dw_dmac: use __func__ constant in the debug prints
[linux-2.6/libata-dev.git] / drivers / iommu / amd_iommu.c
blobd90a421e9caccbbfc38a3d2eb4dd20ef2a50c77b
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <asm/msidef.h>
35 #include <asm/proto.h>
36 #include <asm/iommu.h>
37 #include <asm/gart.h>
38 #include <asm/dma.h>
40 #include "amd_iommu_proto.h"
41 #include "amd_iommu_types.h"
43 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
45 #define LOOP_TIMEOUT 100000
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
63 #define AMD_IOMMU_PGSIZES (~0xFFFUL)
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
79 static struct protection_domain *pt_domain;
81 static struct iommu_ops amd_iommu_ops;
83 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84 int amd_iommu_max_glx_val = -1;
87 * general struct to manage commands send to an IOMMU
89 struct iommu_cmd {
90 u32 data[4];
93 static void update_domain(struct protection_domain *domain);
94 static int __init alloc_passthrough_domain(void);
96 /****************************************************************************
98 * Helper functions
100 ****************************************************************************/
102 static struct iommu_dev_data *alloc_dev_data(u16 devid)
104 struct iommu_dev_data *dev_data;
105 unsigned long flags;
107 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
108 if (!dev_data)
109 return NULL;
111 dev_data->devid = devid;
112 atomic_set(&dev_data->bind, 0);
114 spin_lock_irqsave(&dev_data_list_lock, flags);
115 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
116 spin_unlock_irqrestore(&dev_data_list_lock, flags);
118 return dev_data;
121 static void free_dev_data(struct iommu_dev_data *dev_data)
123 unsigned long flags;
125 spin_lock_irqsave(&dev_data_list_lock, flags);
126 list_del(&dev_data->dev_data_list);
127 spin_unlock_irqrestore(&dev_data_list_lock, flags);
129 kfree(dev_data);
132 static struct iommu_dev_data *search_dev_data(u16 devid)
134 struct iommu_dev_data *dev_data;
135 unsigned long flags;
137 spin_lock_irqsave(&dev_data_list_lock, flags);
138 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
139 if (dev_data->devid == devid)
140 goto out_unlock;
143 dev_data = NULL;
145 out_unlock:
146 spin_unlock_irqrestore(&dev_data_list_lock, flags);
148 return dev_data;
151 static struct iommu_dev_data *find_dev_data(u16 devid)
153 struct iommu_dev_data *dev_data;
155 dev_data = search_dev_data(devid);
157 if (dev_data == NULL)
158 dev_data = alloc_dev_data(devid);
160 return dev_data;
163 static inline u16 get_device_id(struct device *dev)
165 struct pci_dev *pdev = to_pci_dev(dev);
167 return calc_devid(pdev->bus->number, pdev->devfn);
170 static struct iommu_dev_data *get_dev_data(struct device *dev)
172 return dev->archdata.iommu;
175 static bool pci_iommuv2_capable(struct pci_dev *pdev)
177 static const int caps[] = {
178 PCI_EXT_CAP_ID_ATS,
179 PCI_EXT_CAP_ID_PRI,
180 PCI_EXT_CAP_ID_PASID,
182 int i, pos;
184 for (i = 0; i < 3; ++i) {
185 pos = pci_find_ext_capability(pdev, caps[i]);
186 if (pos == 0)
187 return false;
190 return true;
193 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
195 struct iommu_dev_data *dev_data;
197 dev_data = get_dev_data(&pdev->dev);
199 return dev_data->errata & (1 << erratum) ? true : false;
203 * In this function the list of preallocated protection domains is traversed to
204 * find the domain for a specific device
206 static struct dma_ops_domain *find_protection_domain(u16 devid)
208 struct dma_ops_domain *entry, *ret = NULL;
209 unsigned long flags;
210 u16 alias = amd_iommu_alias_table[devid];
212 if (list_empty(&iommu_pd_list))
213 return NULL;
215 spin_lock_irqsave(&iommu_pd_list_lock, flags);
217 list_for_each_entry(entry, &iommu_pd_list, list) {
218 if (entry->target_dev == devid ||
219 entry->target_dev == alias) {
220 ret = entry;
221 break;
225 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
227 return ret;
231 * This function checks if the driver got a valid device from the caller to
232 * avoid dereferencing invalid pointers.
234 static bool check_device(struct device *dev)
236 u16 devid;
238 if (!dev || !dev->dma_mask)
239 return false;
241 /* No device or no PCI device */
242 if (dev->bus != &pci_bus_type)
243 return false;
245 devid = get_device_id(dev);
247 /* Out of our scope? */
248 if (devid > amd_iommu_last_bdf)
249 return false;
251 if (amd_iommu_rlookup_table[devid] == NULL)
252 return false;
254 return true;
257 static int iommu_init_device(struct device *dev)
259 struct pci_dev *pdev = to_pci_dev(dev);
260 struct iommu_dev_data *dev_data;
261 u16 alias;
263 if (dev->archdata.iommu)
264 return 0;
266 dev_data = find_dev_data(get_device_id(dev));
267 if (!dev_data)
268 return -ENOMEM;
270 alias = amd_iommu_alias_table[dev_data->devid];
271 if (alias != dev_data->devid) {
272 struct iommu_dev_data *alias_data;
274 alias_data = find_dev_data(alias);
275 if (alias_data == NULL) {
276 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
277 dev_name(dev));
278 free_dev_data(dev_data);
279 return -ENOTSUPP;
281 dev_data->alias_data = alias_data;
284 if (pci_iommuv2_capable(pdev)) {
285 struct amd_iommu *iommu;
287 iommu = amd_iommu_rlookup_table[dev_data->devid];
288 dev_data->iommu_v2 = iommu->is_iommu_v2;
291 dev->archdata.iommu = dev_data;
293 return 0;
296 static void iommu_ignore_device(struct device *dev)
298 u16 devid, alias;
300 devid = get_device_id(dev);
301 alias = amd_iommu_alias_table[devid];
303 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
304 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
306 amd_iommu_rlookup_table[devid] = NULL;
307 amd_iommu_rlookup_table[alias] = NULL;
310 static void iommu_uninit_device(struct device *dev)
313 * Nothing to do here - we keep dev_data around for unplugged devices
314 * and reuse it when the device is re-plugged - not doing so would
315 * introduce a ton of races.
