drm/i915: Immediately discard any backing storage for uneeded objects
[linux-2.6/linux-2.6-openrd.git] / drivers / gpu / drm / i915 / i915_gem.c
blob62ba9c121a1406c3ab93b1acba281df1ff9ee7ae
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
64 drm_i915_private_t *dev_priv = dev->dev_private;
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
75 dev->gtt_total = (uint32_t) (end - start);
77 return 0;
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
84 struct drm_i915_gem_init *args = data;
85 int ret;
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
91 return ret;
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
98 struct drm_i915_gem_get_aperture *args = data;
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
107 return 0;
112 * Creates a new mm object and returns a handle to it.
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
123 args->size = roundup(args->size, PAGE_SIZE);
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
135 if (ret)
136 return ret;
138 args->handle = handle;
140 return 0;
143 static inline int
144 fast_shmem_read(struct page **pages,
145 loff_t page_base, int page_offset,
146 char __user *data,
147 int length)
149 char __iomem *vaddr;
150 int unwritten;
152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 if (vaddr == NULL)
154 return -ENOMEM;
155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 kunmap_atomic(vaddr, KM_USER0);
158 if (unwritten)
159 return -EFAULT;
161 return 0;
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
166 drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 struct drm_i915_gem_object *obj_priv = obj->driver_private;
169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 obj_priv->tiling_mode != I915_TILING_NONE;
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 int dst_offset,
176 struct page *src_page,
177 int src_offset,
178 int length)
180 char *dst_vaddr, *src_vaddr;
182 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 if (dst_vaddr == NULL)
184 return -ENOMEM;
186 src_vaddr = kmap_atomic(src_page, KM_USER1);
187 if (src_vaddr == NULL) {
188 kunmap_atomic(dst_vaddr, KM_USER0);
189 return -ENOMEM;
192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194 kunmap_atomic(src_vaddr, KM_USER1);
195 kunmap_atomic(dst_vaddr, KM_USER0);
197 return 0;
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
208 char *gpu_vaddr, *cpu_vaddr;
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 if (gpu_vaddr == NULL)
222 return -ENOMEM;
224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 if (cpu_vaddr == NULL) {
226 kunmap_atomic(gpu_vaddr, KM_USER0);
227 return -ENOMEM;
230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 * XORing with the other bits (A9 for Y, A9 and A10 for X)
233 while (length > 0) {
234 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 int this_length = min(cacheline_end - gpu_offset, length);
236 int swizzled_gpu_offset = gpu_offset ^ 64;
238 if (is_read) {
239 memcpy(cpu_vaddr + cpu_offset,
240 gpu_vaddr + swizzled_gpu_offset,
241 this_length);
242 } else {
243 memcpy(gpu_vaddr + swizzled_gpu_offset,
244 cpu_vaddr + cpu_offset,
245 this_length);
247 cpu_offset += this_length;
248 gpu_offset += this_length;
249 length -= this_length;
252 kunmap_atomic(cpu_vaddr, KM_USER1);
253 kunmap_atomic(gpu_vaddr, KM_USER0);
255 return 0;
259 * This is the fast shmem pread path, which attempts to copy_from_user directly
260 * from the backing pages of the object to the user's address space. On a
261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 struct drm_i915_gem_pread *args,
266 struct drm_file *file_priv)
268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 ssize_t remain;
270 loff_t offset, page_base;
271 char __user *user_data;
272 int page_offset, page_length;
273 int ret;
275 user_data = (char __user *) (uintptr_t) args->data_ptr;
276 remain = args->size;
278 mutex_lock(&dev->struct_mutex);
280 ret = i915_gem_object_get_pages(obj);
281 if (ret != 0)
282 goto fail_unlock;
284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 args->size);
286 if (ret != 0)
287 goto fail_put_pages;
289 obj_priv = obj->driver_private;
290 offset = args->offset;
292 while (remain > 0) {
293 /* Operation in this page
295 * page_base = page offset within aperture
296 * page_offset = offset within page
297 * page_length = bytes to copy for this page
299 page_base = (offset & ~(PAGE_SIZE-1));
300 page_offset = offset & (PAGE_SIZE-1);
301 page_length = remain;
302 if ((page_offset + remain) > PAGE_SIZE)
303 page_length = PAGE_SIZE - page_offset;
305 ret = fast_shmem_read(obj_priv->pages,
306 page_base, page_offset,
307 user_data, page_length);
308 if (ret)
309 goto fail_put_pages;
311 remain -= page_length;
312 user_data += page_length;
313 offset += page_length;
316 fail_put_pages:
317 i915_gem_object_put_pages(obj);
318 fail_unlock:
319 mutex_unlock(&dev->struct_mutex);
321 return ret;
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
327 return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
333 mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
339 int ret;
341 ret = i915_gem_object_get_pages(obj);
343 /* If we've insufficient memory to map in the pages, attempt
344 * to make some space by throwing out some old buffers.
346 if (ret == -ENOMEM) {
347 struct drm_device *dev = obj->dev;
348 gfp_t gfp;
350 ret = i915_gem_evict_something(dev, obj->size);
351 if (ret)
352 return ret;
354 gfp = i915_gem_object_get_page_gfp_mask(obj);
355 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356 ret = i915_gem_object_get_pages(obj);
357 i915_gem_object_set_page_gfp_mask (obj, gfp);
360 return ret;
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371 struct drm_i915_gem_pread *args,
372 struct drm_file *file_priv)
374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
375 struct mm_struct *mm = current->mm;
376 struct page **user_pages;
377 ssize_t remain;
378 loff_t offset, pinned_pages, i;
379 loff_t first_data_page, last_data_page, num_pages;
380 int shmem_page_index, shmem_page_offset;
381 int data_page_index, data_page_offset;
382 int page_length;
383 int ret;
384 uint64_t data_ptr = args->data_ptr;
385 int do_bit17_swizzling;
387 remain = args->size;
389 /* Pin the user pages containing the data. We can't fault while
390 * holding the struct mutex, yet we want to hold it while
391 * dereferencing the user data.
393 first_data_page = data_ptr / PAGE_SIZE;
394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 num_pages = last_data_page - first_data_page + 1;
397 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 if (user_pages == NULL)
399 return -ENOMEM;
401 down_read(&mm->mmap_sem);
402 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403 num_pages, 1, 0, user_pages, NULL);
404 up_read(&mm->mmap_sem);
405 if (pinned_pages < num_pages) {
406 ret = -EFAULT;
407 goto fail_put_user_pages;
410 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
412 mutex_lock(&dev->struct_mutex);
414 ret = i915_gem_object_get_pages_or_evict(obj);
415 if (ret)
416 goto fail_unlock;
418 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419 args->size);
420 if (ret != 0)
421 goto fail_put_pages;
423 obj_priv = obj->driver_private;
424 offset = args->offset;
426 while (remain > 0) {
427 /* Operation in this page
429 * shmem_page_index = page number within shmem file
430 * shmem_page_offset = offset within page in shmem file
431 * data_page_index = page number in get_user_pages return
432 * data_page_offset = offset with data_page_index page.
433 * page_length = bytes to copy for this page
435 shmem_page_index = offset / PAGE_SIZE;
436 shmem_page_offset = offset & ~PAGE_MASK;
437 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438 data_page_offset = data_ptr & ~PAGE_MASK;
440 page_length = remain;
441 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442 page_length = PAGE_SIZE - shmem_page_offset;
443 if ((data_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - data_page_offset;
446 if (do_bit17_swizzling) {
447 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448 shmem_page_offset,
449 user_pages[data_page_index],
450 data_page_offset,
451 page_length,
453 } else {
454 ret = slow_shmem_copy(user_pages[data_page_index],
455 data_page_offset,
456 obj_priv->pages[shmem_page_index],
457 shmem_page_offset,
458 page_length);
460 if (ret)
461 goto fail_put_pages;
463 remain -= page_length;
464 data_ptr += page_length;
465 offset += page_length;
468 fail_put_pages:
469 i915_gem_object_put_pages(obj);
470 fail_unlock:
471 mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473 for (i = 0; i < pinned_pages; i++) {
474 SetPageDirty(user_pages[i]);
475 page_cache_release(user_pages[i]);
477 drm_free_large(user_pages);
479 return ret;
483 * Reads data from the object referenced by handle.
485 * On error, the contents of *data are undefined.
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file_priv)
491 struct drm_i915_gem_pread *args = data;
492 struct drm_gem_object *obj;
493 struct drm_i915_gem_object *obj_priv;
494 int ret;
496 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497 if (obj == NULL)
498 return -EBADF;
499 obj_priv = obj->driver_private;
501 /* Bounds check source.
503 * XXX: This could use review for overflow issues...
505 if (args->offset > obj->size || args->size > obj->size ||
506 args->offset + args->size > obj->size) {
507 drm_gem_object_unreference(obj);
508 return -EINVAL;
511 if (i915_gem_object_needs_bit17_swizzle(obj)) {
512 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 } else {
514 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515 if (ret != 0)
516 ret = i915_gem_shmem_pread_slow(dev, obj, args,
517 file_priv);
520 drm_gem_object_unreference(obj);
522 return ret;
525 /* This is the fast write path which cannot handle
526 * page faults in the source data
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531 loff_t page_base, int page_offset,
532 char __user *user_data,
533 int length)
535 char *vaddr_atomic;
536 unsigned long unwritten;
538 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540 user_data, length);
541 io_mapping_unmap_atomic(vaddr_atomic);
542 if (unwritten)
543 return -EFAULT;
544 return 0;
547 /* Here's the write path which can sleep for
548 * page faults
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553 loff_t gtt_base, int gtt_offset,
554 struct page *user_page, int user_offset,
555 int length)
557 char *src_vaddr, *dst_vaddr;
558 unsigned long unwritten;
560 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561 src_vaddr = kmap_atomic(user_page, KM_USER1);
562 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563 src_vaddr + user_offset,
564 length);
565 kunmap_atomic(src_vaddr, KM_USER1);
566 io_mapping_unmap_atomic(dst_vaddr);
567 if (unwritten)
568 return -EFAULT;
569 return 0;
572 static inline int
573 fast_shmem_write(struct page **pages,
574 loff_t page_base, int page_offset,
575 char __user *data,
576 int length)
578 char __iomem *vaddr;
579 unsigned long unwritten;
581 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582 if (vaddr == NULL)
583 return -ENOMEM;
584 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 kunmap_atomic(vaddr, KM_USER0);
587 if (unwritten)
588 return -EFAULT;
589 return 0;
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598 struct drm_i915_gem_pwrite *args,
599 struct drm_file *file_priv)
601 struct drm_i915_gem_object *obj_priv = obj->driver_private;
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length;
607 int ret;
609 user_data = (char __user *) (uintptr_t) args->data_ptr;
610 remain = args->size;
611 if (!access_ok(VERIFY_READ, user_data, remain))
612 return -EFAULT;
615 mutex_lock(&dev->struct_mutex);
616 ret = i915_gem_object_pin(obj, 0);
617 if (ret) {
618 mutex_unlock(&dev->struct_mutex);
619 return ret;
621 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 if (ret)
623 goto fail;
625 obj_priv = obj->driver_private;
626 offset = obj_priv->gtt_offset + args->offset;
628 while (remain > 0) {
629 /* Operation in this page
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
635 page_base = (offset & ~(PAGE_SIZE-1));
636 page_offset = offset & (PAGE_SIZE-1);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
641 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642 page_offset, user_data, page_length);
644 /* If we get a fault while copying data, then (presumably) our
645 * source page isn't available. Return the error and we'll
646 * retry in the slow path.
648 if (ret)
649 goto fail;
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
656 fail:
657 i915_gem_object_unpin(obj);
658 mutex_unlock(&dev->struct_mutex);
660 return ret;
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672 struct drm_i915_gem_pwrite *args,
673 struct drm_file *file_priv)
675 struct drm_i915_gem_object *obj_priv = obj->driver_private;
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 int ret;
685 uint64_t data_ptr = args->data_ptr;
687 remain = args->size;
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
697 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 if (user_pages == NULL)
699 return -ENOMEM;
701 down_read(&mm->mmap_sem);
702 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703 num_pages, 0, 0, user_pages, NULL);
704 up_read(&mm->mmap_sem);
705 if (pinned_pages < num_pages) {
706 ret = -EFAULT;
707 goto out_unpin_pages;
710 mutex_lock(&dev->struct_mutex);
711 ret = i915_gem_object_pin(obj, 0);
712 if (ret)
713 goto out_unlock;
715 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716 if (ret)
717 goto out_unpin_object;
719 obj_priv = obj->driver_private;
720 offset = obj_priv->gtt_offset + args->offset;
722 while (remain > 0) {
723 /* Operation in this page
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
731 gtt_page_base = offset & PAGE_MASK;
732 gtt_page_offset = offset & ~PAGE_MASK;
733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 data_page_offset = data_ptr & ~PAGE_MASK;
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
742 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
748 /* If we get a fault while copying data, then (presumably) our
749 * source page isn't available. Return the error and we'll
750 * retry in the slow path.
752 if (ret)
753 goto out_unpin_object;
755 remain -= page_length;
756 offset += page_length;
757 data_ptr += page_length;
760 out_unpin_object:
761 i915_gem_object_unpin(obj);
762 out_unlock:
763 mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765 for (i = 0; i < pinned_pages; i++)
766 page_cache_release(user_pages[i]);
767 drm_free_large(user_pages);
769 return ret;
773 * This is the fast shmem pwrite path, which attempts to directly
774 * copy_from_user into the kmapped pages backing the object.
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778 struct drm_i915_gem_pwrite *args,
779 struct drm_file *file_priv)
781 struct drm_i915_gem_object *obj_priv = obj->driver_private;
782 ssize_t remain;
783 loff_t offset, page_base;
784 char __user *user_data;
785 int page_offset, page_length;
786 int ret;
788 user_data = (char __user *) (uintptr_t) args->data_ptr;
789 remain = args->size;
791 mutex_lock(&dev->struct_mutex);
793 ret = i915_gem_object_get_pages(obj);
794 if (ret != 0)
795 goto fail_unlock;
797 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 if (ret != 0)
799 goto fail_put_pages;
801 obj_priv = obj->driver_private;
802 offset = args->offset;
803 obj_priv->dirty = 1;
805 while (remain > 0) {
806 /* Operation in this page
808 * page_base = page offset within aperture
809 * page_offset = offset within page
810 * page_length = bytes to copy for this page
812 page_base = (offset & ~(PAGE_SIZE-1));
813 page_offset = offset & (PAGE_SIZE-1);
814 page_length = remain;
815 if ((page_offset + remain) > PAGE_SIZE)
816 page_length = PAGE_SIZE - page_offset;
818 ret = fast_shmem_write(obj_priv->pages,
819 page_base, page_offset,
820 user_data, page_length);
821 if (ret)
822 goto fail_put_pages;
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
829 fail_put_pages:
830 i915_gem_object_put_pages(obj);
831 fail_unlock:
832 mutex_unlock(&dev->struct_mutex);
834 return ret;
838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839 * the memory and maps it using kmap_atomic for copying.
841 * This avoids taking mmap_sem for faulting on the user's address while the
842 * struct_mutex is held.
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846 struct drm_i915_gem_pwrite *args,
847 struct drm_file *file_priv)
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 struct mm_struct *mm = current->mm;
851 struct page **user_pages;
852 ssize_t remain;
853 loff_t offset, pinned_pages, i;
854 loff_t first_data_page, last_data_page, num_pages;
855 int shmem_page_index, shmem_page_offset;
856 int data_page_index, data_page_offset;
857 int page_length;
858 int ret;
859 uint64_t data_ptr = args->data_ptr;
860 int do_bit17_swizzling;
862 remain = args->size;
864 /* Pin the user pages containing the data. We can't fault while
865 * holding the struct mutex, and all of the pwrite implementations
866 * want to hold it while dereferencing the user data.
