cgroup: Update remount documentation
[linux-2.6/libata-dev.git] / kernel / cgroup.c
bloba56805aa0f1b97c4332e40a66a888ba019ec8b4d
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
95 #define SUBSYS(_x) &_x ## _subsys,
96 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 #include <linux/cgroup_subsys.h>
100 #define MAX_CGROUP_ROOT_NAMELEN 64
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
107 struct cgroupfs_root {
108 struct super_block *sb;
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
114 unsigned long subsys_bits;
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
131 /* A list running through the active hierarchies */
132 struct list_head root_list;
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
137 /* Hierarchy-specific flags */
138 unsigned long flags;
140 /* The path to use for release notifications. */
141 char release_agent_path[PATH_MAX];
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
152 static struct cgroupfs_root rootnode;
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
167 #define CSS_ID_MAX (65535)
168 struct css_id {
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
173 * is called after synchronize_rcu(). But for safe use, css_is_removed()
174 * css_tryget() should be used for avoiding race.
176 struct cgroup_subsys_state __rcu *css;
178 * ID of this css.
180 unsigned short id;
182 * Depth in hierarchy which this ID belongs to.
184 unsigned short depth;
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 struct rcu_head rcu_head;
190 * Hierarchy of CSS ID belongs to.
192 unsigned short stack[0]; /* Array of Length (depth+1) */
196 * cgroup_event represents events which userspace want to receive.
198 struct cgroup_event {
200 * Cgroup which the event belongs to.
202 struct cgroup *cgrp;
204 * Control file which the event associated.
206 struct cftype *cft;
208 * eventfd to signal userspace about the event.
210 struct eventfd_ctx *eventfd;
212 * Each of these stored in a list by the cgroup.
214 struct list_head list;
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
225 /* The list of hierarchy roots */
227 static LIST_HEAD(roots);
228 static int root_count;
230 static DEFINE_IDA(hierarchy_ida);
231 static int next_hierarchy_id;
232 static DEFINE_SPINLOCK(hierarchy_id_lock);
234 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235 #define dummytop (&rootnode.top_cgroup)
237 /* This flag indicates whether tasks in the fork and exit paths should
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
242 static int need_forkexit_callback __read_mostly;
244 #ifdef CONFIG_PROVE_LOCKING
245 int cgroup_lock_is_held(void)
247 return lockdep_is_held(&cgroup_mutex);
249 #else /* #ifdef CONFIG_PROVE_LOCKING */
250 int cgroup_lock_is_held(void)
252 return mutex_is_locked(&cgroup_mutex);
254 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
259 static int css_refcnt(struct cgroup_subsys_state *css)
261 int v = atomic_read(&css->refcnt);
263 return v >= 0 ? v : v - CSS_DEACT_BIAS;
266 /* convenient tests for these bits */
267 inline int cgroup_is_removed(const struct cgroup *cgrp)
269 return test_bit(CGRP_REMOVED, &cgrp->flags);
272 /* bits in struct cgroupfs_root flags field */
273 enum {
274 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
277 static int cgroup_is_releasable(const struct cgroup *cgrp)
279 const int bits =
280 (1 << CGRP_RELEASABLE) |
281 (1 << CGRP_NOTIFY_ON_RELEASE);
282 return (cgrp->flags & bits) == bits;
285 static int notify_on_release(const struct cgroup *cgrp)
287 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
290 static int clone_children(const struct cgroup *cgrp)
292 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
296 * for_each_subsys() allows you to iterate on each subsystem attached to
297 * an active hierarchy
299 #define for_each_subsys(_root, _ss) \
300 list_for_each_entry(_ss, &_root->subsys_list, sibling)
302 /* for_each_active_root() allows you to iterate across the active hierarchies */
303 #define for_each_active_root(_root) \
304 list_for_each_entry(_root, &roots, root_list)
306 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
308 return dentry->d_fsdata;
311 static inline struct cfent *__d_cfe(struct dentry *dentry)
313 return dentry->d_fsdata;
316 static inline struct cftype *__d_cft(struct dentry *dentry)
318 return __d_cfe(dentry)->type;
321 /* the list of cgroups eligible for automatic release. Protected by
322 * release_list_lock */
323 static LIST_HEAD(release_list);
324 static DEFINE_RAW_SPINLOCK(release_list_lock);
325 static void cgroup_release_agent(struct work_struct *work);
326 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
327 static void check_for_release(struct cgroup *cgrp);
329 /* Link structure for associating css_set objects with cgroups */
330 struct cg_cgroup_link {
332 * List running through cg_cgroup_links associated with a
333 * cgroup, anchored on cgroup->css_sets
335 struct list_head cgrp_link_list;
336 struct cgroup *cgrp;
338 * List running through cg_cgroup_links pointing at a
339 * single css_set object, anchored on css_set->cg_links
341 struct list_head cg_link_list;
342 struct css_set *cg;
345 /* The default css_set - used by init and its children prior to any
346 * hierarchies being mounted. It contains a pointer to the root state
347 * for each subsystem. Also used to anchor the list of css_sets. Not
348 * reference-counted, to improve performance when child cgroups
349 * haven't been created.
352 static struct css_set init_css_set;
353 static struct cg_cgroup_link init_css_set_link;
355 static int cgroup_init_idr(struct cgroup_subsys *ss,
356 struct cgroup_subsys_state *css);
358 /* css_set_lock protects the list of css_set objects, and the
359 * chain of tasks off each css_set. Nests outside task->alloc_lock
360 * due to cgroup_iter_start() */
361 static DEFINE_RWLOCK(css_set_lock);
362 static int css_set_count;
365 * hash table for cgroup groups. This improves the performance to find
366 * an existing css_set. This hash doesn't (currently) take into
367 * account cgroups in empty hierarchies.
369 #define CSS_SET_HASH_BITS 7
370 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
371 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
373 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
375 int i;
376 int index;
377 unsigned long tmp = 0UL;
379 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
380 tmp += (unsigned long)css[i];
381 tmp = (tmp >> 16) ^ tmp;
383 index = hash_long(tmp, CSS_SET_HASH_BITS);
385 return &css_set_table[index];
388 /* We don't maintain the lists running through each css_set to its
389 * task until after the first call to cgroup_iter_start(). This
390 * reduces the fork()/exit() overhead for people who have cgroups
391 * compiled into their kernel but not actually in use */
392 static int use_task_css_set_links __read_mostly;
394 static void __put_css_set(struct css_set *cg, int taskexit)
396 struct cg_cgroup_link *link;
397 struct cg_cgroup_link *saved_link;
399 * Ensure that the refcount doesn't hit zero while any readers
400 * can see it. Similar to atomic_dec_and_lock(), but for an
401 * rwlock
403 if (atomic_add_unless(&cg->refcount, -1, 1))
404 return;
405 write_lock(&css_set_lock);
406 if (!atomic_dec_and_test(&cg->refcount)) {
407 write_unlock(&css_set_lock);
408 return;
411 /* This css_set is dead. unlink it and release cgroup refcounts */
412 hlist_del(&cg->hlist);
413 css_set_count--;
415 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
416 cg_link_list) {
417 struct cgroup *cgrp = link->cgrp;
418 list_del(&link->cg_link_list);
419 list_del(&link->cgrp_link_list);
420 if (atomic_dec_and_test(&cgrp->count) &&
421 notify_on_release(cgrp)) {
422 if (taskexit)
423 set_bit(CGRP_RELEASABLE, &cgrp->flags);
424 check_for_release(cgrp);
427 kfree(link);
430 write_unlock(&css_set_lock);
431 kfree_rcu(cg, rcu_head);
435 * refcounted get/put for css_set objects
437 static inline void get_css_set(struct css_set *cg)
439 atomic_inc(&cg->refcount);
442 static inline void put_css_set(struct css_set *cg)
444 __put_css_set(cg, 0);
447 static inline void put_css_set_taskexit(struct css_set *cg)
449 __put_css_set(cg, 1);
453 * compare_css_sets - helper function for find_existing_css_set().
454 * @cg: candidate css_set being tested
455 * @old_cg: existing css_set for a task
456 * @new_cgrp: cgroup that's being entered by the task
457 * @template: desired set of css pointers in css_set (pre-calculated)
459 * Returns true if "cg" matches "old_cg" except for the hierarchy
460 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
462 static bool compare_css_sets(struct css_set *cg,
463 struct css_set *old_cg,
464 struct cgroup *new_cgrp,
465 struct cgroup_subsys_state *template[])
467 struct list_head *l1, *l2;
469 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
470 /* Not all subsystems matched */
471 return false;
475 * Compare cgroup pointers in order to distinguish between
476 * different cgroups in heirarchies with no subsystems. We
477 * could get by with just this check alone (and skip the
478 * memcmp above) but on most setups the memcmp check will
479 * avoid the need for this more expensive check on almost all
480 * candidates.
483 l1 = &cg->cg_links;
484 l2 = &old_cg->cg_links;
485 while (1) {
486 struct cg_cgroup_link *cgl1, *cgl2;
487 struct cgroup *cg1, *cg2;
489 l1 = l1->next;
490 l2 = l2->next;
491 /* See if we reached the end - both lists are equal length. */
492 if (l1 == &cg->cg_links) {
493 BUG_ON(l2 != &old_cg->cg_links);
494 break;
495 } else {
496 BUG_ON(l2 == &old_cg->cg_links);
498 /* Locate the cgroups associated with these links. */
499 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
500 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
501 cg1 = cgl1->cgrp;
502 cg2 = cgl2->cgrp;
503 /* Hierarchies should be linked in the same order. */
504 BUG_ON(cg1->root != cg2->root);
507 * If this hierarchy is the hierarchy of the cgroup
508 * that's changing, then we need to check that this
509 * css_set points to the new cgroup; if it's any other
510 * hierarchy, then this css_set should point to the
511 * same cgroup as the old css_set.
513 if (cg1->root == new_cgrp->root) {
514 if (cg1 != new_cgrp)
515 return false;
516 } else {
517 if (cg1 != cg2)
518 return false;
521 return true;
525 * find_existing_css_set() is a helper for
526 * find_css_set(), and checks to see whether an existing
527 * css_set is suitable.
529 * oldcg: the cgroup group that we're using before the cgroup
530 * transition
532 * cgrp: the cgroup that we're moving into
534 * template: location in which to build the desired set of subsystem
535 * state objects for the new cgroup group
537 static struct css_set *find_existing_css_set(
538 struct css_set *oldcg,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
542 int i;
543 struct cgroupfs_root *root = cgrp->root;
544 struct hlist_head *hhead;
545 struct hlist_node *node;
546 struct css_set *cg;
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
553 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
554 if (root->subsys_bits & (1UL << i)) {
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
558 template[i] = cgrp->subsys[i];
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
562 template[i] = oldcg->subsys[i];
566 hhead = css_set_hash(template);
567 hlist_for_each_entry(cg, node, hhead, hlist) {
568 if (!compare_css_sets(cg, oldcg, cgrp, template))
569 continue;
571 /* This css_set matches what we need */
572 return cg;
575 /* No existing cgroup group matched */
576 return NULL;
579 static void free_cg_links(struct list_head *tmp)
581 struct cg_cgroup_link *link;
582 struct cg_cgroup_link *saved_link;
584 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
585 list_del(&link->cgrp_link_list);
586 kfree(link);
591 * allocate_cg_links() allocates "count" cg_cgroup_link structures
592 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
593 * success or a negative error
595 static int allocate_cg_links(int count, struct list_head *tmp)
597 struct cg_cgroup_link *link;
598 int i;
599 INIT_LIST_HEAD(tmp);
600 for (i = 0; i < count; i++) {
601 link = kmalloc(sizeof(*link), GFP_KERNEL);
602 if (!link) {
603 free_cg_links(tmp);
604 return -ENOMEM;
606 list_add(&link->cgrp_link_list, tmp);
608 return 0;
612 * link_css_set - a helper function to link a css_set to a cgroup
613 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
614 * @cg: the css_set to be linked
615 * @cgrp: the destination cgroup
617 static void link_css_set(struct list_head *tmp_cg_links,
618 struct css_set *cg, struct cgroup *cgrp)
620 struct cg_cgroup_link *link;
622 BUG_ON(list_empty(tmp_cg_links));
623 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
624 cgrp_link_list);
625 link->cg = cg;
626 link->cgrp = cgrp;
627 atomic_inc(&cgrp->count);
628 list_move(&link->cgrp_link_list, &cgrp->css_sets);
630 * Always add links to the tail of the list so that the list
631 * is sorted by order of hierarchy creation
633 list_add_tail(&link->cg_link_list, &cg->cg_links);
637 * find_css_set() takes an existing cgroup group and a
638 * cgroup object, and returns a css_set object that's
639 * equivalent to the old group, but with the given cgroup
640 * substituted into the appropriate hierarchy. Must be called with
641 * cgroup_mutex held
643 static struct css_set *find_css_set(
644 struct css_set *oldcg, struct cgroup *cgrp)
646 struct css_set *res;
647 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
649 struct list_head tmp_cg_links;
651 struct hlist_head *hhead;
652 struct cg_cgroup_link *link;
654 /* First see if we already have a cgroup group that matches
655 * the desired set */
656 read_lock(&css_set_lock);
657 res = find_existing_css_set(oldcg, cgrp, template);
658 if (res)
659 get_css_set(res);
660 read_unlock(&css_set_lock);
662 if (res)
663 return res;
665 res = kmalloc(sizeof(*res), GFP_KERNEL);
666 if (!res)
667 return NULL;
669 /* Allocate all the cg_cgroup_link objects that we'll need */
670 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
671 kfree(res);
672 return NULL;
675 atomic_set(&res->refcount, 1);
676 INIT_LIST_HEAD(&res->cg_links);
677 INIT_LIST_HEAD(&res->tasks);
678 INIT_HLIST_NODE(&res->hlist);
680 /* Copy the set of subsystem state objects generated in
681 * find_existing_css_set() */
682 memcpy(res->subsys, template, sizeof(res->subsys));
684 write_lock(&css_set_lock);
685 /* Add reference counts and links from the new css_set. */
686 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
687 struct cgroup *c = link->cgrp;
688 if (c->root == cgrp->root)
689 c = cgrp;
690 link_css_set(&tmp_cg_links, res, c);
693 BUG_ON(!list_empty(&tmp_cg_links));
695 css_set_count++;
697 /* Add this cgroup group to the hash table */
698 hhead = css_set_hash(res->subsys);
699 hlist_add_head(&res->hlist, hhead);
701 write_unlock(&css_set_lock);
703 return res;
707 * Return the cgroup for "task" from the given hierarchy. Must be
708 * called with cgroup_mutex held.
710 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
711 struct cgroupfs_root *root)
713 struct css_set *css;
714 struct cgroup *res = NULL;
716 BUG_ON(!mutex_is_locked(&cgroup_mutex));
717 read_lock(&css_set_lock);
719 * No need to lock the task - since we hold cgroup_mutex the
720 * task can't change groups, so the only thing that can happen
721 * is that it exits and its css is set back to init_css_set.
723 css = task->cgroups;
724 if (css == &init_css_set) {
725 res = &root->top_cgroup;
726 } else {
727 struct cg_cgroup_link *link;
728 list_for_each_entry(link, &css->cg_links, cg_link_list) {
729 struct cgroup *c = link->cgrp;
730 if (c->root == root) {
731 res = c;
732 break;
736 read_unlock(&css_set_lock);
737 BUG_ON(!res);
738 return res;
742 * There is one global cgroup mutex. We also require taking
743 * task_lock() when dereferencing a task's cgroup subsys pointers.
744 * See "The task_lock() exception", at the end of this comment.
746 * A task must hold cgroup_mutex to modify cgroups.
748 * Any task can increment and decrement the count field without lock.
749 * So in general, code holding cgroup_mutex can't rely on the count
750 * field not changing. However, if the count goes to zero, then only
751 * cgroup_attach_task() can increment it again. Because a count of zero
752 * means that no tasks are currently attached, therefore there is no
753 * way a task attached to that cgroup can fork (the other way to
754 * increment the count). So code holding cgroup_mutex can safely
755 * assume that if the count is zero, it will stay zero. Similarly, if
756 * a task holds cgroup_mutex on a cgroup with zero count, it
757 * knows that the cgroup won't be removed, as cgroup_rmdir()
758 * needs that mutex.
760 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
761 * (usually) take cgroup_mutex. These are the two most performance
762 * critical pieces of code here. The exception occurs on cgroup_exit(),
763 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
764 * is taken, and if the cgroup count is zero, a usermode call made
765 * to the release agent with the name of the cgroup (path relative to
766 * the root of cgroup file system) as the argument.
768 * A cgroup can only be deleted if both its 'count' of using tasks
769 * is zero, and its list of 'children' cgroups is empty. Since all
770 * tasks in the system use _some_ cgroup, and since there is always at
771 * least one task in the system (init, pid == 1), therefore, top_cgroup
772 * always has either children cgroups and/or using tasks. So we don't
773 * need a special hack to ensure that top_cgroup cannot be deleted.
775 * The task_lock() exception
777 * The need for this exception arises from the action of
778 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
779 * another. It does so using cgroup_mutex, however there are
780 * several performance critical places that need to reference
781 * task->cgroup without the expense of grabbing a system global
782 * mutex. Therefore except as noted below, when dereferencing or, as
783 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
784 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
785 * the task_struct routinely used for such matters.
787 * P.S. One more locking exception. RCU is used to guard the
788 * update of a tasks cgroup pointer by cgroup_attach_task()
792 * cgroup_lock - lock out any changes to cgroup structures
795 void cgroup_lock(void)
797 mutex_lock(&cgroup_mutex);
799 EXPORT_SYMBOL_GPL(cgroup_lock);
802 * cgroup_unlock - release lock on cgroup changes
804 * Undo the lock taken in a previous cgroup_lock() call.
806 void cgroup_unlock(void)
808 mutex_unlock(&cgroup_mutex);
810 EXPORT_SYMBOL_GPL(cgroup_unlock);
813 * A couple of forward declarations required, due to cyclic reference loop:
814 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
815 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
816 * -> cgroup_mkdir.
819 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
820 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
821 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
822 static int cgroup_populate_dir(struct cgroup *cgrp);
823 static const struct inode_operations cgroup_dir_inode_operations;
824 static const struct file_operations proc_cgroupstats_operations;
826 static struct backing_dev_info cgroup_backing_dev_info = {
827 .name = "cgroup",
828 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
831 static int alloc_css_id(struct cgroup_subsys *ss,
832 struct cgroup *parent, struct cgroup *child);
834 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
836 struct inode *inode = new_inode(sb);
838 if (inode) {
839 inode->i_ino = get_next_ino();
840 inode->i_mode = mode;
841 inode->i_uid = current_fsuid();
842 inode->i_gid = current_fsgid();
843 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
844 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
846 return inode;
850 * Call subsys's pre_destroy handler.
