fs: handle SEEK_HOLE/SEEK_DATA properly in all fs's that define their own llseek
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / file.c
blob2c1705b6acd7c6bb92d397a43a6d37d98825702d
1 /*
2 * linux/fs/nfs/file.c
4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/nfs_fs.h>
25 #include <linux/nfs_mount.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/aio.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
32 #include <asm/uaccess.h>
33 #include <asm/system.h>
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
41 #define NFSDBG_FACILITY NFSDBG_FILE
43 static int nfs_file_open(struct inode *, struct file *);
44 static int nfs_file_release(struct inode *, struct file *);
45 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
46 static int nfs_file_mmap(struct file *, struct vm_area_struct *);
47 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
48 struct pipe_inode_info *pipe,
49 size_t count, unsigned int flags);
50 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
51 unsigned long nr_segs, loff_t pos);
52 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
53 struct file *filp, loff_t *ppos,
54 size_t count, unsigned int flags);
55 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
56 unsigned long nr_segs, loff_t pos);
57 static int nfs_file_flush(struct file *, fl_owner_t id);
58 static int nfs_file_fsync(struct file *, int datasync);
59 static int nfs_check_flags(int flags);
60 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
61 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
62 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
64 static const struct vm_operations_struct nfs_file_vm_ops;
66 const struct file_operations nfs_file_operations = {
67 .llseek = nfs_file_llseek,
68 .read = do_sync_read,
69 .write = do_sync_write,
70 .aio_read = nfs_file_read,
71 .aio_write = nfs_file_write,
72 .mmap = nfs_file_mmap,
73 .open = nfs_file_open,
74 .flush = nfs_file_flush,
75 .release = nfs_file_release,
76 .fsync = nfs_file_fsync,
77 .lock = nfs_lock,
78 .flock = nfs_flock,
79 .splice_read = nfs_file_splice_read,
80 .splice_write = nfs_file_splice_write,
81 .check_flags = nfs_check_flags,
82 .setlease = nfs_setlease,
85 const struct inode_operations nfs_file_inode_operations = {
86 .permission = nfs_permission,
87 .getattr = nfs_getattr,
88 .setattr = nfs_setattr,
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_file_inode_operations = {
93 .permission = nfs_permission,
94 .getattr = nfs_getattr,
95 .setattr = nfs_setattr,
96 .listxattr = nfs3_listxattr,
97 .getxattr = nfs3_getxattr,
98 .setxattr = nfs3_setxattr,
99 .removexattr = nfs3_removexattr,
101 #endif /* CONFIG_NFS_v3 */
103 /* Hack for future NFS swap support */
104 #ifndef IS_SWAPFILE
105 # define IS_SWAPFILE(inode) (0)
106 #endif
108 static int nfs_check_flags(int flags)
110 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
111 return -EINVAL;
113 return 0;
117 * Open file
119 static int
120 nfs_file_open(struct inode *inode, struct file *filp)
122 int res;
124 dprintk("NFS: open file(%s/%s)\n",
125 filp->f_path.dentry->d_parent->d_name.name,
126 filp->f_path.dentry->d_name.name);
128 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129 res = nfs_check_flags(filp->f_flags);
130 if (res)
131 return res;
133 res = nfs_open(inode, filp);
134 return res;
137 static int
138 nfs_file_release(struct inode *inode, struct file *filp)
140 struct dentry *dentry = filp->f_path.dentry;
142 dprintk("NFS: release(%s/%s)\n",
143 dentry->d_parent->d_name.name,
144 dentry->d_name.name);
146 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
147 return nfs_release(inode, filp);
151 * nfs_revalidate_size - Revalidate the file size
152 * @inode - pointer to inode struct
153 * @file - pointer to struct file
155 * Revalidates the file length. This is basically a wrapper around
156 * nfs_revalidate_inode() that takes into account the fact that we may
157 * have cached writes (in which case we don't care about the server's
158 * idea of what the file length is), or O_DIRECT (in which case we
159 * shouldn't trust the cache).
