 if (spd.nr_pages <= 0)
1698 return spd.nr_pages;
1700 return splice_to_pipe(pipe, &spd);
1704 * Note that vmsplice only really supports true splicing _from_ user memory
1705 * to a pipe, not the other way around. Splicing from user memory is a simple
1706 * operation that can be supported without any funky alignment restrictions
1707 * or nasty vm tricks. We simply map in the user memory and fill them into
1708 * a pipe. The reverse isn't quite as easy, though. There are two possible
1709 * solutions for that:
1711 * - memcpy() the data internally, at which point we might as well just
1712 * do a regular read() on the buffer anyway.
1713 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1714 * has restriction limitations on both ends of the pipe).
1716 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1719 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1720 unsigned long, nr_segs, unsigned int, flags)
1722 struct file *file;
1723 long error;
1724 int fput;
1726 if (unlikely(nr_segs > UIO_MAXIOV))
1727 return -EINVAL;
1728 else if (unlikely(!nr_segs))
1729 return 0;
1731 error = -EBADF;
1732 file = fget_light(fd, &fput);
1733 if (file) {
1734 if (file->f_mode & FMODE_WRITE)
1735 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1736 else if (file->f_mode & FMODE_READ)
1737 error = vmsplice_to_user(file, iov, nr_segs, flags);
1739 fput_light(file, fput);
1742 return error;
1745 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1746 int, fd_out, loff_t __user *, off_out,
1747 size_t, len, unsigned int, flags)
1749 long error;
1750 struct file *in, *out;
1751 int fput_in, fput_out;
1753 if (unlikely(!len))
1754 return 0;
1756 error = -EBADF;
1757 in = fget_light(fd_in, &fput_in);
1758 if (in) {
1759 if (in->f_mode & FMODE_READ) {
1760 out = fget_light(fd_out, &fput_out);
1761 if (out) {
1762 if (out->f_mode & FMODE_WRITE)
1763 error = do_splice(in, off_in,
1764 out, off_out,
1765 len, flags);
1766 fput_light(out, fput_out);
1770 fput_light(in, fput_in);
1773 return error;
1777 * Make sure there's data to read. Wait for input if we can, otherwise
1778 * return an appropriate error.
1780 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1782 int ret;
1785 * Check ->nrbufs without the inode lock first. This function
1786 * is speculative anyways, so missing one is ok.
1788 if (pipe->nrbufs)
1789 return 0;
1791 ret = 0;
1792 pipe_lock(pipe);
1794 while (!pipe->nrbufs) {
1795 if (signal_pending(current)) {
1796 ret = -ERESTARTSYS;
1797 break;
1799 if (!pipe->writers)
1800 break;
1801 if (!pipe->waiting_writers) {
1802 if (flags & SPLICE_F_NONBLOCK) {
1803 ret = -EAGAIN;
1804 break;
1807 pipe_wait(pipe);
1810 pipe_unlock(pipe);
1811 return ret;
1815 * Make sure there's writeable room. Wait for room if we can, otherwise
1816 * return an appropriate error.
1818 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1820 int ret;
1823 * Check ->nrbufs without the inode lock first. This function
1824 * is speculative anyways, so missing one is ok.
1826 if (pipe->nrbufs < PIPE_BUFFERS)
1827 return 0;
1829 ret = 0;
1830 pipe_lock(pipe);
1832 while (pipe->nrbufs >= PIPE_BUFFERS) {
1833 if (!pipe->readers) {
1834 send_sig(SIGPIPE, current, 0);
1835 ret = -EPIPE;
1836 break;
1838 if (flags & SPLICE_F_NONBLOCK) {
1839 ret = -EAGAIN;
1840 break;
1842 if (signal_pending(current)) {
1843 ret = -ERESTARTSYS;
1844 break;
1846 pipe->waiting_writers++;
1847 pipe_wait(pipe);
1848 pipe->waiting_writers--;
1851 pipe_unlock(pipe);
1852 return ret;
1856 * Splice contents of ipipe to opipe.
1858 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1859 struct pipe_inode_info *opipe,
1860 size_t len, unsigned int flags)
1862 struct pipe_buffer *ibuf, *obuf;
1863 int ret = 0, nbuf;
1864 bool input_wakeup = false;
1867 retry:
1868 ret = ipipe_prep(ipipe, flags);
1869 if (ret)
1870 return ret;
1872 ret = opipe_prep(opipe, flags);
1873 if (ret)
1874 return ret;
1877 * Potential ABBA deadlock, work around it by ordering lock
1878 * grabbing by pipe info address. Otherwise two different processes
1879 * could deadlock (one doing tee from A -> B, the other from B -> A).
1881 pipe_double_lock(ipipe, opipe);
1883 do {
1884 if (!opipe->readers) {
1885 send_sig(SIGPIPE, current, 0);
1886 if (!ret)
1887 ret = -EPIPE;
1888 break;
1891 if (!ipipe->nrbufs && !ipipe->writers)
1892 break;
1895 * Cannot make any progress, because either the input
1896 * pipe is empty or the output pipe is full.