851 * This is called before css refcnt check.
853 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
855 struct cgroup_subsys *ss;
856 int ret = 0;
858 for_each_subsys(cgrp->root, ss) {
859 if (!ss->pre_destroy)
860 continue;
862 ret = ss->pre_destroy(cgrp);
863 if (ret) {
864 /* ->pre_destroy() failure is being deprecated */
865 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
866 break;
870 return ret;
873 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
875 /* is dentry a directory ? if so, kfree() associated cgroup */
876 if (S_ISDIR(inode->i_mode)) {
877 struct cgroup *cgrp = dentry->d_fsdata;
878 struct cgroup_subsys *ss;
879 BUG_ON(!(cgroup_is_removed(cgrp)));
880 /* It's possible for external users to be holding css
881 * reference counts on a cgroup; css_put() needs to
882 * be able to access the cgroup after decrementing
883 * the reference count in order to know if it needs to
884 * queue the cgroup to be handled by the release
885 * agent */
886 synchronize_rcu();
888 mutex_lock(&cgroup_mutex);
890 * Release the subsystem state objects.
892 for_each_subsys(cgrp->root, ss)
893 ss->destroy(cgrp);
895 cgrp->root->number_of_cgroups--;
896 mutex_unlock(&cgroup_mutex);
899 * We want to drop the active superblock reference from the
900 * cgroup creation after all the dentry refs are gone -
901 * kill_sb gets mighty unhappy otherwise. Mark
902 * dentry->d_fsdata with cgroup_diput() to tell
903 * cgroup_d_release() to call deactivate_super().
905 dentry->d_fsdata = cgroup_diput;
908 * if we're getting rid of the cgroup, refcount should ensure
909 * that there are no pidlists left.
911 BUG_ON(!list_empty(&cgrp->pidlists));
913 kfree_rcu(cgrp, rcu_head);
914 } else {
915 struct cfent *cfe = __d_cfe(dentry);
916 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
918 WARN_ONCE(!list_empty(&cfe->node) &&
919 cgrp != &cgrp->root->top_cgroup,
920 "cfe still linked for %s\n", cfe->type->name);
921 kfree(cfe);
923 iput(inode);
926 static int cgroup_delete(const struct dentry *d)
928 return 1;
931 static void cgroup_d_release(struct dentry *dentry)
933 /* did cgroup_diput() tell me to deactivate super? */
934 if (dentry->d_fsdata == cgroup_diput)
935 deactivate_super(dentry->d_sb);
938 static void remove_dir(struct dentry *d)
940 struct dentry *parent = dget(d->d_parent);
942 d_delete(d);
943 simple_rmdir(parent->d_inode, d);
944 dput(parent);
947 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
949 struct cfent *cfe;
951 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
952 lockdep_assert_held(&cgroup_mutex);
954 list_for_each_entry(cfe, &cgrp->files, node) {
955 struct dentry *d = cfe->dentry;
957 if (cft && cfe->type != cft)
958 continue;
960 dget(d);
961 d_delete(d);
962 simple_unlink(cgrp->dentry->d_inode, d);
963 list_del_init(&cfe->node);
964 dput(d);
966 return 0;
968 return -ENOENT;
971 static void cgroup_clear_directory(struct dentry *dir)
973 struct cgroup *cgrp = __d_cgrp(dir);
975 while (!list_empty(&cgrp->files))
976 cgroup_rm_file(cgrp, NULL);
980 * NOTE : the dentry must have been dget()'ed
982 static void cgroup_d_remove_dir(struct dentry *dentry)
984 struct dentry *parent;
986 cgroup_clear_directory(dentry);
988 parent = dentry->d_parent;
989 spin_lock(&parent->d_lock);
990 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
991 list_del_init(&dentry->d_u.d_child);
992 spin_unlock(&dentry->d_lock);
993 spin_unlock(&parent->d_lock);
994 remove_dir(dentry);
998 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
999 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
1000 * reference to css->refcnt. In general, this refcnt is expected to goes down
1001 * to zero, soon.
1003 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1005 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1007 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1009 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1010 wake_up_all(&cgroup_rmdir_waitq);
1013 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1015 css_get(css);
1018 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1020 cgroup_wakeup_rmdir_waiter(css->cgroup);
1021 css_put(css);
1025 * Call with cgroup_mutex held. Drops reference counts on modules, including
1026 * any duplicate ones that parse_cgroupfs_options took. If this function
1027 * returns an error, no reference counts are touched.
1029 static int rebind_subsystems(struct cgroupfs_root *root,
1030 unsigned long final_bits)
1032 unsigned long added_bits, removed_bits;
1033 struct cgroup *cgrp = &root->top_cgroup;
1034 int i;
1036 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1037 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1039 removed_bits = root->actual_subsys_bits & ~final_bits;
1040 added_bits = final_bits & ~root->actual_subsys_bits;
1041 /* Check that any added subsystems are currently free */
1042 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1043 unsigned long bit = 1UL << i;
1044 struct cgroup_subsys *ss = subsys[i];
1045 if (!(bit & added_bits))
1046 continue;
1048 * Nobody should tell us to do a subsys that doesn't exist:
1049 * parse_cgroupfs_options should catch that case and refcounts
1050 * ensure that subsystems won't disappear once selected.
1052 BUG_ON(ss == NULL);
1053 if (ss->root != &rootnode) {
1054 /* Subsystem isn't free */
1055 return -EBUSY;
1059 /* Currently we don't handle adding/removing subsystems when
1060 * any child cgroups exist. This is theoretically supportable
1061 * but involves complex error handling, so it's being left until
1062 * later */
1063 if (root->number_of_cgroups > 1)
1064 return -EBUSY;
1066 /* Process each subsystem */
1067 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1068 struct cgroup_subsys *ss = subsys[i];
1069 unsigned long bit = 1UL << i;
1070 if (bit & added_bits) {
1071 /* We're binding this subsystem to this hierarchy */
1072 BUG_ON(ss == NULL);
1073 BUG_ON(cgrp->subsys[i]);
1074 BUG_ON(!dummytop->subsys[i]);
1075 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1076 cgrp->subsys[i] = dummytop->subsys[i];
1077 cgrp->subsys[i]->cgroup = cgrp;
1078 list_move(&ss->sibling, &root->subsys_list);
1079 ss->root = root;
1080 if (ss->bind)
1081 ss->bind(cgrp);
1082 /* refcount was already taken, and we're keeping it */
1083 } else if (bit & removed_bits) {
1084 /* We're removing this subsystem */
1085 BUG_ON(ss == NULL);
1086 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1087 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1088 if (ss->bind)
1089 ss->bind(dummytop);
1090 dummytop->subsys[i]->cgroup = dummytop;
1091 cgrp->subsys[i] = NULL;
1092 subsys[i]->root = &rootnode;
1093 list_move(&ss->sibling, &rootnode.subsys_list);
1094 /* subsystem is now free - drop reference on module */
1095 module_put(ss->module);
1096 } else if (bit & final_bits) {
1097 /* Subsystem state should already exist */
1098 BUG_ON(ss == NULL);
1099 BUG_ON(!cgrp->subsys[i]);
1101 * a refcount was taken, but we already had one, so
1102 * drop the extra reference.
1104 module_put(ss->module);
1105 #ifdef CONFIG_MODULE_UNLOAD
1106 BUG_ON(ss->module && !module_refcount(ss->module));
1107 #endif
1108 } else {
1109 /* Subsystem state shouldn't exist */
1110 BUG_ON(cgrp->subsys[i]);
1113 root->subsys_bits = root->actual_subsys_bits = final_bits;
1114 synchronize_rcu();
1116 return 0;
1119 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1121 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1122 struct cgroup_subsys *ss;
1124 mutex_lock(&cgroup_root_mutex);
1125 for_each_subsys(root, ss)
1126 seq_printf(seq, ",%s", ss->name);
1127 if (test_bit(ROOT_NOPREFIX, &root->flags))
1128 seq_puts(seq, ",noprefix");
1129 if (strlen(root->release_agent_path))
1130 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1131 if (clone_children(&root->top_cgroup))
1132 seq_puts(seq, ",clone_children");
1133 if (strlen(root->name))
1134 seq_printf(seq, ",name=%s", root->name);
1135 mutex_unlock(&cgroup_root_mutex);
1136 return 0;
1139 struct cgroup_sb_opts {
1140 unsigned long subsys_bits;
1141 unsigned long flags;
1142 char *release_agent;
1143 bool clone_children;
1144 char *name;
1145 /* User explicitly requested empty subsystem */
1146 bool none;
1148 struct cgroupfs_root *new_root;
1153 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1154 * with cgroup_mutex held to protect the subsys[] array. This function takes
1155 * refcounts on subsystems to be used, unless it returns error, in which case
1156 * no refcounts are taken.
1158 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1160 char *token, *o = data;
1161 bool all_ss = false, one_ss = false;
1162 unsigned long mask = (unsigned long)-1;
1163 int i;
1164 bool module_pin_failed = false;
1166 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1168 #ifdef CONFIG_CPUSETS
1169 mask = ~(1UL << cpuset_subsys_id);
1170 #endif
1172 memset(opts, 0, sizeof(*opts));
1174 while ((token = strsep(&o, ",")) != NULL) {
1175 if (!*token)
1176 return -EINVAL;
1177 if (!strcmp(token, "none")) {
1178 /* Explicitly have no subsystems */
1179 opts->none = true;
1180 continue;
1182 if (!strcmp(token, "all")) {
1183 /* Mutually exclusive option 'all' + subsystem name */
1184 if (one_ss)
1185 return -EINVAL;
1186 all_ss = true;
1187 continue;
1189 if (!strcmp(token, "noprefix")) {
1190 set_bit(ROOT_NOPREFIX, &opts->flags);
1191 continue;
1193 if (!strcmp(token, "clone_children")) {
1194 opts->clone_children = true;
1195 continue;
1197 if (!strncmp(token, "release_agent=", 14)) {
1198 /* Specifying two release agents is forbidden */
1199 if (opts->release_agent)
1200 return -EINVAL;
1201 opts->release_agent =
1202 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1203 if (!opts->release_agent)
1204 return -ENOMEM;
1205 continue;
1207 if (!strncmp(token, "name=", 5)) {
1208 const char *name = token + 5;
1209 /* Can't specify an empty name */
1210 if (!strlen(name))
1211 return -EINVAL;
1212 /* Must match [\w.-]+ */
1213 for (i = 0; i < strlen(name); i++) {
1214 char c = name[i];
1215 if (isalnum(c))
1216 continue;
1217 if ((c == '.') || (c == '-') || (c == '_'))
1218 continue;
1219 return -EINVAL;
1221 /* Specifying two names is forbidden */
1222 if (opts->name)
1223 return -EINVAL;
1224 opts->name = kstrndup(name,
1225 MAX_CGROUP_ROOT_NAMELEN - 1,
1226 GFP_KERNEL);
1227 if (!opts->name)
1228 return -ENOMEM;
1230 continue;
1233 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1234 struct cgroup_subsys *ss = subsys[i];
1235 if (ss == NULL)
1236 continue;
1237 if (strcmp(token, ss->name))
1238 continue;
1239 if (ss->disabled)
1240 continue;
1242 /* Mutually exclusive option 'all' + subsystem name */
1243 if (all_ss)
1244 return -EINVAL;
1245 set_bit(i, &opts->subsys_bits);
1246 one_ss = true;
1248 break;
1250 if (i == CGROUP_SUBSYS_COUNT)
1251 return -ENOENT;
1255 * If the 'all' option was specified select all the subsystems,
1256 * otherwise if 'none', 'name=' and a subsystem name options
1257 * were not specified, let's default to 'all'
1259 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1260 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1261 struct cgroup_subsys *ss = subsys[i];
1262 if (ss == NULL)
1263 continue;
1264 if (ss->disabled)
1265 continue;
1266 set_bit(i, &opts->subsys_bits);
1270 /* Consistency checks */
1273 * Option noprefix was introduced just for backward compatibility
1274 * with the old cpuset, so we allow noprefix only if mounting just
1275 * the cpuset subsystem.
1277 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1278 (opts->subsys_bits & mask))
1279 return -EINVAL;
1282 /* Can't specify "none" and some subsystems */
1283 if (opts->subsys_bits && opts->none)
1284 return -EINVAL;
1287 * We either have to specify by name or by subsystems. (So all
1288 * empty hierarchies must have a name).
1290 if (!opts->subsys_bits && !opts->name)
1291 return -EINVAL;
1294 * Grab references on all the modules we'll need, so the subsystems
1295 * don't dance around before rebind_subsystems attaches them. This may
1296 * take duplicate reference counts on a subsystem that's already used,
1297 * but rebind_subsystems handles this case.
1299 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1300 unsigned long bit = 1UL << i;
1302 if (!(bit & opts->subsys_bits))
1303 continue;
1304 if (!try_module_get(subsys[i]->module)) {
1305 module_pin_failed = true;
1306 break;
1309 if (module_pin_failed) {
1311 * oops, one of the modules was going away. this means that we
1312 * raced with a module_delete call, and to the user this is
1313 * essentially a "subsystem doesn't exist" case.
1315 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1316 /* drop refcounts only on the ones we took */
1317 unsigned long bit = 1UL << i;
1319 if (!(bit & opts->subsys_bits))
1320 continue;
1321 module_put(subsys[i]->module);
1323 return -ENOENT;
1326 return 0;
1329 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1331 int i;
1332 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1333 unsigned long bit = 1UL << i;
1335 if (!(bit & subsys_bits))
1336 continue;
1337 module_put(subsys[i]->module);
1341 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1343 int ret = 0;
1344 struct cgroupfs_root *root = sb->s_fs_info;
1345 struct cgroup *cgrp = &root->top_cgroup;
1346 struct cgroup_sb_opts opts;
1348 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1349 mutex_lock(&cgroup_mutex);
1350 mutex_lock(&cgroup_root_mutex);
1352 /* See what subsystems are wanted */
1353 ret = parse_cgroupfs_options(data, &opts);
1354 if (ret)
1355 goto out_unlock;
1357 /* See feature-removal-schedule.txt */
1358 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1359 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1360 task_tgid_nr(current), current->comm);
1362 /* Don't allow flags or name to change at remount */
1363 if (opts.flags != root->flags ||
1364 (opts.name && strcmp(opts.name, root->name))) {
1365 ret = -EINVAL;
1366 drop_parsed_module_refcounts(opts.subsys_bits);
1367 goto out_unlock;
1370 ret = rebind_subsystems(root, opts.subsys_bits);
1371 if (ret) {
1372 drop_parsed_module_refcounts(opts.subsys_bits);
1373 goto out_unlock;
1376 /* clear out any existing files and repopulate subsystem files */
1377 cgroup_clear_directory(cgrp->dentry);
1378 cgroup_populate_dir(cgrp);
1380 if (opts.release_agent)
1381 strcpy(root->release_agent_path, opts.release_agent);
1382 out_unlock:
1383 kfree(opts.release_agent);
1384 kfree(opts.name);
1385 mutex_unlock(&cgroup_root_mutex);
1386 mutex_unlock(&cgroup_mutex);
1387 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1388 return ret;
1391 static const struct super_operations cgroup_ops = {
1392 .statfs = simple_statfs,
1393 .drop_inode = generic_delete_inode,
1394 .show_options = cgroup_show_options,
1395 .remount_fs = cgroup_remount,
1398 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1400 INIT_LIST_HEAD(&cgrp->sibling);
1401 INIT_LIST_HEAD(&cgrp->children);
1402 INIT_LIST_HEAD(&cgrp->files);
1403 INIT_LIST_HEAD(&cgrp->css_sets);
1404 INIT_LIST_HEAD(&cgrp->release_list);
1405 INIT_LIST_HEAD(&cgrp->pidlists);
1406 mutex_init(&cgrp->pidlist_mutex);
1407 INIT_LIST_HEAD(&cgrp->event_list);
1408 spin_lock_init(&cgrp->event_list_lock);
1411 static void init_cgroup_root(struct cgroupfs_root *root)
1413 struct cgroup *cgrp = &root->top_cgroup;
1415 INIT_LIST_HEAD(&root->subsys_list);
1416 INIT_LIST_HEAD(&root->root_list);
1417 INIT_LIST_HEAD(&root->allcg_list);
1418 root->number_of_cgroups = 1;
1419 cgrp->root = root;
1420 cgrp->top_cgroup = cgrp;
1421 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1422 init_cgroup_housekeeping(cgrp);
1425 static bool init_root_id(struct cgroupfs_root *root)
1427 int ret = 0;
1429 do {
1430 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1431 return false;
1432 spin_lock(&hierarchy_id_lock);
1433 /* Try to allocate the next unused ID */
1434 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1435 &root->hierarchy_id);
1436 if (ret == -ENOSPC)
1437 /* Try again starting from 0 */
1438 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1439 if (!ret) {
1440 next_hierarchy_id = root->hierarchy_id + 1;
1441 } else if (ret != -EAGAIN) {
1442 /* Can only get here if the 31-bit IDR is full ... */
1443 BUG_ON(ret);
1445 spin_unlock(&hierarchy_id_lock);
1446 } while (ret);
1447 return true;
1450 static int cgroup_test_super(struct super_block *sb, void *data)
1452 struct cgroup_sb_opts *opts = data;
1453 struct cgroupfs_root *root = sb->s_fs_info;
1455 /* If we asked for a name then it must match */
1456 if (opts->name && strcmp(opts->name, root->name))
1457 return 0;
1460 * If we asked for subsystems (or explicitly for no
1461 * subsystems) then they must match
1463 if ((opts->subsys_bits || opts->none)
1464 && (opts->subsys_bits != root->subsys_bits))
1465 return 0;
1467 return 1;
1470 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1472 struct cgroupfs_root *root;
1474 if (!opts->subsys_bits && !opts->none)
1475 return NULL;
1477 root = kzalloc(sizeof(*root), GFP_KERNEL);
1478 if (!root)
1479 return ERR_PTR(-ENOMEM);
1481 if (!init_root_id(root)) {
1482 kfree(root);
1483 return ERR_PTR(-ENOMEM);
1485 init_cgroup_root(root);
1487 root->subsys_bits = opts->subsys_bits;
1488 root->flags = opts->flags;
1489 if (opts->release_agent)
1490 strcpy(root->release_agent_path, opts->release_agent);
1491 if (opts->name)
1492 strcpy(root->name, opts->name);
1493 if (opts->clone_children)
1494 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1495 return root;
1498 static void cgroup_drop_root(struct cgroupfs_root *root)
1500 if (!root)
1501 return;
1503 BUG_ON(!root->hierarchy_id);
1504 spin_lock(&hierarchy_id_lock);
1505 ida_remove(&hierarchy_ida, root->hierarchy_id);
1506 spin_unlock(&hierarchy_id_lock);
1507 kfree(root);
1510 static int cgroup_set_super(struct super_block *sb, void *data)
1512 int ret;
1513 struct cgroup_sb_opts *opts = data;
1515 /* If we don't have a new root, we can't set up a new sb */
1516 if (!opts->new_root)
1517 return -EINVAL;
1519 BUG_ON(!opts->subsys_bits && !opts->none);
1521 ret = set_anon_super(sb, NULL);
1522 if (ret)
1523 return ret;
1525 sb->s_fs_info = opts->new_root;
1526 opts->new_root->sb = sb;
1528 sb->s_blocksize = PAGE_CACHE_SIZE;
1529 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1530 sb->s_magic = CGROUP_SUPER_MAGIC;
1531 sb->s_op = &cgroup_ops;
1533 return 0;
1536 static int cgroup_get_rootdir(struct super_block *sb)
1538 static const struct dentry_operations cgroup_dops = {
1539 .d_iput = cgroup_diput,
1540 .d_delete = cgroup_delete,
1541 .d_release = cgroup_d_release,
1544 struct inode *inode =
1545 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1547 if (!inode)
1548 return -ENOMEM;
1550 inode->i_fop = &simple_dir_operations;
1551 inode->i_op = &cgroup_dir_inode_operations;
1552 /* directories start off with i_nlink == 2 (for "." entry) */
1553 inc_nlink(inode);
1554 sb->s_root = d_make_root(inode);
1555 if (!sb->s_root)
1556 return -ENOMEM;
1557 /* for everything else we want ->d_op set */
1558 sb->s_d_op = &cgroup_dops;
1559 return 0;
1562 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1563 int flags, const char *unused_dev_name,
1564 void *data)
1566 struct cgroup_sb_opts opts;
1567 struct cgroupfs_root *root;
1568 int ret = 0;
1569 struct super_block *sb;
1570 struct cgroupfs_root *new_root;
1571 struct inode *inode;
1573 /* First find the desired set of subsystems */
1574 mutex_lock(&cgroup_mutex);
1575 ret = parse_cgroupfs_options(data, &opts);
1576 mutex_unlock(&cgroup_mutex);
1577 if (ret)
1578 goto out_err;
1581 * Allocate a new cgroup root. We may not need it if we're
1582 * reusing an existing hierarchy.