868 first_data_page = data_ptr / PAGE_SIZE;
869 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870 num_pages = last_data_page - first_data_page + 1;
872 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 if (user_pages == NULL)
874 return -ENOMEM;
876 down_read(&mm->mmap_sem);
877 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878 num_pages, 0, 0, user_pages, NULL);
879 up_read(&mm->mmap_sem);
880 if (pinned_pages < num_pages) {
881 ret = -EFAULT;
882 goto fail_put_user_pages;
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 mutex_lock(&dev->struct_mutex);
889 ret = i915_gem_object_get_pages_or_evict(obj);
890 if (ret)
891 goto fail_unlock;
893 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894 if (ret != 0)
895 goto fail_put_pages;
897 obj_priv = obj->driver_private;
898 offset = args->offset;
899 obj_priv->dirty = 1;
901 while (remain > 0) {
902 /* Operation in this page
904 * shmem_page_index = page number within shmem file
905 * shmem_page_offset = offset within page in shmem file
906 * data_page_index = page number in get_user_pages return
907 * data_page_offset = offset with data_page_index page.
908 * page_length = bytes to copy for this page
910 shmem_page_index = offset / PAGE_SIZE;
911 shmem_page_offset = offset & ~PAGE_MASK;
912 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913 data_page_offset = data_ptr & ~PAGE_MASK;
915 page_length = remain;
916 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917 page_length = PAGE_SIZE - shmem_page_offset;
918 if ((data_page_offset + page_length) > PAGE_SIZE)
919 page_length = PAGE_SIZE - data_page_offset;
921 if (do_bit17_swizzling) {
922 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length,
928 } else {
929 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930 shmem_page_offset,
931 user_pages[data_page_index],
932 data_page_offset,
933 page_length);
935 if (ret)
936 goto fail_put_pages;
938 remain -= page_length;
939 data_ptr += page_length;
940 offset += page_length;
943 fail_put_pages:
944 i915_gem_object_put_pages(obj);
945 fail_unlock:
946 mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948 for (i = 0; i < pinned_pages; i++)
949 page_cache_release(user_pages[i]);
950 drm_free_large(user_pages);
952 return ret;
956 * Writes data to the object referenced by handle.
958 * On error, the contents of the buffer that were to be modified are undefined.
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962 struct drm_file *file_priv)
964 struct drm_i915_gem_pwrite *args = data;
965 struct drm_gem_object *obj;
966 struct drm_i915_gem_object *obj_priv;
967 int ret = 0;
969 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970 if (obj == NULL)
971 return -EBADF;
972 obj_priv = obj->driver_private;
974 /* Bounds check destination.
976 * XXX: This could use review for overflow issues...
978 if (args->offset > obj->size || args->size > obj->size ||
979 args->offset + args->size > obj->size) {
980 drm_gem_object_unreference(obj);
981 return -EINVAL;
984 /* We can only do the GTT pwrite on untiled buffers, as otherwise
985 * it would end up going through the fenced access, and we'll get
986 * different detiling behavior between reading and writing.
987 * pread/pwrite currently are reading and writing from the CPU
988 * perspective, requiring manual detiling by the client.
990 if (obj_priv->phys_obj)
991 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 dev->gtt_total != 0) {
994 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995 if (ret == -EFAULT) {
996 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997 file_priv);
999 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 } else {
1002 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003 if (ret == -EFAULT) {
1004 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005 file_priv);
1009 #if WATCH_PWRITE
1010 if (ret)
1011 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1014 drm_gem_object_unreference(obj);
1016 return ret;
1020 * Called when user space prepares to use an object with the CPU, either
1021 * through the mmap ioctl's mapping or a GTT mapping.
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025 struct drm_file *file_priv)
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_set_domain *args = data;
1029 struct drm_gem_object *obj;
1030 struct drm_i915_gem_object *obj_priv;
1031 uint32_t read_domains = args->read_domains;
1032 uint32_t write_domain = args->write_domain;
1033 int ret;
1035 if (!(dev->driver->driver_features & DRIVER_GEM))
1036 return -ENODEV;
1038 /* Only handle setting domains to types used by the CPU. */
1039 if (write_domain & I915_GEM_GPU_DOMAINS)
1040 return -EINVAL;
1042 if (read_domains & I915_GEM_GPU_DOMAINS)
1043 return -EINVAL;
1045 /* Having something in the write domain implies it's in the read
1046 * domain, and only that read domain. Enforce that in the request.
1048 if (write_domain != 0 && read_domains != write_domain)
1049 return -EINVAL;
1051 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052 if (obj == NULL)
1053 return -EBADF;
1054 obj_priv = obj->driver_private;
1056 mutex_lock(&dev->struct_mutex);
1058 intel_mark_busy(dev, obj);
1060 #if WATCH_BUF
1061 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062 obj, obj->size, read_domains, write_domain);
1063 #endif
1064 if (read_domains & I915_GEM_DOMAIN_GTT) {
1065 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1067 /* Update the LRU on the fence for the CPU access that's
1068 * about to occur.
1070 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071 list_move_tail(&obj_priv->fence_list,
1072 &dev_priv->mm.fence_list);
1075 /* Silently promote "you're not bound, there was nothing to do"
1076 * to success, since the client was just asking us to
1077 * make sure everything was done.
1079 if (ret == -EINVAL)
1080 ret = 0;
1081 } else {
1082 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1085 drm_gem_object_unreference(obj);
1086 mutex_unlock(&dev->struct_mutex);
1087 return ret;
1091 * Called when user space has done writes to this buffer
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095 struct drm_file *file_priv)
1097 struct drm_i915_gem_sw_finish *args = data;
1098 struct drm_gem_object *obj;
1099 struct drm_i915_gem_object *obj_priv;
1100 int ret = 0;
1102 if (!(dev->driver->driver_features & DRIVER_GEM))
1103 return -ENODEV;
1105 mutex_lock(&dev->struct_mutex);
1106 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107 if (obj == NULL) {
1108 mutex_unlock(&dev->struct_mutex);
1109 return -EBADF;
1112 #if WATCH_BUF
1113 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 __func__, args->handle, obj, obj->size);
1115 #endif
1116 obj_priv = obj->driver_private;
1118 /* Pinned buffers may be scanout, so flush the cache */
1119 if (obj_priv->pin_count)
1120 i915_gem_object_flush_cpu_write_domain(obj);
1122 drm_gem_object_unreference(obj);
1123 mutex_unlock(&dev->struct_mutex);
1124 return ret;
1128 * Maps the contents of an object, returning the address it is mapped
1129 * into.
1131 * While the mapping holds a reference on the contents of the object, it doesn't
1132 * imply a ref on the object itself.
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file_priv)
1138 struct drm_i915_gem_mmap *args = data;
1139 struct drm_gem_object *obj;
1140 loff_t offset;
1141 unsigned long addr;
1143 if (!(dev->driver->driver_features & DRIVER_GEM))
1144 return -ENODEV;
1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 if (obj == NULL)
1148 return -EBADF;
1150 offset = args->offset;
1152 down_write(&current->mm->mmap_sem);
1153 addr = do_mmap(obj->filp, 0, args->size,
1154 PROT_READ | PROT_WRITE, MAP_SHARED,
1155 args->offset);
1156 up_write(&current->mm->mmap_sem);
1157 mutex_lock(&dev->struct_mutex);
1158 drm_gem_object_unreference(obj);
1159 mutex_unlock(&dev->struct_mutex);
1160 if (IS_ERR((void *)addr))
1161 return addr;
1163 args->addr_ptr = (uint64_t) addr;
1165 return 0;
1169 * i915_gem_fault - fault a page into the GTT
1170 * vma: VMA in question
1171 * vmf: fault info
1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174 * from userspace. The fault handler takes care of binding the object to
1175 * the GTT (if needed), allocating and programming a fence register (again,
1176 * only if needed based on whether the old reg is still valid or the object
1177 * is tiled) and inserting a new PTE into the faulting process.
1179 * Note that the faulting process may involve evicting existing objects
1180 * from the GTT and/or fence registers to make room. So performance may
1181 * suffer if the GTT working set is large or there are few fence registers
1182 * left.
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1186 struct drm_gem_object *obj = vma->vm_private_data;
1187 struct drm_device *dev = obj->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190 pgoff_t page_offset;
1191 unsigned long pfn;
1192 int ret = 0;
1193 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1195 /* We don't use vmf->pgoff since that has the fake offset */
1196 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197 PAGE_SHIFT;
1199 /* Now bind it into the GTT if needed */
1200 mutex_lock(&dev->struct_mutex);
1201 if (!obj_priv->gtt_space) {
1202 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 if (ret) {
1204 mutex_unlock(&dev->struct_mutex);
1205 return VM_FAULT_SIGBUS;
1207 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1209 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1210 if (ret) {
1211 mutex_unlock(&dev->struct_mutex);
1212 return VM_FAULT_SIGBUS;
1216 /* Need a new fence register? */
1217 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1218 ret = i915_gem_object_get_fence_reg(obj);
1219 if (ret) {
1220 mutex_unlock(&dev->struct_mutex);
1221 return VM_FAULT_SIGBUS;
1225 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1226 page_offset;
1228 /* Finally, remap it using the new GTT offset */
1229 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1231 mutex_unlock(&dev->struct_mutex);
1233 switch (ret) {
1234 case -ENOMEM:
1235 case -EAGAIN:
1236 return VM_FAULT_OOM;
1237 case -EFAULT:
1238 case -EINVAL:
1239 return VM_FAULT_SIGBUS;
1240 default:
1241 return VM_FAULT_NOPAGE;
1246 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1247 * @obj: obj in question
1249 * GEM memory mapping works by handing back to userspace a fake mmap offset
1250 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1251 * up the object based on the offset and sets up the various memory mapping
1252 * structures.
1254 * This routine allocates and attaches a fake offset for @obj.
1256 static int
1257 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1259 struct drm_device *dev = obj->dev;
1260 struct drm_gem_mm *mm = dev->mm_private;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_map_list *list;
1263 struct drm_local_map *map;
1264 int ret = 0;
1266 /* Set the object up for mmap'ing */
1267 list = &obj->map_list;
1268 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1269 if (!list->map)
1270 return -ENOMEM;
1272 map = list->map;
1273 map->type = _DRM_GEM;
1274 map->size = obj->size;
1275 map->handle = obj;
1277 /* Get a DRM GEM mmap offset allocated... */
1278 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1279 obj->size / PAGE_SIZE, 0, 0);
1280 if (!list->file_offset_node) {
1281 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1282 ret = -ENOMEM;
1283 goto out_free_list;
1286 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1287 obj->size / PAGE_SIZE, 0);
1288 if (!list->file_offset_node) {
1289 ret = -ENOMEM;
1290 goto out_free_list;
1293 list->hash.key = list->file_offset_node->start;
1294 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1295 DRM_ERROR("failed to add to map hash\n");
1296 goto out_free_mm;
1299 /* By now we should be all set, any drm_mmap request on the offset
1300 * below will get to our mmap & fault handler */
1301 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1303 return 0;
1305 out_free_mm:
1306 drm_mm_put_block(list->file_offset_node);
1307 out_free_list:
1308 kfree(list->map);
1310 return ret;
1314 * i915_gem_release_mmap - remove physical page mappings
1315 * @obj: obj in question
1317 * Preserve the reservation of the mmaping with the DRM core code, but
1318 * relinquish ownership of the pages back to the system.
1320 * It is vital that we remove the page mapping if we have mapped a tiled
1321 * object through the GTT and then lose the fence register due to
1322 * resource pressure. Similarly if the object has been moved out of the
1323 * aperture, than pages mapped into userspace must be revoked. Removing the
1324 * mapping will then trigger a page fault on the next user access, allowing
1325 * fixup by i915_gem_fault().
1327 void
1328 i915_gem_release_mmap(struct drm_gem_object *obj)
1330 struct drm_device *dev = obj->dev;
1331 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1333 if (dev->dev_mapping)
1334 unmap_mapping_range(dev->dev_mapping,
1335 obj_priv->mmap_offset, obj->size, 1);
1338 static void
1339 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1341 struct drm_device *dev = obj->dev;
1342 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1343 struct drm_gem_mm *mm = dev->mm_private;
1344 struct drm_map_list *list;
1346 list = &obj->map_list;
1347 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1349 if (list->file_offset_node) {
1350 drm_mm_put_block(list->file_offset_node);
1351 list->file_offset_node = NULL;
1354 if (list->map) {
1355 kfree(list->map);
1356 list->map = NULL;
1359 obj_priv->mmap_offset = 0;
1363 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364 * @obj: object to check
1366 * Return the required GTT alignment for an object, taking into account
1367 * potential fence register mapping if needed.
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1372 struct drm_device *dev = obj->dev;
1373 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1374 int start, i;
1377 * Minimum alignment is 4k (GTT page size), but might be greater
1378 * if a fence register is needed for the object.
1380 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1381 return 4096;
1384 * Previous chips need to be aligned to the size of the smallest
1385 * fence register that can contain the object.
1387 if (IS_I9XX(dev))
1388 start = 1024*1024;
1389 else
1390 start = 512*1024;
1392 for (i = start; i < obj->size; i <<= 1)
1395 return i;
1399 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1400 * @dev: DRM device
1401 * @data: GTT mapping ioctl data
1402 * @file_priv: GEM object info
1404 * Simply returns the fake offset to userspace so it can mmap it.
1405 * The mmap call will end up in drm_gem_mmap(), which will set things
1406 * up so we can get faults in the handler above.
1408 * The fault handler will take care of binding the object into the GTT
1409 * (since it may have been evicted to make room for something), allocating
1410 * a fence register, and mapping the appropriate aperture address into
1411 * userspace.
1414 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1415 struct drm_file *file_priv)
1417 struct drm_i915_gem_mmap_gtt *args = data;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 struct drm_gem_object *obj;
1420 struct drm_i915_gem_object *obj_priv;
1421 int ret;
1423 if (!(dev->driver->driver_features & DRIVER_GEM))
1424 return -ENODEV;
1426 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1427 if (obj == NULL)
1428 return -EBADF;
1430 mutex_lock(&dev->struct_mutex);
1432 obj_priv = obj->driver_private;
1434 if (!obj_priv->mmap_offset) {
1435 ret = i915_gem_create_mmap_offset(obj);
1436 if (ret) {
1437 drm_gem_object_unreference(obj);
1438 mutex_unlock(&dev->struct_mutex);
1439 return ret;
1443 args->offset = obj_priv->mmap_offset;
1446 * Pull it into the GTT so that we have a page list (makes the
1447 * initial fault faster and any subsequent flushing possible).
1449 if (!obj_priv->agp_mem) {
1450 ret = i915_gem_object_bind_to_gtt(obj, 0);
1451 if (ret) {
1452 drm_gem_object_unreference(obj);
1453 mutex_unlock(&dev->struct_mutex);
1454 return ret;
1456 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1459 drm_gem_object_unreference(obj);
1460 mutex_unlock(&dev->struct_mutex);
1462 return 0;
1465 void
1466 i915_gem_object_put_pages(struct drm_gem_object *obj)
1468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1469 int page_count = obj->size / PAGE_SIZE;
1470 int i;
1472 BUG_ON(obj_priv->pages_refcount == 0);
1474 if (--obj_priv->pages_refcount != 0)
1475 return;
1477 if (obj_priv->tiling_mode != I915_TILING_NONE)
1478 i915_gem_object_save_bit_17_swizzle(obj);
1480 if (obj_priv->madv == I915_MADV_DONTNEED)
1481 obj_priv->dirty = 0;
1483 for (i = 0; i < page_count; i++) {
1484 if (obj_priv->pages[i] == NULL)
1485 break;
1487 if (obj_priv->dirty)
1488 set_page_dirty(obj_priv->pages[i]);
1490 if (obj_priv->madv == I915_MADV_WILLNEED)
1491 mark_page_accessed(obj_priv->pages[i]);
1493 page_cache_release(obj_priv->pages[i]);
1495 obj_priv->dirty = 0;
1497 drm_free_large(obj_priv->pages);
1498 obj_priv->pages = NULL;
1501 static void
1502 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1504 struct drm_device *dev = obj->dev;
1505 drm_i915_private_t *dev_priv = dev->dev_private;
1506 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1508 /* Add a reference if we're newly entering the active list. */
1509 if (!obj_priv->active) {
1510 drm_gem_object_reference(obj);
1511 obj_priv->active = 1;
1513 /* Move from whatever list we were on to the tail of execution. */
1514 spin_lock(&dev_priv->mm.active_list_lock);
1515 list_move_tail(&obj_priv->list,
1516 &dev_priv->mm.active_list);
1517 spin_unlock(&dev_priv->mm.active_list_lock);
1518 obj_priv->last_rendering_seqno = seqno;
1521 static void
1522 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1524 struct drm_device *dev = obj->dev;
1525 drm_i915_private_t *dev_priv = dev->dev_private;
1526 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1528 BUG_ON(!obj_priv->active);
1529 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1530 obj_priv->last_rendering_seqno = 0;
1533 /* Immediately discard the backing storage */
1534 static void
1535 i915_gem_object_truncate(struct drm_gem_object *obj)
1537 struct inode *inode;
1539 inode = obj->filp->f_path.dentry->d_inode;
1540 if (inode->i_op->truncate)
1541 inode->i_op->truncate (inode);
1544 static inline int
1545 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1547 return obj_priv->madv == I915_MADV_DONTNEED;
1550 static void
1551 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1553 struct drm_device *dev = obj->dev;
1554 drm_i915_private_t *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1557 i915_verify_inactive(dev, __FILE__, __LINE__);
1558 if (obj_priv->pin_count != 0)
1559 list_del_init(&obj_priv->list);
1560 else
1561 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1563 obj_priv->last_rendering_seqno = 0;
1564 if (obj_priv->active) {
1565 obj_priv->active = 0;
1566 drm_gem_object_unreference(obj);
1568 i915_verify_inactive(dev, __FILE__, __LINE__);
1572 * Creates a new sequence number, emitting a write of it to the status page
1573 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1575 * Must be called with struct_lock held.