319 void __init amd_iommu_uninit_devices(void)
321 struct iommu_dev_data *dev_data, *n;
322 struct pci_dev *pdev = NULL;
324 for_each_pci_dev(pdev) {
326 if (!check_device(&pdev->dev))
327 continue;
329 iommu_uninit_device(&pdev->dev);
332 /* Free all of our dev_data structures */
333 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
334 free_dev_data(dev_data);
337 int __init amd_iommu_init_devices(void)
339 struct pci_dev *pdev = NULL;
340 int ret = 0;
342 for_each_pci_dev(pdev) {
344 if (!check_device(&pdev->dev))
345 continue;
347 ret = iommu_init_device(&pdev->dev);
348 if (ret == -ENOTSUPP)
349 iommu_ignore_device(&pdev->dev);
350 else if (ret)
351 goto out_free;
354 return 0;
356 out_free:
358 amd_iommu_uninit_devices();
360 return ret;
362 #ifdef CONFIG_AMD_IOMMU_STATS
365 * Initialization code for statistics collection
368 DECLARE_STATS_COUNTER(compl_wait);
369 DECLARE_STATS_COUNTER(cnt_map_single);
370 DECLARE_STATS_COUNTER(cnt_unmap_single);
371 DECLARE_STATS_COUNTER(cnt_map_sg);
372 DECLARE_STATS_COUNTER(cnt_unmap_sg);
373 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
374 DECLARE_STATS_COUNTER(cnt_free_coherent);
375 DECLARE_STATS_COUNTER(cross_page);
376 DECLARE_STATS_COUNTER(domain_flush_single);
377 DECLARE_STATS_COUNTER(domain_flush_all);
378 DECLARE_STATS_COUNTER(alloced_io_mem);
379 DECLARE_STATS_COUNTER(total_map_requests);
380 DECLARE_STATS_COUNTER(complete_ppr);
381 DECLARE_STATS_COUNTER(invalidate_iotlb);
382 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
383 DECLARE_STATS_COUNTER(pri_requests);
386 static struct dentry *stats_dir;
387 static struct dentry *de_fflush;
389 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
391 if (stats_dir == NULL)
392 return;
394 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
395 &cnt->value);
398 static void amd_iommu_stats_init(void)
400 stats_dir = debugfs_create_dir("amd-iommu", NULL);
401 if (stats_dir == NULL)
402 return;
404 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
405 (u32 *)&amd_iommu_unmap_flush);
407 amd_iommu_stats_add(&compl_wait);
408 amd_iommu_stats_add(&cnt_map_single);
409 amd_iommu_stats_add(&cnt_unmap_single);
410 amd_iommu_stats_add(&cnt_map_sg);
411 amd_iommu_stats_add(&cnt_unmap_sg);
412 amd_iommu_stats_add(&cnt_alloc_coherent);
413 amd_iommu_stats_add(&cnt_free_coherent);
414 amd_iommu_stats_add(&cross_page);
415 amd_iommu_stats_add(&domain_flush_single);
416 amd_iommu_stats_add(&domain_flush_all);
417 amd_iommu_stats_add(&alloced_io_mem);
418 amd_iommu_stats_add(&total_map_requests);
419 amd_iommu_stats_add(&complete_ppr);
420 amd_iommu_stats_add(&invalidate_iotlb);
421 amd_iommu_stats_add(&invalidate_iotlb_all);
422 amd_iommu_stats_add(&pri_requests);
425 #endif
427 /****************************************************************************
429 * Interrupt handling functions
431 ****************************************************************************/
433 static void dump_dte_entry(u16 devid)
435 int i;
437 for (i = 0; i < 4; ++i)
438 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
439 amd_iommu_dev_table[devid].data[i]);
442 static void dump_command(unsigned long phys_addr)
444 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
445 int i;
447 for (i = 0; i < 4; ++i)
448 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
451 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
453 int type, devid, domid, flags;
454 volatile u32 *event = __evt;
455 int count = 0;
456 u64 address;
458 retry:
459 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
460 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
461 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
462 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
463 address = (u64)(((u64)event[3]) << 32) | event[2];
465 if (type == 0) {
466 /* Did we hit the erratum? */
467 if (++count == LOOP_TIMEOUT) {
468 pr_err("AMD-Vi: No event written to event log\n");
469 return;
471 udelay(1);
472 goto retry;
475 printk(KERN_ERR "AMD-Vi: Event logged [");
477 switch (type) {
478 case EVENT_TYPE_ILL_DEV:
479 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
480 "address=0x%016llx flags=0x%04x]\n",
481 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
482 address, flags);
483 dump_dte_entry(devid);
484 break;
485 case EVENT_TYPE_IO_FAULT:
486 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
487 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
488 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
489 domid, address, flags);
490 break;
491 case EVENT_TYPE_DEV_TAB_ERR:
492 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
493 "address=0x%016llx flags=0x%04x]\n",
494 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
495 address, flags);
496 break;
497 case EVENT_TYPE_PAGE_TAB_ERR:
498 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
499 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
500 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
501 domid, address, flags);
502 break;
503 case EVENT_TYPE_ILL_CMD:
504 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
505 dump_command(address);
506 break;
507 case EVENT_TYPE_CMD_HARD_ERR:
508 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
509 "flags=0x%04x]\n", address, flags);
510 break;
511 case EVENT_TYPE_IOTLB_INV_TO:
512 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
513 "address=0x%016llx]\n",
514 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
515 address);
516 break;
517 case EVENT_TYPE_INV_DEV_REQ:
518 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
519 "address=0x%016llx flags=0x%04x]\n",
520 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
521 address, flags);
522 break;
523 default:
524 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
527 memset(__evt, 0, 4 * sizeof(u32));
530 static void iommu_poll_events(struct amd_iommu *iommu)
532 u32 head, tail;
533 unsigned long flags;
535 spin_lock_irqsave(&iommu->lock, flags);
537 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
538 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
540 while (head != tail) {
541 iommu_print_event(iommu, iommu->evt_buf + head);
542 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
545 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
547 spin_unlock_irqrestore(&iommu->lock, flags);
550 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
552 struct amd_iommu_fault fault;
553 volatile u64 *raw;
554 int i;
556 INC_STATS_COUNTER(pri_requests);
558 raw = (u64 *)(iommu->ppr_log + head);
561 * Hardware bug: Interrupt may arrive before the entry is written to
562 * memory. If this happens we need to wait for the entry to arrive.
564 for (i = 0; i < LOOP_TIMEOUT; ++i) {
565 if (PPR_REQ_TYPE(raw[0]) != 0)
566 break;
567 udelay(1);
570 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
571 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
572 return;
575 fault.address = raw[1];
576 fault.pasid = PPR_PASID(raw[0]);
577 fault.device_id = PPR_DEVID(raw[0]);
578 fault.tag = PPR_TAG(raw[0]);
579 fault.flags = PPR_FLAGS(raw[0]);
582 * To detect the hardware bug we need to clear the entry
583 * to back to zero.