1584 new_root = cgroup_root_from_opts(&opts);
1585 if (IS_ERR(new_root)) {
1586 ret = PTR_ERR(new_root);
1587 goto drop_modules;
1589 opts.new_root = new_root;
1591 /* Locate an existing or new sb for this hierarchy */
1592 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1593 if (IS_ERR(sb)) {
1594 ret = PTR_ERR(sb);
1595 cgroup_drop_root(opts.new_root);
1596 goto drop_modules;
1599 root = sb->s_fs_info;
1600 BUG_ON(!root);
1601 if (root == opts.new_root) {
1602 /* We used the new root structure, so this is a new hierarchy */
1603 struct list_head tmp_cg_links;
1604 struct cgroup *root_cgrp = &root->top_cgroup;
1605 struct cgroupfs_root *existing_root;
1606 const struct cred *cred;
1607 int i;
1609 BUG_ON(sb->s_root != NULL);
1611 ret = cgroup_get_rootdir(sb);
1612 if (ret)
1613 goto drop_new_super;
1614 inode = sb->s_root->d_inode;
1616 mutex_lock(&inode->i_mutex);
1617 mutex_lock(&cgroup_mutex);
1618 mutex_lock(&cgroup_root_mutex);
1620 /* Check for name clashes with existing mounts */
1621 ret = -EBUSY;
1622 if (strlen(root->name))
1623 for_each_active_root(existing_root)
1624 if (!strcmp(existing_root->name, root->name))
1625 goto unlock_drop;
1628 * We're accessing css_set_count without locking
1629 * css_set_lock here, but that's OK - it can only be
1630 * increased by someone holding cgroup_lock, and
1631 * that's us. The worst that can happen is that we
1632 * have some link structures left over
1634 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1635 if (ret)
1636 goto unlock_drop;
1638 ret = rebind_subsystems(root, root->subsys_bits);
1639 if (ret == -EBUSY) {
1640 free_cg_links(&tmp_cg_links);
1641 goto unlock_drop;
1644 * There must be no failure case after here, since rebinding
1645 * takes care of subsystems' refcounts, which are explicitly
1646 * dropped in the failure exit path.
1649 /* EBUSY should be the only error here */
1650 BUG_ON(ret);
1652 list_add(&root->root_list, &roots);
1653 root_count++;
1655 sb->s_root->d_fsdata = root_cgrp;
1656 root->top_cgroup.dentry = sb->s_root;
1658 /* Link the top cgroup in this hierarchy into all
1659 * the css_set objects */
1660 write_lock(&css_set_lock);
1661 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1662 struct hlist_head *hhead = &css_set_table[i];
1663 struct hlist_node *node;
1664 struct css_set *cg;
1666 hlist_for_each_entry(cg, node, hhead, hlist)
1667 link_css_set(&tmp_cg_links, cg, root_cgrp);
1669 write_unlock(&css_set_lock);
1671 free_cg_links(&tmp_cg_links);
1673 BUG_ON(!list_empty(&root_cgrp->sibling));
1674 BUG_ON(!list_empty(&root_cgrp->children));
1675 BUG_ON(root->number_of_cgroups != 1);
1677 cred = override_creds(&init_cred);
1678 cgroup_populate_dir(root_cgrp);
1679 revert_creds(cred);
1680 mutex_unlock(&cgroup_root_mutex);
1681 mutex_unlock(&cgroup_mutex);
1682 mutex_unlock(&inode->i_mutex);
1683 } else {
1685 * We re-used an existing hierarchy - the new root (if
1686 * any) is not needed
1688 cgroup_drop_root(opts.new_root);
1689 /* no subsys rebinding, so refcounts don't change */
1690 drop_parsed_module_refcounts(opts.subsys_bits);
1693 kfree(opts.release_agent);
1694 kfree(opts.name);
1695 return dget(sb->s_root);
1697 unlock_drop:
1698 mutex_unlock(&cgroup_root_mutex);
1699 mutex_unlock(&cgroup_mutex);
1700 mutex_unlock(&inode->i_mutex);
1701 drop_new_super:
1702 deactivate_locked_super(sb);
1703 drop_modules:
1704 drop_parsed_module_refcounts(opts.subsys_bits);
1705 out_err:
1706 kfree(opts.release_agent);
1707 kfree(opts.name);
1708 return ERR_PTR(ret);
1711 static void cgroup_kill_sb(struct super_block *sb) {
1712 struct cgroupfs_root *root = sb->s_fs_info;
1713 struct cgroup *cgrp = &root->top_cgroup;
1714 int ret;
1715 struct cg_cgroup_link *link;
1716 struct cg_cgroup_link *saved_link;
1718 BUG_ON(!root);
1720 BUG_ON(root->number_of_cgroups != 1);
1721 BUG_ON(!list_empty(&cgrp->children));
1722 BUG_ON(!list_empty(&cgrp->sibling));
1724 mutex_lock(&cgroup_mutex);
1725 mutex_lock(&cgroup_root_mutex);
1727 /* Rebind all subsystems back to the default hierarchy */
1728 ret = rebind_subsystems(root, 0);
1729 /* Shouldn't be able to fail ... */
1730 BUG_ON(ret);
1733 * Release all the links from css_sets to this hierarchy's
1734 * root cgroup
1736 write_lock(&css_set_lock);
1738 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1739 cgrp_link_list) {
1740 list_del(&link->cg_link_list);
1741 list_del(&link->cgrp_link_list);
1742 kfree(link);
1744 write_unlock(&css_set_lock);
1746 if (!list_empty(&root->root_list)) {
1747 list_del(&root->root_list);
1748 root_count--;
1751 mutex_unlock(&cgroup_root_mutex);
1752 mutex_unlock(&cgroup_mutex);
1754 kill_litter_super(sb);
1755 cgroup_drop_root(root);
1758 static struct file_system_type cgroup_fs_type = {
1759 .name = "cgroup",
1760 .mount = cgroup_mount,
1761 .kill_sb = cgroup_kill_sb,
1764 static struct kobject *cgroup_kobj;
1767 * cgroup_path - generate the path of a cgroup
1768 * @cgrp: the cgroup in question
1769 * @buf: the buffer to write the path into
1770 * @buflen: the length of the buffer
1772 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1773 * reference. Writes path of cgroup into buf. Returns 0 on success,
1774 * -errno on error.
1776 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1778 char *start;
1779 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1780 cgroup_lock_is_held());
1782 if (!dentry || cgrp == dummytop) {
1784 * Inactive subsystems have no dentry for their root
1785 * cgroup
1787 strcpy(buf, "/");
1788 return 0;
1791 start = buf + buflen;
1793 *--start = '\0';
1794 for (;;) {
1795 int len = dentry->d_name.len;
1797 if ((start -= len) < buf)
1798 return -ENAMETOOLONG;
1799 memcpy(start, dentry->d_name.name, len);
1800 cgrp = cgrp->parent;
1801 if (!cgrp)
1802 break;
1804 dentry = rcu_dereference_check(cgrp->dentry,
1805 cgroup_lock_is_held());
1806 if (!cgrp->parent)
1807 continue;
1808 if (--start < buf)
1809 return -ENAMETOOLONG;
1810 *start = '/';
1812 memmove(buf, start, buf + buflen - start);
1813 return 0;
1815 EXPORT_SYMBOL_GPL(cgroup_path);
1818 * Control Group taskset
1820 struct task_and_cgroup {
1821 struct task_struct *task;
1822 struct cgroup *cgrp;
1823 struct css_set *cg;
1826 struct cgroup_taskset {
1827 struct task_and_cgroup single;
1828 struct flex_array *tc_array;
1829 int tc_array_len;
1830 int idx;
1831 struct cgroup *cur_cgrp;
1835 * cgroup_taskset_first - reset taskset and return the first task
1836 * @tset: taskset of interest
1838 * @tset iteration is initialized and the first task is returned.
1840 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1842 if (tset->tc_array) {
1843 tset->idx = 0;
1844 return cgroup_taskset_next(tset);
1845 } else {
1846 tset->cur_cgrp = tset->single.cgrp;
1847 return tset->single.task;
1850 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1853 * cgroup_taskset_next - iterate to the next task in taskset
1854 * @tset: taskset of interest
1856 * Return the next task in @tset. Iteration must have been initialized
1857 * with cgroup_taskset_first().
1859 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1861 struct task_and_cgroup *tc;
1863 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1864 return NULL;
1866 tc = flex_array_get(tset->tc_array, tset->idx++);
1867 tset->cur_cgrp = tc->cgrp;
1868 return tc->task;
1870 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1873 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1874 * @tset: taskset of interest
1876 * Return the cgroup for the current (last returned) task of @tset. This
1877 * function must be preceded by either cgroup_taskset_first() or
1878 * cgroup_taskset_next().
1880 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1882 return tset->cur_cgrp;
1884 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1887 * cgroup_taskset_size - return the number of tasks in taskset
1888 * @tset: taskset of interest
1890 int cgroup_taskset_size(struct cgroup_taskset *tset)
1892 return tset->tc_array ? tset->tc_array_len : 1;
1894 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1898 * cgroup_task_migrate - move a task from one cgroup to another.
1900 * 'guarantee' is set if the caller promises that a new css_set for the task
1901 * will already exist. If not set, this function might sleep, and can fail with
1902 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1904 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1905 struct task_struct *tsk, struct css_set *newcg)
1907 struct css_set *oldcg;
1910 * We are synchronized through threadgroup_lock() against PF_EXITING
1911 * setting such that we can't race against cgroup_exit() changing the
1912 * css_set to init_css_set and dropping the old one.
1914 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1915 oldcg = tsk->cgroups;
1917 task_lock(tsk);
1918 rcu_assign_pointer(tsk->cgroups, newcg);
1919 task_unlock(tsk);
1921 /* Update the css_set linked lists if we're using them */
1922 write_lock(&css_set_lock);
1923 if (!list_empty(&tsk->cg_list))
1924 list_move(&tsk->cg_list, &newcg->tasks);
1925 write_unlock(&css_set_lock);
1928 * We just gained a reference on oldcg by taking it from the task. As
1929 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1930 * it here; it will be freed under RCU.
1932 put_css_set(oldcg);
1934 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1938 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1939 * @cgrp: the cgroup the task is attaching to
1940 * @tsk: the task to be attached
1942 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1943 * @tsk during call.
1945 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1947 int retval = 0;
1948 struct cgroup_subsys *ss, *failed_ss = NULL;
1949 struct cgroup *oldcgrp;
1950 struct cgroupfs_root *root = cgrp->root;
1951 struct cgroup_taskset tset = { };
1952 struct css_set *newcg;
1954 /* @tsk either already exited or can't exit until the end */
1955 if (tsk->flags & PF_EXITING)
1956 return -ESRCH;
1958 /* Nothing to do if the task is already in that cgroup */
1959 oldcgrp = task_cgroup_from_root(tsk, root);
1960 if (cgrp == oldcgrp)
1961 return 0;
1963 tset.single.task = tsk;
1964 tset.single.cgrp = oldcgrp;
1966 for_each_subsys(root, ss) {
1967 if (ss->can_attach) {
1968 retval = ss->can_attach(cgrp, &tset);
1969 if (retval) {
1971 * Remember on which subsystem the can_attach()
1972 * failed, so that we only call cancel_attach()
1973 * against the subsystems whose can_attach()
1974 * succeeded. (See below)
1976 failed_ss = ss;
1977 goto out;
1982 newcg = find_css_set(tsk->cgroups, cgrp);
1983 if (!newcg) {
1984 retval = -ENOMEM;
1985 goto out;
1988 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1990 for_each_subsys(root, ss) {
1991 if (ss->attach)
1992 ss->attach(cgrp, &tset);
1995 synchronize_rcu();
1998 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1999 * is no longer empty.
2001 cgroup_wakeup_rmdir_waiter(cgrp);
2002 out:
2003 if (retval) {
2004 for_each_subsys(root, ss) {
2005 if (ss == failed_ss)
2007 * This subsystem was the one that failed the
2008 * can_attach() check earlier, so we don't need
2009 * to call cancel_attach() against it or any
2010 * remaining subsystems.
2012 break;
2013 if (ss->cancel_attach)
2014 ss->cancel_attach(cgrp, &tset);
2017 return retval;
2021 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2022 * @from: attach to all cgroups of a given task
2023 * @tsk: the task to be attached
2025 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2027 struct cgroupfs_root *root;
2028 int retval = 0;
2030 cgroup_lock();
2031 for_each_active_root(root) {
2032 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2034 retval = cgroup_attach_task(from_cg, tsk);
2035 if (retval)
2036 break;
2038 cgroup_unlock();
2040 return retval;
2042 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2045 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2046 * @cgrp: the cgroup to attach to
2047 * @leader: the threadgroup leader task_struct of the group to be attached
2049 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2050 * task_lock of each thread in leader's threadgroup individually in turn.
2052 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2054 int retval, i, group_size;
2055 struct cgroup_subsys *ss, *failed_ss = NULL;
2056 /* guaranteed to be initialized later, but the compiler needs this */
2057 struct cgroupfs_root *root = cgrp->root;
2058 /* threadgroup list cursor and array */
2059 struct task_struct *tsk;
2060 struct task_and_cgroup *tc;
2061 struct flex_array *group;
2062 struct cgroup_taskset tset = { };
2065 * step 0: in order to do expensive, possibly blocking operations for
2066 * every thread, we cannot iterate the thread group list, since it needs
2067 * rcu or tasklist locked. instead, build an array of all threads in the
2068 * group - group_rwsem prevents new threads from appearing, and if
2069 * threads exit, this will just be an over-estimate.
2071 group_size = get_nr_threads(leader);
2072 /* flex_array supports very large thread-groups better than kmalloc. */
2073 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2074 if (!group)
2075 return -ENOMEM;
2076 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2077 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2078 if (retval)
2079 goto out_free_group_list;
2081 tsk = leader;
2082 i = 0;
2084 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2085 * already PF_EXITING could be freed from underneath us unless we
2086 * take an rcu_read_lock.
2088 rcu_read_lock();
2089 do {
2090 struct task_and_cgroup ent;
2092 /* @tsk either already exited or can't exit until the end */
2093 if (tsk->flags & PF_EXITING)
2094 continue;
2096 /* as per above, nr_threads may decrease, but not increase. */
2097 BUG_ON(i >= group_size);
2098 ent.task = tsk;
2099 ent.cgrp = task_cgroup_from_root(tsk, root);
2100 /* nothing to do if this task is already in the cgroup */
2101 if (ent.cgrp == cgrp)
2102 continue;
2104 * saying GFP_ATOMIC has no effect here because we did prealloc
2105 * earlier, but it's good form to communicate our expectations.
2107 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2108 BUG_ON(retval != 0);
2109 i++;
2110 } while_each_thread(leader, tsk);
2111 rcu_read_unlock();
2112 /* remember the number of threads in the array for later. */
2113 group_size = i;
2114 tset.tc_array = group;
2115 tset.tc_array_len = group_size;
2117 /* methods shouldn't be called if no task is actually migrating */
2118 retval = 0;
2119 if (!group_size)
2120 goto out_free_group_list;
2123 * step 1: check that we can legitimately attach to the cgroup.
2125 for_each_subsys(root, ss) {
2126 if (ss->can_attach) {
2127 retval = ss->can_attach(cgrp, &tset);
2128 if (retval) {
2129 failed_ss = ss;
2130 goto out_cancel_attach;
2136 * step 2: make sure css_sets exist for all threads to be migrated.
2137 * we use find_css_set, which allocates a new one if necessary.