1577 * Returned sequence numbers are nonzero on success.
1579 static uint32_t
1580 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1581 uint32_t flush_domains)
1583 drm_i915_private_t *dev_priv = dev->dev_private;
1584 struct drm_i915_file_private *i915_file_priv = NULL;
1585 struct drm_i915_gem_request *request;
1586 uint32_t seqno;
1587 int was_empty;
1588 RING_LOCALS;
1590 if (file_priv != NULL)
1591 i915_file_priv = file_priv->driver_priv;
1593 request = kzalloc(sizeof(*request), GFP_KERNEL);
1594 if (request == NULL)
1595 return 0;
1597 /* Grab the seqno we're going to make this request be, and bump the
1598 * next (skipping 0 so it can be the reserved no-seqno value).
1600 seqno = dev_priv->mm.next_gem_seqno;
1601 dev_priv->mm.next_gem_seqno++;
1602 if (dev_priv->mm.next_gem_seqno == 0)
1603 dev_priv->mm.next_gem_seqno++;
1605 BEGIN_LP_RING(4);
1606 OUT_RING(MI_STORE_DWORD_INDEX);
1607 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1608 OUT_RING(seqno);
1610 OUT_RING(MI_USER_INTERRUPT);
1611 ADVANCE_LP_RING();
1613 DRM_DEBUG("%d\n", seqno);
1615 request->seqno = seqno;
1616 request->emitted_jiffies = jiffies;
1617 was_empty = list_empty(&dev_priv->mm.request_list);
1618 list_add_tail(&request->list, &dev_priv->mm.request_list);
1619 if (i915_file_priv) {
1620 list_add_tail(&request->client_list,
1621 &i915_file_priv->mm.request_list);
1622 } else {
1623 INIT_LIST_HEAD(&request->client_list);
1626 /* Associate any objects on the flushing list matching the write
1627 * domain we're flushing with our flush.
1629 if (flush_domains != 0) {
1630 struct drm_i915_gem_object *obj_priv, *next;
1632 list_for_each_entry_safe(obj_priv, next,
1633 &dev_priv->mm.flushing_list, list) {
1634 struct drm_gem_object *obj = obj_priv->obj;
1636 if ((obj->write_domain & flush_domains) ==
1637 obj->write_domain) {
1638 uint32_t old_write_domain = obj->write_domain;
1640 obj->write_domain = 0;
1641 i915_gem_object_move_to_active(obj, seqno);
1643 trace_i915_gem_object_change_domain(obj,
1644 obj->read_domains,
1645 old_write_domain);
1651 if (!dev_priv->mm.suspended) {
1652 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1653 if (was_empty)
1654 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1656 return seqno;
1660 * Command execution barrier
1662 * Ensures that all commands in the ring are finished
1663 * before signalling the CPU
1665 static uint32_t
1666 i915_retire_commands(struct drm_device *dev)
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1670 uint32_t flush_domains = 0;
1671 RING_LOCALS;
1673 /* The sampler always gets flushed on i965 (sigh) */
1674 if (IS_I965G(dev))
1675 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1676 BEGIN_LP_RING(2);
1677 OUT_RING(cmd);
1678 OUT_RING(0); /* noop */
1679 ADVANCE_LP_RING();
1680 return flush_domains;
1684 * Moves buffers associated only with the given active seqno from the active
1685 * to inactive list, potentially freeing them.
1687 static void
1688 i915_gem_retire_request(struct drm_device *dev,
1689 struct drm_i915_gem_request *request)
1691 drm_i915_private_t *dev_priv = dev->dev_private;
1693 trace_i915_gem_request_retire(dev, request->seqno);
1695 /* Move any buffers on the active list that are no longer referenced
1696 * by the ringbuffer to the flushing/inactive lists as appropriate.
1698 spin_lock(&dev_priv->mm.active_list_lock);
1699 while (!list_empty(&dev_priv->mm.active_list)) {
1700 struct drm_gem_object *obj;
1701 struct drm_i915_gem_object *obj_priv;
1703 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1704 struct drm_i915_gem_object,
1705 list);
1706 obj = obj_priv->obj;
1708 /* If the seqno being retired doesn't match the oldest in the
1709 * list, then the oldest in the list must still be newer than
1710 * this seqno.
1712 if (obj_priv->last_rendering_seqno != request->seqno)
1713 goto out;
1715 #if WATCH_LRU
1716 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1717 __func__, request->seqno, obj);
1718 #endif
1720 if (obj->write_domain != 0)
1721 i915_gem_object_move_to_flushing(obj);
1722 else {
1723 /* Take a reference on the object so it won't be
1724 * freed while the spinlock is held. The list
1725 * protection for this spinlock is safe when breaking
1726 * the lock like this since the next thing we do
1727 * is just get the head of the list again.
1729 drm_gem_object_reference(obj);
1730 i915_gem_object_move_to_inactive(obj);
1731 spin_unlock(&dev_priv->mm.active_list_lock);
1732 drm_gem_object_unreference(obj);
1733 spin_lock(&dev_priv->mm.active_list_lock);
1736 out:
1737 spin_unlock(&dev_priv->mm.active_list_lock);
1741 * Returns true if seq1 is later than seq2.
1743 bool
1744 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1746 return (int32_t)(seq1 - seq2) >= 0;
1749 uint32_t
1750 i915_get_gem_seqno(struct drm_device *dev)
1752 drm_i915_private_t *dev_priv = dev->dev_private;
1754 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1758 * This function clears the request list as sequence numbers are passed.
1760 void
1761 i915_gem_retire_requests(struct drm_device *dev)
1763 drm_i915_private_t *dev_priv = dev->dev_private;
1764 uint32_t seqno;
1766 if (!dev_priv->hw_status_page)
1767 return;
1769 seqno = i915_get_gem_seqno(dev);
1771 while (!list_empty(&dev_priv->mm.request_list)) {
1772 struct drm_i915_gem_request *request;
1773 uint32_t retiring_seqno;
1775 request = list_first_entry(&dev_priv->mm.request_list,
1776 struct drm_i915_gem_request,
1777 list);
1778 retiring_seqno = request->seqno;
1780 if (i915_seqno_passed(seqno, retiring_seqno) ||
1781 atomic_read(&dev_priv->mm.wedged)) {
1782 i915_gem_retire_request(dev, request);
1784 list_del(&request->list);
1785 list_del(&request->client_list);
1786 kfree(request);
1787 } else
1788 break;
1792 void
1793 i915_gem_retire_work_handler(struct work_struct *work)
1795 drm_i915_private_t *dev_priv;
1796 struct drm_device *dev;
1798 dev_priv = container_of(work, drm_i915_private_t,
1799 mm.retire_work.work);
1800 dev = dev_priv->dev;
1802 mutex_lock(&dev->struct_mutex);
1803 i915_gem_retire_requests(dev);
1804 if (!dev_priv->mm.suspended &&
1805 !list_empty(&dev_priv->mm.request_list))
1806 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1807 mutex_unlock(&dev->struct_mutex);
1811 * Waits for a sequence number to be signaled, and cleans up the
1812 * request and object lists appropriately for that event.
1814 static int
1815 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1817 drm_i915_private_t *dev_priv = dev->dev_private;
1818 u32 ier;
1819 int ret = 0;
1821 BUG_ON(seqno == 0);
1823 if (atomic_read(&dev_priv->mm.wedged))
1824 return -EIO;
1826 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1827 if (IS_IGDNG(dev))
1828 ier = I915_READ(DEIER) | I915_READ(GTIER);
1829 else
1830 ier = I915_READ(IER);
1831 if (!ier) {
1832 DRM_ERROR("something (likely vbetool) disabled "
1833 "interrupts, re-enabling\n");
1834 i915_driver_irq_preinstall(dev);
1835 i915_driver_irq_postinstall(dev);
1838 trace_i915_gem_request_wait_begin(dev, seqno);
1840 dev_priv->mm.waiting_gem_seqno = seqno;
1841 i915_user_irq_get(dev);
1842 ret = wait_event_interruptible(dev_priv->irq_queue,
1843 i915_seqno_passed(i915_get_gem_seqno(dev),
1844 seqno) ||
1845 atomic_read(&dev_priv->mm.wedged));
1846 i915_user_irq_put(dev);
1847 dev_priv->mm.waiting_gem_seqno = 0;
1849 trace_i915_gem_request_wait_end(dev, seqno);
1851 if (atomic_read(&dev_priv->mm.wedged))
1852 ret = -EIO;
1854 if (ret && ret != -ERESTARTSYS)
1855 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1856 __func__, ret, seqno, i915_get_gem_seqno(dev));
1858 /* Directly dispatch request retiring. While we have the work queue
1859 * to handle this, the waiter on a request often wants an associated
1860 * buffer to have made it to the inactive list, and we would need
1861 * a separate wait queue to handle that.
1863 if (ret == 0)
1864 i915_gem_retire_requests(dev);
1866 return ret;
1869 static void
1870 i915_gem_flush(struct drm_device *dev,
1871 uint32_t invalidate_domains,
1872 uint32_t flush_domains)
1874 drm_i915_private_t *dev_priv = dev->dev_private;
1875 uint32_t cmd;
1876 RING_LOCALS;
1878 #if WATCH_EXEC
1879 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1880 invalidate_domains, flush_domains);
1881 #endif
1882 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1883 invalidate_domains, flush_domains);
1885 if (flush_domains & I915_GEM_DOMAIN_CPU)
1886 drm_agp_chipset_flush(dev);
1888 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1890 * read/write caches:
1892 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1893 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1894 * also flushed at 2d versus 3d pipeline switches.
1896 * read-only caches:
1898 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1899 * MI_READ_FLUSH is set, and is always flushed on 965.
1901 * I915_GEM_DOMAIN_COMMAND may not exist?
1903 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1904 * invalidated when MI_EXE_FLUSH is set.
1906 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1907 * invalidated with every MI_FLUSH.
1909 * TLBs:
1911 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1912 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1913 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1914 * are flushed at any MI_FLUSH.
1917 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1918 if ((invalidate_domains|flush_domains) &
1919 I915_GEM_DOMAIN_RENDER)
1920 cmd &= ~MI_NO_WRITE_FLUSH;
1921 if (!IS_I965G(dev)) {
1923 * On the 965, the sampler cache always gets flushed
1924 * and this bit is reserved.
1926 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1927 cmd |= MI_READ_FLUSH;
1929 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1930 cmd |= MI_EXE_FLUSH;
1932 #if WATCH_EXEC
1933 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1934 #endif
1935 BEGIN_LP_RING(2);
1936 OUT_RING(cmd);
1937 OUT_RING(0); /* noop */
1938 ADVANCE_LP_RING();
1943 * Ensures that all rendering to the object has completed and the object is
1944 * safe to unbind from the GTT or access from the CPU.
1946 static int
1947 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1949 struct drm_device *dev = obj->dev;
1950 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1951 int ret;
1953 /* This function only exists to support waiting for existing rendering,
1954 * not for emitting required flushes.
1956 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1958 /* If there is rendering queued on the buffer being evicted, wait for
1959 * it.
1961 if (obj_priv->active) {
1962 #if WATCH_BUF
1963 DRM_INFO("%s: object %p wait for seqno %08x\n",
1964 __func__, obj, obj_priv->last_rendering_seqno);
1965 #endif
1966 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1967 if (ret != 0)
1968 return ret;
1971 return 0;
1975 * Unbinds an object from the GTT aperture.
1978 i915_gem_object_unbind(struct drm_gem_object *obj)
1980 struct drm_device *dev = obj->dev;
1981 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1982 int ret = 0;
1984 #if WATCH_BUF
1985 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1986 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1987 #endif
1988 if (obj_priv->gtt_space == NULL)
1989 return 0;
1991 if (obj_priv->pin_count != 0) {
1992 DRM_ERROR("Attempting to unbind pinned buffer\n");
1993 return -EINVAL;
1996 /* blow away mappings if mapped through GTT */
1997 i915_gem_release_mmap(obj);
1999 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2000 i915_gem_clear_fence_reg(obj);
2002 /* Move the object to the CPU domain to ensure that
2003 * any possible CPU writes while it's not in the GTT
2004 * are flushed when we go to remap it. This will
2005 * also ensure that all pending GPU writes are finished
2006 * before we unbind.
2008 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2009 if (ret) {
2010 if (ret != -ERESTARTSYS)
2011 DRM_ERROR("set_domain failed: %d\n", ret);
2012 return ret;
2015 BUG_ON(obj_priv->active);
2017 if (obj_priv->agp_mem != NULL) {
2018 drm_unbind_agp(obj_priv->agp_mem);
2019 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2020 obj_priv->agp_mem = NULL;
2023 i915_gem_object_put_pages(obj);
2024 BUG_ON(obj_priv->pages_refcount);
2026 if (obj_priv->gtt_space) {
2027 atomic_dec(&dev->gtt_count);
2028 atomic_sub(obj->size, &dev->gtt_memory);
2030 drm_mm_put_block(obj_priv->gtt_space);
2031 obj_priv->gtt_space = NULL;
2034 /* Remove ourselves from the LRU list if present. */
2035 if (!list_empty(&obj_priv->list))
2036 list_del_init(&obj_priv->list);
2038 if (i915_gem_object_is_purgeable(obj_priv))
2039 i915_gem_object_truncate(obj);
2041 trace_i915_gem_object_unbind(obj);
2043 return 0;
2046 static struct drm_gem_object *
2047 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2049 drm_i915_private_t *dev_priv = dev->dev_private;
2050 struct drm_i915_gem_object *obj_priv;
2051 struct drm_gem_object *best = NULL;
2052 struct drm_gem_object *first = NULL;
2054 /* Try to find the smallest clean object */
2055 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2056 struct drm_gem_object *obj = obj_priv->obj;
2057 if (obj->size >= min_size) {
2058 if ((!obj_priv->dirty ||
2059 i915_gem_object_is_purgeable(obj_priv)) &&
2060 (!best || obj->size < best->size)) {
2061 best = obj;
2062 if (best->size == min_size)
2063 return best;
2065 if (!first)
2066 first = obj;
2070 return best ? best : first;
2073 static int
2074 i915_gem_evict_everything(struct drm_device *dev)
2076 drm_i915_private_t *dev_priv = dev->dev_private;
2077 uint32_t seqno;
2078 int ret;
2079 bool lists_empty;
2081 DRM_INFO("GTT full, evicting everything: "
2082 "%d objects [%d pinned], "
2083 "%d object bytes [%d pinned], "
2084 "%d/%d gtt bytes\n",
2085 atomic_read(&dev->object_count),
2086 atomic_read(&dev->pin_count),
2087 atomic_read(&dev->object_memory),
2088 atomic_read(&dev->pin_memory),
2089 atomic_read(&dev->gtt_memory),
2090 dev->gtt_total);
2092 spin_lock(&dev_priv->mm.active_list_lock);
2093 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2094 list_empty(&dev_priv->mm.flushing_list) &&
2095 list_empty(&dev_priv->mm.active_list));
2096 spin_unlock(&dev_priv->mm.active_list_lock);
2098 if (lists_empty) {
2099 DRM_ERROR("GTT full, but lists empty!\n");
2100 return -ENOSPC;
2103 /* Flush everything (on to the inactive lists) and evict */
2104 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2105 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2106 if (seqno == 0)
2107 return -ENOMEM;
2109 ret = i915_wait_request(dev, seqno);
2110 if (ret)
2111 return ret;
2113 ret = i915_gem_evict_from_inactive_list(dev);
2114 if (ret)
2115 return ret;
2117 spin_lock(&dev_priv->mm.active_list_lock);
2118 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2119 list_empty(&dev_priv->mm.flushing_list) &&
2120 list_empty(&dev_priv->mm.active_list));
2121 spin_unlock(&dev_priv->mm.active_list_lock);
2122 BUG_ON(!lists_empty);
2124 return 0;
2127 static int
2128 i915_gem_evict_something(struct drm_device *dev, int min_size)
2130 drm_i915_private_t *dev_priv = dev->dev_private;
2131 struct drm_gem_object *obj;
2132 int ret;
2134 for (;;) {
2135 i915_gem_retire_requests(dev);
2137 /* If there's an inactive buffer available now, grab it
2138 * and be done.