161 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
163 struct nfs_server *server = NFS_SERVER(inode);
164 struct nfs_inode *nfsi = NFS_I(inode);
166 if (nfs_have_delegated_attributes(inode))
167 goto out_noreval;
169 if (filp->f_flags & O_DIRECT)
170 goto force_reval;
171 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
172 goto force_reval;
173 if (nfs_attribute_timeout(inode))
174 goto force_reval;
175 out_noreval:
176 return 0;
177 force_reval:
178 return __nfs_revalidate_inode(server, inode);
181 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
183 loff_t loff;
185 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
186 filp->f_path.dentry->d_parent->d_name.name,
187 filp->f_path.dentry->d_name.name,
188 offset, origin);
191 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
192 * the cached file length
194 if (origin != SEEK_SET || origin != SEEK_CUR) {
195 struct inode *inode = filp->f_mapping->host;
197 int retval = nfs_revalidate_file_size(inode, filp);
198 if (retval < 0)
199 return (loff_t)retval;
201 spin_lock(&inode->i_lock);
202 loff = generic_file_llseek_unlocked(filp, offset, origin);
203 spin_unlock(&inode->i_lock);
204 } else
205 loff = generic_file_llseek_unlocked(filp, offset, origin);
206 return loff;
210 * Flush all dirty pages, and check for write errors.
212 static int
213 nfs_file_flush(struct file *file, fl_owner_t id)
215 struct dentry *dentry = file->f_path.dentry;
216 struct inode *inode = dentry->d_inode;
218 dprintk("NFS: flush(%s/%s)\n",
219 dentry->d_parent->d_name.name,
220 dentry->d_name.name);
222 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
223 if ((file->f_mode & FMODE_WRITE) == 0)
224 return 0;
226 /* Flush writes to the server and return any errors */
227 return vfs_fsync(file, 0);
230 static ssize_t
231 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
232 unsigned long nr_segs, loff_t pos)
234 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
235 struct inode * inode = dentry->d_inode;
236 ssize_t result;
237 size_t count = iov_length(iov, nr_segs);
239 if (iocb->ki_filp->f_flags & O_DIRECT)
240 return nfs_file_direct_read(iocb, iov, nr_segs, pos);
242 dprintk("NFS: read(%s/%s, %lu@%lu)\n",
243 dentry->d_parent->d_name.name, dentry->d_name.name,
244 (unsigned long) count, (unsigned long) pos);
246 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
247 if (!result) {
248 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
249 if (result > 0)
250 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
252 return result;
255 static ssize_t
256 nfs_file_splice_read(struct file *filp, loff_t *ppos,
257 struct pipe_inode_info *pipe, size_t count,
258 unsigned int flags)
260 struct dentry *dentry = filp->f_path.dentry;
261 struct inode *inode = dentry->d_inode;
262 ssize_t res;
264 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
265 dentry->d_parent->d_name.name, dentry->d_name.name,
266 (unsigned long) count, (unsigned long long) *ppos);
268 res = nfs_revalidate_mapping(inode, filp->f_mapping);
269 if (!res) {
270 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
271 if (res > 0)
272 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
274 return res;
277 static int
278 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
280 struct dentry *dentry = file->f_path.dentry;
281 struct inode *inode = dentry->d_inode;
282 int status;
284 dprintk("NFS: mmap(%s/%s)\n",
285 dentry->d_parent->d_name.name, dentry->d_name.name);
287 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
288 * so we call that before revalidating the mapping
290 status = generic_file_mmap(file, vma);
291 if (!status) {
292 vma->vm_ops = &nfs_file_vm_ops;
293 status = nfs_revalidate_mapping(inode, file->f_mapping);
295 return status;
299 * Flush any dirty pages for this process, and check for write errors.
300 * The return status from this call provides a reliable indication of
301 * whether any write errors occurred for this process.