2139 for (i = 0; i < group_size; i++) {
2140 tc = flex_array_get(group, i);
2141 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2142 if (!tc->cg) {
2143 retval = -ENOMEM;
2144 goto out_put_css_set_refs;
2149 * step 3: now that we're guaranteed success wrt the css_sets,
2150 * proceed to move all tasks to the new cgroup. There are no
2151 * failure cases after here, so this is the commit point.
2153 for (i = 0; i < group_size; i++) {
2154 tc = flex_array_get(group, i);
2155 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2157 /* nothing is sensitive to fork() after this point. */
2160 * step 4: do subsystem attach callbacks.
2162 for_each_subsys(root, ss) {
2163 if (ss->attach)
2164 ss->attach(cgrp, &tset);
2168 * step 5: success! and cleanup
2170 synchronize_rcu();
2171 cgroup_wakeup_rmdir_waiter(cgrp);
2172 retval = 0;
2173 out_put_css_set_refs:
2174 if (retval) {
2175 for (i = 0; i < group_size; i++) {
2176 tc = flex_array_get(group, i);
2177 if (!tc->cg)
2178 break;
2179 put_css_set(tc->cg);
2182 out_cancel_attach:
2183 if (retval) {
2184 for_each_subsys(root, ss) {
2185 if (ss == failed_ss)
2186 break;
2187 if (ss->cancel_attach)
2188 ss->cancel_attach(cgrp, &tset);
2191 out_free_group_list:
2192 flex_array_free(group);
2193 return retval;
2197 * Find the task_struct of the task to attach by vpid and pass it along to the
2198 * function to attach either it or all tasks in its threadgroup. Will lock
2199 * cgroup_mutex and threadgroup; may take task_lock of task.
2201 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2203 struct task_struct *tsk;
2204 const struct cred *cred = current_cred(), *tcred;
2205 int ret;
2207 if (!cgroup_lock_live_group(cgrp))
2208 return -ENODEV;
2210 retry_find_task:
2211 rcu_read_lock();
2212 if (pid) {
2213 tsk = find_task_by_vpid(pid);
2214 if (!tsk) {
2215 rcu_read_unlock();
2216 ret= -ESRCH;
2217 goto out_unlock_cgroup;
2220 * even if we're attaching all tasks in the thread group, we
2221 * only need to check permissions on one of them.
2223 tcred = __task_cred(tsk);
2224 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2225 !uid_eq(cred->euid, tcred->uid) &&
2226 !uid_eq(cred->euid, tcred->suid)) {
2227 rcu_read_unlock();
2228 ret = -EACCES;
2229 goto out_unlock_cgroup;
2231 } else
2232 tsk = current;
2234 if (threadgroup)
2235 tsk = tsk->group_leader;
2238 * Workqueue threads may acquire PF_THREAD_BOUND and become
2239 * trapped in a cpuset, or RT worker may be born in a cgroup
2240 * with no rt_runtime allocated. Just say no.
2242 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2243 ret = -EINVAL;
2244 rcu_read_unlock();
2245 goto out_unlock_cgroup;
2248 get_task_struct(tsk);
2249 rcu_read_unlock();
2251 threadgroup_lock(tsk);
2252 if (threadgroup) {
2253 if (!thread_group_leader(tsk)) {
2255 * a race with de_thread from another thread's exec()
2256 * may strip us of our leadership, if this happens,
2257 * there is no choice but to throw this task away and
2258 * try again; this is
2259 * "double-double-toil-and-trouble-check locking".
2261 threadgroup_unlock(tsk);
2262 put_task_struct(tsk);
2263 goto retry_find_task;
2265 ret = cgroup_attach_proc(cgrp, tsk);
2266 } else
2267 ret = cgroup_attach_task(cgrp, tsk);
2268 threadgroup_unlock(tsk);
2270 put_task_struct(tsk);
2271 out_unlock_cgroup:
2272 cgroup_unlock();
2273 return ret;
2276 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2278 return attach_task_by_pid(cgrp, pid, false);
2281 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2283 return attach_task_by_pid(cgrp, tgid, true);
2287 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2288 * @cgrp: the cgroup to be checked for liveness
2290 * On success, returns true; the lock should be later released with
2291 * cgroup_unlock(). On failure returns false with no lock held.
2293 bool cgroup_lock_live_group(struct cgroup *cgrp)
2295 mutex_lock(&cgroup_mutex);
2296 if (cgroup_is_removed(cgrp)) {
2297 mutex_unlock(&cgroup_mutex);
2298 return false;
2300 return true;
2302 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2304 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2305 const char *buffer)
2307 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2308 if (strlen(buffer) >= PATH_MAX)
2309 return -EINVAL;
2310 if (!cgroup_lock_live_group(cgrp))
2311 return -ENODEV;
2312 mutex_lock(&cgroup_root_mutex);
2313 strcpy(cgrp->root->release_agent_path, buffer);
2314 mutex_unlock(&cgroup_root_mutex);
2315 cgroup_unlock();
2316 return 0;
2319 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2320 struct seq_file *seq)
2322 if (!cgroup_lock_live_group(cgrp))
2323 return -ENODEV;
2324 seq_puts(seq, cgrp->root->release_agent_path);
2325 seq_putc(seq, '\n');
2326 cgroup_unlock();
2327 return 0;
2330 /* A buffer size big enough for numbers or short strings */
2331 #define CGROUP_LOCAL_BUFFER_SIZE 64
2333 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2334 struct file *file,
2335 const char __user *userbuf,
2336 size_t nbytes, loff_t *unused_ppos)
2338 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2339 int retval = 0;
2340 char *end;
2342 if (!nbytes)
2343 return -EINVAL;
2344 if (nbytes >= sizeof(buffer))
2345 return -E2BIG;
2346 if (copy_from_user(buffer, userbuf, nbytes))
2347 return -EFAULT;
2349 buffer[nbytes] = 0; /* nul-terminate */
2350 if (cft->write_u64) {
2351 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2352 if (*end)
2353 return -EINVAL;
2354 retval = cft->write_u64(cgrp, cft, val);
2355 } else {
2356 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2357 if (*end)
2358 return -EINVAL;
2359 retval = cft->write_s64(cgrp, cft, val);
2361 if (!retval)
2362 retval = nbytes;
2363 return retval;
2366 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2367 struct file *file,
2368 const char __user *userbuf,
2369 size_t nbytes, loff_t *unused_ppos)
2371 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2372 int retval = 0;
2373 size_t max_bytes = cft->max_write_len;
2374 char *buffer = local_buffer;
2376 if (!max_bytes)
2377 max_bytes = sizeof(local_buffer) - 1;
2378 if (nbytes >= max_bytes)
2379 return -E2BIG;
2380 /* Allocate a dynamic buffer if we need one */
2381 if (nbytes >= sizeof(local_buffer)) {
2382 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2383 if (buffer == NULL)
2384 return -ENOMEM;
2386 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2387 retval = -EFAULT;
2388 goto out;
2391 buffer[nbytes] = 0; /* nul-terminate */
2392 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2393 if (!retval)
2394 retval = nbytes;
2395 out:
2396 if (buffer != local_buffer)
2397 kfree(buffer);
2398 return retval;
2401 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2402 size_t nbytes, loff_t *ppos)
2404 struct cftype *cft = __d_cft(file->f_dentry);
2405 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2407 if (cgroup_is_removed(cgrp))
2408 return -ENODEV;
2409 if (cft->write)
2410 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2411 if (cft->write_u64 || cft->write_s64)
2412 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2413 if (cft->write_string)
2414 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2415 if (cft->trigger) {
2416 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2417 return ret ? ret : nbytes;
2419 return -EINVAL;
2422 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2423 struct file *file,
2424 char __user *buf, size_t nbytes,
2425 loff_t *ppos)
2427 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2428 u64 val = cft->read_u64(cgrp, cft);
2429 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2431 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2434 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2435 struct file *file,
2436 char __user *buf, size_t nbytes,
2437 loff_t *ppos)
2439 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2440 s64 val = cft->read_s64(cgrp, cft);
2441 int len = sprintf(tmp, "%lld\n", (long long) val);
2443 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2446 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2447 size_t nbytes, loff_t *ppos)
2449 struct cftype *cft = __d_cft(file->f_dentry);
2450 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2452 if (cgroup_is_removed(cgrp))
2453 return -ENODEV;
2455 if (cft->read)
2456 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2457 if (cft->read_u64)
2458 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2459 if (cft->read_s64)
2460 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2461 return -EINVAL;
2465 * seqfile ops/methods for returning structured data. Currently just
2466 * supports string->u64 maps, but can be extended in future.
2469 struct cgroup_seqfile_state {
2470 struct cftype *cft;
2471 struct cgroup *cgroup;
2474 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2476 struct seq_file *sf = cb->state;
2477 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2480 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2482 struct cgroup_seqfile_state *state = m->private;
2483 struct cftype *cft = state->cft;
2484 if (cft->read_map) {
2485 struct cgroup_map_cb cb = {
2486 .fill = cgroup_map_add,
2487 .state = m,
2489 return cft->read_map(state->cgroup, cft, &cb);
2491 return cft->read_seq_string(state->cgroup, cft, m);
2494 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2496 struct seq_file *seq = file->private_data;
2497 kfree(seq->private);
2498 return single_release(inode, file);
2501 static const struct file_operations cgroup_seqfile_operations = {
2502 .read = seq_read,
2503 .write = cgroup_file_write,
2504 .llseek = seq_lseek,
2505 .release = cgroup_seqfile_release,
2508 static int cgroup_file_open(struct inode *inode, struct file *file)
2510 int err;
2511 struct cftype *cft;
2513 err = generic_file_open(inode, file);
2514 if (err)
2515 return err;
2516 cft = __d_cft(file->f_dentry);
2518 if (cft->read_map || cft->read_seq_string) {
2519 struct cgroup_seqfile_state *state =
2520 kzalloc(sizeof(*state), GFP_USER);
2521 if (!state)
2522 return -ENOMEM;
2523 state->cft = cft;
2524 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2525 file->f_op = &cgroup_seqfile_operations;
2526 err = single_open(file, cgroup_seqfile_show, state);
2527 if (err < 0)
2528 kfree(state);
2529 } else if (cft->open)
2530 err = cft->open(inode, file);
2531 else
2532 err = 0;
2534 return err;
2537 static int cgroup_file_release(struct inode *inode, struct file *file)
2539 struct cftype *cft = __d_cft(file->f_dentry);
2540 if (cft->release)
2541 return cft->release(inode, file);
2542 return 0;
2546 * cgroup_rename - Only allow simple rename of directories in place.
2548 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2549 struct inode *new_dir, struct dentry *new_dentry)
2551 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2552 return -ENOTDIR;
2553 if (new_dentry->d_inode)
2554 return -EEXIST;
2555 if (old_dir != new_dir)
2556 return -EIO;
2557 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2560 static const struct file_operations cgroup_file_operations = {
2561 .read = cgroup_file_read,
2562 .write = cgroup_file_write,
2563 .llseek = generic_file_llseek,
2564 .open = cgroup_file_open,
2565 .release = cgroup_file_release,
2568 static const struct inode_operations cgroup_dir_inode_operations = {
2569 .lookup = cgroup_lookup,
2570 .mkdir = cgroup_mkdir,
2571 .rmdir = cgroup_rmdir,
2572 .rename = cgroup_rename,
2575 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2577 if (dentry->d_name.len > NAME_MAX)
2578 return ERR_PTR(-ENAMETOOLONG);
2579 d_add(dentry, NULL);
2580 return NULL;
2584 * Check if a file is a control file
2586 static inline struct cftype *__file_cft(struct file *file)
2588 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2589 return ERR_PTR(-EINVAL);
2590 return __d_cft(file->f_dentry);
2593 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2594 struct super_block *sb)
2596 struct inode *inode;
2598 if (!dentry)
2599 return -ENOENT;
2600 if (dentry->d_inode)
2601 return -EEXIST;
2603 inode = cgroup_new_inode(mode, sb);
2604 if (!inode)
2605 return -ENOMEM;
2607 if (S_ISDIR(mode)) {
2608 inode->i_op = &cgroup_dir_inode_operations;
2609 inode->i_fop = &simple_dir_operations;
2611 /* start off with i_nlink == 2 (for "." entry) */
2612 inc_nlink(inode);
2614 /* start with the directory inode held, so that we can
2615 * populate it without racing with another mkdir */
2616 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2617 } else if (S_ISREG(mode)) {
2618 inode->i_size = 0;
2619 inode->i_fop = &cgroup_file_operations;
2621 d_instantiate(dentry, inode);
2622 dget(dentry); /* Extra count - pin the dentry in core */
2623 return 0;
2627 * cgroup_create_dir - create a directory for an object.
2628 * @cgrp: the cgroup we create the directory for. It must have a valid
2629 * ->parent field. And we are going to fill its ->dentry field.
2630 * @dentry: dentry of the new cgroup
2631 * @mode: mode to set on new directory.
2633 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2634 umode_t mode)
2636 struct dentry *parent;
2637 int error = 0;
2639 parent = cgrp->parent->dentry;
2640 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2641 if (!error) {
2642 dentry->d_fsdata = cgrp;
2643 inc_nlink(parent->d_inode);
2644 rcu_assign_pointer(cgrp->dentry, dentry);
2645 dget(dentry);
2647 dput(dentry);
2649 return error;
2653 * cgroup_file_mode - deduce file mode of a control file
2654 * @cft: the control file in question
2656 * returns cft->mode if ->mode is not 0
2657 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2658 * returns S_IRUGO if it has only a read handler
2659 * returns S_IWUSR if it has only a write hander
2661 static umode_t cgroup_file_mode(const struct cftype *cft)
2663 umode_t mode = 0;
2665 if (cft->mode)
2666 return cft->mode;
2668 if (cft->read || cft->read_u64 || cft->read_s64 ||
2669 cft->read_map || cft->read_seq_string)
2670 mode |= S_IRUGO;
2672 if (cft->write || cft->write_u64 || cft->write_s64 ||
2673 cft->write_string || cft->trigger)
2674 mode |= S_IWUSR;
2676 return mode;
2679 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2680 const struct cftype *cft)
2682 struct dentry *dir = cgrp->dentry;
2683 struct cgroup *parent = __d_cgrp(dir);
2684 struct dentry *dentry;
2685 struct cfent *cfe;
2686 int error;
2687 umode_t mode;
2688 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2690 /* does @cft->flags tell us to skip creation on @cgrp? */
2691 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2692 return 0;
2693 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2694 return 0;
2696 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2697 strcpy(name, subsys->name);
2698 strcat(name, ".");
2700 strcat(name, cft->name);
2702 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2704 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2705 if (!cfe)
2706 return -ENOMEM;
2708 dentry = lookup_one_len(name, dir, strlen(name));
2709 if (IS_ERR(dentry)) {
2710 error = PTR_ERR(dentry);
2711 goto out;
2714 mode = cgroup_file_mode(cft);
2715 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2716 if (!error) {
2717 cfe->type = (void *)cft;
2718 cfe->dentry = dentry;
2719 dentry->d_fsdata = cfe;
2720 list_add_tail(&cfe->node, &parent->files);
2721 cfe = NULL;
2723 dput(dentry);
2724 out:
2725 kfree(cfe);
2726 return error;
2729 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2730 const struct cftype cfts[], bool is_add)
2732 const struct cftype *cft;
2733 int err, ret = 0;
2735 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2736 if (is_add)
2737 err = cgroup_add_file(cgrp, subsys, cft);
2738 else
2739 err = cgroup_rm_file(cgrp, cft);
2740 if (err) {
2741 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2742 is_add ? "add" : "remove", cft->name, err);
2743 ret = err;
2746 return ret;
2749 static DEFINE_MUTEX(cgroup_cft_mutex);
2751 static void cgroup_cfts_prepare(void)
2752 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2755 * Thanks to the entanglement with vfs inode locking, we can't walk
2756 * the existing cgroups under cgroup_mutex and create files.
2757 * Instead, we increment reference on all cgroups and build list of
2758 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2759 * exclusive access to the field.
2761 mutex_lock(&cgroup_cft_mutex);
2762 mutex_lock(&cgroup_mutex);
2765 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2766 const struct cftype *cfts, bool is_add)
2767 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2769 LIST_HEAD(pending);
2770 struct cgroup *cgrp, *n;
2772 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2773 if (cfts && ss->root != &rootnode) {
2774 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2775 dget(cgrp->dentry);
2776 list_add_tail(&cgrp->cft_q_node, &pending);
2780 mutex_unlock(&cgroup_mutex);
2783 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2784 * files for all cgroups which were created before.
2786 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2787 struct inode *inode = cgrp->dentry->d_inode;
2789 mutex_lock(&inode->i_mutex);
2790 mutex_lock(&cgroup_mutex);
2791 if (!cgroup_is_removed(cgrp))
2792 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2793 mutex_unlock(&cgroup_mutex);
2794 mutex_unlock(&inode->i_mutex);
2796 list_del_init(&cgrp->cft_q_node);
2797 dput(cgrp->dentry);
2800 mutex_unlock(&cgroup_cft_mutex);
2804 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2805 * @ss: target cgroup subsystem
2806 * @cfts: zero-length name terminated array of cftypes
2808 * Register @cfts to @ss. Files described by @cfts are created for all
2809 * existing cgroups to which @ss is attached and all future cgroups will
2810 * have them too. This function can be called anytime whether @ss is
2811 * attached or not.
2813 * Returns 0 on successful registration, -errno on failure. Note that this
2814 * function currently returns 0 as long as @cfts registration is successful
2815 * even if some file creation attempts on existing cgroups fail.
2817 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2819 struct cftype_set *set;
2821 set = kzalloc(sizeof(*set), GFP_KERNEL);
2822 if (!set)
2823 return -ENOMEM;
2825 cgroup_cfts_prepare();
2826 set->cfts = cfts;
2827 list_add_tail(&set->node, &ss->cftsets);
2828 cgroup_cfts_commit(ss, cfts, true);
2830 return 0;
2832 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2835 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2836 * @ss: target cgroup subsystem
2837 * @cfts: zero-length name terminated array of cftypes
2839 * Unregister @cfts from @ss. Files described by @cfts are removed from
2840 * all existing cgroups to which @ss is attached and all future cgroups
2841 * won't have them either. This function can be called anytime whether @ss
2842 * is attached or not.
2844 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2845 * registered with @ss.