2140 obj = i915_gem_find_inactive_object(dev, min_size);
2141 if (obj) {
2142 struct drm_i915_gem_object *obj_priv;
2144 #if WATCH_LRU
2145 DRM_INFO("%s: evicting %p\n", __func__, obj);
2146 #endif
2147 obj_priv = obj->driver_private;
2148 BUG_ON(obj_priv->pin_count != 0);
2149 BUG_ON(obj_priv->active);
2151 /* Wait on the rendering and unbind the buffer. */
2152 return i915_gem_object_unbind(obj);
2155 /* If we didn't get anything, but the ring is still processing
2156 * things, wait for the next to finish and hopefully leave us
2157 * a buffer to evict.
2159 if (!list_empty(&dev_priv->mm.request_list)) {
2160 struct drm_i915_gem_request *request;
2162 request = list_first_entry(&dev_priv->mm.request_list,
2163 struct drm_i915_gem_request,
2164 list);
2166 ret = i915_wait_request(dev, request->seqno);
2167 if (ret)
2168 return ret;
2170 continue;
2173 /* If we didn't have anything on the request list but there
2174 * are buffers awaiting a flush, emit one and try again.
2175 * When we wait on it, those buffers waiting for that flush
2176 * will get moved to inactive.
2178 if (!list_empty(&dev_priv->mm.flushing_list)) {
2179 struct drm_i915_gem_object *obj_priv;
2181 /* Find an object that we can immediately reuse */
2182 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2183 obj = obj_priv->obj;
2184 if (obj->size >= min_size)
2185 break;
2187 obj = NULL;
2190 if (obj != NULL) {
2191 uint32_t seqno;
2193 i915_gem_flush(dev,
2194 obj->write_domain,
2195 obj->write_domain);
2196 seqno = i915_add_request(dev, NULL, obj->write_domain);
2197 if (seqno == 0)
2198 return -ENOMEM;
2200 ret = i915_wait_request(dev, seqno);
2201 if (ret)
2202 return ret;
2204 continue;
2208 /* If we didn't do any of the above, there's no single buffer
2209 * large enough to swap out for the new one, so just evict
2210 * everything and start again. (This should be rare.)
2212 if (!list_empty (&dev_priv->mm.inactive_list)) {
2213 DRM_INFO("GTT full, evicting inactive buffers\n");
2214 return i915_gem_evict_from_inactive_list(dev);
2215 } else
2216 return i915_gem_evict_everything(dev);
2221 i915_gem_object_get_pages(struct drm_gem_object *obj)
2223 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2224 int page_count, i;
2225 struct address_space *mapping;
2226 struct inode *inode;
2227 struct page *page;
2228 int ret;
2230 if (obj_priv->pages_refcount++ != 0)
2231 return 0;
2233 /* Get the list of pages out of our struct file. They'll be pinned
2234 * at this point until we release them.
2236 page_count = obj->size / PAGE_SIZE;
2237 BUG_ON(obj_priv->pages != NULL);
2238 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2239 if (obj_priv->pages == NULL) {
2240 DRM_ERROR("Failed to allocate page list\n");
2241 obj_priv->pages_refcount--;
2242 return -ENOMEM;
2245 inode = obj->filp->f_path.dentry->d_inode;
2246 mapping = inode->i_mapping;
2247 for (i = 0; i < page_count; i++) {
2248 page = read_mapping_page(mapping, i, NULL);
2249 if (IS_ERR(page)) {
2250 ret = PTR_ERR(page);
2251 i915_gem_object_put_pages(obj);
2252 return ret;
2254 obj_priv->pages[i] = page;
2257 if (obj_priv->tiling_mode != I915_TILING_NONE)
2258 i915_gem_object_do_bit_17_swizzle(obj);
2260 return 0;
2263 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2265 struct drm_gem_object *obj = reg->obj;
2266 struct drm_device *dev = obj->dev;
2267 drm_i915_private_t *dev_priv = dev->dev_private;
2268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2269 int regnum = obj_priv->fence_reg;
2270 uint64_t val;
2272 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2273 0xfffff000) << 32;
2274 val |= obj_priv->gtt_offset & 0xfffff000;
2275 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2276 if (obj_priv->tiling_mode == I915_TILING_Y)
2277 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2278 val |= I965_FENCE_REG_VALID;
2280 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2283 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2285 struct drm_gem_object *obj = reg->obj;
2286 struct drm_device *dev = obj->dev;
2287 drm_i915_private_t *dev_priv = dev->dev_private;
2288 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2289 int regnum = obj_priv->fence_reg;
2290 int tile_width;
2291 uint32_t fence_reg, val;
2292 uint32_t pitch_val;
2294 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2295 (obj_priv->gtt_offset & (obj->size - 1))) {
2296 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2297 __func__, obj_priv->gtt_offset, obj->size);
2298 return;
2301 if (obj_priv->tiling_mode == I915_TILING_Y &&
2302 HAS_128_BYTE_Y_TILING(dev))
2303 tile_width = 128;
2304 else
2305 tile_width = 512;
2307 /* Note: pitch better be a power of two tile widths */
2308 pitch_val = obj_priv->stride / tile_width;
2309 pitch_val = ffs(pitch_val) - 1;
2311 val = obj_priv->gtt_offset;
2312 if (obj_priv->tiling_mode == I915_TILING_Y)
2313 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2314 val |= I915_FENCE_SIZE_BITS(obj->size);
2315 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2316 val |= I830_FENCE_REG_VALID;
2318 if (regnum < 8)
2319 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2320 else
2321 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2322 I915_WRITE(fence_reg, val);
2325 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2327 struct drm_gem_object *obj = reg->obj;
2328 struct drm_device *dev = obj->dev;
2329 drm_i915_private_t *dev_priv = dev->dev_private;
2330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2331 int regnum = obj_priv->fence_reg;
2332 uint32_t val;
2333 uint32_t pitch_val;
2334 uint32_t fence_size_bits;
2336 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2337 (obj_priv->gtt_offset & (obj->size - 1))) {
2338 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2339 __func__, obj_priv->gtt_offset);
2340 return;
2343 pitch_val = obj_priv->stride / 128;
2344 pitch_val = ffs(pitch_val) - 1;
2345 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2347 val = obj_priv->gtt_offset;
2348 if (obj_priv->tiling_mode == I915_TILING_Y)
2349 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2350 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2351 WARN_ON(fence_size_bits & ~0x00000f00);
2352 val |= fence_size_bits;
2353 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2354 val |= I830_FENCE_REG_VALID;
2356 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2360 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2361 * @obj: object to map through a fence reg
2363 * When mapping objects through the GTT, userspace wants to be able to write
2364 * to them without having to worry about swizzling if the object is tiled.
2366 * This function walks the fence regs looking for a free one for @obj,
2367 * stealing one if it can't find any.
2369 * It then sets up the reg based on the object's properties: address, pitch
2370 * and tiling format.
2373 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2375 struct drm_device *dev = obj->dev;
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2378 struct drm_i915_fence_reg *reg = NULL;
2379 struct drm_i915_gem_object *old_obj_priv = NULL;
2380 int i, ret, avail;
2382 /* Just update our place in the LRU if our fence is getting used. */
2383 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2384 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2385 return 0;
2388 switch (obj_priv->tiling_mode) {
2389 case I915_TILING_NONE:
2390 WARN(1, "allocating a fence for non-tiled object?\n");
2391 break;
2392 case I915_TILING_X:
2393 if (!obj_priv->stride)
2394 return -EINVAL;
2395 WARN((obj_priv->stride & (512 - 1)),
2396 "object 0x%08x is X tiled but has non-512B pitch\n",
2397 obj_priv->gtt_offset);
2398 break;
2399 case I915_TILING_Y:
2400 if (!obj_priv->stride)
2401 return -EINVAL;
2402 WARN((obj_priv->stride & (128 - 1)),
2403 "object 0x%08x is Y tiled but has non-128B pitch\n",
2404 obj_priv->gtt_offset);
2405 break;
2408 /* First try to find a free reg */
2409 avail = 0;
2410 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2411 reg = &dev_priv->fence_regs[i];
2412 if (!reg->obj)
2413 break;
2415 old_obj_priv = reg->obj->driver_private;
2416 if (!old_obj_priv->pin_count)
2417 avail++;
2420 /* None available, try to steal one or wait for a user to finish */
2421 if (i == dev_priv->num_fence_regs) {
2422 struct drm_gem_object *old_obj = NULL;
2424 if (avail == 0)
2425 return -ENOSPC;
2427 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2428 fence_list) {
2429 old_obj = old_obj_priv->obj;
2431 if (old_obj_priv->pin_count)
2432 continue;
2434 /* Take a reference, as otherwise the wait_rendering
2435 * below may cause the object to get freed out from
2436 * under us.
2438 drm_gem_object_reference(old_obj);
2440 /* i915 uses fences for GPU access to tiled buffers */
2441 if (IS_I965G(dev) || !old_obj_priv->active)
2442 break;
2444 /* This brings the object to the head of the LRU if it
2445 * had been written to. The only way this should
2446 * result in us waiting longer than the expected
2447 * optimal amount of time is if there was a
2448 * fence-using buffer later that was read-only.
2450 i915_gem_object_flush_gpu_write_domain(old_obj);
2451 ret = i915_gem_object_wait_rendering(old_obj);
2452 if (ret != 0) {
2453 drm_gem_object_unreference(old_obj);
2454 return ret;
2457 break;
2461 * Zap this virtual mapping so we can set up a fence again
2462 * for this object next time we need it.
2464 i915_gem_release_mmap(old_obj);
2466 i = old_obj_priv->fence_reg;
2467 reg = &dev_priv->fence_regs[i];
2469 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2470 list_del_init(&old_obj_priv->fence_list);
2472 drm_gem_object_unreference(old_obj);
2475 obj_priv->fence_reg = i;
2476 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2478 reg->obj = obj;
2480 if (IS_I965G(dev))
2481 i965_write_fence_reg(reg);
2482 else if (IS_I9XX(dev))
2483 i915_write_fence_reg(reg);
2484 else
2485 i830_write_fence_reg(reg);
2487 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2489 return 0;
2493 * i915_gem_clear_fence_reg - clear out fence register info
2494 * @obj: object to clear
2496 * Zeroes out the fence register itself and clears out the associated
2497 * data structures in dev_priv and obj_priv.
2499 static void
2500 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2502 struct drm_device *dev = obj->dev;
2503 drm_i915_private_t *dev_priv = dev->dev_private;
2504 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2506 if (IS_I965G(dev))
2507 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2508 else {
2509 uint32_t fence_reg;
2511 if (obj_priv->fence_reg < 8)
2512 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2513 else
2514 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2515 8) * 4;
2517 I915_WRITE(fence_reg, 0);
2520 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2521 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2522 list_del_init(&obj_priv->fence_list);
2526 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2527 * to the buffer to finish, and then resets the fence register.
2528 * @obj: tiled object holding a fence register.
2530 * Zeroes out the fence register itself and clears out the associated
2531 * data structures in dev_priv and obj_priv.
2534 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2536 struct drm_device *dev = obj->dev;
2537 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2539 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2540 return 0;
2542 /* On the i915, GPU access to tiled buffers is via a fence,
2543 * therefore we must wait for any outstanding access to complete
2544 * before clearing the fence.
2546 if (!IS_I965G(dev)) {
2547 int ret;
2549 i915_gem_object_flush_gpu_write_domain(obj);
2550 i915_gem_object_flush_gtt_write_domain(obj);
2551 ret = i915_gem_object_wait_rendering(obj);
2552 if (ret != 0)
2553 return ret;
2556 i915_gem_clear_fence_reg (obj);
2558 return 0;
2562 * Finds free space in the GTT aperture and binds the object there.
2564 static int
2565 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2567 struct drm_device *dev = obj->dev;
2568 drm_i915_private_t *dev_priv = dev->dev_private;
2569 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2570 struct drm_mm_node *free_space;
2571 bool retry_alloc = false;
2572 int ret;
2574 if (dev_priv->mm.suspended)
2575 return -EBUSY;
2577 if (obj_priv->madv == I915_MADV_DONTNEED) {
2578 DRM_ERROR("Attempting to bind a purgeable object\n");
2579 return -EINVAL;
2582 if (alignment == 0)
2583 alignment = i915_gem_get_gtt_alignment(obj);
2584 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2585 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2586 return -EINVAL;
2589 search_free:
2590 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2591 obj->size, alignment, 0);
2592 if (free_space != NULL) {
2593 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2594 alignment);
2595 if (obj_priv->gtt_space != NULL) {
2596 obj_priv->gtt_space->private = obj;
2597 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2600 if (obj_priv->gtt_space == NULL) {
2601 /* If the gtt is empty and we're still having trouble
2602 * fitting our object in, we're out of memory.
2604 #if WATCH_LRU
2605 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2606 #endif
2607 ret = i915_gem_evict_something(dev, obj->size);
2608 if (ret != 0) {
2609 if (ret != -ERESTARTSYS)
2610 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2611 return ret;
2613 goto search_free;
2616 #if WATCH_BUF
2617 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2618 obj->size, obj_priv->gtt_offset);
2619 #endif
2620 if (retry_alloc) {
2621 i915_gem_object_set_page_gfp_mask (obj,
2622 i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2624 ret = i915_gem_object_get_pages(obj);
2625 if (retry_alloc) {
2626 i915_gem_object_set_page_gfp_mask (obj,
2627 i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2629 if (ret) {
2630 drm_mm_put_block(obj_priv->gtt_space);
2631 obj_priv->gtt_space = NULL;
2633 if (ret == -ENOMEM) {
2634 /* first try to clear up some space from the GTT */
2635 ret = i915_gem_evict_something(dev, obj->size);
2636 if (ret) {
2637 if (ret != -ERESTARTSYS)
2638 DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);
2640 /* now try to shrink everyone else */
2641 if (! retry_alloc) {
2642 retry_alloc = true;
2643 goto search_free;
2646 return ret;
2649 goto search_free;
2652 return ret;
2655 /* Create an AGP memory structure pointing at our pages, and bind it
2656 * into the GTT.
2658 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2659 obj_priv->pages,
2660 obj->size >> PAGE_SHIFT,
2661 obj_priv->gtt_offset,
2662 obj_priv->agp_type);
2663 if (obj_priv->agp_mem == NULL) {
2664 i915_gem_object_put_pages(obj);
2665 drm_mm_put_block(obj_priv->gtt_space);
2666 obj_priv->gtt_space = NULL;
2668 ret = i915_gem_evict_something(dev, obj->size);
2669 if (ret) {
2670 if (ret != -ERESTARTSYS)
2671 DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
2672 return ret;
2675 goto search_free;
2677 atomic_inc(&dev->gtt_count);
2678 atomic_add(obj->size, &dev->gtt_memory);
2680 /* Assert that the object is not currently in any GPU domain. As it
2681 * wasn't in the GTT, there shouldn't be any way it could have been in
2682 * a GPU cache
2684 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2685 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2687 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2689 return 0;
2692 void
2693 i915_gem_clflush_object(struct drm_gem_object *obj)
2695 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2697 /* If we don't have a page list set up, then we're not pinned
2698 * to GPU, and we can ignore the cache flush because it'll happen
2699 * again at bind time.