585 raw[0] = raw[1] = 0;
587 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
590 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
592 unsigned long flags;
593 u32 head, tail;
595 if (iommu->ppr_log == NULL)
596 return;
598 spin_lock_irqsave(&iommu->lock, flags);
600 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
601 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
603 while (head != tail) {
605 /* Handle PPR entry */
606 iommu_handle_ppr_entry(iommu, head);
608 /* Update and refresh ring-buffer state*/
609 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
610 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
611 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
614 /* enable ppr interrupts again */
615 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
617 spin_unlock_irqrestore(&iommu->lock, flags);
620 irqreturn_t amd_iommu_int_thread(int irq, void *data)
622 struct amd_iommu *iommu;
624 for_each_iommu(iommu) {
625 iommu_poll_events(iommu);
626 iommu_poll_ppr_log(iommu);
629 return IRQ_HANDLED;
632 irqreturn_t amd_iommu_int_handler(int irq, void *data)
634 return IRQ_WAKE_THREAD;
637 /****************************************************************************
639 * IOMMU command queuing functions
641 ****************************************************************************/
643 static int wait_on_sem(volatile u64 *sem)
645 int i = 0;
647 while (*sem == 0 && i < LOOP_TIMEOUT) {
648 udelay(1);
649 i += 1;
652 if (i == LOOP_TIMEOUT) {
653 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
654 return -EIO;
657 return 0;
660 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
661 struct iommu_cmd *cmd,
662 u32 tail)
664 u8 *target;
666 target = iommu->cmd_buf + tail;
667 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
669 /* Copy command to buffer */
670 memcpy(target, cmd, sizeof(*cmd));
672 /* Tell the IOMMU about it */
673 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
676 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
678 WARN_ON(address & 0x7ULL);
680 memset(cmd, 0, sizeof(*cmd));
681 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
682 cmd->data[1] = upper_32_bits(__pa(address));
683 cmd->data[2] = 1;
684 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
687 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
689 memset(cmd, 0, sizeof(*cmd));
690 cmd->data[0] = devid;
691 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
694 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
695 size_t size, u16 domid, int pde)
697 u64 pages;
698 int s;
700 pages = iommu_num_pages(address, size, PAGE_SIZE);
701 s = 0;
703 if (pages > 1) {
705 * If we have to flush more than one page, flush all
706 * TLB entries for this domain
708 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
709 s = 1;
712 address &= PAGE_MASK;
714 memset(cmd, 0, sizeof(*cmd));
715 cmd->data[1] |= domid;
716 cmd->data[2] = lower_32_bits(address);
717 cmd->data[3] = upper_32_bits(address);
718 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
719 if (s) /* size bit - we flush more than one 4kb page */
720 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
721 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
722 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
725 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
726 u64 address, size_t size)
728 u64 pages;
729 int s;
731 pages = iommu_num_pages(address, size, PAGE_SIZE);
732 s = 0;
734 if (pages > 1) {
736 * If we have to flush more than one page, flush all
737 * TLB entries for this domain
739 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
740 s = 1;
743 address &= PAGE_MASK;
745 memset(cmd, 0, sizeof(*cmd));
746 cmd->data[0] = devid;
747 cmd->data[0] |= (qdep & 0xff) << 24;
748 cmd->data[1] = devid;
749 cmd->data[2] = lower_32_bits(address);
750 cmd->data[3] = upper_32_bits(address);
751 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
752 if (s)
753 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
756 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
757 u64 address, bool size)
759 memset(cmd, 0, sizeof(*cmd));
761 address &= ~(0xfffULL);
763 cmd->data[0] = pasid & PASID_MASK;
764 cmd->data[1] = domid;
765 cmd->data[2] = lower_32_bits(address);
766 cmd->data[3] = upper_32_bits(address);
767 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
768 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
769 if (size)
770 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
771 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
774 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
775 int qdep, u64 address, bool size)
777 memset(cmd, 0, sizeof(*cmd));
779 address &= ~(0xfffULL);
781 cmd->data[0] = devid;
782 cmd->data[0] |= (pasid & 0xff) << 16;
783 cmd->data[0] |= (qdep & 0xff) << 24;
784 cmd->data[1] = devid;
785 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
786 cmd->data[2] = lower_32_bits(address);
787 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
788 cmd->data[3] = upper_32_bits(address);
789 if (size)
790 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
791 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
794 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
795 int status, int tag, bool gn)
797 memset(cmd, 0, sizeof(*cmd));
799 cmd->data[0] = devid;
800 if (gn) {
801 cmd->data[1] = pasid & PASID_MASK;
802 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
804 cmd->data[3] = tag & 0x1ff;
805 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
807 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
810 static void build_inv_all(struct iommu_cmd *cmd)
812 memset(cmd, 0, sizeof(*cmd));
813 CMD_SET_TYPE(cmd, CMD_INV_ALL);
817 * Writes the command to the IOMMUs command buffer and informs the
818 * hardware about the new command.
820 static int iommu_queue_command_sync(struct amd_iommu *iommu,
821 struct iommu_cmd *cmd,
822 bool sync)
824 u32 left, tail, head, next_tail;
825 unsigned long flags;
827 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
829 again:
830 spin_lock_irqsave(&iommu->lock, flags);
832 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
833 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
834 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
835 left = (head - next_tail) % iommu->cmd_buf_size;
837 if (left <= 2) {
838 struct iommu_cmd sync_cmd;
839 volatile u64 sem = 0;
840 int ret;
842 build_completion_wait(&sync_cmd, (u64)&sem);
843 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
845 spin_unlock_irqrestore(&iommu->lock, flags);
847 if ((ret = wait_on_sem(&sem)) != 0)
848 return ret;
850 goto again;
853 copy_cmd_to_buffer(iommu, cmd, tail);
855 /* We need to sync now to make sure all commands are processed */
856 iommu->need_sync = sync;
858 spin_unlock_irqrestore(&iommu->lock, flags);
860 return 0;
863 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
865 return iommu_queue_command_sync(iommu, cmd, true);
869 * This function queues a completion wait command into the command
870 * buffer of an IOMMU
872 static int iommu_completion_wait(struct amd_iommu *iommu)
874 struct iommu_cmd cmd;
875 volatile u64 sem = 0;
876 int ret;
878 if (!iommu->need_sync)
879 return 0;
881 build_completion_wait(&cmd, (u64)&sem);
883 ret = iommu_queue_command_sync(iommu, &cmd, false);
884 if (ret)
885 return ret;
887 return wait_on_sem(&sem);
890 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
892 struct iommu_cmd cmd;
894 build_inv_dte(&cmd, devid);
896 return iommu_queue_command(iommu, &cmd);
899 static void iommu_flush_dte_all(struct amd_iommu *iommu)
901 u32 devid;
903 for (devid = 0; devid <= 0xffff; ++devid)
904 iommu_flush_dte(iommu, devid);
906 iommu_completion_wait(iommu);
910 * This function uses heavy locking and may disable irqs for some time. But
911 * this is no issue because it is only called during resume.
913 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
915 u32 dom_id;
917 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
918 struct iommu_cmd cmd;
919 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
920 dom_id, 1);
921 iommu_queue_command(iommu, &cmd);
924 iommu_completion_wait(iommu);
927 static void iommu_flush_all(struct amd_iommu *iommu)
929 struct iommu_cmd cmd;
931 build_inv_all(&cmd);
933 iommu_queue_command(iommu, &cmd);
934 iommu_completion_wait(iommu);
937 void iommu_flush_all_caches(struct amd_iommu *iommu)
939 if (iommu_feature(iommu, FEATURE_IA)) {
940 iommu_flush_all(iommu);
941 } else {
942 iommu_flush_dte_all(iommu);
943 iommu_flush_tlb_all(iommu);
948 * Command send function for flushing on-device TLB
950 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
951 u64 address, size_t size)
953 struct amd_iommu *iommu;
954 struct iommu_cmd cmd;
955 int qdep;
957 qdep = dev_data->ats.qdep;
958 iommu = amd_iommu_rlookup_table[dev_data->devid];
960 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
962 return iommu_queue_command(iommu, &cmd);
966 * Command send function for invalidating a device table entry
968 static int device_flush_dte(struct iommu_dev_data *dev_data)
970 struct amd_iommu *iommu;
971 int ret;
973 iommu = amd_iommu_rlookup_table[dev_data->devid];
975 ret = iommu_flush_dte(iommu, dev_data->devid);
976 if (ret)
977 return ret;
979 if (dev_data->ats.enabled)
980 ret = device_flush_iotlb(dev_data, 0, ~0UL);
982 return ret;
986 * TLB invalidation function which is called from the mapping functions.
987 * It invalidates a single PTE if the range to flush is within a single
988 * page. Otherwise it flushes the whole TLB of the IOMMU.
990 static void __domain_flush_pages(struct protection_domain *domain,
991 u64 address, size_t size, int pde)
993 struct iommu_dev_data *dev_data;
994 struct iommu_cmd cmd;
995 int ret = 0, i;
997 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999 for (i = 0; i < amd_iommus_present; ++i) {
1000 if (!domain->dev_iommu[i])
1001 continue;
1004 * Devices of this domain are behind this IOMMU
1005 * We need a TLB flush
1007 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1010 list_for_each_entry(dev_data, &domain->dev_list, list) {
1012 if (!dev_data->ats.enabled)
1013 continue;
1015 ret |= device_flush_iotlb(dev_data, address, size);
1018 WARN_ON(ret);
1021 static void domain_flush_pages(struct protection_domain *domain,
1022 u64 address, size_t size)
1024 __domain_flush_pages(domain, address, size, 0);
1027 /* Flush the whole IO/TLB for a given protection domain */
1028 static void domain_flush_tlb(struct protection_domain *domain)
1030 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1033 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1034 static void domain_flush_tlb_pde(struct protection_domain *domain)
1036 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1039 static void domain_flush_complete(struct protection_domain *domain)
1041 int i;
1043 for (i = 0; i < amd_iommus_present; ++i) {
1044 if (!domain->dev_iommu[i])
1045 continue;
1048 * Devices of this domain are behind this IOMMU
1049 * We need to wait for completion of all commands.