2847 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2849 struct cftype_set *set;
2851 cgroup_cfts_prepare();
2853 list_for_each_entry(set, &ss->cftsets, node) {
2854 if (set->cfts == cfts) {
2855 list_del_init(&set->node);
2856 cgroup_cfts_commit(ss, cfts, false);
2857 return 0;
2861 cgroup_cfts_commit(ss, NULL, false);
2862 return -ENOENT;
2866 * cgroup_task_count - count the number of tasks in a cgroup.
2867 * @cgrp: the cgroup in question
2869 * Return the number of tasks in the cgroup.
2871 int cgroup_task_count(const struct cgroup *cgrp)
2873 int count = 0;
2874 struct cg_cgroup_link *link;
2876 read_lock(&css_set_lock);
2877 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2878 count += atomic_read(&link->cg->refcount);
2880 read_unlock(&css_set_lock);
2881 return count;
2885 * Advance a list_head iterator. The iterator should be positioned at
2886 * the start of a css_set
2888 static void cgroup_advance_iter(struct cgroup *cgrp,
2889 struct cgroup_iter *it)
2891 struct list_head *l = it->cg_link;
2892 struct cg_cgroup_link *link;
2893 struct css_set *cg;
2895 /* Advance to the next non-empty css_set */
2896 do {
2897 l = l->next;
2898 if (l == &cgrp->css_sets) {
2899 it->cg_link = NULL;
2900 return;
2902 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2903 cg = link->cg;
2904 } while (list_empty(&cg->tasks));
2905 it->cg_link = l;
2906 it->task = cg->tasks.next;
2910 * To reduce the fork() overhead for systems that are not actually
2911 * using their cgroups capability, we don't maintain the lists running
2912 * through each css_set to its tasks until we see the list actually
2913 * used - in other words after the first call to cgroup_iter_start().
2915 static void cgroup_enable_task_cg_lists(void)
2917 struct task_struct *p, *g;
2918 write_lock(&css_set_lock);
2919 use_task_css_set_links = 1;
2921 * We need tasklist_lock because RCU is not safe against
2922 * while_each_thread(). Besides, a forking task that has passed
2923 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2924 * is not guaranteed to have its child immediately visible in the
2925 * tasklist if we walk through it with RCU.
2927 read_lock(&tasklist_lock);
2928 do_each_thread(g, p) {
2929 task_lock(p);
2931 * We should check if the process is exiting, otherwise
2932 * it will race with cgroup_exit() in that the list
2933 * entry won't be deleted though the process has exited.
2935 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2936 list_add(&p->cg_list, &p->cgroups->tasks);
2937 task_unlock(p);
2938 } while_each_thread(g, p);
2939 read_unlock(&tasklist_lock);
2940 write_unlock(&css_set_lock);
2943 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2944 __acquires(css_set_lock)
2947 * The first time anyone tries to iterate across a cgroup,
2948 * we need to enable the list linking each css_set to its
2949 * tasks, and fix up all existing tasks.
2951 if (!use_task_css_set_links)
2952 cgroup_enable_task_cg_lists();
2954 read_lock(&css_set_lock);
2955 it->cg_link = &cgrp->css_sets;
2956 cgroup_advance_iter(cgrp, it);
2959 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2960 struct cgroup_iter *it)
2962 struct task_struct *res;
2963 struct list_head *l = it->task;
2964 struct cg_cgroup_link *link;
2966 /* If the iterator cg is NULL, we have no tasks */
2967 if (!it->cg_link)
2968 return NULL;
2969 res = list_entry(l, struct task_struct, cg_list);
2970 /* Advance iterator to find next entry */
2971 l = l->next;
2972 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2973 if (l == &link->cg->tasks) {
2974 /* We reached the end of this task list - move on to
2975 * the next cg_cgroup_link */
2976 cgroup_advance_iter(cgrp, it);
2977 } else {
2978 it->task = l;
2980 return res;
2983 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2984 __releases(css_set_lock)
2986 read_unlock(&css_set_lock);
2989 static inline int started_after_time(struct task_struct *t1,
2990 struct timespec *time,
2991 struct task_struct *t2)
2993 int start_diff = timespec_compare(&t1->start_time, time);
2994 if (start_diff > 0) {
2995 return 1;
2996 } else if (start_diff < 0) {
2997 return 0;
2998 } else {
3000 * Arbitrarily, if two processes started at the same
3001 * time, we'll say that the lower pointer value
3002 * started first. Note that t2 may have exited by now
3003 * so this may not be a valid pointer any longer, but
3004 * that's fine - it still serves to distinguish
3005 * between two tasks started (effectively) simultaneously.
3007 return t1 > t2;
3012 * This function is a callback from heap_insert() and is used to order
3013 * the heap.
3014 * In this case we order the heap in descending task start time.
3016 static inline int started_after(void *p1, void *p2)
3018 struct task_struct *t1 = p1;
3019 struct task_struct *t2 = p2;
3020 return started_after_time(t1, &t2->start_time, t2);
3024 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3025 * @scan: struct cgroup_scanner containing arguments for the scan
3027 * Arguments include pointers to callback functions test_task() and
3028 * process_task().
3029 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3030 * and if it returns true, call process_task() for it also.
3031 * The test_task pointer may be NULL, meaning always true (select all tasks).
3032 * Effectively duplicates cgroup_iter_{start,next,end}()
3033 * but does not lock css_set_lock for the call to process_task().
3034 * The struct cgroup_scanner may be embedded in any structure of the caller's
3035 * creation.
3036 * It is guaranteed that process_task() will act on every task that
3037 * is a member of the cgroup for the duration of this call. This
3038 * function may or may not call process_task() for tasks that exit
3039 * or move to a different cgroup during the call, or are forked or
3040 * move into the cgroup during the call.
3042 * Note that test_task() may be called with locks held, and may in some
3043 * situations be called multiple times for the same task, so it should
3044 * be cheap.
3045 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3046 * pre-allocated and will be used for heap operations (and its "gt" member will
3047 * be overwritten), else a temporary heap will be used (allocation of which
3048 * may cause this function to fail).
3050 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3052 int retval, i;
3053 struct cgroup_iter it;
3054 struct task_struct *p, *dropped;
3055 /* Never dereference latest_task, since it's not refcounted */
3056 struct task_struct *latest_task = NULL;
3057 struct ptr_heap tmp_heap;
3058 struct ptr_heap *heap;
3059 struct timespec latest_time = { 0, 0 };
3061 if (scan->heap) {
3062 /* The caller supplied our heap and pre-allocated its memory */
3063 heap = scan->heap;
3064 heap->gt = &started_after;
3065 } else {
3066 /* We need to allocate our own heap memory */
3067 heap = &tmp_heap;
3068 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3069 if (retval)
3070 /* cannot allocate the heap */
3071 return retval;
3074 again:
3076 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3077 * to determine which are of interest, and using the scanner's
3078 * "process_task" callback to process any of them that need an update.
3079 * Since we don't want to hold any locks during the task updates,
3080 * gather tasks to be processed in a heap structure.
3081 * The heap is sorted by descending task start time.
3082 * If the statically-sized heap fills up, we overflow tasks that
3083 * started later, and in future iterations only consider tasks that
3084 * started after the latest task in the previous pass. This
3085 * guarantees forward progress and that we don't miss any tasks.
3087 heap->size = 0;
3088 cgroup_iter_start(scan->cg, &it);
3089 while ((p = cgroup_iter_next(scan->cg, &it))) {
3091 * Only affect tasks that qualify per the caller's callback,
3092 * if he provided one
3094 if (scan->test_task && !scan->test_task(p, scan))
3095 continue;
3097 * Only process tasks that started after the last task
3098 * we processed
3100 if (!started_after_time(p, &latest_time, latest_task))
3101 continue;
3102 dropped = heap_insert(heap, p);
3103 if (dropped == NULL) {
3105 * The new task was inserted; the heap wasn't
3106 * previously full
3108 get_task_struct(p);
3109 } else if (dropped != p) {
3111 * The new task was inserted, and pushed out a
3112 * different task
3114 get_task_struct(p);
3115 put_task_struct(dropped);
3118 * Else the new task was newer than anything already in
3119 * the heap and wasn't inserted
3122 cgroup_iter_end(scan->cg, &it);
3124 if (heap->size) {
3125 for (i = 0; i < heap->size; i++) {
3126 struct task_struct *q = heap->ptrs[i];
3127 if (i == 0) {
3128 latest_time = q->start_time;
3129 latest_task = q;
3131 /* Process the task per the caller's callback */
3132 scan->process_task(q, scan);
3133 put_task_struct(q);
3136 * If we had to process any tasks at all, scan again
3137 * in case some of them were in the middle of forking
3138 * children that didn't get processed.
3139 * Not the most efficient way to do it, but it avoids
3140 * having to take callback_mutex in the fork path
3142 goto again;
3144 if (heap == &tmp_heap)
3145 heap_free(&tmp_heap);
3146 return 0;
3150 * Stuff for reading the 'tasks'/'procs' files.
3152 * Reading this file can return large amounts of data if a cgroup has
3153 * *lots* of attached tasks. So it may need several calls to read(),
3154 * but we cannot guarantee that the information we produce is correct
3155 * unless we produce it entirely atomically.
3159 /* which pidlist file are we talking about? */
3160 enum cgroup_filetype {
3161 CGROUP_FILE_PROCS,
3162 CGROUP_FILE_TASKS,
3166 * A pidlist is a list of pids that virtually represents the contents of one
3167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3168 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3169 * to the cgroup.
3171 struct cgroup_pidlist {
3173 * used to find which pidlist is wanted. doesn't change as long as
3174 * this particular list stays in the list.
3176 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3177 /* array of xids */
3178 pid_t *list;
3179 /* how many elements the above list has */
3180 int length;
3181 /* how many files are using the current array */
3182 int use_count;
3183 /* each of these stored in a list by its cgroup */
3184 struct list_head links;
3185 /* pointer to the cgroup we belong to, for list removal purposes */
3186 struct cgroup *owner;
3187 /* protects the other fields */
3188 struct rw_semaphore mutex;
3192 * The following two functions "fix" the issue where there are more pids
3193 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3194 * TODO: replace with a kernel-wide solution to this problem
3196 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3197 static void *pidlist_allocate(int count)
3199 if (PIDLIST_TOO_LARGE(count))
3200 return vmalloc(count * sizeof(pid_t));
3201 else
3202 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3204 static void pidlist_free(void *p)
3206 if (is_vmalloc_addr(p))
3207 vfree(p);
3208 else
3209 kfree(p);
3211 static void *pidlist_resize(void *p, int newcount)
3213 void *newlist;
3214 /* note: if new alloc fails, old p will still be valid either way */
3215 if (is_vmalloc_addr(p)) {
3216 newlist = vmalloc(newcount * sizeof(pid_t));
3217 if (!newlist)
3218 return NULL;
3219 memcpy(newlist, p, newcount * sizeof(pid_t));
3220 vfree(p);
3221 } else {
3222 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3224 return newlist;
3228 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3229 * If the new stripped list is sufficiently smaller and there's enough memory
3230 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3231 * number of unique elements.
3233 /* is the size difference enough that we should re-allocate the array? */
3234 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3235 static int pidlist_uniq(pid_t **p, int length)
3237 int src, dest = 1;
3238 pid_t *list = *p;
3239 pid_t *newlist;
3242 * we presume the 0th element is unique, so i starts at 1. trivial
3243 * edge cases first; no work needs to be done for either
3245 if (length == 0 || length == 1)
3246 return length;
3247 /* src and dest walk down the list; dest counts unique elements */
3248 for (src = 1; src < length; src++) {
3249 /* find next unique element */
3250 while (list[src] == list[src-1]) {
3251 src++;
3252 if (src == length)
3253 goto after;
3255 /* dest always points to where the next unique element goes */
3256 list[dest] = list[src];
3257 dest++;
3259 after:
3261 * if the length difference is large enough, we want to allocate a
3262 * smaller buffer to save memory. if this fails due to out of memory,
3263 * we'll just stay with what we've got.
3265 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3266 newlist = pidlist_resize(list, dest);
3267 if (newlist)
3268 *p = newlist;
3270 return dest;
3273 static int cmppid(const void *a, const void *b)
3275 return *(pid_t *)a - *(pid_t *)b;
3279 * find the appropriate pidlist for our purpose (given procs vs tasks)
3280 * returns with the lock on that pidlist already held, and takes care
3281 * of the use count, or returns NULL with no locks held if we're out of
3282 * memory.
3284 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3285 enum cgroup_filetype type)
3287 struct cgroup_pidlist *l;
3288 /* don't need task_nsproxy() if we're looking at ourself */
3289 struct pid_namespace *ns = current->nsproxy->pid_ns;
3292 * We can't drop the pidlist_mutex before taking the l->mutex in case
3293 * the last ref-holder is trying to remove l from the list at the same
3294 * time. Holding the pidlist_mutex precludes somebody taking whichever
3295 * list we find out from under us - compare release_pid_array().
3297 mutex_lock(&cgrp->pidlist_mutex);
3298 list_for_each_entry(l, &cgrp->pidlists, links) {
3299 if (l->key.type == type && l->key.ns == ns) {
3300 /* make sure l doesn't vanish out from under us */
3301 down_write(&l->mutex);
3302 mutex_unlock(&cgrp->pidlist_mutex);
3303 return l;
3306 /* entry not found; create a new one */
3307 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3308 if (!l) {
3309 mutex_unlock(&cgrp->pidlist_mutex);
3310 return l;
3312 init_rwsem(&l->mutex);
3313 down_write(&l->mutex);
3314 l->key.type = type;
3315 l->key.ns = get_pid_ns(ns);
3316 l->use_count = 0; /* don't increment here */
3317 l->list = NULL;
3318 l->owner = cgrp;
3319 list_add(&l->links, &cgrp->pidlists);
3320 mutex_unlock(&cgrp->pidlist_mutex);
3321 return l;
3325 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3327 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3328 struct cgroup_pidlist **lp)
3330 pid_t *array;
3331 int length;
3332 int pid, n = 0; /* used for populating the array */
3333 struct cgroup_iter it;
3334 struct task_struct *tsk;
3335 struct cgroup_pidlist *l;
3338 * If cgroup gets more users after we read count, we won't have
3339 * enough space - tough. This race is indistinguishable to the
3340 * caller from the case that the additional cgroup users didn't
3341 * show up until sometime later on.
3343 length = cgroup_task_count(cgrp);
3344 array = pidlist_allocate(length);
3345 if (!array)
3346 return -ENOMEM;
3347 /* now, populate the array */
3348 cgroup_iter_start(cgrp, &it);
3349 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3350 if (unlikely(n == length))
3351 break;
3352 /* get tgid or pid for procs or tasks file respectively */
3353 if (type == CGROUP_FILE_PROCS)
3354 pid = task_tgid_vnr(tsk);
3355 else
3356 pid = task_pid_vnr(tsk);
3357 if (pid > 0) /* make sure to only use valid results */
3358 array[n++] = pid;
3360 cgroup_iter_end(cgrp, &it);
3361 length = n;
3362 /* now sort & (if procs) strip out duplicates */
3363 sort(array, length, sizeof(pid_t), cmppid, NULL);
3364 if (type == CGROUP_FILE_PROCS)
3365 length = pidlist_uniq(&array, length);
3366 l = cgroup_pidlist_find(cgrp, type);
3367 if (!l) {
3368 pidlist_free(array);
3369 return -ENOMEM;
3371 /* store array, freeing old if necessary - lock already held */
3372 pidlist_free(l->list);
3373 l->list = array;
3374 l->length = length;
3375 l->use_count++;
3376 up_write(&l->mutex);
3377 *lp = l;
3378 return 0;
3382 * cgroupstats_build - build and fill cgroupstats
3383 * @stats: cgroupstats to fill information into
3384 * @dentry: A dentry entry belonging to the cgroup for which stats have
3385 * been requested.
3387 * Build and fill cgroupstats so that taskstats can export it to user
3388 * space.
3390 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3392 int ret = -EINVAL;
3393 struct cgroup *cgrp;
3394 struct cgroup_iter it;
3395 struct task_struct *tsk;
3398 * Validate dentry by checking the superblock operations,
3399 * and make sure it's a directory.
3401 if (dentry->d_sb->s_op != &cgroup_ops ||
3402 !S_ISDIR(dentry->d_inode->i_mode))
3403 goto err;
3405 ret = 0;
3406 cgrp = dentry->d_fsdata;
3408 cgroup_iter_start(cgrp, &it);
3409 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3410 switch (tsk->state) {
3411 case TASK_RUNNING:
3412 stats->nr_running++;
3413 break;
3414 case TASK_INTERRUPTIBLE:
3415 stats->nr_sleeping++;
3416 break;
3417 case TASK_UNINTERRUPTIBLE:
3418 stats->nr_uninterruptible++;
3419 break;
3420 case TASK_STOPPED:
3421 stats->nr_stopped++;
3422 break;
3423 default:
3424 if (delayacct_is_task_waiting_on_io(tsk))
3425 stats->nr_io_wait++;
3426 break;
3429 cgroup_iter_end(cgrp, &it);
3431 err:
3432 return ret;
3437 * seq_file methods for the tasks/procs files. The seq_file position is the
3438 * next pid to display; the seq_file iterator is a pointer to the pid
3439 * in the cgroup->l->list array.
3442 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3445 * Initially we receive a position value that corresponds to
3446 * one more than the last pid shown (or 0 on the first call or
3447 * after a seek to the start). Use a binary-search to find the
3448 * next pid to display, if any
3450 struct cgroup_pidlist *l = s->private;
3451 int index = 0, pid = *pos;
3452 int *iter;
3454 down_read(&l->mutex);
3455 if (pid) {
3456 int end = l->length;
3458 while (index < end) {
3459 int mid = (index + end) / 2;
3460 if (l->list[mid] == pid) {
3461 index = mid;
3462 break;
3463 } else if (l->list[mid] <= pid)
3464 index = mid + 1;
3465 else
3466 end = mid;
3469 /* If we're off the end of the array, we're done */
3470 if (index >= l->length)
3471 return NULL;
3472 /* Update the abstract position to be the actual pid that we found */
3473 iter = l->list + index;
3474 *pos = *iter;
3475 return iter;
3478 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3480 struct cgroup_pidlist *l = s->private;
3481 up_read(&l->mutex);
3484 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3486 struct cgroup_pidlist *l = s->private;
3487 pid_t *p = v;
3488 pid_t *end = l->list + l->length;
3490 * Advance to the next pid in the array. If this goes off the
3491 * end, we're done
3493 p++;
3494 if (p >= end) {
3495 return NULL;
3496 } else {
3497 *pos = *p;
3498 return p;
3502 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3504 return seq_printf(s, "%d\n", *(int *)v);
3508 * seq_operations functions for iterating on pidlists through seq_file -
3509 * independent of whether it's tasks or procs
3511 static const struct seq_operations cgroup_pidlist_seq_operations = {
3512 .start = cgroup_pidlist_start,
3513 .stop = cgroup_pidlist_stop,
3514 .next = cgroup_pidlist_next,
3515 .show = cgroup_pidlist_show,
3518 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3521 * the case where we're the last user of this particular pidlist will
3522 * have us remove it from the cgroup's list, which entails taking the
3523 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3524 * pidlist_mutex, we have to take pidlist_mutex first.