1898 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1899 /* Already processed some buffers, break */
1900 if (ret)
1901 break;
1903 if (flags & SPLICE_F_NONBLOCK) {
1904 ret = -EAGAIN;
1905 break;
1909 * We raced with another reader/writer and haven't
1910 * managed to process any buffers. A zero return
1911 * value means EOF, so retry instead.
1913 pipe_unlock(ipipe);
1914 pipe_unlock(opipe);
1915 goto retry;
1918 ibuf = ipipe->bufs + ipipe->curbuf;
1919 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1920 obuf = opipe->bufs + nbuf;
1922 if (len >= ibuf->len) {
1924 * Simply move the whole buffer from ipipe to opipe
1926 *obuf = *ibuf;
1927 ibuf->ops = NULL;
1928 opipe->nrbufs++;
1929 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1930 ipipe->nrbufs--;
1931 input_wakeup = true;
1932 } else {
1934 * Get a reference to this pipe buffer,
1935 * so we can copy the contents over.
1937 ibuf->ops->get(ipipe, ibuf);
1938 *obuf = *ibuf;
1941 * Don't inherit the gift flag, we need to
1942 * prevent multiple steals of this page.
1944 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1946 obuf->len = len;
1947 opipe->nrbufs++;
1948 ibuf->offset += obuf->len;
1949 ibuf->len -= obuf->len;
1951 ret += obuf->len;
1952 len -= obuf->len;
1953 } while (len);
1955 pipe_unlock(ipipe);
1956 pipe_unlock(opipe);
1959 * If we put data in the output pipe, wakeup any potential readers.
1961 if (ret > 0) {
1962 smp_mb();
1963 if (waitqueue_active(&opipe->wait))
1964 wake_up_interruptible(&opipe->wait);
1965 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1967 if (input_wakeup)
1968 wakeup_pipe_writers(ipipe);
1970 return ret;
1974 * Link contents of ipipe to opipe.
1976 static int link_pipe(struct pipe_inode_info *ipipe,
1977 struct pipe_inode_info *opipe,
1978 size_t len, unsigned int flags)
1980 struct pipe_buffer *ibuf, *obuf;
1981 int ret = 0, i = 0, nbuf;
1984 * Potential ABBA deadlock, work around it by ordering lock
1985 * grabbing by pipe info address. Otherwise two different processes
1986 * could deadlock (one doing tee from A -> B, the other from B -> A).
1988 pipe_double_lock(ipipe, opipe);
1990 do {
1991 if (!opipe->readers) {
1992 send_sig(SIGPIPE, current, 0);
1993 if (!ret)
1994 ret = -EPIPE;
1995 break;
1999 * If we have iterated all input buffers or ran out of
2000 * output room, break.
2002 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
2003 break;
2005 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
2006 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
2009 * Get a reference to this pipe buffer,
2010 * so we can copy the contents over.
2012 ibuf->ops->get(ipipe, ibuf);
2014 obuf = opipe->bufs + nbuf;
2015 *obuf = *ibuf;
2018 * Don't inherit the gift flag, we need to
2019 * prevent multiple steals of this page.
2021 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2023 if (obuf->len > len)
2024 obuf->len = len;
2026 opipe->nrbufs++;
2027 ret += obuf->len;
2028 len -= obuf->len;
2029 i++;
2030 } while (len);
2033 * return EAGAIN if we have the potential of some data in the
2034 * future, otherwise just return 0
2036 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2037 ret = -EAGAIN;
2039 pipe_unlock(ipipe);
2040 pipe_unlock(opipe);
2043 * If we put data in the output pipe, wakeup any potential readers.
2045 if (ret > 0) {
2046 smp_mb();
2047 if (waitqueue_active(&opipe->wait))
2048 wake_up_interruptible(&opipe->wait);
2049 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
2052 return ret;
2056 * This is a tee(1) implementation that works on pipes. It doesn't copy
2057 * any data, it simply references the 'in' pages on the 'out' pipe.
2058 * The 'flags' used are the SPLICE_F_* variants, currently the only
2059 * applicable one is SPLICE_F_NONBLOCK.
2061 static long do_tee(struct file *in, struct file *out, size_t len,
2062 unsigned int flags)
2064 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
2065 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
2066 int ret = -EINVAL;
2069 * Duplicate the contents of ipipe to opipe without actually
2070 * copying the data.
2072 if (ipipe && opipe && ipipe != opipe) {
2074 * Keep going, unless we encounter an error. The ipipe/opipe
2075 * ordering doesn't really matter.
2077 ret = ipipe_prep(ipipe, flags);
2078 if (!ret) {
2079 ret = opipe_prep(opipe, flags);
2080 if (!ret)
2081 ret = link_pipe(ipipe, opipe, len, flags);
2085 return ret;
2088 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2090 struct file *in;
2091 int error, fput_in;
2093 if (unlikely(!len))
2094 return 0;
2096 error = -EBADF;
2097 in = fget_light(fdin, &fput_in);
2098 if (in) {
2099 if (in->f_mode & FMODE_READ) {
2100 int fput_out;
2101 struct file *out = fget_light(fdout, &fput_out);
2103 if (out) {
2104 if (out->f_mode & FMODE_WRITE)
2105 error = do_tee(in, out, len, flags);
2106 fput_light(out, fput_out);
2109 fput_light(in, fput_in);
2112 return error;