1051 iommu_completion_wait(amd_iommus[i]);
1057 * This function flushes the DTEs for all devices in domain
1059 static void domain_flush_devices(struct protection_domain *domain)
1061 struct iommu_dev_data *dev_data;
1063 list_for_each_entry(dev_data, &domain->dev_list, list)
1064 device_flush_dte(dev_data);
1067 /****************************************************************************
1069 * The functions below are used the create the page table mappings for
1070 * unity mapped regions.
1072 ****************************************************************************/
1075 * This function is used to add another level to an IO page table. Adding
1076 * another level increases the size of the address space by 9 bits to a size up
1077 * to 64 bits.
1079 static bool increase_address_space(struct protection_domain *domain,
1080 gfp_t gfp)
1082 u64 *pte;
1084 if (domain->mode == PAGE_MODE_6_LEVEL)
1085 /* address space already 64 bit large */
1086 return false;
1088 pte = (void *)get_zeroed_page(gfp);
1089 if (!pte)
1090 return false;
1092 *pte = PM_LEVEL_PDE(domain->mode,
1093 virt_to_phys(domain->pt_root));
1094 domain->pt_root = pte;
1095 domain->mode += 1;
1096 domain->updated = true;
1098 return true;
1101 static u64 *alloc_pte(struct protection_domain *domain,
1102 unsigned long address,
1103 unsigned long page_size,
1104 u64 **pte_page,
1105 gfp_t gfp)
1107 int level, end_lvl;
1108 u64 *pte, *page;
1110 BUG_ON(!is_power_of_2(page_size));
1112 while (address > PM_LEVEL_SIZE(domain->mode))
1113 increase_address_space(domain, gfp);
1115 level = domain->mode - 1;
1116 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1117 address = PAGE_SIZE_ALIGN(address, page_size);
1118 end_lvl = PAGE_SIZE_LEVEL(page_size);
1120 while (level > end_lvl) {
1121 if (!IOMMU_PTE_PRESENT(*pte)) {
1122 page = (u64 *)get_zeroed_page(gfp);
1123 if (!page)
1124 return NULL;
1125 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1128 /* No level skipping support yet */
1129 if (PM_PTE_LEVEL(*pte) != level)
1130 return NULL;
1132 level -= 1;
1134 pte = IOMMU_PTE_PAGE(*pte);
1136 if (pte_page && level == end_lvl)
1137 *pte_page = pte;
1139 pte = &pte[PM_LEVEL_INDEX(level, address)];
1142 return pte;
1146 * This function checks if there is a PTE for a given dma address. If
1147 * there is one, it returns the pointer to it.
1149 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1151 int level;
1152 u64 *pte;
1154 if (address > PM_LEVEL_SIZE(domain->mode))
1155 return NULL;
1157 level = domain->mode - 1;
1158 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1160 while (level > 0) {
1162 /* Not Present */
1163 if (!IOMMU_PTE_PRESENT(*pte))
1164 return NULL;
1166 /* Large PTE */
1167 if (PM_PTE_LEVEL(*pte) == 0x07) {
1168 unsigned long pte_mask, __pte;
1171 * If we have a series of large PTEs, make
1172 * sure to return a pointer to the first one.
1174 pte_mask = PTE_PAGE_SIZE(*pte);
1175 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1176 __pte = ((unsigned long)pte) & pte_mask;
1178 return (u64 *)__pte;
1181 /* No level skipping support yet */
1182 if (PM_PTE_LEVEL(*pte) != level)
1183 return NULL;
1185 level -= 1;
1187 /* Walk to the next level */
1188 pte = IOMMU_PTE_PAGE(*pte);
1189 pte = &pte[PM_LEVEL_INDEX(level, address)];
1192 return pte;
1196 * Generic mapping functions. It maps a physical address into a DMA
1197 * address space. It allocates the page table pages if necessary.
1198 * In the future it can be extended to a generic mapping function
1199 * supporting all features of AMD IOMMU page tables like level skipping
1200 * and full 64 bit address spaces.
1202 static int iommu_map_page(struct protection_domain *dom,
1203 unsigned long bus_addr,
1204 unsigned long phys_addr,
1205 int prot,
1206 unsigned long page_size)
1208 u64 __pte, *pte;
1209 int i, count;
1211 if (!(prot & IOMMU_PROT_MASK))
1212 return -EINVAL;
1214 bus_addr = PAGE_ALIGN(bus_addr);
1215 phys_addr = PAGE_ALIGN(phys_addr);
1216 count = PAGE_SIZE_PTE_COUNT(page_size);
1217 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1219 for (i = 0; i < count; ++i)
1220 if (IOMMU_PTE_PRESENT(pte[i]))
1221 return -EBUSY;
1223 if (page_size > PAGE_SIZE) {
1224 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1225 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1226 } else
1227 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1229 if (prot & IOMMU_PROT_IR)
1230 __pte |= IOMMU_PTE_IR;
1231 if (prot & IOMMU_PROT_IW)
1232 __pte |= IOMMU_PTE_IW;
1234 for (i = 0; i < count; ++i)
1235 pte[i] = __pte;
1237 update_domain(dom);
1239 return 0;
1242 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1243 unsigned long bus_addr,
1244 unsigned long page_size)
1246 unsigned long long unmap_size, unmapped;
1247 u64 *pte;
1249 BUG_ON(!is_power_of_2(page_size));
1251 unmapped = 0;
1253 while (unmapped < page_size) {
1255 pte = fetch_pte(dom, bus_addr);
1257 if (!pte) {
1259 * No PTE for this address
1260 * move forward in 4kb steps
1262 unmap_size = PAGE_SIZE;
1263 } else if (PM_PTE_LEVEL(*pte) == 0) {
1264 /* 4kb PTE found for this address */
1265 unmap_size = PAGE_SIZE;
1266 *pte = 0ULL;
1267 } else {
1268 int count, i;
1270 /* Large PTE found which maps this address */
1271 unmap_size = PTE_PAGE_SIZE(*pte);
1272 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1273 for (i = 0; i < count; i++)
1274 pte[i] = 0ULL;
1277 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1278 unmapped += unmap_size;
1281 BUG_ON(!is_power_of_2(unmapped));
1283 return unmapped;
1287 * This function checks if a specific unity mapping entry is needed for
1288 * this specific IOMMU.
1290 static int iommu_for_unity_map(struct amd_iommu *iommu,
1291 struct unity_map_entry *entry)
1293 u16 bdf, i;
1295 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1296 bdf = amd_iommu_alias_table[i];
1297 if (amd_iommu_rlookup_table[bdf] == iommu)
1298 return 1;
1301 return 0;
1305 * This function actually applies the mapping to the page table of the
1306 * dma_ops domain.
1308 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1309 struct unity_map_entry *e)
1311 u64 addr;
1312 int ret;
1314 for (addr = e->address_start; addr < e->address_end;
1315 addr += PAGE_SIZE) {
1316 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1317 PAGE_SIZE);
1318 if (ret)
1319 return ret;
1321 * if unity mapping is in aperture range mark the page
1322 * as allocated in the aperture
1324 if (addr < dma_dom->aperture_size)
1325 __set_bit(addr >> PAGE_SHIFT,
1326 dma_dom->aperture[0]->bitmap);
1329 return 0;
1333 * Init the unity mappings for a specific IOMMU in the system
1335 * Basically iterates over all unity mapping entries and applies them to
1336 * the default domain DMA of that IOMMU if necessary.