3526 mutex_lock(&l->owner->pidlist_mutex);
3527 down_write(&l->mutex);
3528 BUG_ON(!l->use_count);
3529 if (!--l->use_count) {
3530 /* we're the last user if refcount is 0; remove and free */
3531 list_del(&l->links);
3532 mutex_unlock(&l->owner->pidlist_mutex);
3533 pidlist_free(l->list);
3534 put_pid_ns(l->key.ns);
3535 up_write(&l->mutex);
3536 kfree(l);
3537 return;
3539 mutex_unlock(&l->owner->pidlist_mutex);
3540 up_write(&l->mutex);
3543 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3545 struct cgroup_pidlist *l;
3546 if (!(file->f_mode & FMODE_READ))
3547 return 0;
3549 * the seq_file will only be initialized if the file was opened for
3550 * reading; hence we check if it's not null only in that case.
3552 l = ((struct seq_file *)file->private_data)->private;
3553 cgroup_release_pid_array(l);
3554 return seq_release(inode, file);
3557 static const struct file_operations cgroup_pidlist_operations = {
3558 .read = seq_read,
3559 .llseek = seq_lseek,
3560 .write = cgroup_file_write,
3561 .release = cgroup_pidlist_release,
3565 * The following functions handle opens on a file that displays a pidlist
3566 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3567 * in the cgroup.
3569 /* helper function for the two below it */
3570 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3572 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3573 struct cgroup_pidlist *l;
3574 int retval;
3576 /* Nothing to do for write-only files */
3577 if (!(file->f_mode & FMODE_READ))
3578 return 0;
3580 /* have the array populated */
3581 retval = pidlist_array_load(cgrp, type, &l);
3582 if (retval)
3583 return retval;
3584 /* configure file information */
3585 file->f_op = &cgroup_pidlist_operations;
3587 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3588 if (retval) {
3589 cgroup_release_pid_array(l);
3590 return retval;
3592 ((struct seq_file *)file->private_data)->private = l;
3593 return 0;
3595 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3597 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3599 static int cgroup_procs_open(struct inode *unused, struct file *file)
3601 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3604 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3605 struct cftype *cft)
3607 return notify_on_release(cgrp);
3610 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3611 struct cftype *cft,
3612 u64 val)
3614 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3615 if (val)
3616 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3617 else
3618 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3619 return 0;
3623 * Unregister event and free resources.
3625 * Gets called from workqueue.
3627 static void cgroup_event_remove(struct work_struct *work)
3629 struct cgroup_event *event = container_of(work, struct cgroup_event,
3630 remove);
3631 struct cgroup *cgrp = event->cgrp;
3633 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3635 eventfd_ctx_put(event->eventfd);
3636 kfree(event);
3637 dput(cgrp->dentry);
3641 * Gets called on POLLHUP on eventfd when user closes it.
3643 * Called with wqh->lock held and interrupts disabled.
3645 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3646 int sync, void *key)
3648 struct cgroup_event *event = container_of(wait,
3649 struct cgroup_event, wait);
3650 struct cgroup *cgrp = event->cgrp;
3651 unsigned long flags = (unsigned long)key;
3653 if (flags & POLLHUP) {
3654 __remove_wait_queue(event->wqh, &event->wait);
3655 spin_lock(&cgrp->event_list_lock);
3656 list_del(&event->list);
3657 spin_unlock(&cgrp->event_list_lock);
3659 * We are in atomic context, but cgroup_event_remove() may
3660 * sleep, so we have to call it in workqueue.
3662 schedule_work(&event->remove);
3665 return 0;
3668 static void cgroup_event_ptable_queue_proc(struct file *file,
3669 wait_queue_head_t *wqh, poll_table *pt)
3671 struct cgroup_event *event = container_of(pt,
3672 struct cgroup_event, pt);
3674 event->wqh = wqh;
3675 add_wait_queue(wqh, &event->wait);
3679 * Parse input and register new cgroup event handler.
3681 * Input must be in format '<event_fd> <control_fd> <args>'.
3682 * Interpretation of args is defined by control file implementation.
3684 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3685 const char *buffer)
3687 struct cgroup_event *event = NULL;
3688 unsigned int efd, cfd;
3689 struct file *efile = NULL;
3690 struct file *cfile = NULL;
3691 char *endp;
3692 int ret;
3694 efd = simple_strtoul(buffer, &endp, 10);
3695 if (*endp != ' ')
3696 return -EINVAL;
3697 buffer = endp + 1;
3699 cfd = simple_strtoul(buffer, &endp, 10);
3700 if ((*endp != ' ') && (*endp != '\0'))
3701 return -EINVAL;
3702 buffer = endp + 1;
3704 event = kzalloc(sizeof(*event), GFP_KERNEL);
3705 if (!event)
3706 return -ENOMEM;
3707 event->cgrp = cgrp;
3708 INIT_LIST_HEAD(&event->list);
3709 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3710 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3711 INIT_WORK(&event->remove, cgroup_event_remove);
3713 efile = eventfd_fget(efd);
3714 if (IS_ERR(efile)) {
3715 ret = PTR_ERR(efile);
3716 goto fail;
3719 event->eventfd = eventfd_ctx_fileget(efile);
3720 if (IS_ERR(event->eventfd)) {
3721 ret = PTR_ERR(event->eventfd);
3722 goto fail;
3725 cfile = fget(cfd);
3726 if (!cfile) {
3727 ret = -EBADF;
3728 goto fail;
3731 /* the process need read permission on control file */
3732 /* AV: shouldn't we check that it's been opened for read instead? */
3733 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3734 if (ret < 0)
3735 goto fail;
3737 event->cft = __file_cft(cfile);
3738 if (IS_ERR(event->cft)) {
3739 ret = PTR_ERR(event->cft);
3740 goto fail;
3743 if (!event->cft->register_event || !event->cft->unregister_event) {
3744 ret = -EINVAL;
3745 goto fail;
3748 ret = event->cft->register_event(cgrp, event->cft,
3749 event->eventfd, buffer);
3750 if (ret)
3751 goto fail;
3753 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3754 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3755 ret = 0;
3756 goto fail;
3760 * Events should be removed after rmdir of cgroup directory, but before
3761 * destroying subsystem state objects. Let's take reference to cgroup
3762 * directory dentry to do that.
3764 dget(cgrp->dentry);
3766 spin_lock(&cgrp->event_list_lock);
3767 list_add(&event->list, &cgrp->event_list);
3768 spin_unlock(&cgrp->event_list_lock);
3770 fput(cfile);
3771 fput(efile);
3773 return 0;
3775 fail:
3776 if (cfile)
3777 fput(cfile);
3779 if (event && event->eventfd && !IS_ERR(event->eventfd))
3780 eventfd_ctx_put(event->eventfd);
3782 if (!IS_ERR_OR_NULL(efile))
3783 fput(efile);
3785 kfree(event);
3787 return ret;
3790 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3791 struct cftype *cft)
3793 return clone_children(cgrp);
3796 static int cgroup_clone_children_write(struct cgroup *cgrp,
3797 struct cftype *cft,
3798 u64 val)
3800 if (val)
3801 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3802 else
3803 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3804 return 0;
3808 * for the common functions, 'private' gives the type of file
3810 /* for hysterical raisins, we can't put this on the older files */
3811 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3812 static struct cftype files[] = {
3814 .name = "tasks",
3815 .open = cgroup_tasks_open,
3816 .write_u64 = cgroup_tasks_write,
3817 .release = cgroup_pidlist_release,
3818 .mode = S_IRUGO | S_IWUSR,
3821 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3822 .open = cgroup_procs_open,
3823 .write_u64 = cgroup_procs_write,
3824 .release = cgroup_pidlist_release,
3825 .mode = S_IRUGO | S_IWUSR,
3828 .name = "notify_on_release",
3829 .read_u64 = cgroup_read_notify_on_release,
3830 .write_u64 = cgroup_write_notify_on_release,
3833 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3834 .write_string = cgroup_write_event_control,
3835 .mode = S_IWUGO,
3838 .name = "cgroup.clone_children",
3839 .read_u64 = cgroup_clone_children_read,
3840 .write_u64 = cgroup_clone_children_write,
3843 .name = "release_agent",
3844 .flags = CFTYPE_ONLY_ON_ROOT,
3845 .read_seq_string = cgroup_release_agent_show,
3846 .write_string = cgroup_release_agent_write,
3847 .max_write_len = PATH_MAX,
3849 { } /* terminate */
3852 static int cgroup_populate_dir(struct cgroup *cgrp)
3854 int err;
3855 struct cgroup_subsys *ss;
3857 err = cgroup_addrm_files(cgrp, NULL, files, true);
3858 if (err < 0)
3859 return err;
3861 /* process cftsets of each subsystem */
3862 for_each_subsys(cgrp->root, ss) {
3863 struct cftype_set *set;
3865 list_for_each_entry(set, &ss->cftsets, node)
3866 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3869 /* This cgroup is ready now */
3870 for_each_subsys(cgrp->root, ss) {
3871 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3873 * Update id->css pointer and make this css visible from
3874 * CSS ID functions. This pointer will be dereferened
3875 * from RCU-read-side without locks.
3877 if (css->id)
3878 rcu_assign_pointer(css->id->css, css);
3881 return 0;
3884 static void css_dput_fn(struct work_struct *work)
3886 struct cgroup_subsys_state *css =
3887 container_of(work, struct cgroup_subsys_state, dput_work);
3889 dput(css->cgroup->dentry);
3892 static void init_cgroup_css(struct cgroup_subsys_state *css,
3893 struct cgroup_subsys *ss,
3894 struct cgroup *cgrp)
3896 css->cgroup = cgrp;
3897 atomic_set(&css->refcnt, 1);
3898 css->flags = 0;
3899 css->id = NULL;
3900 if (cgrp == dummytop)
3901 set_bit(CSS_ROOT, &css->flags);
3902 BUG_ON(cgrp->subsys[ss->subsys_id]);
3903 cgrp->subsys[ss->subsys_id] = css;
3906 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3907 * which is put on the last css_put(). dput() requires process
3908 * context, which css_put() may be called without. @css->dput_work
3909 * will be used to invoke dput() asynchronously from css_put().
3911 INIT_WORK(&css->dput_work, css_dput_fn);
3912 if (ss->__DEPRECATED_clear_css_refs)
3913 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3917 * cgroup_create - create a cgroup
3918 * @parent: cgroup that will be parent of the new cgroup
3919 * @dentry: dentry of the new cgroup
3920 * @mode: mode to set on new inode
3922 * Must be called with the mutex on the parent inode held
3924 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3925 umode_t mode)
3927 struct cgroup *cgrp;
3928 struct cgroupfs_root *root = parent->root;
3929 int err = 0;
3930 struct cgroup_subsys *ss;
3931 struct super_block *sb = root->sb;
3933 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3934 if (!cgrp)
3935 return -ENOMEM;
3937 /* Grab a reference on the superblock so the hierarchy doesn't
3938 * get deleted on unmount if there are child cgroups. This
3939 * can be done outside cgroup_mutex, since the sb can't
3940 * disappear while someone has an open control file on the
3941 * fs */
3942 atomic_inc(&sb->s_active);
3944 mutex_lock(&cgroup_mutex);
3946 init_cgroup_housekeeping(cgrp);
3948 cgrp->parent = parent;
3949 cgrp->root = parent->root;
3950 cgrp->top_cgroup = parent->top_cgroup;
3952 if (notify_on_release(parent))
3953 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3955 if (clone_children(parent))
3956 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3958 for_each_subsys(root, ss) {
3959 struct cgroup_subsys_state *css = ss->create(cgrp);
3961 if (IS_ERR(css)) {
3962 err = PTR_ERR(css);
3963 goto err_destroy;
3965 init_cgroup_css(css, ss, cgrp);
3966 if (ss->use_id) {
3967 err = alloc_css_id(ss, parent, cgrp);
3968 if (err)
3969 goto err_destroy;
3971 /* At error, ->destroy() callback has to free assigned ID. */
3972 if (clone_children(parent) && ss->post_clone)
3973 ss->post_clone(cgrp);
3976 list_add(&cgrp->sibling, &cgrp->parent->children);
3977 root->number_of_cgroups++;
3979 err = cgroup_create_dir(cgrp, dentry, mode);
3980 if (err < 0)
3981 goto err_remove;
3983 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
3984 for_each_subsys(root, ss)
3985 if (!ss->__DEPRECATED_clear_css_refs)
3986 dget(dentry);
3988 /* The cgroup directory was pre-locked for us */
3989 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3991 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3993 err = cgroup_populate_dir(cgrp);
3994 /* If err < 0, we have a half-filled directory - oh well ;) */
3996 mutex_unlock(&cgroup_mutex);
3997 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3999 return 0;
4001 err_remove:
4003 list_del(&cgrp->sibling);
4004 root->number_of_cgroups--;
4006 err_destroy:
4008 for_each_subsys(root, ss) {
4009 if (cgrp->subsys[ss->subsys_id])
4010 ss->destroy(cgrp);
4013 mutex_unlock(&cgroup_mutex);
4015 /* Release the reference count that we took on the superblock */
4016 deactivate_super(sb);
4018 kfree(cgrp);
4019 return err;
4022 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4024 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4026 /* the vfs holds inode->i_mutex already */
4027 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4031 * Check the reference count on each subsystem. Since we already
4032 * established that there are no tasks in the cgroup, if the css refcount
4033 * is also 1, then there should be no outstanding references, so the
4034 * subsystem is safe to destroy. We scan across all subsystems rather than
4035 * using the per-hierarchy linked list of mounted subsystems since we can
4036 * be called via check_for_release() with no synchronization other than
4037 * RCU, and the subsystem linked list isn't RCU-safe.
4039 static int cgroup_has_css_refs(struct cgroup *cgrp)
4041 int i;
4044 * We won't need to lock the subsys array, because the subsystems
4045 * we're concerned about aren't going anywhere since our cgroup root
4046 * has a reference on them.
4048 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4049 struct cgroup_subsys *ss = subsys[i];
4050 struct cgroup_subsys_state *css;
4052 /* Skip subsystems not present or not in this hierarchy */
4053 if (ss == NULL || ss->root != cgrp->root)
4054 continue;
4056 css = cgrp->subsys[ss->subsys_id];
4058 * When called from check_for_release() it's possible
4059 * that by this point the cgroup has been removed
4060 * and the css deleted. But a false-positive doesn't
4061 * matter, since it can only happen if the cgroup
4062 * has been deleted and hence no longer needs the
4063 * release agent to be called anyway.
4065 if (css && css_refcnt(css) > 1)
4066 return 1;
4068 return 0;
4072 * Atomically mark all (or else none) of the cgroup's CSS objects as
4073 * CSS_REMOVED. Return true on success, or false if the cgroup has
4074 * busy subsystems. Call with cgroup_mutex held
4076 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4077 * not, cgroup removal behaves differently.
4079 * If clear is set, css refcnt for the subsystem should be zero before
4080 * cgroup removal can be committed. This is implemented by
4081 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4082 * called multiple times until all css refcnts reach zero and is allowed to
4083 * veto removal on any invocation. This behavior is deprecated and will be
4084 * removed as soon as the existing user (memcg) is updated.
4086 * If clear is not set, each css holds an extra reference to the cgroup's
4087 * dentry and cgroup removal proceeds regardless of css refs.
4088 * ->pre_destroy() will be called at least once and is not allowed to fail.
4089 * On the last put of each css, whenever that may be, the extra dentry ref
4090 * is put so that dentry destruction happens only after all css's are
4091 * released.
4093 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4095 struct cgroup_subsys *ss;
4096 unsigned long flags;
4097 bool failed = false;
4099 local_irq_save(flags);
4102 * Block new css_tryget() by deactivating refcnt. If all refcnts
4103 * for subsystems w/ clear_css_refs set were 1 at the moment of
4104 * deactivation, we succeeded.
4106 for_each_subsys(cgrp->root, ss) {
4107 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4109 WARN_ON(atomic_read(&css->refcnt) < 0);
4110 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4112 if (ss->__DEPRECATED_clear_css_refs)
4113 failed |= css_refcnt(css) != 1;
4117 * If succeeded, set REMOVED and put all the base refs; otherwise,
4118 * restore refcnts to positive values. Either way, all in-progress
4119 * css_tryget() will be released.
4121 for_each_subsys(cgrp->root, ss) {
4122 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4124 if (!failed) {
4125 set_bit(CSS_REMOVED, &css->flags);
4126 css_put(css);
4127 } else {
4128 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4132 local_irq_restore(flags);
4133 return !failed;
4136 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4138 struct cgroup *cgrp = dentry->d_fsdata;
4139 struct dentry *d;
4140 struct cgroup *parent;
4141 DEFINE_WAIT(wait);
4142 struct cgroup_event *event, *tmp;
4143 int ret;
4145 /* the vfs holds both inode->i_mutex already */
4146 again:
4147 mutex_lock(&cgroup_mutex);
4148 if (atomic_read(&cgrp->count) != 0) {
4149 mutex_unlock(&cgroup_mutex);
4150 return -EBUSY;
4152 if (!list_empty(&cgrp->children)) {
4153 mutex_unlock(&cgroup_mutex);
4154 return -EBUSY;
4156 mutex_unlock(&cgroup_mutex);
4159 * In general, subsystem has no css->refcnt after pre_destroy(). But
4160 * in racy cases, subsystem may have to get css->refcnt after
4161 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4162 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4163 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4164 * and subsystem's reference count handling. Please see css_get/put
4165 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4167 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4170 * Call pre_destroy handlers of subsys. Notify subsystems
4171 * that rmdir() request comes.