303 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
304 * disk, but it retrieves and clears ctx->error after synching, despite
305 * the two being set at the same time in nfs_context_set_write_error().
306 * This is because the former is used to notify the _next_ call to
307 * nfs_file_write() that a write error occurred, and hence cause it to
308 * fall back to doing a synchronous write.
310 static int
311 nfs_file_fsync(struct file *file, int datasync)
313 struct dentry *dentry = file->f_path.dentry;
314 struct nfs_open_context *ctx = nfs_file_open_context(file);
315 struct inode *inode = dentry->d_inode;
316 int have_error, status;
317 int ret = 0;
320 dprintk("NFS: fsync file(%s/%s) datasync %d\n",
321 dentry->d_parent->d_name.name, dentry->d_name.name,
322 datasync);
324 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
325 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
326 status = nfs_commit_inode(inode, FLUSH_SYNC);
327 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
328 if (have_error)
329 ret = xchg(&ctx->error, 0);
330 if (!ret && status < 0)
331 ret = status;
332 if (!ret && !datasync)
333 /* application has asked for meta-data sync */
334 ret = pnfs_layoutcommit_inode(inode, true);
335 return ret;
339 * Decide whether a read/modify/write cycle may be more efficient
340 * then a modify/write/read cycle when writing to a page in the
341 * page cache.
343 * The modify/write/read cycle may occur if a page is read before
344 * being completely filled by the writer. In this situation, the
345 * page must be completely written to stable storage on the server
346 * before it can be refilled by reading in the page from the server.
347 * This can lead to expensive, small, FILE_SYNC mode writes being
348 * done.
350 * It may be more efficient to read the page first if the file is
351 * open for reading in addition to writing, the page is not marked
352 * as Uptodate, it is not dirty or waiting to be committed,
353 * indicating that it was previously allocated and then modified,
354 * that there were valid bytes of data in that range of the file,
355 * and that the new data won't completely replace the old data in
356 * that range of the file.
358 static int nfs_want_read_modify_write(struct file *file, struct page *page,
359 loff_t pos, unsigned len)
361 unsigned int pglen = nfs_page_length(page);
362 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
363 unsigned int end = offset + len;
365 if ((file->f_mode & FMODE_READ) && /* open for read? */
366 !PageUptodate(page) && /* Uptodate? */
367 !PagePrivate(page) && /* i/o request already? */
368 pglen && /* valid bytes of file? */
369 (end < pglen || offset)) /* replace all valid bytes? */
370 return 1;
371 return 0;
375 * This does the "real" work of the write. We must allocate and lock the
376 * page to be sent back to the generic routine, which then copies the
377 * data from user space.
379 * If the writer ends up delaying the write, the writer needs to
380 * increment the page use counts until he is done with the page.
382 static int nfs_write_begin(struct file *file, struct address_space *mapping,
383 loff_t pos, unsigned len, unsigned flags,
384 struct page **pagep, void **fsdata)
386 int ret;
387 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
388 struct page *page;
389 int once_thru = 0;
391 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
392 file->f_path.dentry->d_parent->d_name.name,
393 file->f_path.dentry->d_name.name,
394 mapping->host->i_ino, len, (long long) pos);
396 start:
398 * Prevent starvation issues if someone is doing a consistency
399 * sync-to-disk
401 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
402 nfs_wait_bit_killable, TASK_KILLABLE);
403 if (ret)
404 return ret;
406 page = grab_cache_page_write_begin(mapping, index, flags);
407 if (!page)
408 return -ENOMEM;
409 *pagep = page;
411 ret = nfs_flush_incompatible(file, page);
412 if (ret) {
413 unlock_page(page);
414 page_cache_release(page);
415 } else if (!once_thru &&
416 nfs_want_read_modify_write(file, page, pos, len)) {
417 once_thru = 1;
418 ret = nfs_readpage(file, page);
419 page_cache_release(page);
420 if (!ret)
421 goto start;
423 return ret;
426 static int nfs_write_end(struct file *file, struct address_space *mapping,
427 loff_t pos, unsigned len, unsigned copied,
428 struct page *page, void *fsdata)
430 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
431 int status;
433 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
434 file->f_path.dentry->d_parent->d_name.name,
435 file->f_path.dentry->d_name.name,
436 mapping->host->i_ino, len, (long long) pos);
439 * Zero any uninitialised parts of the page, and then mark the page
440 * as up to date if it turns out that we're extending the file.