1338 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1340 struct unity_map_entry *entry;
1341 int ret;
1343 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1344 if (!iommu_for_unity_map(iommu, entry))
1345 continue;
1346 ret = dma_ops_unity_map(iommu->default_dom, entry);
1347 if (ret)
1348 return ret;
1351 return 0;
1355 * Inits the unity mappings required for a specific device
1357 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1358 u16 devid)
1360 struct unity_map_entry *e;
1361 int ret;
1363 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1364 if (!(devid >= e->devid_start && devid <= e->devid_end))
1365 continue;
1366 ret = dma_ops_unity_map(dma_dom, e);
1367 if (ret)
1368 return ret;
1371 return 0;
1374 /****************************************************************************
1376 * The next functions belong to the address allocator for the dma_ops
1377 * interface functions. They work like the allocators in the other IOMMU
1378 * drivers. Its basically a bitmap which marks the allocated pages in
1379 * the aperture. Maybe it could be enhanced in the future to a more
1380 * efficient allocator.
1382 ****************************************************************************/
1385 * The address allocator core functions.
1387 * called with domain->lock held
1391 * Used to reserve address ranges in the aperture (e.g. for exclusion
1392 * ranges.
1394 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1395 unsigned long start_page,
1396 unsigned int pages)
1398 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1400 if (start_page + pages > last_page)
1401 pages = last_page - start_page;
1403 for (i = start_page; i < start_page + pages; ++i) {
1404 int index = i / APERTURE_RANGE_PAGES;
1405 int page = i % APERTURE_RANGE_PAGES;
1406 __set_bit(page, dom->aperture[index]->bitmap);
1411 * This function is used to add a new aperture range to an existing
1412 * aperture in case of dma_ops domain allocation or address allocation
1413 * failure.
1415 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1416 bool populate, gfp_t gfp)
1418 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1419 struct amd_iommu *iommu;
1420 unsigned long i, old_size;
1422 #ifdef CONFIG_IOMMU_STRESS
1423 populate = false;
1424 #endif
1426 if (index >= APERTURE_MAX_RANGES)
1427 return -ENOMEM;
1429 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1430 if (!dma_dom->aperture[index])
1431 return -ENOMEM;
1433 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1434 if (!dma_dom->aperture[index]->bitmap)
1435 goto out_free;
1437 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1439 if (populate) {
1440 unsigned long address = dma_dom->aperture_size;
1441 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1442 u64 *pte, *pte_page;
1444 for (i = 0; i < num_ptes; ++i) {
1445 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1446 &pte_page, gfp);
1447 if (!pte)
1448 goto out_free;
1450 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1452 address += APERTURE_RANGE_SIZE / 64;
1456 old_size = dma_dom->aperture_size;
1457 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1459 /* Reserve address range used for MSI messages */
1460 if (old_size < MSI_ADDR_BASE_LO &&
1461 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1462 unsigned long spage;
1463 int pages;
1465 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1466 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1468 dma_ops_reserve_addresses(dma_dom, spage, pages);
1471 /* Initialize the exclusion range if necessary */
1472 for_each_iommu(iommu) {
1473 if (iommu->exclusion_start &&
1474 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1475 && iommu->exclusion_start < dma_dom->aperture_size) {
1476 unsigned long startpage;
1477 int pages = iommu_num_pages(iommu->exclusion_start,
1478 iommu->exclusion_length,
1479 PAGE_SIZE);
1480 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1481 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1486 * Check for areas already mapped as present in the new aperture
1487 * range and mark those pages as reserved in the allocator. Such
1488 * mappings may already exist as a result of requested unity
1489 * mappings for devices.
1491 for (i = dma_dom->aperture[index]->offset;
1492 i < dma_dom->aperture_size;
1493 i += PAGE_SIZE) {
1494 u64 *pte = fetch_pte(&dma_dom->domain, i);
1495 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1496 continue;
1498 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1501 update_domain(&dma_dom->domain);
1503 return 0;
1505 out_free:
1506 update_domain(&dma_dom->domain);
1508 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1510 kfree(dma_dom->aperture[index]);
1511 dma_dom->aperture[index] = NULL;
1513 return -ENOMEM;
1516 static unsigned long dma_ops_area_alloc(struct device *dev,
1517 struct dma_ops_domain *dom,
1518 unsigned int pages,
1519 unsigned long align_mask,
1520 u64 dma_mask,
1521 unsigned long start)
1523 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1524 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1525 int i = start >> APERTURE_RANGE_SHIFT;
1526 unsigned long boundary_size;
1527 unsigned long address = -1;
1528 unsigned long limit;
1530 next_bit >>= PAGE_SHIFT;
1532 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1533 PAGE_SIZE) >> PAGE_SHIFT;
1535 for (;i < max_index; ++i) {
1536 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1538 if (dom->aperture[i]->offset >= dma_mask)
1539 break;
1541 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1542 dma_mask >> PAGE_SHIFT);
1544 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1545 limit, next_bit, pages, 0,
1546 boundary_size, align_mask);
1547 if (address != -1) {
1548 address = dom->aperture[i]->offset +
1549 (address << PAGE_SHIFT);
1550 dom->next_address = address + (pages << PAGE_SHIFT);
1551 break;
1554 next_bit = 0;
1557 return address;
1560 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1561 struct dma_ops_domain *dom,
1562 unsigned int pages,
1563 unsigned long align_mask,
1564 u64 dma_mask)
1566 unsigned long address;
1568 #ifdef CONFIG_IOMMU_STRESS
1569 dom->next_address = 0;
1570 dom->need_flush = true;
1571 #endif
1573 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1574 dma_mask, dom->next_address);
1576 if (address == -1) {
1577 dom->next_address = 0;
1578 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1579 dma_mask, 0);
1580 dom->need_flush = true;
1583 if (unlikely(address == -1))
1584 address = DMA_ERROR_CODE;
1586 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1588 return address;
1592 * The address free function.
1594 * called with domain->lock held
1596 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1597 unsigned long address,
1598 unsigned int pages)
1600 unsigned i = address >> APERTURE_RANGE_SHIFT;
1601 struct aperture_range *range = dom->aperture[i];
1603 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1605 #ifdef CONFIG_IOMMU_STRESS
1606 if (i < 4)
1607 return;
1608 #endif
1610 if (address >= dom->next_address)
1611 dom->need_flush = true;
1613 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1615 bitmap_clear(range->bitmap, address, pages);
1619 /****************************************************************************
1621 * The next functions belong to the domain allocation. A domain is
1622 * allocated for every IOMMU as the default domain. If device isolation
1623 * is enabled, every device get its own domain. The most important thing
1624 * about domains is the page table mapping the DMA address space they
1625 * contain.