4173 ret = cgroup_call_pre_destroy(cgrp);
4174 if (ret) {
4175 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4176 return ret;
4179 mutex_lock(&cgroup_mutex);
4180 parent = cgrp->parent;
4181 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4182 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4183 mutex_unlock(&cgroup_mutex);
4184 return -EBUSY;
4186 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4187 if (!cgroup_clear_css_refs(cgrp)) {
4188 mutex_unlock(&cgroup_mutex);
4190 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4191 * prepare_to_wait(), we need to check this flag.
4193 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4194 schedule();
4195 finish_wait(&cgroup_rmdir_waitq, &wait);
4196 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4197 if (signal_pending(current))
4198 return -EINTR;
4199 goto again;
4201 /* NO css_tryget() can success after here. */
4202 finish_wait(&cgroup_rmdir_waitq, &wait);
4203 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4205 raw_spin_lock(&release_list_lock);
4206 set_bit(CGRP_REMOVED, &cgrp->flags);
4207 if (!list_empty(&cgrp->release_list))
4208 list_del_init(&cgrp->release_list);
4209 raw_spin_unlock(&release_list_lock);
4211 /* delete this cgroup from parent->children */
4212 list_del_init(&cgrp->sibling);
4214 list_del_init(&cgrp->allcg_node);
4216 d = dget(cgrp->dentry);
4218 cgroup_d_remove_dir(d);
4219 dput(d);
4221 set_bit(CGRP_RELEASABLE, &parent->flags);
4222 check_for_release(parent);
4225 * Unregister events and notify userspace.
4226 * Notify userspace about cgroup removing only after rmdir of cgroup
4227 * directory to avoid race between userspace and kernelspace
4229 spin_lock(&cgrp->event_list_lock);
4230 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4231 list_del(&event->list);
4232 remove_wait_queue(event->wqh, &event->wait);
4233 eventfd_signal(event->eventfd, 1);
4234 schedule_work(&event->remove);
4236 spin_unlock(&cgrp->event_list_lock);
4238 mutex_unlock(&cgroup_mutex);
4239 return 0;
4242 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4244 INIT_LIST_HEAD(&ss->cftsets);
4247 * base_cftset is embedded in subsys itself, no need to worry about
4248 * deregistration.
4250 if (ss->base_cftypes) {
4251 ss->base_cftset.cfts = ss->base_cftypes;
4252 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4256 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4258 struct cgroup_subsys_state *css;
4260 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4262 /* init base cftset */
4263 cgroup_init_cftsets(ss);
4265 /* Create the top cgroup state for this subsystem */
4266 list_add(&ss->sibling, &rootnode.subsys_list);
4267 ss->root = &rootnode;
4268 css = ss->create(dummytop);
4269 /* We don't handle early failures gracefully */
4270 BUG_ON(IS_ERR(css));
4271 init_cgroup_css(css, ss, dummytop);
4273 /* Update the init_css_set to contain a subsys
4274 * pointer to this state - since the subsystem is
4275 * newly registered, all tasks and hence the
4276 * init_css_set is in the subsystem's top cgroup. */
4277 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4279 need_forkexit_callback |= ss->fork || ss->exit;
4281 /* At system boot, before all subsystems have been
4282 * registered, no tasks have been forked, so we don't
4283 * need to invoke fork callbacks here. */
4284 BUG_ON(!list_empty(&init_task.tasks));
4286 ss->active = 1;
4288 /* this function shouldn't be used with modular subsystems, since they
4289 * need to register a subsys_id, among other things */
4290 BUG_ON(ss->module);
4294 * cgroup_load_subsys: load and register a modular subsystem at runtime
4295 * @ss: the subsystem to load
4297 * This function should be called in a modular subsystem's initcall. If the
4298 * subsystem is built as a module, it will be assigned a new subsys_id and set
4299 * up for use. If the subsystem is built-in anyway, work is delegated to the
4300 * simpler cgroup_init_subsys.
4302 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4304 int i;
4305 struct cgroup_subsys_state *css;
4307 /* check name and function validity */
4308 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4309 ss->create == NULL || ss->destroy == NULL)
4310 return -EINVAL;
4313 * we don't support callbacks in modular subsystems. this check is
4314 * before the ss->module check for consistency; a subsystem that could
4315 * be a module should still have no callbacks even if the user isn't
4316 * compiling it as one.
4318 if (ss->fork || ss->exit)
4319 return -EINVAL;
4322 * an optionally modular subsystem is built-in: we want to do nothing,
4323 * since cgroup_init_subsys will have already taken care of it.
4325 if (ss->module == NULL) {
4326 /* a few sanity checks */
4327 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4328 BUG_ON(subsys[ss->subsys_id] != ss);
4329 return 0;
4332 /* init base cftset */
4333 cgroup_init_cftsets(ss);
4336 * need to register a subsys id before anything else - for example,
4337 * init_cgroup_css needs it.
4339 mutex_lock(&cgroup_mutex);
4340 /* find the first empty slot in the array */
4341 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4342 if (subsys[i] == NULL)
4343 break;
4345 if (i == CGROUP_SUBSYS_COUNT) {
4346 /* maximum number of subsystems already registered! */
4347 mutex_unlock(&cgroup_mutex);
4348 return -EBUSY;
4350 /* assign ourselves the subsys_id */
4351 ss->subsys_id = i;
4352 subsys[i] = ss;
4355 * no ss->create seems to need anything important in the ss struct, so
4356 * this can happen first (i.e. before the rootnode attachment).
4358 css = ss->create(dummytop);
4359 if (IS_ERR(css)) {
4360 /* failure case - need to deassign the subsys[] slot. */
4361 subsys[i] = NULL;
4362 mutex_unlock(&cgroup_mutex);
4363 return PTR_ERR(css);
4366 list_add(&ss->sibling, &rootnode.subsys_list);
4367 ss->root = &rootnode;
4369 /* our new subsystem will be attached to the dummy hierarchy. */
4370 init_cgroup_css(css, ss, dummytop);
4371 /* init_idr must be after init_cgroup_css because it sets css->id. */
4372 if (ss->use_id) {
4373 int ret = cgroup_init_idr(ss, css);
4374 if (ret) {
4375 dummytop->subsys[ss->subsys_id] = NULL;
4376 ss->destroy(dummytop);
4377 subsys[i] = NULL;
4378 mutex_unlock(&cgroup_mutex);
4379 return ret;
4384 * Now we need to entangle the css into the existing css_sets. unlike
4385 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4386 * will need a new pointer to it; done by iterating the css_set_table.
4387 * furthermore, modifying the existing css_sets will corrupt the hash
4388 * table state, so each changed css_set will need its hash recomputed.
4389 * this is all done under the css_set_lock.
4391 write_lock(&css_set_lock);
4392 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4393 struct css_set *cg;
4394 struct hlist_node *node, *tmp;
4395 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4397 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4398 /* skip entries that we already rehashed */
4399 if (cg->subsys[ss->subsys_id])
4400 continue;
4401 /* remove existing entry */
4402 hlist_del(&cg->hlist);
4403 /* set new value */
4404 cg->subsys[ss->subsys_id] = css;
4405 /* recompute hash and restore entry */
4406 new_bucket = css_set_hash(cg->subsys);
4407 hlist_add_head(&cg->hlist, new_bucket);
4410 write_unlock(&css_set_lock);
4412 ss->active = 1;
4414 /* success! */
4415 mutex_unlock(&cgroup_mutex);
4416 return 0;
4418 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4421 * cgroup_unload_subsys: unload a modular subsystem
4422 * @ss: the subsystem to unload
4424 * This function should be called in a modular subsystem's exitcall. When this
4425 * function is invoked, the refcount on the subsystem's module will be 0, so
4426 * the subsystem will not be attached to any hierarchy.
4428 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4430 struct cg_cgroup_link *link;
4431 struct hlist_head *hhead;
4433 BUG_ON(ss->module == NULL);
4436 * we shouldn't be called if the subsystem is in use, and the use of
4437 * try_module_get in parse_cgroupfs_options should ensure that it
4438 * doesn't start being used while we're killing it off.
4440 BUG_ON(ss->root != &rootnode);
4442 mutex_lock(&cgroup_mutex);
4443 /* deassign the subsys_id */
4444 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4445 subsys[ss->subsys_id] = NULL;
4447 /* remove subsystem from rootnode's list of subsystems */
4448 list_del_init(&ss->sibling);
4451 * disentangle the css from all css_sets attached to the dummytop. as
4452 * in loading, we need to pay our respects to the hashtable gods.
4454 write_lock(&css_set_lock);
4455 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4456 struct css_set *cg = link->cg;
4458 hlist_del(&cg->hlist);
4459 BUG_ON(!cg->subsys[ss->subsys_id]);
4460 cg->subsys[ss->subsys_id] = NULL;
4461 hhead = css_set_hash(cg->subsys);
4462 hlist_add_head(&cg->hlist, hhead);
4464 write_unlock(&css_set_lock);
4467 * remove subsystem's css from the dummytop and free it - need to free
4468 * before marking as null because ss->destroy needs the cgrp->subsys
4469 * pointer to find their state. note that this also takes care of
4470 * freeing the css_id.
4472 ss->destroy(dummytop);
4473 dummytop->subsys[ss->subsys_id] = NULL;
4475 mutex_unlock(&cgroup_mutex);
4477 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4480 * cgroup_init_early - cgroup initialization at system boot
4482 * Initialize cgroups at system boot, and initialize any
4483 * subsystems that request early init.
4485 int __init cgroup_init_early(void)
4487 int i;
4488 atomic_set(&init_css_set.refcount, 1);
4489 INIT_LIST_HEAD(&init_css_set.cg_links);
4490 INIT_LIST_HEAD(&init_css_set.tasks);
4491 INIT_HLIST_NODE(&init_css_set.hlist);
4492 css_set_count = 1;
4493 init_cgroup_root(&rootnode);
4494 root_count = 1;
4495 init_task.cgroups = &init_css_set;
4497 init_css_set_link.cg = &init_css_set;
4498 init_css_set_link.cgrp = dummytop;
4499 list_add(&init_css_set_link.cgrp_link_list,
4500 &rootnode.top_cgroup.css_sets);
4501 list_add(&init_css_set_link.cg_link_list,
4502 &init_css_set.cg_links);
4504 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4505 INIT_HLIST_HEAD(&css_set_table[i]);
4507 /* at bootup time, we don't worry about modular subsystems */
4508 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4509 struct cgroup_subsys *ss = subsys[i];
4511 BUG_ON(!ss->name);
4512 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4513 BUG_ON(!ss->create);
4514 BUG_ON(!ss->destroy);
4515 if (ss->subsys_id != i) {
4516 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4517 ss->name, ss->subsys_id);
4518 BUG();
4521 if (ss->early_init)
4522 cgroup_init_subsys(ss);
4524 return 0;
4528 * cgroup_init - cgroup initialization
4530 * Register cgroup filesystem and /proc file, and initialize
4531 * any subsystems that didn't request early init.
4533 int __init cgroup_init(void)
4535 int err;
4536 int i;
4537 struct hlist_head *hhead;
4539 err = bdi_init(&cgroup_backing_dev_info);
4540 if (err)
4541 return err;
4543 /* at bootup time, we don't worry about modular subsystems */
4544 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4545 struct cgroup_subsys *ss = subsys[i];
4546 if (!ss->early_init)
4547 cgroup_init_subsys(ss);
4548 if (ss->use_id)
4549 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4552 /* Add init_css_set to the hash table */
4553 hhead = css_set_hash(init_css_set.subsys);
4554 hlist_add_head(&init_css_set.hlist, hhead);
4555 BUG_ON(!init_root_id(&rootnode));
4557 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4558 if (!cgroup_kobj) {
4559 err = -ENOMEM;
4560 goto out;
4563 err = register_filesystem(&cgroup_fs_type);
4564 if (err < 0) {
4565 kobject_put(cgroup_kobj);
4566 goto out;
4569 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4571 out:
4572 if (err)
4573 bdi_destroy(&cgroup_backing_dev_info);
4575 return err;
4579 * proc_cgroup_show()
4580 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4581 * - Used for /proc/<pid>/cgroup.
4582 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4583 * doesn't really matter if tsk->cgroup changes after we read it,
4584 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4585 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4586 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4587 * cgroup to top_cgroup.
4590 /* TODO: Use a proper seq_file iterator */
4591 static int proc_cgroup_show(struct seq_file *m, void *v)
4593 struct pid *pid;
4594 struct task_struct *tsk;
4595 char *buf;
4596 int retval;
4597 struct cgroupfs_root *root;
4599 retval = -ENOMEM;
4600 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4601 if (!buf)
4602 goto out;
4604 retval = -ESRCH;
4605 pid = m->private;
4606 tsk = get_pid_task(pid, PIDTYPE_PID);
4607 if (!tsk)
4608 goto out_free;
4610 retval = 0;
4612 mutex_lock(&cgroup_mutex);
4614 for_each_active_root(root) {
4615 struct cgroup_subsys *ss;
4616 struct cgroup *cgrp;
4617 int count = 0;
4619 seq_printf(m, "%d:", root->hierarchy_id);
4620 for_each_subsys(root, ss)
4621 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4622 if (strlen(root->name))
4623 seq_printf(m, "%sname=%s", count ? "," : "",
4624 root->name);
4625 seq_putc(m, ':');
4626 cgrp = task_cgroup_from_root(tsk, root);
4627 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4628 if (retval < 0)
4629 goto out_unlock;
4630 seq_puts(m, buf);
4631 seq_putc(m, '\n');
4634 out_unlock:
4635 mutex_unlock(&cgroup_mutex);
4636 put_task_struct(tsk);
4637 out_free:
4638 kfree(buf);
4639 out:
4640 return retval;
4643 static int cgroup_open(struct inode *inode, struct file *file)
4645 struct pid *pid = PROC_I(inode)->pid;
4646 return single_open(file, proc_cgroup_show, pid);
4649 const struct file_operations proc_cgroup_operations = {
4650 .open = cgroup_open,
4651 .read = seq_read,
4652 .llseek = seq_lseek,
4653 .release = single_release,
4656 /* Display information about each subsystem and each hierarchy */
4657 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4659 int i;
4661 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4663 * ideally we don't want subsystems moving around while we do this.
4664 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4665 * subsys/hierarchy state.
4667 mutex_lock(&cgroup_mutex);
4668 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4669 struct cgroup_subsys *ss = subsys[i];
4670 if (ss == NULL)
4671 continue;
4672 seq_printf(m, "%s\t%d\t%d\t%d\n",
4673 ss->name, ss->root->hierarchy_id,
4674 ss->root->number_of_cgroups, !ss->disabled);
4676 mutex_unlock(&cgroup_mutex);
4677 return 0;
4680 static int cgroupstats_open(struct inode *inode, struct file *file)
4682 return single_open(file, proc_cgroupstats_show, NULL);
4685 static const struct file_operations proc_cgroupstats_operations = {
4686 .open = cgroupstats_open,
4687 .read = seq_read,
4688 .llseek = seq_lseek,
4689 .release = single_release,
4693 * cgroup_fork - attach newly forked task to its parents cgroup.
4694 * @child: pointer to task_struct of forking parent process.
4696 * Description: A task inherits its parent's cgroup at fork().
4698 * A pointer to the shared css_set was automatically copied in
4699 * fork.c by dup_task_struct(). However, we ignore that copy, since
4700 * it was not made under the protection of RCU, cgroup_mutex or
4701 * threadgroup_change_begin(), so it might no longer be a valid
4702 * cgroup pointer. cgroup_attach_task() might have already changed
4703 * current->cgroups, allowing the previously referenced cgroup
4704 * group to be removed and freed.
4706 * Outside the pointer validity we also need to process the css_set
4707 * inheritance between threadgoup_change_begin() and
4708 * threadgoup_change_end(), this way there is no leak in any process
4709 * wide migration performed by cgroup_attach_proc() that could otherwise
4710 * miss a thread because it is too early or too late in the fork stage.
4712 * At the point that cgroup_fork() is called, 'current' is the parent
4713 * task, and the passed argument 'child' points to the child task.
4715 void cgroup_fork(struct task_struct *child)
4718 * We don't need to task_lock() current because current->cgroups
4719 * can't be changed concurrently here. The parent obviously hasn't
4720 * exited and called cgroup_exit(), and we are synchronized against
4721 * cgroup migration through threadgroup_change_begin().
4723 child->cgroups = current->cgroups;
4724 get_css_set(child->cgroups);
4725 INIT_LIST_HEAD(&child->cg_list);
4729 * cgroup_fork_callbacks - run fork callbacks
4730 * @child: the new task
4732 * Called on a new task very soon before adding it to the
4733 * tasklist. No need to take any locks since no-one can
4734 * be operating on this task.
4736 void cgroup_fork_callbacks(struct task_struct *child)
4738 if (need_forkexit_callback) {
4739 int i;
4741 * forkexit callbacks are only supported for builtin
4742 * subsystems, and the builtin section of the subsys array is
4743 * immutable, so we don't need to lock the subsys array here.
4745 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4746 struct cgroup_subsys *ss = subsys[i];
4747 if (ss->fork)
4748 ss->fork(child);
4754 * cgroup_post_fork - called on a new task after adding it to the task list
4755 * @child: the task in question
4757 * Adds the task to the list running through its css_set if necessary.
4758 * Has to be after the task is visible on the task list in case we race
4759 * with the first call to cgroup_iter_start() - to guarantee that the
4760 * new task ends up on its list.
4762 void cgroup_post_fork(struct task_struct *child)
4765 * use_task_css_set_links is set to 1 before we walk the tasklist
4766 * under the tasklist_lock and we read it here after we added the child
4767 * to the tasklist under the tasklist_lock as well. If the child wasn't
4768 * yet in the tasklist when we walked through it from
4769 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4770 * should be visible now due to the paired locking and barriers implied
4771 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4772 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4773 * lock on fork.
4775 if (use_task_css_set_links) {
4776 write_lock(&css_set_lock);
4777 if (list_empty(&child->cg_list)) {
4779 * It's safe to use child->cgroups without task_lock()
4780 * here because we are protected through
4781 * threadgroup_change_begin() against concurrent
4782 * css_set change in cgroup_task_migrate(). Also
4783 * the task can't exit at that point until
4784 * wake_up_new_task() is called, so we are protected
4785 * against cgroup_exit() setting child->cgroup to
4786 * init_css_set.
4788 list_add(&child->cg_list, &child->cgroups->tasks);
4790 write_unlock(&css_set_lock);
4794 * cgroup_exit - detach cgroup from exiting task
4795 * @tsk: pointer to task_struct of exiting process
4796 * @run_callback: run exit callbacks?