2701 if (obj_priv->pages == NULL)
2702 return;
2704 trace_i915_gem_object_clflush(obj);
2706 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2709 /** Flushes any GPU write domain for the object if it's dirty. */
2710 static void
2711 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2713 struct drm_device *dev = obj->dev;
2714 uint32_t seqno;
2715 uint32_t old_write_domain;
2717 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2718 return;
2720 /* Queue the GPU write cache flushing we need. */
2721 old_write_domain = obj->write_domain;
2722 i915_gem_flush(dev, 0, obj->write_domain);
2723 seqno = i915_add_request(dev, NULL, obj->write_domain);
2724 obj->write_domain = 0;
2725 i915_gem_object_move_to_active(obj, seqno);
2727 trace_i915_gem_object_change_domain(obj,
2728 obj->read_domains,
2729 old_write_domain);
2732 /** Flushes the GTT write domain for the object if it's dirty. */
2733 static void
2734 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2736 uint32_t old_write_domain;
2738 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2739 return;
2741 /* No actual flushing is required for the GTT write domain. Writes
2742 * to it immediately go to main memory as far as we know, so there's
2743 * no chipset flush. It also doesn't land in render cache.
2745 old_write_domain = obj->write_domain;
2746 obj->write_domain = 0;
2748 trace_i915_gem_object_change_domain(obj,
2749 obj->read_domains,
2750 old_write_domain);
2753 /** Flushes the CPU write domain for the object if it's dirty. */
2754 static void
2755 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2757 struct drm_device *dev = obj->dev;
2758 uint32_t old_write_domain;
2760 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2761 return;
2763 i915_gem_clflush_object(obj);
2764 drm_agp_chipset_flush(dev);
2765 old_write_domain = obj->write_domain;
2766 obj->write_domain = 0;
2768 trace_i915_gem_object_change_domain(obj,
2769 obj->read_domains,
2770 old_write_domain);
2774 * Moves a single object to the GTT read, and possibly write domain.
2776 * This function returns when the move is complete, including waiting on
2777 * flushes to occur.
2780 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2782 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2783 uint32_t old_write_domain, old_read_domains;
2784 int ret;
2786 /* Not valid to be called on unbound objects. */
2787 if (obj_priv->gtt_space == NULL)
2788 return -EINVAL;
2790 i915_gem_object_flush_gpu_write_domain(obj);
2791 /* Wait on any GPU rendering and flushing to occur. */
2792 ret = i915_gem_object_wait_rendering(obj);
2793 if (ret != 0)
2794 return ret;
2796 old_write_domain = obj->write_domain;
2797 old_read_domains = obj->read_domains;
2799 /* If we're writing through the GTT domain, then CPU and GPU caches
2800 * will need to be invalidated at next use.
2802 if (write)
2803 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2805 i915_gem_object_flush_cpu_write_domain(obj);
2807 /* It should now be out of any other write domains, and we can update
2808 * the domain values for our changes.
2810 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2811 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2812 if (write) {
2813 obj->write_domain = I915_GEM_DOMAIN_GTT;
2814 obj_priv->dirty = 1;
2817 trace_i915_gem_object_change_domain(obj,
2818 old_read_domains,
2819 old_write_domain);
2821 return 0;
2825 * Moves a single object to the CPU read, and possibly write domain.
2827 * This function returns when the move is complete, including waiting on
2828 * flushes to occur.
2830 static int
2831 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2833 uint32_t old_write_domain, old_read_domains;
2834 int ret;
2836 i915_gem_object_flush_gpu_write_domain(obj);
2837 /* Wait on any GPU rendering and flushing to occur. */
2838 ret = i915_gem_object_wait_rendering(obj);
2839 if (ret != 0)
2840 return ret;
2842 i915_gem_object_flush_gtt_write_domain(obj);
2844 /* If we have a partially-valid cache of the object in the CPU,
2845 * finish invalidating it and free the per-page flags.
2847 i915_gem_object_set_to_full_cpu_read_domain(obj);
2849 old_write_domain = obj->write_domain;
2850 old_read_domains = obj->read_domains;
2852 /* Flush the CPU cache if it's still invalid. */
2853 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2854 i915_gem_clflush_object(obj);
2856 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2859 /* It should now be out of any other write domains, and we can update
2860 * the domain values for our changes.
2862 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2864 /* If we're writing through the CPU, then the GPU read domains will
2865 * need to be invalidated at next use.
2867 if (write) {
2868 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2869 obj->write_domain = I915_GEM_DOMAIN_CPU;
2872 trace_i915_gem_object_change_domain(obj,
2873 old_read_domains,
2874 old_write_domain);
2876 return 0;
2880 * Set the next domain for the specified object. This
2881 * may not actually perform the necessary flushing/invaliding though,
2882 * as that may want to be batched with other set_domain operations
2884 * This is (we hope) the only really tricky part of gem. The goal
2885 * is fairly simple -- track which caches hold bits of the object
2886 * and make sure they remain coherent. A few concrete examples may
2887 * help to explain how it works. For shorthand, we use the notation
2888 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2889 * a pair of read and write domain masks.
2891 * Case 1: the batch buffer
2893 * 1. Allocated
2894 * 2. Written by CPU
2895 * 3. Mapped to GTT
2896 * 4. Read by GPU
2897 * 5. Unmapped from GTT
2898 * 6. Freed
2900 * Let's take these a step at a time
2902 * 1. Allocated
2903 * Pages allocated from the kernel may still have
2904 * cache contents, so we set them to (CPU, CPU) always.
2905 * 2. Written by CPU (using pwrite)
2906 * The pwrite function calls set_domain (CPU, CPU) and
2907 * this function does nothing (as nothing changes)
2908 * 3. Mapped by GTT
2909 * This function asserts that the object is not
2910 * currently in any GPU-based read or write domains
2911 * 4. Read by GPU
2912 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2913 * As write_domain is zero, this function adds in the
2914 * current read domains (CPU+COMMAND, 0).
2915 * flush_domains is set to CPU.
2916 * invalidate_domains is set to COMMAND
2917 * clflush is run to get data out of the CPU caches
2918 * then i915_dev_set_domain calls i915_gem_flush to
2919 * emit an MI_FLUSH and drm_agp_chipset_flush
2920 * 5. Unmapped from GTT
2921 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2922 * flush_domains and invalidate_domains end up both zero
2923 * so no flushing/invalidating happens
2924 * 6. Freed
2925 * yay, done
2927 * Case 2: The shared render buffer
2929 * 1. Allocated
2930 * 2. Mapped to GTT
2931 * 3. Read/written by GPU
2932 * 4. set_domain to (CPU,CPU)
2933 * 5. Read/written by CPU
2934 * 6. Read/written by GPU
2936 * 1. Allocated
2937 * Same as last example, (CPU, CPU)
2938 * 2. Mapped to GTT
2939 * Nothing changes (assertions find that it is not in the GPU)
2940 * 3. Read/written by GPU
2941 * execbuffer calls set_domain (RENDER, RENDER)
2942 * flush_domains gets CPU
2943 * invalidate_domains gets GPU
2944 * clflush (obj)
2945 * MI_FLUSH and drm_agp_chipset_flush
2946 * 4. set_domain (CPU, CPU)
2947 * flush_domains gets GPU
2948 * invalidate_domains gets CPU
2949 * wait_rendering (obj) to make sure all drawing is complete.
2950 * This will include an MI_FLUSH to get the data from GPU
2951 * to memory
2952 * clflush (obj) to invalidate the CPU cache
2953 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2954 * 5. Read/written by CPU
2955 * cache lines are loaded and dirtied
2956 * 6. Read written by GPU
2957 * Same as last GPU access
2959 * Case 3: The constant buffer
2961 * 1. Allocated
2962 * 2. Written by CPU
2963 * 3. Read by GPU
2964 * 4. Updated (written) by CPU again
2965 * 5. Read by GPU
2967 * 1. Allocated
2968 * (CPU, CPU)
2969 * 2. Written by CPU
2970 * (CPU, CPU)
2971 * 3. Read by GPU
2972 * (CPU+RENDER, 0)
2973 * flush_domains = CPU
2974 * invalidate_domains = RENDER
2975 * clflush (obj)
2976 * MI_FLUSH
2977 * drm_agp_chipset_flush
2978 * 4. Updated (written) by CPU again
2979 * (CPU, CPU)
2980 * flush_domains = 0 (no previous write domain)
2981 * invalidate_domains = 0 (no new read domains)
2982 * 5. Read by GPU
2983 * (CPU+RENDER, 0)
2984 * flush_domains = CPU
2985 * invalidate_domains = RENDER
2986 * clflush (obj)
2987 * MI_FLUSH
2988 * drm_agp_chipset_flush
2990 static void
2991 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2993 struct drm_device *dev = obj->dev;
2994 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2995 uint32_t invalidate_domains = 0;
2996 uint32_t flush_domains = 0;
2997 uint32_t old_read_domains;
2999 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3000 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3002 intel_mark_busy(dev, obj);
3004 #if WATCH_BUF
3005 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3006 __func__, obj,
3007 obj->read_domains, obj->pending_read_domains,
3008 obj->write_domain, obj->pending_write_domain);
3009 #endif
3011 * If the object isn't moving to a new write domain,
3012 * let the object stay in multiple read domains
3014 if (obj->pending_write_domain == 0)
3015 obj->pending_read_domains |= obj->read_domains;
3016 else
3017 obj_priv->dirty = 1;
3020 * Flush the current write domain if
3021 * the new read domains don't match. Invalidate
3022 * any read domains which differ from the old
3023 * write domain
3025 if (obj->write_domain &&
3026 obj->write_domain != obj->pending_read_domains) {
3027 flush_domains |= obj->write_domain;
3028 invalidate_domains |=
3029 obj->pending_read_domains & ~obj->write_domain;
3032 * Invalidate any read caches which may have
3033 * stale data. That is, any new read domains.
3035 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3036 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3037 #if WATCH_BUF
3038 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3039 __func__, flush_domains, invalidate_domains);
3040 #endif
3041 i915_gem_clflush_object(obj);
3044 old_read_domains = obj->read_domains;
3046 /* The actual obj->write_domain will be updated with
3047 * pending_write_domain after we emit the accumulated flush for all
3048 * of our domain changes in execbuffers (which clears objects'
3049 * write_domains). So if we have a current write domain that we
3050 * aren't changing, set pending_write_domain to that.
3052 if (flush_domains == 0 && obj->pending_write_domain == 0)
3053 obj->pending_write_domain = obj->write_domain;
3054 obj->read_domains = obj->pending_read_domains;
3056 dev->invalidate_domains |= invalidate_domains;
3057 dev->flush_domains |= flush_domains;
3058 #if WATCH_BUF
3059 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3060 __func__,
3061 obj->read_domains, obj->write_domain,
3062 dev->invalidate_domains, dev->flush_domains);
3063 #endif
3065 trace_i915_gem_object_change_domain(obj,
3066 old_read_domains,
3067 obj->write_domain);
3071 * Moves the object from a partially CPU read to a full one.
3073 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3074 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3076 static void
3077 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3079 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3081 if (!obj_priv->page_cpu_valid)
3082 return;
3084 /* If we're partially in the CPU read domain, finish moving it in.
3086 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3087 int i;
3089 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3090 if (obj_priv->page_cpu_valid[i])
3091 continue;
3092 drm_clflush_pages(obj_priv->pages + i, 1);
3096 /* Free the page_cpu_valid mappings which are now stale, whether
3097 * or not we've got I915_GEM_DOMAIN_CPU.
3099 kfree(obj_priv->page_cpu_valid);
3100 obj_priv->page_cpu_valid = NULL;
3104 * Set the CPU read domain on a range of the object.
3106 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3107 * not entirely valid. The page_cpu_valid member of the object flags which
3108 * pages have been flushed, and will be respected by
3109 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3110 * of the whole object.
3112 * This function returns when the move is complete, including waiting on
3113 * flushes to occur.
3115 static int
3116 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3117 uint64_t offset, uint64_t size)
3119 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3120 uint32_t old_read_domains;
3121 int i, ret;
3123 if (offset == 0 && size == obj->size)
3124 return i915_gem_object_set_to_cpu_domain(obj, 0);
3126 i915_gem_object_flush_gpu_write_domain(obj);
3127 /* Wait on any GPU rendering and flushing to occur. */
3128 ret = i915_gem_object_wait_rendering(obj);
3129 if (ret != 0)
3130 return ret;
3131 i915_gem_object_flush_gtt_write_domain(obj);
3133 /* If we're already fully in the CPU read domain, we're done. */
3134 if (obj_priv->page_cpu_valid == NULL &&
3135 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3136 return 0;
3138 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3139 * newly adding I915_GEM_DOMAIN_CPU
3141 if (obj_priv->page_cpu_valid == NULL) {
3142 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3143 GFP_KERNEL);
3144 if (obj_priv->page_cpu_valid == NULL)
3145 return -ENOMEM;
3146 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3147 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3149 /* Flush the cache on any pages that are still invalid from the CPU's
3150 * perspective.
3152 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3153 i++) {
3154 if (obj_priv->page_cpu_valid[i])
3155 continue;
3157 drm_clflush_pages(obj_priv->pages + i, 1);
3159 obj_priv->page_cpu_valid[i] = 1;
3162 /* It should now be out of any other write domains, and we can update
3163 * the domain values for our changes.
3165 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3167 old_read_domains = obj->read_domains;
3168 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3170 trace_i915_gem_object_change_domain(obj,
3171 old_read_domains,
3172 obj->write_domain);
3174 return 0;
3178 * Pin an object to the GTT and evaluate the relocations landing in it.
3180 static int
3181 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3182 struct drm_file *file_priv,
3183 struct drm_i915_gem_exec_object *entry,
3184 struct drm_i915_gem_relocation_entry *relocs)
3186 struct drm_device *dev = obj->dev;
3187 drm_i915_private_t *dev_priv = dev->dev_private;
3188 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3189 int i, ret;
3190 void __iomem *reloc_page;
3192 /* Choose the GTT offset for our buffer and put it there. */
3193 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3194 if (ret)
3195 return ret;
3197 entry->offset = obj_priv->gtt_offset;
3199 /* Apply the relocations, using the GTT aperture to avoid cache
3200 * flushing requirements.
3202 for (i = 0; i < entry->relocation_count; i++) {
3203 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3204 struct drm_gem_object *target_obj;
3205 struct drm_i915_gem_object *target_obj_priv;
3206 uint32_t reloc_val, reloc_offset;
3207 uint32_t __iomem *reloc_entry;
3209 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3210 reloc->target_handle);
3211 if (target_obj == NULL) {
3212 i915_gem_object_unpin(obj);
3213 return -EBADF;
3215 target_obj_priv = target_obj->driver_private;
3217 #if WATCH_RELOC
3218 DRM_INFO("%s: obj %p offset %08x target %d "
3219 "read %08x write %08x gtt %08x "
3220 "presumed %08x delta %08x\n",
3221 __func__,
3222 obj,
3223 (int) reloc->offset,
3224 (int) reloc->target_handle,
3225 (int) reloc->read_domains,
3226 (int) reloc->write_domain,
3227 (int) target_obj_priv->gtt_offset,
3228 (int) reloc->presumed_offset,
3229 reloc->delta);
3230 #endif
3232 /* The target buffer should have appeared before us in the
3233 * exec_object list, so it should have a GTT space bound by now.