1627 ****************************************************************************/
1630 * This function adds a protection domain to the global protection domain list
1632 static void add_domain_to_list(struct protection_domain *domain)
1634 unsigned long flags;
1636 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1637 list_add(&domain->list, &amd_iommu_pd_list);
1638 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1642 * This function removes a protection domain to the global
1643 * protection domain list
1645 static void del_domain_from_list(struct protection_domain *domain)
1647 unsigned long flags;
1649 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1650 list_del(&domain->list);
1651 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1654 static u16 domain_id_alloc(void)
1656 unsigned long flags;
1657 int id;
1659 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1660 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1661 BUG_ON(id == 0);
1662 if (id > 0 && id < MAX_DOMAIN_ID)
1663 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1664 else
1665 id = 0;
1666 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1668 return id;
1671 static void domain_id_free(int id)
1673 unsigned long flags;
1675 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1676 if (id > 0 && id < MAX_DOMAIN_ID)
1677 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1678 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1681 static void free_pagetable(struct protection_domain *domain)
1683 int i, j;
1684 u64 *p1, *p2, *p3;
1686 p1 = domain->pt_root;
1688 if (!p1)
1689 return;
1691 for (i = 0; i < 512; ++i) {
1692 if (!IOMMU_PTE_PRESENT(p1[i]))
1693 continue;
1695 p2 = IOMMU_PTE_PAGE(p1[i]);
1696 for (j = 0; j < 512; ++j) {
1697 if (!IOMMU_PTE_PRESENT(p2[j]))
1698 continue;
1699 p3 = IOMMU_PTE_PAGE(p2[j]);
1700 free_page((unsigned long)p3);
1703 free_page((unsigned long)p2);
1706 free_page((unsigned long)p1);
1708 domain->pt_root = NULL;
1711 static void free_gcr3_tbl_level1(u64 *tbl)
1713 u64 *ptr;
1714 int i;
1716 for (i = 0; i < 512; ++i) {
1717 if (!(tbl[i] & GCR3_VALID))
1718 continue;
1720 ptr = __va(tbl[i] & PAGE_MASK);
1722 free_page((unsigned long)ptr);
1726 static void free_gcr3_tbl_level2(u64 *tbl)
1728 u64 *ptr;
1729 int i;
1731 for (i = 0; i < 512; ++i) {
1732 if (!(tbl[i] & GCR3_VALID))
1733 continue;
1735 ptr = __va(tbl[i] & PAGE_MASK);
1737 free_gcr3_tbl_level1(ptr);
1741 static void free_gcr3_table(struct protection_domain *domain)
1743 if (domain->glx == 2)
1744 free_gcr3_tbl_level2(domain->gcr3_tbl);
1745 else if (domain->glx == 1)
1746 free_gcr3_tbl_level1(domain->gcr3_tbl);
1747 else if (domain->glx != 0)
1748 BUG();
1750 free_page((unsigned long)domain->gcr3_tbl);
1754 * Free a domain, only used if something went wrong in the
1755 * allocation path and we need to free an already allocated page table
1757 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1759 int i;
1761 if (!dom)
1762 return;
1764 del_domain_from_list(&dom->domain);
1766 free_pagetable(&dom->domain);
1768 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1769 if (!dom->aperture[i])
1770 continue;
1771 free_page((unsigned long)dom->aperture[i]->bitmap);
1772 kfree(dom->aperture[i]);
1775 kfree(dom);
1779 * Allocates a new protection domain usable for the dma_ops functions.
1780 * It also initializes the page table and the address allocator data
1781 * structures required for the dma_ops interface
1783 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1785 struct dma_ops_domain *dma_dom;
1787 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1788 if (!dma_dom)
1789 return NULL;
1791 spin_lock_init(&dma_dom->domain.lock);
1793 dma_dom->domain.id = domain_id_alloc();
1794 if (dma_dom->domain.id == 0)
1795 goto free_dma_dom;
1796 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1797 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1798 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1799 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1800 dma_dom->domain.priv = dma_dom;
1801 if (!dma_dom->domain.pt_root)
1802 goto free_dma_dom;
1804 dma_dom->need_flush = false;
1805 dma_dom->target_dev = 0xffff;
1807 add_domain_to_list(&dma_dom->domain);
1809 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1810 goto free_dma_dom;
1813 * mark the first page as allocated so we never return 0 as
1814 * a valid dma-address. So we can use 0 as error value
1816 dma_dom->aperture[0]->bitmap[0] = 1;
1817 dma_dom->next_address = 0;
1820 return dma_dom;
1822 free_dma_dom:
1823 dma_ops_domain_free(dma_dom);
1825 return NULL;
1829 * little helper function to check whether a given protection domain is a
1830 * dma_ops domain
1832 static bool dma_ops_domain(struct protection_domain *domain)
1834 return domain->flags & PD_DMA_OPS_MASK;
1837 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1839 u64 pte_root = 0;
1840 u64 flags = 0;
1842 if (domain->mode != PAGE_MODE_NONE)
1843 pte_root = virt_to_phys(domain->pt_root);
1845 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1846 << DEV_ENTRY_MODE_SHIFT;
1847 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1849 flags = amd_iommu_dev_table[devid].data[1];
1851 if (ats)
1852 flags |= DTE_FLAG_IOTLB;
1854 if (domain->flags & PD_IOMMUV2_MASK) {
1855 u64 gcr3 = __pa(domain->gcr3_tbl);
1856 u64 glx = domain->glx;
1857 u64 tmp;
1859 pte_root |= DTE_FLAG_GV;
1860 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1862 /* First mask out possible old values for GCR3 table */
1863 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1864 flags &= ~tmp;
1866 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1867 flags &= ~tmp;
1869 /* Encode GCR3 table into DTE */
1870 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1871 pte_root |= tmp;
1873 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1874 flags |= tmp;
1876 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1877 flags |= tmp;
1880 flags &= ~(0xffffUL);
1881 flags |= domain->id;
1883 amd_iommu_dev_table[devid].data[1] = flags;
1884 amd_iommu_dev_table[devid].data[0] = pte_root;
1887 static void clear_dte_entry(u16 devid)
1889 /* remove entry from the device table seen by the hardware */
1890 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1891 amd_iommu_dev_table[devid].data[1] = 0;
1893 amd_iommu_apply_erratum_63(devid);
1896 static void do_attach(struct iommu_dev_data *dev_data,
1897 struct protection_domain *domain)
1899 struct amd_iommu *iommu;
1900 bool ats;
1902 iommu = amd_iommu_rlookup_table[dev_data->devid];
1903 ats = dev_data->ats.enabled;
1905 /* Update data structures */
1906 dev_data->domain = domain;
1907 list_add(&dev_data->list, &domain->dev_list);
1908 set_dte_entry(dev_data->devid, domain, ats);
1910 /* Do reference counting */
1911 domain->dev_iommu[iommu->index] += 1;
1912 domain->dev_cnt += 1;
1914 /* Flush the DTE entry */
1915 device_flush_dte(dev_data);
1918 static void do_detach(struct iommu_dev_data *dev_data)
1920 struct amd_iommu *iommu;
1922 iommu = amd_iommu_rlookup_table[dev_data->devid];
1924 /* decrease reference counters */
1925 dev_data->domain->dev_iommu[iommu->index] -= 1;
1926 dev_data->domain->dev_cnt -= 1;
1928 /* Update data structures */
1929 dev_data->domain = NULL;
1930 list_del(&dev_data->list);
1931 clear_dte_entry(dev_data->devid);
1933 /* Flush the DTE entry */
1934 device_flush_dte(dev_data);
1938 * If a device is not yet associated with a domain, this function does
1939 * assigns it visible for the hardware
1941 static int __attach_device(struct iommu_dev_data *dev_data,
1942 struct protection_domain *domain)
1944 int ret;
1946 /* lock domain */
1947 spin_lock(&domain->lock);
1949 if (dev_data->alias_data != NULL) {
1950 struct iommu_dev_data *alias_data = dev_data->alias_data;
1952 /* Some sanity checks */
1953 ret = -EBUSY;
1954 if (alias_data->domain != NULL &&
1955 alias_data->domain != domain)
1956 goto out_unlock;