4798 * Description: Detach cgroup from @tsk and release it.
4800 * Note that cgroups marked notify_on_release force every task in
4801 * them to take the global cgroup_mutex mutex when exiting.
4802 * This could impact scaling on very large systems. Be reluctant to
4803 * use notify_on_release cgroups where very high task exit scaling
4804 * is required on large systems.
4806 * the_top_cgroup_hack:
4808 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4810 * We call cgroup_exit() while the task is still competent to
4811 * handle notify_on_release(), then leave the task attached to the
4812 * root cgroup in each hierarchy for the remainder of its exit.
4814 * To do this properly, we would increment the reference count on
4815 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4816 * code we would add a second cgroup function call, to drop that
4817 * reference. This would just create an unnecessary hot spot on
4818 * the top_cgroup reference count, to no avail.
4820 * Normally, holding a reference to a cgroup without bumping its
4821 * count is unsafe. The cgroup could go away, or someone could
4822 * attach us to a different cgroup, decrementing the count on
4823 * the first cgroup that we never incremented. But in this case,
4824 * top_cgroup isn't going away, and either task has PF_EXITING set,
4825 * which wards off any cgroup_attach_task() attempts, or task is a failed
4826 * fork, never visible to cgroup_attach_task.
4828 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4830 struct css_set *cg;
4831 int i;
4834 * Unlink from the css_set task list if necessary.
4835 * Optimistically check cg_list before taking
4836 * css_set_lock
4838 if (!list_empty(&tsk->cg_list)) {
4839 write_lock(&css_set_lock);
4840 if (!list_empty(&tsk->cg_list))
4841 list_del_init(&tsk->cg_list);
4842 write_unlock(&css_set_lock);
4845 /* Reassign the task to the init_css_set. */
4846 task_lock(tsk);
4847 cg = tsk->cgroups;
4848 tsk->cgroups = &init_css_set;
4850 if (run_callbacks && need_forkexit_callback) {
4852 * modular subsystems can't use callbacks, so no need to lock
4853 * the subsys array
4855 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4856 struct cgroup_subsys *ss = subsys[i];
4857 if (ss->exit) {
4858 struct cgroup *old_cgrp =
4859 rcu_dereference_raw(cg->subsys[i])->cgroup;
4860 struct cgroup *cgrp = task_cgroup(tsk, i);
4861 ss->exit(cgrp, old_cgrp, tsk);
4865 task_unlock(tsk);
4867 if (cg)
4868 put_css_set_taskexit(cg);
4872 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4873 * @cgrp: the cgroup in question
4874 * @task: the task in question
4876 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4877 * hierarchy.
4879 * If we are sending in dummytop, then presumably we are creating
4880 * the top cgroup in the subsystem.
4882 * Called only by the ns (nsproxy) cgroup.
4884 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4886 int ret;
4887 struct cgroup *target;
4889 if (cgrp == dummytop)
4890 return 1;
4892 target = task_cgroup_from_root(task, cgrp->root);
4893 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4894 cgrp = cgrp->parent;
4895 ret = (cgrp == target);
4896 return ret;
4899 static void check_for_release(struct cgroup *cgrp)
4901 /* All of these checks rely on RCU to keep the cgroup
4902 * structure alive */
4903 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4904 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4905 /* Control Group is currently removeable. If it's not
4906 * already queued for a userspace notification, queue
4907 * it now */
4908 int need_schedule_work = 0;
4909 raw_spin_lock(&release_list_lock);
4910 if (!cgroup_is_removed(cgrp) &&
4911 list_empty(&cgrp->release_list)) {
4912 list_add(&cgrp->release_list, &release_list);
4913 need_schedule_work = 1;
4915 raw_spin_unlock(&release_list_lock);
4916 if (need_schedule_work)
4917 schedule_work(&release_agent_work);
4921 /* Caller must verify that the css is not for root cgroup */
4922 bool __css_tryget(struct cgroup_subsys_state *css)
4924 do {
4925 int v = css_refcnt(css);
4927 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4928 return true;
4929 cpu_relax();
4930 } while (!test_bit(CSS_REMOVED, &css->flags));
4932 return false;
4934 EXPORT_SYMBOL_GPL(__css_tryget);
4936 /* Caller must verify that the css is not for root cgroup */
4937 void __css_put(struct cgroup_subsys_state *css)
4939 struct cgroup *cgrp = css->cgroup;
4941 rcu_read_lock();
4942 switch (atomic_dec_return(&css->refcnt)) {
4943 case 1:
4944 if (notify_on_release(cgrp)) {
4945 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4946 check_for_release(cgrp);
4948 cgroup_wakeup_rmdir_waiter(cgrp);
4949 break;
4950 case 0:
4951 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4952 schedule_work(&css->dput_work);
4953 break;
4955 rcu_read_unlock();
4957 EXPORT_SYMBOL_GPL(__css_put);
4960 * Notify userspace when a cgroup is released, by running the
4961 * configured release agent with the name of the cgroup (path
4962 * relative to the root of cgroup file system) as the argument.
4964 * Most likely, this user command will try to rmdir this cgroup.
4966 * This races with the possibility that some other task will be
4967 * attached to this cgroup before it is removed, or that some other
4968 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4969 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4970 * unused, and this cgroup will be reprieved from its death sentence,
4971 * to continue to serve a useful existence. Next time it's released,
4972 * we will get notified again, if it still has 'notify_on_release' set.
4974 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4975 * means only wait until the task is successfully execve()'d. The
4976 * separate release agent task is forked by call_usermodehelper(),
4977 * then control in this thread returns here, without waiting for the
4978 * release agent task. We don't bother to wait because the caller of
4979 * this routine has no use for the exit status of the release agent
4980 * task, so no sense holding our caller up for that.
4982 static void cgroup_release_agent(struct work_struct *work)
4984 BUG_ON(work != &release_agent_work);
4985 mutex_lock(&cgroup_mutex);
4986 raw_spin_lock(&release_list_lock);
4987 while (!list_empty(&release_list)) {
4988 char *argv[3], *envp[3];
4989 int i;
4990 char *pathbuf = NULL, *agentbuf = NULL;
4991 struct cgroup *cgrp = list_entry(release_list.next,
4992 struct cgroup,
4993 release_list);
4994 list_del_init(&cgrp->release_list);
4995 raw_spin_unlock(&release_list_lock);
4996 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4997 if (!pathbuf)
4998 goto continue_free;
4999 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5000 goto continue_free;
5001 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5002 if (!agentbuf)
5003 goto continue_free;
5005 i = 0;
5006 argv[i++] = agentbuf;
5007 argv[i++] = pathbuf;
5008 argv[i] = NULL;
5010 i = 0;
5011 /* minimal command environment */
5012 envp[i++] = "HOME=/";
5013 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5014 envp[i] = NULL;
5016 /* Drop the lock while we invoke the usermode helper,
5017 * since the exec could involve hitting disk and hence
5018 * be a slow process */
5019 mutex_unlock(&cgroup_mutex);
5020 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5021 mutex_lock(&cgroup_mutex);
5022 continue_free:
5023 kfree(pathbuf);
5024 kfree(agentbuf);
5025 raw_spin_lock(&release_list_lock);
5027 raw_spin_unlock(&release_list_lock);
5028 mutex_unlock(&cgroup_mutex);
5031 static int __init cgroup_disable(char *str)
5033 int i;
5034 char *token;
5036 while ((token = strsep(&str, ",")) != NULL) {
5037 if (!*token)
5038 continue;
5040 * cgroup_disable, being at boot time, can't know about module
5041 * subsystems, so we don't worry about them.
5043 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5044 struct cgroup_subsys *ss = subsys[i];
5046 if (!strcmp(token, ss->name)) {
5047 ss->disabled = 1;
5048 printk(KERN_INFO "Disabling %s control group"
5049 " subsystem\n", ss->name);
5050 break;
5054 return 1;
5056 __setup("cgroup_disable=", cgroup_disable);
5059 * Functons for CSS ID.
5063 *To get ID other than 0, this should be called when !cgroup_is_removed().
5065 unsigned short css_id(struct cgroup_subsys_state *css)
5067 struct css_id *cssid;
5070 * This css_id() can return correct value when somone has refcnt
5071 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5072 * it's unchanged until freed.
5074 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5076 if (cssid)
5077 return cssid->id;
5078 return 0;
5080 EXPORT_SYMBOL_GPL(css_id);
5082 unsigned short css_depth(struct cgroup_subsys_state *css)
5084 struct css_id *cssid;
5086 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5088 if (cssid)
5089 return cssid->depth;
5090 return 0;
5092 EXPORT_SYMBOL_GPL(css_depth);
5095 * css_is_ancestor - test "root" css is an ancestor of "child"
5096 * @child: the css to be tested.
5097 * @root: the css supporsed to be an ancestor of the child.
5099 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5100 * this function reads css->id, the caller must hold rcu_read_lock().
5101 * But, considering usual usage, the csses should be valid objects after test.
5102 * Assuming that the caller will do some action to the child if this returns
5103 * returns true, the caller must take "child";s reference count.
5104 * If "child" is valid object and this returns true, "root" is valid, too.
5107 bool css_is_ancestor(struct cgroup_subsys_state *child,
5108 const struct cgroup_subsys_state *root)
5110 struct css_id *child_id;
5111 struct css_id *root_id;
5113 child_id = rcu_dereference(child->id);
5114 if (!child_id)
5115 return false;
5116 root_id = rcu_dereference(root->id);
5117 if (!root_id)
5118 return false;
5119 if (child_id->depth < root_id->depth)
5120 return false;
5121 if (child_id->stack[root_id->depth] != root_id->id)
5122 return false;
5123 return true;
5126 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5128 struct css_id *id = css->id;
5129 /* When this is called before css_id initialization, id can be NULL */
5130 if (!id)
5131 return;
5133 BUG_ON(!ss->use_id);
5135 rcu_assign_pointer(id->css, NULL);
5136 rcu_assign_pointer(css->id, NULL);
5137 spin_lock(&ss->id_lock);
5138 idr_remove(&ss->idr, id->id);
5139 spin_unlock(&ss->id_lock);
5140 kfree_rcu(id, rcu_head);
5142 EXPORT_SYMBOL_GPL(free_css_id);
5145 * This is called by init or create(). Then, calls to this function are
5146 * always serialized (By cgroup_mutex() at create()).
5149 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5151 struct css_id *newid;
5152 int myid, error, size;
5154 BUG_ON(!ss->use_id);
5156 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5157 newid = kzalloc(size, GFP_KERNEL);
5158 if (!newid)
5159 return ERR_PTR(-ENOMEM);
5160 /* get id */
5161 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5162 error = -ENOMEM;
5163 goto err_out;
5165 spin_lock(&ss->id_lock);
5166 /* Don't use 0. allocates an ID of 1-65535 */
5167 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5168 spin_unlock(&ss->id_lock);
5170 /* Returns error when there are no free spaces for new ID.*/
5171 if (error) {
5172 error = -ENOSPC;
5173 goto err_out;
5175 if (myid > CSS_ID_MAX)
5176 goto remove_idr;
5178 newid->id = myid;
5179 newid->depth = depth;
5180 return newid;
5181 remove_idr:
5182 error = -ENOSPC;
5183 spin_lock(&ss->id_lock);
5184 idr_remove(&ss->idr, myid);
5185 spin_unlock(&ss->id_lock);
5186 err_out:
5187 kfree(newid);
5188 return ERR_PTR(error);
5192 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5193 struct cgroup_subsys_state *rootcss)
5195 struct css_id *newid;
5197 spin_lock_init(&ss->id_lock);
5198 idr_init(&ss->idr);
5200 newid = get_new_cssid(ss, 0);
5201 if (IS_ERR(newid))
5202 return PTR_ERR(newid);
5204 newid->stack[0] = newid->id;
5205 newid->css = rootcss;
5206 rootcss->id = newid;
5207 return 0;
5210 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5211 struct cgroup *child)
5213 int subsys_id, i, depth = 0;
5214 struct cgroup_subsys_state *parent_css, *child_css;
5215 struct css_id *child_id, *parent_id;
5217 subsys_id = ss->subsys_id;
5218 parent_css = parent->subsys[subsys_id];
5219 child_css = child->subsys[subsys_id];
5220 parent_id = parent_css->id;
5221 depth = parent_id->depth + 1;
5223 child_id = get_new_cssid(ss, depth);
5224 if (IS_ERR(child_id))
5225 return PTR_ERR(child_id);
5227 for (i = 0; i < depth; i++)
5228 child_id->stack[i] = parent_id->stack[i];
5229 child_id->stack[depth] = child_id->id;
5231 * child_id->css pointer will be set after this cgroup is available
5232 * see cgroup_populate_dir()
5234 rcu_assign_pointer(child_css->id, child_id);
5236 return 0;
5240 * css_lookup - lookup css by id
5241 * @ss: cgroup subsys to be looked into.
5242 * @id: the id
5244 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5245 * NULL if not. Should be called under rcu_read_lock()
5247 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5249 struct css_id *cssid = NULL;
5251 BUG_ON(!ss->use_id);
5252 cssid = idr_find(&ss->idr, id);
5254 if (unlikely(!cssid))
5255 return NULL;
5257 return rcu_dereference(cssid->css);
5259 EXPORT_SYMBOL_GPL(css_lookup);
5262 * css_get_next - lookup next cgroup under specified hierarchy.
5263 * @ss: pointer to subsystem
5264 * @id: current position of iteration.
5265 * @root: pointer to css. search tree under this.
5266 * @foundid: position of found object.
5268 * Search next css under the specified hierarchy of rootid. Calling under
5269 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5271 struct cgroup_subsys_state *
5272 css_get_next(struct cgroup_subsys *ss, int id,
5273 struct cgroup_subsys_state *root, int *foundid)
5275 struct cgroup_subsys_state *ret = NULL;
5276 struct css_id *tmp;
5277 int tmpid;
5278 int rootid = css_id(root);
5279 int depth = css_depth(root);
5281 if (!rootid)
5282 return NULL;
5284 BUG_ON(!ss->use_id);
5285 WARN_ON_ONCE(!rcu_read_lock_held());
5287 /* fill start point for scan */
5288 tmpid = id;
5289 while (1) {
5291 * scan next entry from bitmap(tree), tmpid is updated after
5292 * idr_get_next().
5294 tmp = idr_get_next(&ss->idr, &tmpid);
5295 if (!tmp)
5296 break;
5297 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5298 ret = rcu_dereference(tmp->css);
5299 if (ret) {
5300 *foundid = tmpid;
5301 break;
5304 /* continue to scan from next id */
5305 tmpid = tmpid + 1;
5307 return ret;
5311 * get corresponding css from file open on cgroupfs directory
5313 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5315 struct cgroup *cgrp;
5316 struct inode *inode;
5317 struct cgroup_subsys_state *css;
5319 inode = f->f_dentry->d_inode;
5320 /* check in cgroup filesystem dir */
5321 if (inode->i_op != &cgroup_dir_inode_operations)
5322 return ERR_PTR(-EBADF);
5324 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5325 return ERR_PTR(-EINVAL);
5327 /* get cgroup */
5328 cgrp = __d_cgrp(f->f_dentry);
5329 css = cgrp->subsys[id];
5330 return css ? css : ERR_PTR(-ENOENT);
5333 #ifdef CONFIG_CGROUP_DEBUG
5334 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5336 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5338 if (!css)
5339 return ERR_PTR(-ENOMEM);
5341 return css;
5344 static void debug_destroy(struct cgroup *cont)
5346 kfree(cont->subsys[debug_subsys_id]);
5349 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5351 return atomic_read(&cont->count);
5354 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5356 return cgroup_task_count(cont);
5359 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5361 return (u64)(unsigned long)current->cgroups;
5364 static u64 current_css_set_refcount_read(struct cgroup *cont,
5365 struct cftype *cft)
5367 u64 count;
5369 rcu_read_lock();
5370 count = atomic_read(&current->cgroups->refcount);
5371 rcu_read_unlock();
5372 return count;
5375 static int current_css_set_cg_links_read(struct cgroup *cont,
5376 struct cftype *cft,
5377 struct seq_file *seq)
5379 struct cg_cgroup_link *link;
5380 struct css_set *cg;
5382 read_lock(&css_set_lock);
5383 rcu_read_lock();
5384 cg = rcu_dereference(current->cgroups);
5385 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5386 struct cgroup *c = link->cgrp;
5387 const char *name;
5389 if (c->dentry)
5390 name = c->dentry->d_name.name;
5391 else
5392 name = "?";
5393 seq_printf(seq, "Root %d group %s\n",
5394 c->root->hierarchy_id, name);
5396 rcu_read_unlock();
5397 read_unlock(&css_set_lock);
5398 return 0;
5401 #define MAX_TASKS_SHOWN_PER_CSS 25
5402 static int cgroup_css_links_read(struct cgroup *cont,
5403 struct cftype *cft,
5404 struct seq_file *seq)
5406 struct cg_cgroup_link *link;
5408 read_lock(&css_set_lock);
5409 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5410 struct css_set *cg = link->cg;
5411 struct task_struct *task;
5412 int count = 0;
5413 seq_printf(seq, "css_set %p\n", cg);
5414 list_for_each_entry(task, &cg->tasks, cg_list) {
5415 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5416 seq_puts(seq, " ...\n");
5417 break;
5418 } else {
5419 seq_printf(seq, " task %d\n",
5420 task_pid_vnr(task));
5424 read_unlock(&css_set_lock);
5425 return 0;
5428 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5430 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5433 static struct cftype debug_files[] = {
5435 .name = "cgroup_refcount",
5436 .read_u64 = cgroup_refcount_read,
5439 .name = "taskcount",
5440 .read_u64 = debug_taskcount_read,
5444 .name = "current_css_set",
5445 .read_u64 = current_css_set_read,
5449 .name = "current_css_set_refcount",
5450 .read_u64 = current_css_set_refcount_read,
5454 .name = "current_css_set_cg_links",
5455 .read_seq_string = current_css_set_cg_links_read,
5459 .name = "cgroup_css_links",
5460 .read_seq_string = cgroup_css_links_read,
5464 .name = "releasable",
5465 .read_u64 = releasable_read,
5468 { } /* terminate */
5471 struct cgroup_subsys debug_subsys = {
5472 .name = "debug",
5473 .create = debug_create,
5474 .destroy = debug_destroy,
5475 .subsys_id = debug_subsys_id,
5476 .base_cftypes = debug_files,
5478 #endif /* CONFIG_CGROUP_DEBUG */