3235 if (target_obj_priv->gtt_space == NULL) {
3236 DRM_ERROR("No GTT space found for object %d\n",
3237 reloc->target_handle);
3238 drm_gem_object_unreference(target_obj);
3239 i915_gem_object_unpin(obj);
3240 return -EINVAL;
3243 /* Validate that the target is in a valid r/w GPU domain */
3244 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3245 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3246 DRM_ERROR("reloc with read/write CPU domains: "
3247 "obj %p target %d offset %d "
3248 "read %08x write %08x",
3249 obj, reloc->target_handle,
3250 (int) reloc->offset,
3251 reloc->read_domains,
3252 reloc->write_domain);
3253 drm_gem_object_unreference(target_obj);
3254 i915_gem_object_unpin(obj);
3255 return -EINVAL;
3257 if (reloc->write_domain && target_obj->pending_write_domain &&
3258 reloc->write_domain != target_obj->pending_write_domain) {
3259 DRM_ERROR("Write domain conflict: "
3260 "obj %p target %d offset %d "
3261 "new %08x old %08x\n",
3262 obj, reloc->target_handle,
3263 (int) reloc->offset,
3264 reloc->write_domain,
3265 target_obj->pending_write_domain);
3266 drm_gem_object_unreference(target_obj);
3267 i915_gem_object_unpin(obj);
3268 return -EINVAL;
3271 target_obj->pending_read_domains |= reloc->read_domains;
3272 target_obj->pending_write_domain |= reloc->write_domain;
3274 /* If the relocation already has the right value in it, no
3275 * more work needs to be done.
3277 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3278 drm_gem_object_unreference(target_obj);
3279 continue;
3282 /* Check that the relocation address is valid... */
3283 if (reloc->offset > obj->size - 4) {
3284 DRM_ERROR("Relocation beyond object bounds: "
3285 "obj %p target %d offset %d size %d.\n",
3286 obj, reloc->target_handle,
3287 (int) reloc->offset, (int) obj->size);
3288 drm_gem_object_unreference(target_obj);
3289 i915_gem_object_unpin(obj);
3290 return -EINVAL;
3292 if (reloc->offset & 3) {
3293 DRM_ERROR("Relocation not 4-byte aligned: "
3294 "obj %p target %d offset %d.\n",
3295 obj, reloc->target_handle,
3296 (int) reloc->offset);
3297 drm_gem_object_unreference(target_obj);
3298 i915_gem_object_unpin(obj);
3299 return -EINVAL;
3302 /* and points to somewhere within the target object. */
3303 if (reloc->delta >= target_obj->size) {
3304 DRM_ERROR("Relocation beyond target object bounds: "
3305 "obj %p target %d delta %d size %d.\n",
3306 obj, reloc->target_handle,
3307 (int) reloc->delta, (int) target_obj->size);
3308 drm_gem_object_unreference(target_obj);
3309 i915_gem_object_unpin(obj);
3310 return -EINVAL;
3313 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3314 if (ret != 0) {
3315 drm_gem_object_unreference(target_obj);
3316 i915_gem_object_unpin(obj);
3317 return -EINVAL;
3320 /* Map the page containing the relocation we're going to
3321 * perform.
3323 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3324 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3325 (reloc_offset &
3326 ~(PAGE_SIZE - 1)));
3327 reloc_entry = (uint32_t __iomem *)(reloc_page +
3328 (reloc_offset & (PAGE_SIZE - 1)));
3329 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3331 #if WATCH_BUF
3332 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3333 obj, (unsigned int) reloc->offset,
3334 readl(reloc_entry), reloc_val);
3335 #endif
3336 writel(reloc_val, reloc_entry);
3337 io_mapping_unmap_atomic(reloc_page);
3339 /* The updated presumed offset for this entry will be
3340 * copied back out to the user.
3342 reloc->presumed_offset = target_obj_priv->gtt_offset;
3344 drm_gem_object_unreference(target_obj);
3347 #if WATCH_BUF
3348 if (0)
3349 i915_gem_dump_object(obj, 128, __func__, ~0);
3350 #endif
3351 return 0;
3354 /** Dispatch a batchbuffer to the ring
3356 static int
3357 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3358 struct drm_i915_gem_execbuffer *exec,
3359 struct drm_clip_rect *cliprects,
3360 uint64_t exec_offset)
3362 drm_i915_private_t *dev_priv = dev->dev_private;
3363 int nbox = exec->num_cliprects;
3364 int i = 0, count;
3365 uint32_t exec_start, exec_len;
3366 RING_LOCALS;
3368 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3369 exec_len = (uint32_t) exec->batch_len;
3371 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);
3373 count = nbox ? nbox : 1;
3375 for (i = 0; i < count; i++) {
3376 if (i < nbox) {
3377 int ret = i915_emit_box(dev, cliprects, i,
3378 exec->DR1, exec->DR4);
3379 if (ret)
3380 return ret;
3383 if (IS_I830(dev) || IS_845G(dev)) {
3384 BEGIN_LP_RING(4);
3385 OUT_RING(MI_BATCH_BUFFER);
3386 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3387 OUT_RING(exec_start + exec_len - 4);
3388 OUT_RING(0);
3389 ADVANCE_LP_RING();
3390 } else {
3391 BEGIN_LP_RING(2);
3392 if (IS_I965G(dev)) {
3393 OUT_RING(MI_BATCH_BUFFER_START |
3394 (2 << 6) |
3395 MI_BATCH_NON_SECURE_I965);
3396 OUT_RING(exec_start);
3397 } else {
3398 OUT_RING(MI_BATCH_BUFFER_START |
3399 (2 << 6));
3400 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3402 ADVANCE_LP_RING();
3406 /* XXX breadcrumb */
3407 return 0;
3410 /* Throttle our rendering by waiting until the ring has completed our requests
3411 * emitted over 20 msec ago.
3413 * Note that if we were to use the current jiffies each time around the loop,
3414 * we wouldn't escape the function with any frames outstanding if the time to
3415 * render a frame was over 20ms.
3417 * This should get us reasonable parallelism between CPU and GPU but also
3418 * relatively low latency when blocking on a particular request to finish.
3420 static int
3421 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3423 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3424 int ret = 0;
3425 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3427 mutex_lock(&dev->struct_mutex);
3428 while (!list_empty(&i915_file_priv->mm.request_list)) {
3429 struct drm_i915_gem_request *request;
3431 request = list_first_entry(&i915_file_priv->mm.request_list,
3432 struct drm_i915_gem_request,
3433 client_list);
3435 if (time_after_eq(request->emitted_jiffies, recent_enough))
3436 break;
3438 ret = i915_wait_request(dev, request->seqno);
3439 if (ret != 0)
3440 break;
3442 mutex_unlock(&dev->struct_mutex);
3444 return ret;
3447 static int
3448 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3449 uint32_t buffer_count,
3450 struct drm_i915_gem_relocation_entry **relocs)
3452 uint32_t reloc_count = 0, reloc_index = 0, i;
3453 int ret;
3455 *relocs = NULL;
3456 for (i = 0; i < buffer_count; i++) {
3457 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3458 return -EINVAL;
3459 reloc_count += exec_list[i].relocation_count;
3462 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3463 if (*relocs == NULL)
3464 return -ENOMEM;
3466 for (i = 0; i < buffer_count; i++) {
3467 struct drm_i915_gem_relocation_entry __user *user_relocs;
3469 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3471 ret = copy_from_user(&(*relocs)[reloc_index],
3472 user_relocs,
3473 exec_list[i].relocation_count *
3474 sizeof(**relocs));
3475 if (ret != 0) {
3476 drm_free_large(*relocs);
3477 *relocs = NULL;
3478 return -EFAULT;
3481 reloc_index += exec_list[i].relocation_count;
3484 return 0;
3487 static int
3488 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3489 uint32_t buffer_count,
3490 struct drm_i915_gem_relocation_entry *relocs)
3492 uint32_t reloc_count = 0, i;
3493 int ret = 0;
3495 for (i = 0; i < buffer_count; i++) {
3496 struct drm_i915_gem_relocation_entry __user *user_relocs;
3497 int unwritten;
3499 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3501 unwritten = copy_to_user(user_relocs,
3502 &relocs[reloc_count],
3503 exec_list[i].relocation_count *
3504 sizeof(*relocs));
3506 if (unwritten) {
3507 ret = -EFAULT;
3508 goto err;
3511 reloc_count += exec_list[i].relocation_count;
3514 err:
3515 drm_free_large(relocs);
3517 return ret;
3520 static int
3521 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3522 uint64_t exec_offset)
3524 uint32_t exec_start, exec_len;
3526 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3527 exec_len = (uint32_t) exec->batch_len;
3529 if ((exec_start | exec_len) & 0x7)
3530 return -EINVAL;
3532 if (!exec_start)
3533 return -EINVAL;
3535 return 0;
3539 i915_gem_execbuffer(struct drm_device *dev, void *data,
3540 struct drm_file *file_priv)
3542 drm_i915_private_t *dev_priv = dev->dev_private;
3543 struct drm_i915_gem_execbuffer *args = data;
3544 struct drm_i915_gem_exec_object *exec_list = NULL;
3545 struct drm_gem_object **object_list = NULL;
3546 struct drm_gem_object *batch_obj;
3547 struct drm_i915_gem_object *obj_priv;
3548 struct drm_clip_rect *cliprects = NULL;
3549 struct drm_i915_gem_relocation_entry *relocs;
3550 int ret, ret2, i, pinned = 0;
3551 uint64_t exec_offset;
3552 uint32_t seqno, flush_domains, reloc_index;
3553 int pin_tries;
3555 #if WATCH_EXEC
3556 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3557 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3558 #endif
3560 if (args->buffer_count < 1) {
3561 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3562 return -EINVAL;
3564 /* Copy in the exec list from userland */
3565 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3566 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3567 if (exec_list == NULL || object_list == NULL) {
3568 DRM_ERROR("Failed to allocate exec or object list "
3569 "for %d buffers\n",
3570 args->buffer_count);
3571 ret = -ENOMEM;
3572 goto pre_mutex_err;
3574 ret = copy_from_user(exec_list,
3575 (struct drm_i915_relocation_entry __user *)
3576 (uintptr_t) args->buffers_ptr,
3577 sizeof(*exec_list) * args->buffer_count);
3578 if (ret != 0) {
3579 DRM_ERROR("copy %d exec entries failed %d\n",
3580 args->buffer_count, ret);
3581 goto pre_mutex_err;
3584 if (args->num_cliprects != 0) {
3585 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3586 GFP_KERNEL);
3587 if (cliprects == NULL)
3588 goto pre_mutex_err;
3590 ret = copy_from_user(cliprects,
3591 (struct drm_clip_rect __user *)
3592 (uintptr_t) args->cliprects_ptr,
3593 sizeof(*cliprects) * args->num_cliprects);
3594 if (ret != 0) {
3595 DRM_ERROR("copy %d cliprects failed: %d\n",
3596 args->num_cliprects, ret);
3597 goto pre_mutex_err;
3601 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3602 &relocs);
3603 if (ret != 0)
3604 goto pre_mutex_err;
3606 mutex_lock(&dev->struct_mutex);
3608 i915_verify_inactive(dev, __FILE__, __LINE__);
3610 if (atomic_read(&dev_priv->mm.wedged)) {
3611 DRM_ERROR("Execbuf while wedged\n");
3612 mutex_unlock(&dev->struct_mutex);
3613 ret = -EIO;
3614 goto pre_mutex_err;
3617 if (dev_priv->mm.suspended) {
3618 DRM_ERROR("Execbuf while VT-switched.\n");
3619 mutex_unlock(&dev->struct_mutex);
3620 ret = -EBUSY;
3621 goto pre_mutex_err;
3624 /* Look up object handles */
3625 for (i = 0; i < args->buffer_count; i++) {
3626 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3627 exec_list[i].handle);
3628 if (object_list[i] == NULL) {
3629 DRM_ERROR("Invalid object handle %d at index %d\n",
3630 exec_list[i].handle, i);
3631 ret = -EBADF;
3632 goto err;
3635 obj_priv = object_list[i]->driver_private;
3636 if (obj_priv->in_execbuffer) {
3637 DRM_ERROR("Object %p appears more than once in object list\n",
3638 object_list[i]);
3639 ret = -EBADF;
3640 goto err;
3642 obj_priv->in_execbuffer = true;
3645 /* Pin and relocate */
3646 for (pin_tries = 0; ; pin_tries++) {
3647 ret = 0;
3648 reloc_index = 0;
3650 for (i = 0; i < args->buffer_count; i++) {
3651 object_list[i]->pending_read_domains = 0;
3652 object_list[i]->pending_write_domain = 0;
3653 ret = i915_gem_object_pin_and_relocate(object_list[i],
3654 file_priv,
3655 &exec_list[i],
3656 &relocs[reloc_index]);
3657 if (ret)
3658 break;
3659 pinned = i + 1;
3660 reloc_index += exec_list[i].relocation_count;
3662 /* success */
3663 if (ret == 0)
3664 break;
3666 /* error other than GTT full, or we've already tried again */
3667 if (ret != -ENOSPC || pin_tries >= 1) {
3668 if (ret != -ERESTARTSYS) {
3669 unsigned long long total_size = 0;
3670 for (i = 0; i < args->buffer_count; i++)
3671 total_size += object_list[i]->size;
3672 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3673 pinned+1, args->buffer_count,
3674 total_size, ret);
3675 DRM_ERROR("%d objects [%d pinned], "
3676 "%d object bytes [%d pinned], "
3677 "%d/%d gtt bytes\n",
3678 atomic_read(&dev->object_count),
3679 atomic_read(&dev->pin_count),
3680 atomic_read(&dev->object_memory),
3681 atomic_read(&dev->pin_memory),
3682 atomic_read(&dev->gtt_memory),
3683 dev->gtt_total);
3685 goto err;
3688 /* unpin all of our buffers */
3689 for (i = 0; i < pinned; i++)
3690 i915_gem_object_unpin(object_list[i]);
3691 pinned = 0;
3693 /* evict everyone we can from the aperture */
3694 ret = i915_gem_evict_everything(dev);
3695 if (ret && ret != -ENOSPC)
3696 goto err;
3699 /* Set the pending read domains for the batch buffer to COMMAND */
3700 batch_obj = object_list[args->buffer_count-1];
3701 if (batch_obj->pending_write_domain) {
3702 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3703 ret = -EINVAL;
3704 goto err;
3706 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3708 /* Sanity check the batch buffer, prior to moving objects */
3709 exec_offset = exec_list[args->buffer_count - 1].offset;
3710 ret = i915_gem_check_execbuffer (args, exec_offset);
3711 if (ret != 0) {
3712 DRM_ERROR("execbuf with invalid offset/length\n");
3713 goto err;
3716 i915_verify_inactive(dev, __FILE__, __LINE__);
3718 /* Zero the global flush/invalidate flags. These
3719 * will be modified as new domains are computed
3720 * for each object
3722 dev->invalidate_domains = 0;
3723 dev->flush_domains = 0;
3725 for (i = 0; i < args->buffer_count; i++) {
3726 struct drm_gem_object *obj = object_list[i];
3728 /* Compute new gpu domains and update invalidate/flush */
3729 i915_gem_object_set_to_gpu_domain(obj);
3732 i915_verify_inactive(dev, __FILE__, __LINE__);
3734 if (dev->invalidate_domains | dev->flush_domains) {
3735 #if WATCH_EXEC
3736 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3737 __func__,
3738 dev->invalidate_domains,
3739 dev->flush_domains);
3740 #endif
3741 i915_gem_flush(dev,
3742 dev->invalidate_domains,
3743 dev->flush_domains);
3744 if (dev->flush_domains)
3745 (void)i915_add_request(dev, file_priv,
3746 dev->flush_domains);
3749 for (i = 0; i < args->buffer_count; i++) {
3750 struct drm_gem_object *obj = object_list[i];
3751 uint32_t old_write_domain = obj->write_domain;
3753 obj->write_domain = obj->pending_write_domain;
3754 trace_i915_gem_object_change_domain(obj,
3755 obj->read_domains,
3756 old_write_domain);
3759 i915_verify_inactive(dev, __FILE__, __LINE__);
3761 #if WATCH_COHERENCY
3762 for (i = 0; i < args->buffer_count; i++) {
3763 i915_gem_object_check_coherency(object_list[i],
3764 exec_list[i].handle);
3766 #endif
3768 #if WATCH_EXEC
3769 i915_gem_dump_object(batch_obj,
3770 args->batch_len,
3771 __func__,
3772 ~0);
3773 #endif
3775 /* Exec the batchbuffer */
3776 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3777 if (ret) {
3778 DRM_ERROR("dispatch failed %d\n", ret);
3779 goto err;
3783 * Ensure that the commands in the batch buffer are
3784 * finished before the interrupt fires
3786 flush_domains = i915_retire_commands(dev);
3788 i915_verify_inactive(dev, __FILE__, __LINE__);
3791 * Get a seqno representing the execution of the current buffer,
3792 * which we can wait on. We would like to mitigate these interrupts,
3793 * likely by only creating seqnos occasionally (so that we have
3794 * *some* interrupts representing completion of buffers that we can
3795 * wait on when trying to clear up gtt space).