1958 if (dev_data->domain != NULL &&
1959 dev_data->domain != domain)
1960 goto out_unlock;
1962 /* Do real assignment */
1963 if (alias_data->domain == NULL)
1964 do_attach(alias_data, domain);
1966 atomic_inc(&alias_data->bind);
1969 if (dev_data->domain == NULL)
1970 do_attach(dev_data, domain);
1972 atomic_inc(&dev_data->bind);
1974 ret = 0;
1976 out_unlock:
1978 /* ready */
1979 spin_unlock(&domain->lock);
1981 return ret;
1985 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1987 pci_disable_ats(pdev);
1988 pci_disable_pri(pdev);
1989 pci_disable_pasid(pdev);
1992 /* FIXME: Change generic reset-function to do the same */
1993 static int pri_reset_while_enabled(struct pci_dev *pdev)
1995 u16 control;
1996 int pos;
1998 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1999 if (!pos)
2000 return -EINVAL;
2002 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2003 control |= PCI_PRI_CTRL_RESET;
2004 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2006 return 0;
2009 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2011 bool reset_enable;
2012 int reqs, ret;
2014 /* FIXME: Hardcode number of outstanding requests for now */
2015 reqs = 32;
2016 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2017 reqs = 1;
2018 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2020 /* Only allow access to user-accessible pages */
2021 ret = pci_enable_pasid(pdev, 0);
2022 if (ret)
2023 goto out_err;
2025 /* First reset the PRI state of the device */
2026 ret = pci_reset_pri(pdev);
2027 if (ret)
2028 goto out_err;
2030 /* Enable PRI */
2031 ret = pci_enable_pri(pdev, reqs);
2032 if (ret)
2033 goto out_err;
2035 if (reset_enable) {
2036 ret = pri_reset_while_enabled(pdev);
2037 if (ret)
2038 goto out_err;
2041 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2042 if (ret)
2043 goto out_err;
2045 return 0;
2047 out_err:
2048 pci_disable_pri(pdev);
2049 pci_disable_pasid(pdev);
2051 return ret;
2054 /* FIXME: Move this to PCI code */
2055 #define PCI_PRI_TLP_OFF (1 << 15)
2057 bool pci_pri_tlp_required(struct pci_dev *pdev)
2059 u16 status;
2060 int pos;
2062 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2063 if (!pos)
2064 return false;
2066 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2068 return (status & PCI_PRI_TLP_OFF) ? true : false;
2072 * If a device is not yet associated with a domain, this function does
2073 * assigns it visible for the hardware
2075 static int attach_device(struct device *dev,
2076 struct protection_domain *domain)
2078 struct pci_dev *pdev = to_pci_dev(dev);
2079 struct iommu_dev_data *dev_data;
2080 unsigned long flags;
2081 int ret;
2083 dev_data = get_dev_data(dev);
2085 if (domain->flags & PD_IOMMUV2_MASK) {
2086 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2087 return -EINVAL;
2089 if (pdev_iommuv2_enable(pdev) != 0)
2090 return -EINVAL;
2092 dev_data->ats.enabled = true;
2093 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2094 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2095 } else if (amd_iommu_iotlb_sup &&
2096 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2097 dev_data->ats.enabled = true;
2098 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2101 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2102 ret = __attach_device(dev_data, domain);
2103 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2106 * We might boot into a crash-kernel here. The crashed kernel
2107 * left the caches in the IOMMU dirty. So we have to flush
2108 * here to evict all dirty stuff.
2110 domain_flush_tlb_pde(domain);
2112 return ret;
2116 * Removes a device from a protection domain (unlocked)
2118 static void __detach_device(struct iommu_dev_data *dev_data)
2120 struct protection_domain *domain;
2121 unsigned long flags;
2123 BUG_ON(!dev_data->domain);
2125 domain = dev_data->domain;
2127 spin_lock_irqsave(&domain->lock, flags);
2129 if (dev_data->alias_data != NULL) {
2130 struct iommu_dev_data *alias_data = dev_data->alias_data;
2132 if (atomic_dec_and_test(&alias_data->bind))
2133 do_detach(alias_data);
2136 if (atomic_dec_and_test(&dev_data->bind))
2137 do_detach(dev_data);
2139 spin_unlock_irqrestore(&domain->lock, flags);
2142 * If we run in passthrough mode the device must be assigned to the
2143 * passthrough domain if it is detached from any other domain.
2144 * Make sure we can deassign from the pt_domain itself.
2146 if (dev_data->passthrough &&
2147 (dev_data->domain == NULL && domain != pt_domain))
2148 __attach_device(dev_data, pt_domain);
2152 * Removes a device from a protection domain (with devtable_lock held)
2154 static void detach_device(struct device *dev)
2156 struct protection_domain *domain;
2157 struct iommu_dev_data *dev_data;
2158 unsigned long flags;
2160 dev_data = get_dev_data(dev);
2161 domain = dev_data->domain;
2163 /* lock device table */
2164 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2165 __detach_device(dev_data);
2166 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2168 if (domain->flags & PD_IOMMUV2_MASK)
2169 pdev_iommuv2_disable(to_pci_dev(dev));
2170 else if (dev_data->ats.enabled)
2171 pci_disable_ats(to_pci_dev(dev));
2173 dev_data->ats.enabled = false;
2177 * Find out the protection domain structure for a given PCI device. This
2178 * will give us the pointer to the page table root for example.
2180 static struct protection_domain *domain_for_device(struct device *dev)
2182 struct iommu_dev_data *dev_data;
2183 struct protection_domain *dom = NULL;
2184 unsigned long flags;
2186 dev_data = get_dev_data(dev);
2188 if (dev_data->domain)
2189 return dev_data->domain;
2191 if (dev_data->alias_data != NULL) {
2192 struct iommu_dev_data *alias_data = dev_data->alias_data;
2194 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2195 if (alias_data->domain != NULL) {
2196 __attach_device(dev_data, alias_data->domain);
2197 dom = alias_data->domain;
2199 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2202 return dom;
2205 static int device_change_notifier(struct notifier_block *nb,
2206 unsigned long action, void *data)
2208 struct dma_ops_domain *dma_domain;
2209 struct protection_domain *domain;
2210 struct iommu_dev_data *dev_data;
2211 struct device *dev = data;
2212 struct amd_iommu *iommu;
2213 unsigned long flags;
2214 u16 devid;
2216 if (!check_device(dev))
2217 return 0;
2219 devid = get_device_id(dev);
2220 iommu = amd_iommu_rlookup_table[devid];
2221 dev_data = get_dev_data(dev);
2223 switch (action) {
2224 case BUS_NOTIFY_UNBOUND_DRIVER:
2226 domain = domain_for_device(dev);
2228 if (!domain)
2229 goto out;
2230 if (dev_data->passthrough)
2231 break;
2232 detach_device(dev);
2233 break;
2234 case BUS_NOTIFY_ADD_DEVICE:
2236 iommu_init_device(dev);
2238 domain = domain_for_device(dev);
2240 /* allocate a protection domain if a device is added */
2241 dma_domain = find_protection_domain(devid);
2242 if (dma_domain)
2243 goto out;
2244 dma_domain = dma_ops_domain_alloc();
2245 if (!dma_domain)
2246 goto out;
2247 dma_domain->target_dev = devid;
2249 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2250 list_add_tail(&dma_domain->list, &iommu_pd_list);
2251 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2253 break;
2254 case BUS_NOTIFY_DEL_DEVICE:
2256 iommu_uninit_device(dev);
2258 default:
2259 goto out;
2262 iommu_completion_wait(iommu);
2264 out:
2265 return 0;
2268 static struct notifier_block device_nb = {
2269 .notifier_call = device_change_notifier,
2272 void amd_iommu_init_notifier(void)
2274 bus_register_notifier(&pci_bus_type, &device_nb);
2277 /*****************************************************************************
2279 * The next functions belong to the dma_ops mapping/unmapping code.
2281 *****************************************************************************/
2284 * In the dma_ops path we only have the struct device. This function
2285 * finds the corresponding IOMMU, the protection domain and the
2286 * requestor id for a given device.