442 if (!PageUptodate(page)) {
443 unsigned pglen = nfs_page_length(page);
444 unsigned end = offset + len;
446 if (pglen == 0) {
447 zero_user_segments(page, 0, offset,
448 end, PAGE_CACHE_SIZE);
449 SetPageUptodate(page);
450 } else if (end >= pglen) {
451 zero_user_segment(page, end, PAGE_CACHE_SIZE);
452 if (offset == 0)
453 SetPageUptodate(page);
454 } else
455 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
458 status = nfs_updatepage(file, page, offset, copied);
460 unlock_page(page);
461 page_cache_release(page);
463 if (status < 0)
464 return status;
465 return copied;
469 * Partially or wholly invalidate a page
470 * - Release the private state associated with a page if undergoing complete
471 * page invalidation
472 * - Called if either PG_private or PG_fscache is set on the page
473 * - Caller holds page lock
475 static void nfs_invalidate_page(struct page *page, unsigned long offset)
477 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
479 if (offset != 0)
480 return;
481 /* Cancel any unstarted writes on this page */
482 nfs_wb_page_cancel(page->mapping->host, page);
484 nfs_fscache_invalidate_page(page, page->mapping->host);
488 * Attempt to release the private state associated with a page
489 * - Called if either PG_private or PG_fscache is set on the page
490 * - Caller holds page lock
491 * - Return true (may release page) or false (may not)
493 static int nfs_release_page(struct page *page, gfp_t gfp)
495 struct address_space *mapping = page->mapping;
497 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
499 /* Only do I/O if gfp is a superset of GFP_KERNEL */
500 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
501 int how = FLUSH_SYNC;
503 /* Don't let kswapd deadlock waiting for OOM RPC calls */
504 if (current_is_kswapd())
505 how = 0;
506 nfs_commit_inode(mapping->host, how);
508 /* If PagePrivate() is set, then the page is not freeable */
509 if (PagePrivate(page))
510 return 0;
511 return nfs_fscache_release_page(page, gfp);
515 * Attempt to clear the private state associated with a page when an error
516 * occurs that requires the cached contents of an inode to be written back or
517 * destroyed
518 * - Called if either PG_private or fscache is set on the page
519 * - Caller holds page lock
520 * - Return 0 if successful, -error otherwise
522 static int nfs_launder_page(struct page *page)
524 struct inode *inode = page->mapping->host;
525 struct nfs_inode *nfsi = NFS_I(inode);
527 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
528 inode->i_ino, (long long)page_offset(page));
530 nfs_fscache_wait_on_page_write(nfsi, page);
531 return nfs_wb_page(inode, page);
534 const struct address_space_operations nfs_file_aops = {
535 .readpage = nfs_readpage,
536 .readpages = nfs_readpages,
537 .set_page_dirty = __set_page_dirty_nobuffers,
538 .writepage = nfs_writepage,
539 .writepages = nfs_writepages,
540 .write_begin = nfs_write_begin,
541 .write_end = nfs_write_end,
542 .invalidatepage = nfs_invalidate_page,
543 .releasepage = nfs_release_page,
544 .direct_IO = nfs_direct_IO,
545 .migratepage = nfs_migrate_page,
546 .launder_page = nfs_launder_page,
547 .error_remove_page = generic_error_remove_page,
551 * Notification that a PTE pointing to an NFS page is about to be made
552 * writable, implying that someone is about to modify the page through a
553 * shared-writable mapping
555 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
557 struct page *page = vmf->page;
558 struct file *filp = vma->vm_file;
559 struct dentry *dentry = filp->f_path.dentry;
560 unsigned pagelen;
561 int ret = VM_FAULT_NOPAGE;
562 struct address_space *mapping;
564 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
565 dentry->d_parent->d_name.name, dentry->d_name.name,
566 filp->f_mapping->host->i_ino,
567 (long long)page_offset(page));
569 /* make sure the cache has finished storing the page */
570 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
572 lock_page(page);
573 mapping = page->mapping;
574 if (mapping != dentry->d_inode->i_mapping)
575 goto out_unlock;