3797 seqno = i915_add_request(dev, file_priv, flush_domains);
3798 BUG_ON(seqno == 0);
3799 for (i = 0; i < args->buffer_count; i++) {
3800 struct drm_gem_object *obj = object_list[i];
3802 i915_gem_object_move_to_active(obj, seqno);
3803 #if WATCH_LRU
3804 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3805 #endif
3807 #if WATCH_LRU
3808 i915_dump_lru(dev, __func__);
3809 #endif
3811 i915_verify_inactive(dev, __FILE__, __LINE__);
3813 err:
3814 for (i = 0; i < pinned; i++)
3815 i915_gem_object_unpin(object_list[i]);
3817 for (i = 0; i < args->buffer_count; i++) {
3818 if (object_list[i]) {
3819 obj_priv = object_list[i]->driver_private;
3820 obj_priv->in_execbuffer = false;
3822 drm_gem_object_unreference(object_list[i]);
3825 mutex_unlock(&dev->struct_mutex);
3827 if (!ret) {
3828 /* Copy the new buffer offsets back to the user's exec list. */
3829 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3830 (uintptr_t) args->buffers_ptr,
3831 exec_list,
3832 sizeof(*exec_list) * args->buffer_count);
3833 if (ret) {
3834 ret = -EFAULT;
3835 DRM_ERROR("failed to copy %d exec entries "
3836 "back to user (%d)\n",
3837 args->buffer_count, ret);
3841 /* Copy the updated relocations out regardless of current error
3842 * state. Failure to update the relocs would mean that the next
3843 * time userland calls execbuf, it would do so with presumed offset
3844 * state that didn't match the actual object state.
3846 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3847 relocs);
3848 if (ret2 != 0) {
3849 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3851 if (ret == 0)
3852 ret = ret2;
3855 pre_mutex_err:
3856 drm_free_large(object_list);
3857 drm_free_large(exec_list);
3858 kfree(cliprects);
3860 return ret;
3864 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3866 struct drm_device *dev = obj->dev;
3867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3868 int ret;
3870 i915_verify_inactive(dev, __FILE__, __LINE__);
3871 if (obj_priv->gtt_space == NULL) {
3872 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3873 if (ret != 0) {
3874 if (ret != -EBUSY && ret != -ERESTARTSYS)
3875 DRM_ERROR("Failure to bind: %d\n", ret);
3876 return ret;
3880 * Pre-965 chips need a fence register set up in order to
3881 * properly handle tiled surfaces.
3883 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3884 ret = i915_gem_object_get_fence_reg(obj);
3885 if (ret != 0) {
3886 if (ret != -EBUSY && ret != -ERESTARTSYS)
3887 DRM_ERROR("Failure to install fence: %d\n",
3888 ret);
3889 return ret;
3892 obj_priv->pin_count++;
3894 /* If the object is not active and not pending a flush,
3895 * remove it from the inactive list
3897 if (obj_priv->pin_count == 1) {
3898 atomic_inc(&dev->pin_count);
3899 atomic_add(obj->size, &dev->pin_memory);
3900 if (!obj_priv->active &&
3901 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3902 !list_empty(&obj_priv->list))
3903 list_del_init(&obj_priv->list);
3905 i915_verify_inactive(dev, __FILE__, __LINE__);
3907 return 0;
3910 void
3911 i915_gem_object_unpin(struct drm_gem_object *obj)
3913 struct drm_device *dev = obj->dev;
3914 drm_i915_private_t *dev_priv = dev->dev_private;
3915 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3917 i915_verify_inactive(dev, __FILE__, __LINE__);
3918 obj_priv->pin_count--;
3919 BUG_ON(obj_priv->pin_count < 0);
3920 BUG_ON(obj_priv->gtt_space == NULL);
3922 /* If the object is no longer pinned, and is
3923 * neither active nor being flushed, then stick it on
3924 * the inactive list
3926 if (obj_priv->pin_count == 0) {
3927 if (!obj_priv->active &&
3928 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3929 list_move_tail(&obj_priv->list,
3930 &dev_priv->mm.inactive_list);
3931 atomic_dec(&dev->pin_count);
3932 atomic_sub(obj->size, &dev->pin_memory);
3934 i915_verify_inactive(dev, __FILE__, __LINE__);
3938 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3939 struct drm_file *file_priv)
3941 struct drm_i915_gem_pin *args = data;
3942 struct drm_gem_object *obj;
3943 struct drm_i915_gem_object *obj_priv;
3944 int ret;
3946 mutex_lock(&dev->struct_mutex);
3948 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3949 if (obj == NULL) {
3950 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3951 args->handle);
3952 mutex_unlock(&dev->struct_mutex);
3953 return -EBADF;
3955 obj_priv = obj->driver_private;
3957 if (obj_priv->madv == I915_MADV_DONTNEED) {
3958 DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
3959 drm_gem_object_unreference(obj);
3960 mutex_unlock(&dev->struct_mutex);
3961 return -EINVAL;
3964 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3965 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3966 args->handle);
3967 drm_gem_object_unreference(obj);
3968 mutex_unlock(&dev->struct_mutex);
3969 return -EINVAL;
3972 obj_priv->user_pin_count++;
3973 obj_priv->pin_filp = file_priv;
3974 if (obj_priv->user_pin_count == 1) {
3975 ret = i915_gem_object_pin(obj, args->alignment);
3976 if (ret != 0) {
3977 drm_gem_object_unreference(obj);
3978 mutex_unlock(&dev->struct_mutex);
3979 return ret;
3983 /* XXX - flush the CPU caches for pinned objects
3984 * as the X server doesn't manage domains yet
3986 i915_gem_object_flush_cpu_write_domain(obj);
3987 args->offset = obj_priv->gtt_offset;
3988 drm_gem_object_unreference(obj);
3989 mutex_unlock(&dev->struct_mutex);
3991 return 0;
3995 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3996 struct drm_file *file_priv)
3998 struct drm_i915_gem_pin *args = data;
3999 struct drm_gem_object *obj;
4000 struct drm_i915_gem_object *obj_priv;
4002 mutex_lock(&dev->struct_mutex);
4004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4005 if (obj == NULL) {
4006 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4007 args->handle);
4008 mutex_unlock(&dev->struct_mutex);
4009 return -EBADF;
4012 obj_priv = obj->driver_private;
4013 if (obj_priv->pin_filp != file_priv) {
4014 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4015 args->handle);
4016 drm_gem_object_unreference(obj);
4017 mutex_unlock(&dev->struct_mutex);
4018 return -EINVAL;
4020 obj_priv->user_pin_count--;
4021 if (obj_priv->user_pin_count == 0) {
4022 obj_priv->pin_filp = NULL;
4023 i915_gem_object_unpin(obj);
4026 drm_gem_object_unreference(obj);
4027 mutex_unlock(&dev->struct_mutex);
4028 return 0;
4032 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4035 struct drm_i915_gem_busy *args = data;
4036 struct drm_gem_object *obj;
4037 struct drm_i915_gem_object *obj_priv;
4039 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4040 if (obj == NULL) {
4041 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4042 args->handle);
4043 return -EBADF;
4046 mutex_lock(&dev->struct_mutex);
4047 /* Update the active list for the hardware's current position.
4048 * Otherwise this only updates on a delayed timer or when irqs are
4049 * actually unmasked, and our working set ends up being larger than
4050 * required.
4052 i915_gem_retire_requests(dev);
4054 obj_priv = obj->driver_private;
4055 /* Don't count being on the flushing list against the object being
4056 * done. Otherwise, a buffer left on the flushing list but not getting
4057 * flushed (because nobody's flushing that domain) won't ever return
4058 * unbusy and get reused by libdrm's bo cache. The other expected
4059 * consumer of this interface, OpenGL's occlusion queries, also specs
4060 * that the objects get unbusy "eventually" without any interference.
4062 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4064 drm_gem_object_unreference(obj);
4065 mutex_unlock(&dev->struct_mutex);
4066 return 0;
4070 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4071 struct drm_file *file_priv)
4073 return i915_gem_ring_throttle(dev, file_priv);
4077 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4078 struct drm_file *file_priv)
4080 struct drm_i915_gem_madvise *args = data;
4081 struct drm_gem_object *obj;
4082 struct drm_i915_gem_object *obj_priv;
4084 switch (args->madv) {
4085 case I915_MADV_DONTNEED:
4086 case I915_MADV_WILLNEED:
4087 break;
4088 default:
4089 return -EINVAL;
4092 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4093 if (obj == NULL) {
4094 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4095 args->handle);
4096 return -EBADF;
4099 mutex_lock(&dev->struct_mutex);
4100 obj_priv = obj->driver_private;
4102 if (obj_priv->pin_count) {
4103 drm_gem_object_unreference(obj);
4104 mutex_unlock(&dev->struct_mutex);
4106 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4107 return -EINVAL;
4110 obj_priv->madv = args->madv;
4111 args->retained = obj_priv->gtt_space != NULL;
4113 /* if the object is no longer bound, discard its backing storage */
4114 if (i915_gem_object_is_purgeable(obj_priv) &&
4115 obj_priv->gtt_space == NULL)
4116 i915_gem_object_truncate(obj);
4118 drm_gem_object_unreference(obj);
4119 mutex_unlock(&dev->struct_mutex);
4121 return 0;
4124 int i915_gem_init_object(struct drm_gem_object *obj)
4126 struct drm_i915_gem_object *obj_priv;
4128 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4129 if (obj_priv == NULL)
4130 return -ENOMEM;
4133 * We've just allocated pages from the kernel,
4134 * so they've just been written by the CPU with
4135 * zeros. They'll need to be clflushed before we
4136 * use them with the GPU.
4138 obj->write_domain = I915_GEM_DOMAIN_CPU;
4139 obj->read_domains = I915_GEM_DOMAIN_CPU;
4141 obj_priv->agp_type = AGP_USER_MEMORY;
4143 obj->driver_private = obj_priv;
4144 obj_priv->obj = obj;
4145 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4146 INIT_LIST_HEAD(&obj_priv->list);
4147 INIT_LIST_HEAD(&obj_priv->fence_list);
4148 obj_priv->madv = I915_MADV_WILLNEED;
4150 trace_i915_gem_object_create(obj);
4152 return 0;
4155 void i915_gem_free_object(struct drm_gem_object *obj)
4157 struct drm_device *dev = obj->dev;
4158 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4160 trace_i915_gem_object_destroy(obj);
4162 while (obj_priv->pin_count > 0)
4163 i915_gem_object_unpin(obj);
4165 if (obj_priv->phys_obj)
4166 i915_gem_detach_phys_object(dev, obj);
4168 i915_gem_object_unbind(obj);
4170 if (obj_priv->mmap_offset)
4171 i915_gem_free_mmap_offset(obj);
4173 kfree(obj_priv->page_cpu_valid);
4174 kfree(obj_priv->bit_17);
4175 kfree(obj->driver_private);
4178 /** Unbinds all inactive objects. */
4179 static int
4180 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4182 drm_i915_private_t *dev_priv = dev->dev_private;
4184 while (!list_empty(&dev_priv->mm.inactive_list)) {
4185 struct drm_gem_object *obj;
4186 int ret;
4188 obj = list_first_entry(&dev_priv->mm.inactive_list,
4189 struct drm_i915_gem_object,
4190 list)->obj;
4192 ret = i915_gem_object_unbind(obj);
4193 if (ret != 0) {
4194 DRM_ERROR("Error unbinding object: %d\n", ret);
4195 return ret;
4199 return 0;
4203 i915_gem_idle(struct drm_device *dev)
4205 drm_i915_private_t *dev_priv = dev->dev_private;
4206 uint32_t seqno, cur_seqno, last_seqno;
4207 int stuck, ret;
4209 mutex_lock(&dev->struct_mutex);
4211 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4212 mutex_unlock(&dev->struct_mutex);
4213 return 0;
4216 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4217 * We need to replace this with a semaphore, or something.
4219 dev_priv->mm.suspended = 1;
4220 del_timer(&dev_priv->hangcheck_timer);
4222 /* Cancel the retire work handler, wait for it to finish if running
4224 mutex_unlock(&dev->struct_mutex);
4225 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4226 mutex_lock(&dev->struct_mutex);
4228 i915_kernel_lost_context(dev);
4230 /* Flush the GPU along with all non-CPU write domains
4232 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4233 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4235 if (seqno == 0) {
4236 mutex_unlock(&dev->struct_mutex);
4237 return -ENOMEM;
4240 dev_priv->mm.waiting_gem_seqno = seqno;
4241 last_seqno = 0;
4242 stuck = 0;
4243 for (;;) {
4244 cur_seqno = i915_get_gem_seqno(dev);
4245 if (i915_seqno_passed(cur_seqno, seqno))
4246 break;
4247 if (last_seqno == cur_seqno) {
4248 if (stuck++ > 100) {
4249 DRM_ERROR("hardware wedged\n");
4250 atomic_set(&dev_priv->mm.wedged, 1);
4251 DRM_WAKEUP(&dev_priv->irq_queue);
4252 break;
4255 msleep(10);
4256 last_seqno = cur_seqno;
4258 dev_priv->mm.waiting_gem_seqno = 0;
4260 i915_gem_retire_requests(dev);
4262 spin_lock(&dev_priv->mm.active_list_lock);
4263 if (!atomic_read(&dev_priv->mm.wedged)) {
4264 /* Active and flushing should now be empty as we've
4265 * waited for a sequence higher than any pending execbuffer
4267 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4268 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4269 /* Request should now be empty as we've also waited
4270 * for the last request in the list
4272 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4275 /* Empty the active and flushing lists to inactive. If there's
4276 * anything left at this point, it means that we're wedged and
4277 * nothing good's going to happen by leaving them there. So strip
4278 * the GPU domains and just stuff them onto inactive.
4280 while (!list_empty(&dev_priv->mm.active_list)) {
4281 struct drm_gem_object *obj;
4282 uint32_t old_write_domain;
4284 obj = list_first_entry(&dev_priv->mm.active_list,
4285 struct drm_i915_gem_object,
4286 list)->obj;
4287 old_write_domain = obj->write_domain;
4288 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4289 i915_gem_object_move_to_inactive(obj);
4291 trace_i915_gem_object_change_domain(obj,
4292 obj->read_domains,
4293 old_write_domain);
4295 spin_unlock(&dev_priv->mm.active_list_lock);
4297 while (!list_empty(&dev_priv->mm.flushing_list)) {
4298 struct drm_gem_object *obj;
4299 uint32_t old_write_domain;
4301 obj = list_first_entry(&dev_priv->mm.flushing_list,
4302 struct drm_i915_gem_object,
4303 list)->obj;
4304 old_write_domain = obj->write_domain;
4305 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4306 i915_gem_object_move_to_inactive(obj);
4308 trace_i915_gem_object_change_domain(obj,
4309 obj->read_domains,
4310 old_write_domain);
4314 /* Move all inactive buffers out of the GTT. */
4315 ret = i915_gem_evict_from_inactive_list(dev);
4316 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4317 if (ret) {
4318 mutex_unlock(&dev->struct_mutex);
4319 return ret;
4322 i915_gem_cleanup_ringbuffer(dev);
4323 mutex_unlock(&dev->struct_mutex);
4325 return 0;
4328 static int
4329 i915_gem_init_hws(struct drm_device *dev)
4331 drm_i915_private_t *dev_priv = dev->dev_private;
4332 struct drm_gem_object *obj;
4333 struct drm_i915_gem_object *obj_priv;
4334 int ret;
4336 /* If we need a physical address for the status page, it's already
4337 * initialized at driver load time.