577 pagelen = nfs_page_length(page);
578 if (pagelen == 0)
579 goto out_unlock;
581 ret = VM_FAULT_LOCKED;
582 if (nfs_flush_incompatible(filp, page) == 0 &&
583 nfs_updatepage(filp, page, 0, pagelen) == 0)
584 goto out;
586 ret = VM_FAULT_SIGBUS;
587 out_unlock:
588 unlock_page(page);
589 out:
590 return ret;
593 static const struct vm_operations_struct nfs_file_vm_ops = {
594 .fault = filemap_fault,
595 .page_mkwrite = nfs_vm_page_mkwrite,
598 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
600 struct nfs_open_context *ctx;
602 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
603 return 1;
604 ctx = nfs_file_open_context(filp);
605 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
606 return 1;
607 return 0;
610 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
611 unsigned long nr_segs, loff_t pos)
613 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
614 struct inode * inode = dentry->d_inode;
615 unsigned long written = 0;
616 ssize_t result;
617 size_t count = iov_length(iov, nr_segs);
619 if (iocb->ki_filp->f_flags & O_DIRECT)
620 return nfs_file_direct_write(iocb, iov, nr_segs, pos);
622 dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
623 dentry->d_parent->d_name.name, dentry->d_name.name,
624 (unsigned long) count, (long long) pos);
626 result = -EBUSY;
627 if (IS_SWAPFILE(inode))
628 goto out_swapfile;
630 * O_APPEND implies that we must revalidate the file length.
632 if (iocb->ki_filp->f_flags & O_APPEND) {
633 result = nfs_revalidate_file_size(inode, iocb->ki_filp);
634 if (result)
635 goto out;
638 result = count;
639 if (!count)
640 goto out;
642 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
643 if (result > 0)
644 written = result;
646 /* Return error values for O_DSYNC and IS_SYNC() */
647 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
648 int err = vfs_fsync(iocb->ki_filp, 0);
649 if (err < 0)
650 result = err;
652 if (result > 0)
653 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
654 out:
655 return result;
657 out_swapfile:
658 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
659 goto out;
662 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
663 struct file *filp, loff_t *ppos,
664 size_t count, unsigned int flags)
666 struct dentry *dentry = filp->f_path.dentry;
667 struct inode *inode = dentry->d_inode;
668 unsigned long written = 0;
669 ssize_t ret;
671 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
672 dentry->d_parent->d_name.name, dentry->d_name.name,
673 (unsigned long) count, (unsigned long long) *ppos);
676 * The combination of splice and an O_APPEND destination is disallowed.
679 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
680 if (ret > 0)
681 written = ret;
683 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
684 int err = vfs_fsync(filp, 0);
685 if (err < 0)
686 ret = err;
688 if (ret > 0)
689 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
690 return ret;
693 static int
694 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
696 struct inode *inode = filp->f_mapping->host;
697 int status = 0;
698 unsigned int saved_type = fl->fl_type;
700 /* Try local locking first */
701 posix_test_lock(filp, fl);
702 if (fl->fl_type != F_UNLCK) {
703 /* found a conflict */
704 goto out;
706 fl->fl_type = saved_type;
708 if (nfs_have_delegation(inode, FMODE_READ))
709 goto out_noconflict;
711 if (is_local)
712 goto out_noconflict;
714 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
715 out:
716 return status;
717 out_noconflict:
718 fl->fl_type = F_UNLCK;
719 goto out;
722 static int do_vfs_lock(struct file *file, struct file_lock *fl)
724 int res = 0;
725 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
726 case FL_POSIX:
727 res = posix_lock_file_wait(file, fl);
728 break;
729 case FL_FLOCK:
730 res = flock_lock_file_wait(file, fl);
731 break;
732 default:
733 BUG();
735 return res;
738 static int
739 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
741 struct inode *inode = filp->f_mapping->host;
742 int status;
745 * Flush all pending writes before doing anything
746 * with locks..