4339 if (!I915_NEED_GFX_HWS(dev))
4340 return 0;
4342 obj = drm_gem_object_alloc(dev, 4096);
4343 if (obj == NULL) {
4344 DRM_ERROR("Failed to allocate status page\n");
4345 return -ENOMEM;
4347 obj_priv = obj->driver_private;
4348 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4350 ret = i915_gem_object_pin(obj, 4096);
4351 if (ret != 0) {
4352 drm_gem_object_unreference(obj);
4353 return ret;
4356 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4358 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4359 if (dev_priv->hw_status_page == NULL) {
4360 DRM_ERROR("Failed to map status page.\n");
4361 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4362 i915_gem_object_unpin(obj);
4363 drm_gem_object_unreference(obj);
4364 return -EINVAL;
4366 dev_priv->hws_obj = obj;
4367 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4368 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4369 I915_READ(HWS_PGA); /* posting read */
4370 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4372 return 0;
4375 static void
4376 i915_gem_cleanup_hws(struct drm_device *dev)
4378 drm_i915_private_t *dev_priv = dev->dev_private;
4379 struct drm_gem_object *obj;
4380 struct drm_i915_gem_object *obj_priv;
4382 if (dev_priv->hws_obj == NULL)
4383 return;
4385 obj = dev_priv->hws_obj;
4386 obj_priv = obj->driver_private;
4388 kunmap(obj_priv->pages[0]);
4389 i915_gem_object_unpin(obj);
4390 drm_gem_object_unreference(obj);
4391 dev_priv->hws_obj = NULL;
4393 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4394 dev_priv->hw_status_page = NULL;
4396 /* Write high address into HWS_PGA when disabling. */
4397 I915_WRITE(HWS_PGA, 0x1ffff000);
4401 i915_gem_init_ringbuffer(struct drm_device *dev)
4403 drm_i915_private_t *dev_priv = dev->dev_private;
4404 struct drm_gem_object *obj;
4405 struct drm_i915_gem_object *obj_priv;
4406 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4407 int ret;
4408 u32 head;
4410 ret = i915_gem_init_hws(dev);
4411 if (ret != 0)
4412 return ret;
4414 obj = drm_gem_object_alloc(dev, 128 * 1024);
4415 if (obj == NULL) {
4416 DRM_ERROR("Failed to allocate ringbuffer\n");
4417 i915_gem_cleanup_hws(dev);
4418 return -ENOMEM;
4420 obj_priv = obj->driver_private;
4422 ret = i915_gem_object_pin(obj, 4096);
4423 if (ret != 0) {
4424 drm_gem_object_unreference(obj);
4425 i915_gem_cleanup_hws(dev);
4426 return ret;
4429 /* Set up the kernel mapping for the ring. */
4430 ring->Size = obj->size;
4432 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4433 ring->map.size = obj->size;
4434 ring->map.type = 0;
4435 ring->map.flags = 0;
4436 ring->map.mtrr = 0;
4438 drm_core_ioremap_wc(&ring->map, dev);
4439 if (ring->map.handle == NULL) {
4440 DRM_ERROR("Failed to map ringbuffer.\n");
4441 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4442 i915_gem_object_unpin(obj);
4443 drm_gem_object_unreference(obj);
4444 i915_gem_cleanup_hws(dev);
4445 return -EINVAL;
4447 ring->ring_obj = obj;
4448 ring->virtual_start = ring->map.handle;
4450 /* Stop the ring if it's running. */
4451 I915_WRITE(PRB0_CTL, 0);
4452 I915_WRITE(PRB0_TAIL, 0);
4453 I915_WRITE(PRB0_HEAD, 0);
4455 /* Initialize the ring. */
4456 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4457 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4459 /* G45 ring initialization fails to reset head to zero */
4460 if (head != 0) {
4461 DRM_ERROR("Ring head not reset to zero "
4462 "ctl %08x head %08x tail %08x start %08x\n",
4463 I915_READ(PRB0_CTL),
4464 I915_READ(PRB0_HEAD),
4465 I915_READ(PRB0_TAIL),
4466 I915_READ(PRB0_START));
4467 I915_WRITE(PRB0_HEAD, 0);
4469 DRM_ERROR("Ring head forced to zero "
4470 "ctl %08x head %08x tail %08x start %08x\n",
4471 I915_READ(PRB0_CTL),
4472 I915_READ(PRB0_HEAD),
4473 I915_READ(PRB0_TAIL),
4474 I915_READ(PRB0_START));
4477 I915_WRITE(PRB0_CTL,
4478 ((obj->size - 4096) & RING_NR_PAGES) |
4479 RING_NO_REPORT |
4480 RING_VALID);
4482 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4484 /* If the head is still not zero, the ring is dead */
4485 if (head != 0) {
4486 DRM_ERROR("Ring initialization failed "
4487 "ctl %08x head %08x tail %08x start %08x\n",
4488 I915_READ(PRB0_CTL),
4489 I915_READ(PRB0_HEAD),
4490 I915_READ(PRB0_TAIL),
4491 I915_READ(PRB0_START));
4492 return -EIO;
4495 /* Update our cache of the ring state */
4496 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4497 i915_kernel_lost_context(dev);
4498 else {
4499 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4500 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4501 ring->space = ring->head - (ring->tail + 8);
4502 if (ring->space < 0)
4503 ring->space += ring->Size;
4506 return 0;
4509 void
4510 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4514 if (dev_priv->ring.ring_obj == NULL)
4515 return;
4517 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4519 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4520 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4521 dev_priv->ring.ring_obj = NULL;
4522 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4524 i915_gem_cleanup_hws(dev);
4528 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4531 drm_i915_private_t *dev_priv = dev->dev_private;
4532 int ret;
4534 if (drm_core_check_feature(dev, DRIVER_MODESET))
4535 return 0;
4537 if (atomic_read(&dev_priv->mm.wedged)) {
4538 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4539 atomic_set(&dev_priv->mm.wedged, 0);
4542 mutex_lock(&dev->struct_mutex);
4543 dev_priv->mm.suspended = 0;
4545 ret = i915_gem_init_ringbuffer(dev);
4546 if (ret != 0) {
4547 mutex_unlock(&dev->struct_mutex);
4548 return ret;
4551 spin_lock(&dev_priv->mm.active_list_lock);
4552 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4553 spin_unlock(&dev_priv->mm.active_list_lock);
4555 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4556 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4557 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4558 mutex_unlock(&dev->struct_mutex);
4560 drm_irq_install(dev);
4562 return 0;
4566 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4567 struct drm_file *file_priv)
4569 int ret;
4571 if (drm_core_check_feature(dev, DRIVER_MODESET))
4572 return 0;
4574 ret = i915_gem_idle(dev);
4575 drm_irq_uninstall(dev);
4577 return ret;
4580 void
4581 i915_gem_lastclose(struct drm_device *dev)
4583 int ret;
4585 if (drm_core_check_feature(dev, DRIVER_MODESET))
4586 return;
4588 ret = i915_gem_idle(dev);
4589 if (ret)
4590 DRM_ERROR("failed to idle hardware: %d\n", ret);
4593 void
4594 i915_gem_load(struct drm_device *dev)
4596 int i;
4597 drm_i915_private_t *dev_priv = dev->dev_private;
4599 spin_lock_init(&dev_priv->mm.active_list_lock);
4600 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4601 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4605 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4606 i915_gem_retire_work_handler);
4607 dev_priv->mm.next_gem_seqno = 1;
4609 spin_lock(&shrink_list_lock);
4610 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4611 spin_unlock(&shrink_list_lock);
4613 /* Old X drivers will take 0-2 for front, back, depth buffers */
4614 dev_priv->fence_reg_start = 3;
4616 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4617 dev_priv->num_fence_regs = 16;
4618 else
4619 dev_priv->num_fence_regs = 8;
4621 /* Initialize fence registers to zero */
4622 if (IS_I965G(dev)) {
4623 for (i = 0; i < 16; i++)
4624 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4625 } else {
4626 for (i = 0; i < 8; i++)
4627 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4628 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4629 for (i = 0; i < 8; i++)
4630 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4633 i915_gem_detect_bit_6_swizzle(dev);
4637 * Create a physically contiguous memory object for this object
4638 * e.g. for cursor + overlay regs
4640 int i915_gem_init_phys_object(struct drm_device *dev,
4641 int id, int size)
4643 drm_i915_private_t *dev_priv = dev->dev_private;
4644 struct drm_i915_gem_phys_object *phys_obj;
4645 int ret;
4647 if (dev_priv->mm.phys_objs[id - 1] || !size)
4648 return 0;
4650 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4651 if (!phys_obj)
4652 return -ENOMEM;
4654 phys_obj->id = id;
4656 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4657 if (!phys_obj->handle) {
4658 ret = -ENOMEM;
4659 goto kfree_obj;
4661 #ifdef CONFIG_X86
4662 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4663 #endif
4665 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4667 return 0;
4668 kfree_obj:
4669 kfree(phys_obj);
4670 return ret;
4673 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4675 drm_i915_private_t *dev_priv = dev->dev_private;
4676 struct drm_i915_gem_phys_object *phys_obj;
4678 if (!dev_priv->mm.phys_objs[id - 1])
4679 return;
4681 phys_obj = dev_priv->mm.phys_objs[id - 1];
4682 if (phys_obj->cur_obj) {
4683 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4686 #ifdef CONFIG_X86
4687 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4688 #endif
4689 drm_pci_free(dev, phys_obj->handle);
4690 kfree(phys_obj);
4691 dev_priv->mm.phys_objs[id - 1] = NULL;
4694 void i915_gem_free_all_phys_object(struct drm_device *dev)
4696 int i;
4698 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4699 i915_gem_free_phys_object(dev, i);
4702 void i915_gem_detach_phys_object(struct drm_device *dev,
4703 struct drm_gem_object *obj)
4705 struct drm_i915_gem_object *obj_priv;
4706 int i;
4707 int ret;
4708 int page_count;
4710 obj_priv = obj->driver_private;
4711 if (!obj_priv->phys_obj)
4712 return;
4714 ret = i915_gem_object_get_pages(obj);
4715 if (ret)
4716 goto out;
4718 page_count = obj->size / PAGE_SIZE;
4720 for (i = 0; i < page_count; i++) {
4721 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4722 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4724 memcpy(dst, src, PAGE_SIZE);
4725 kunmap_atomic(dst, KM_USER0);
4727 drm_clflush_pages(obj_priv->pages, page_count);
4728 drm_agp_chipset_flush(dev);
4730 i915_gem_object_put_pages(obj);
4731 out:
4732 obj_priv->phys_obj->cur_obj = NULL;
4733 obj_priv->phys_obj = NULL;
4737 i915_gem_attach_phys_object(struct drm_device *dev,
4738 struct drm_gem_object *obj, int id)
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4741 struct drm_i915_gem_object *obj_priv;
4742 int ret = 0;
4743 int page_count;
4744 int i;
4746 if (id > I915_MAX_PHYS_OBJECT)
4747 return -EINVAL;
4749 obj_priv = obj->driver_private;
4751 if (obj_priv->phys_obj) {
4752 if (obj_priv->phys_obj->id == id)
4753 return 0;
4754 i915_gem_detach_phys_object(dev, obj);
4758 /* create a new object */
4759 if (!dev_priv->mm.phys_objs[id - 1]) {
4760 ret = i915_gem_init_phys_object(dev, id,
4761 obj->size);
4762 if (ret) {
4763 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4764 goto out;
4768 /* bind to the object */
4769 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4770 obj_priv->phys_obj->cur_obj = obj;
4772 ret = i915_gem_object_get_pages(obj);
4773 if (ret) {
4774 DRM_ERROR("failed to get page list\n");
4775 goto out;
4778 page_count = obj->size / PAGE_SIZE;
4780 for (i = 0; i < page_count; i++) {
4781 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4782 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4784 memcpy(dst, src, PAGE_SIZE);
4785 kunmap_atomic(src, KM_USER0);
4788 i915_gem_object_put_pages(obj);
4790 return 0;
4791 out:
4792 return ret;
4795 static int
4796 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4797 struct drm_i915_gem_pwrite *args,
4798 struct drm_file *file_priv)
4800 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4801 void *obj_addr;
4802 int ret;
4803 char __user *user_data;
4805 user_data = (char __user *) (uintptr_t) args->data_ptr;
4806 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4808 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4809 ret = copy_from_user(obj_addr, user_data, args->size);
4810 if (ret)
4811 return -EFAULT;
4813 drm_agp_chipset_flush(dev);
4814 return 0;
4817 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4819 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4821 /* Clean up our request list when the client is going away, so that
4822 * later retire_requests won't dereference our soon-to-be-gone
4823 * file_priv.
4825 mutex_lock(&dev->struct_mutex);
4826 while (!list_empty(&i915_file_priv->mm.request_list))
4827 list_del_init(i915_file_priv->mm.request_list.next);
4828 mutex_unlock(&dev->struct_mutex);
4831 static int
4832 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4834 drm_i915_private_t *dev_priv, *next_dev;
4835 struct drm_i915_gem_object *obj_priv, *next_obj;
4836 int cnt = 0;
4837 int would_deadlock = 1;
4839 /* "fast-path" to count number of available objects */
4840 if (nr_to_scan == 0) {
4841 spin_lock(&shrink_list_lock);
4842 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4843 struct drm_device *dev = dev_priv->dev;
4845 if (mutex_trylock(&dev->struct_mutex)) {
4846 list_for_each_entry(obj_priv,
4847 &dev_priv->mm.inactive_list,
4848 list)
4849 cnt++;
4850 mutex_unlock(&dev->struct_mutex);
4853 spin_unlock(&shrink_list_lock);
4855 return (cnt / 100) * sysctl_vfs_cache_pressure;
4858 spin_lock(&shrink_list_lock);
4860 /* first scan for clean buffers */
4861 list_for_each_entry_safe(dev_priv, next_dev,
4862 &shrink_list, mm.shrink_list) {
4863 struct drm_device *dev = dev_priv->dev;
4865 if (! mutex_trylock(&dev->struct_mutex))
4866 continue;
4868 spin_unlock(&shrink_list_lock);
4870 i915_gem_retire_requests(dev);
4872 list_for_each_entry_safe(obj_priv, next_obj,
4873 &dev_priv->mm.inactive_list,
4874 list) {
4875 if (i915_gem_object_is_purgeable(obj_priv)) {
4876 i915_gem_object_unbind(obj_priv->obj);
4877 if (--nr_to_scan <= 0)
4878 break;
4882 spin_lock(&shrink_list_lock);
4883 mutex_unlock(&dev->struct_mutex);
4885 would_deadlock = 0;
4887 if (nr_to_scan <= 0)
4888 break;
4891 /* second pass, evict/count anything still on the inactive list */
4892 list_for_each_entry_safe(dev_priv, next_dev,
4893 &shrink_list, mm.shrink_list) {
4894 struct drm_device *dev = dev_priv->dev;
4896 if (! mutex_trylock(&dev->struct_mutex))
4897 continue;
4899 spin_unlock(&shrink_list_lock);
4901 list_for_each_entry_safe(obj_priv, next_obj,
4902 &dev_priv->mm.inactive_list,
4903 list) {
4904 if (nr_to_scan > 0) {
4905 i915_gem_object_unbind(obj_priv->obj);
4906 nr_to_scan--;
4907 } else
4908 cnt++;
4911 spin_lock(&shrink_list_lock);
4912 mutex_unlock(&dev->struct_mutex);
4914 would_deadlock = 0;
4917 spin_unlock(&shrink_list_lock);
4919 if (would_deadlock)
4920 return -1;
4921 else if (cnt > 0)
4922 return (cnt / 100) * sysctl_vfs_cache_pressure;
4923 else
4924 return 0;
4927 static struct shrinker shrinker = {
4928 .shrink = i915_gem_shrink,
4929 .seeks = DEFAULT_SEEKS,
4932 __init void
4933 i915_gem_shrinker_init(void)
4935 register_shrinker(&shrinker);
4938 __exit void
4939 i915_gem_shrinker_exit(void)
4941 unregister_shrinker(&shrinker);