748 nfs_sync_mapping(filp->f_mapping);
750 /* NOTE: special case
751 * If we're signalled while cleaning up locks on process exit, we
752 * still need to complete the unlock.
755 * Use local locking if mounted with "-onolock" or with appropriate
756 * "-olocal_lock="
758 if (!is_local)
759 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
760 else
761 status = do_vfs_lock(filp, fl);
762 return status;
765 static int
766 is_time_granular(struct timespec *ts) {
767 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
770 static int
771 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
773 struct inode *inode = filp->f_mapping->host;
774 int status;
777 * Flush all pending writes before doing anything
778 * with locks..
780 status = nfs_sync_mapping(filp->f_mapping);
781 if (status != 0)
782 goto out;
785 * Use local locking if mounted with "-onolock" or with appropriate
786 * "-olocal_lock="
788 if (!is_local)
789 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
790 else
791 status = do_vfs_lock(filp, fl);
792 if (status < 0)
793 goto out;
796 * Revalidate the cache if the server has time stamps granular
797 * enough to detect subsecond changes. Otherwise, clear the
798 * cache to prevent missing any changes.
800 * This makes locking act as a cache coherency point.
802 nfs_sync_mapping(filp->f_mapping);
803 if (!nfs_have_delegation(inode, FMODE_READ)) {
804 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
805 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
806 else
807 nfs_zap_caches(inode);
809 out:
810 return status;
814 * Lock a (portion of) a file
816 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
818 struct inode *inode = filp->f_mapping->host;
819 int ret = -ENOLCK;
820 int is_local = 0;
822 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
823 filp->f_path.dentry->d_parent->d_name.name,
824 filp->f_path.dentry->d_name.name,
825 fl->fl_type, fl->fl_flags,
826 (long long)fl->fl_start, (long long)fl->fl_end);
828 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
830 /* No mandatory locks over NFS */
831 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
832 goto out_err;
834 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
835 is_local = 1;
837 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
838 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
839 if (ret < 0)
840 goto out_err;
843 if (IS_GETLK(cmd))
844 ret = do_getlk(filp, cmd, fl, is_local);
845 else if (fl->fl_type == F_UNLCK)
846 ret = do_unlk(filp, cmd, fl, is_local);
847 else
848 ret = do_setlk(filp, cmd, fl, is_local);
849 out_err:
850 return ret;
854 * Lock a (portion of) a file
856 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
858 struct inode *inode = filp->f_mapping->host;
859 int is_local = 0;
861 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
862 filp->f_path.dentry->d_parent->d_name.name,
863 filp->f_path.dentry->d_name.name,
864 fl->fl_type, fl->fl_flags);
866 if (!(fl->fl_flags & FL_FLOCK))
867 return -ENOLCK;
869 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
870 is_local = 1;
872 /* We're simulating flock() locks using posix locks on the server */
873 fl->fl_owner = (fl_owner_t)filp;
874 fl->fl_start = 0;
875 fl->fl_end = OFFSET_MAX;
877 if (fl->fl_type == F_UNLCK)
878 return do_unlk(filp, cmd, fl, is_local);
879 return do_setlk(filp, cmd, fl, is_local);
883 * There is no protocol support for leases, so we have no way to implement
884 * them correctly in the face of opens by other clients.
886 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
888 dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
889 file->f_path.dentry->d_parent->d_name.name,
890 file->f_path.dentry->d_name.name, arg);
891 return -EINVAL;