2287 * If the device is not yet associated with a domain this is also done
2288 * in this function.
2290 static struct protection_domain *get_domain(struct device *dev)
2292 struct protection_domain *domain;
2293 struct dma_ops_domain *dma_dom;
2294 u16 devid = get_device_id(dev);
2296 if (!check_device(dev))
2297 return ERR_PTR(-EINVAL);
2299 domain = domain_for_device(dev);
2300 if (domain != NULL && !dma_ops_domain(domain))
2301 return ERR_PTR(-EBUSY);
2303 if (domain != NULL)
2304 return domain;
2306 /* Device not bount yet - bind it */
2307 dma_dom = find_protection_domain(devid);
2308 if (!dma_dom)
2309 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2310 attach_device(dev, &dma_dom->domain);
2311 DUMP_printk("Using protection domain %d for device %s\n",
2312 dma_dom->domain.id, dev_name(dev));
2314 return &dma_dom->domain;
2317 static void update_device_table(struct protection_domain *domain)
2319 struct iommu_dev_data *dev_data;
2321 list_for_each_entry(dev_data, &domain->dev_list, list)
2322 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2325 static void update_domain(struct protection_domain *domain)
2327 if (!domain->updated)
2328 return;
2330 update_device_table(domain);
2332 domain_flush_devices(domain);
2333 domain_flush_tlb_pde(domain);
2335 domain->updated = false;
2339 * This function fetches the PTE for a given address in the aperture
2341 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2342 unsigned long address)
2344 struct aperture_range *aperture;
2345 u64 *pte, *pte_page;
2347 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2348 if (!aperture)
2349 return NULL;
2351 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2352 if (!pte) {
2353 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2354 GFP_ATOMIC);
2355 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2356 } else
2357 pte += PM_LEVEL_INDEX(0, address);
2359 update_domain(&dom->domain);
2361 return pte;
2365 * This is the generic map function. It maps one 4kb page at paddr to
2366 * the given address in the DMA address space for the domain.
2368 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2369 unsigned long address,
2370 phys_addr_t paddr,
2371 int direction)
2373 u64 *pte, __pte;
2375 WARN_ON(address > dom->aperture_size);
2377 paddr &= PAGE_MASK;
2379 pte = dma_ops_get_pte(dom, address);
2380 if (!pte)
2381 return DMA_ERROR_CODE;
2383 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2385 if (direction == DMA_TO_DEVICE)
2386 __pte |= IOMMU_PTE_IR;
2387 else if (direction == DMA_FROM_DEVICE)
2388 __pte |= IOMMU_PTE_IW;
2389 else if (direction == DMA_BIDIRECTIONAL)
2390 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2392 WARN_ON(*pte);
2394 *pte = __pte;
2396 return (dma_addr_t)address;
2400 * The generic unmapping function for on page in the DMA address space.
2402 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2403 unsigned long address)
2405 struct aperture_range *aperture;
2406 u64 *pte;
2408 if (address >= dom->aperture_size)
2409 return;
2411 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2412 if (!aperture)
2413 return;
2415 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2416 if (!pte)
2417 return;
2419 pte += PM_LEVEL_INDEX(0, address);
2421 WARN_ON(!*pte);
2423 *pte = 0ULL;
2427 * This function contains common code for mapping of a physically
2428 * contiguous memory region into DMA address space. It is used by all
2429 * mapping functions provided with this IOMMU driver.
2430 * Must be called with the domain lock held.
2432 static dma_addr_t __map_single(struct device *dev,
2433 struct dma_ops_domain *dma_dom,
2434 phys_addr_t paddr,
2435 size_t size,
2436 int dir,
2437 bool align,
2438 u64 dma_mask)
2440 dma_addr_t offset = paddr & ~PAGE_MASK;
2441 dma_addr_t address, start, ret;
2442 unsigned int pages;
2443 unsigned long align_mask = 0;
2444 int i;
2446 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2447 paddr &= PAGE_MASK;
2449 INC_STATS_COUNTER(total_map_requests);
2451 if (pages > 1)
2452 INC_STATS_COUNTER(cross_page);
2454 if (align)
2455 align_mask = (1UL << get_order(size)) - 1;
2457 retry:
2458 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2459 dma_mask);
2460 if (unlikely(address == DMA_ERROR_CODE)) {
2462 * setting next_address here will let the address
2463 * allocator only scan the new allocated range in the
2464 * first run. This is a small optimization.
2466 dma_dom->next_address = dma_dom->aperture_size;
2468 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2469 goto out;
2472 * aperture was successfully enlarged by 128 MB, try
2473 * allocation again
2475 goto retry;
2478 start = address;
2479 for (i = 0; i < pages; ++i) {
2480 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2481 if (ret == DMA_ERROR_CODE)
2482 goto out_unmap;
2484 paddr += PAGE_SIZE;
2485 start += PAGE_SIZE;
2487 address += offset;
2489 ADD_STATS_COUNTER(alloced_io_mem, size);
2491 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2492 domain_flush_tlb(&dma_dom->domain);
2493 dma_dom->need_flush = false;
2494 } else if (unlikely(amd_iommu_np_cache))
2495 domain_flush_pages(&dma_dom->domain, address, size);
2497 out:
2498 return address;
2500 out_unmap:
2502 for (--i; i >= 0; --i) {
2503 start -= PAGE_SIZE;
2504 dma_ops_domain_unmap(dma_dom, start);
2507 dma_ops_free_addresses(dma_dom, address, pages);
2509 return DMA_ERROR_CODE;
2513 * Does the reverse of the __map_single function. Must be called with
2514 * the domain lock held too
2516 static void __unmap_single(struct dma_ops_domain *dma_dom,
2517 dma_addr_t dma_addr,
2518 size_t size,
2519 int dir)
2521 dma_addr_t flush_addr;
2522 dma_addr_t i, start;
2523 unsigned int pages;
2525 if ((dma_addr == DMA_ERROR_CODE) ||
2526 (dma_addr + size > dma_dom->aperture_size))
2527 return;
2529 flush_addr = dma_addr;
2530 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2531 dma_addr &= PAGE_MASK;
2532 start = dma_addr;
2534 for (i = 0; i < pages; ++i) {
2535 dma_ops_domain_unmap(dma_dom, start);
2536 start += PAGE_SIZE;
2539 SUB_STATS_COUNTER(alloced_io_mem, size);
2541 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2543 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2544 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2545 dma_dom->need_flush = false;
2550 * The exported map_single function for dma_ops.
2552 static dma_addr_t map_page(struct device *dev, struct page *page,
2553 unsigned long offset, size_t size,
2554 enum dma_data_direction dir,
2555 struct dma_attrs *attrs)
2557 unsigned long flags;
2558 struct protection_domain *domain;
2559 dma_addr_t addr;
2560 u64 dma_mask;
2561 phys_addr_t paddr = page_to_phys(page) + offset;
2563 INC_STATS_COUNTER(cnt_map_single);
2565 domain = get_domain(dev);
2566 if (PTR_ERR(domain) == -EINVAL)
2567 return (dma_addr_t)paddr;
2568 else if (IS_ERR(domain))
2569 return DMA_ERROR_CODE;
2571 dma_mask = *dev->dma_mask;
2573 spin_lock_irqsave(&domain->lock, flags);
2575 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2576 dma_mask);
2577 if (addr == DMA_ERROR_CODE)
2578 goto out;
2580 domain_flush_complete(domain);
2582 out:
2583 spin_unlock_irqrestore(&domain->lock, flags);
2585 return addr;
2589 * The exported unmap_single function for dma_ops.
2591 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2592 enum dma_data_direction dir, struct dma_attrs *attrs)
2594 unsigned long flags;
2595 struct protection_domain *domain;
2597 INC_STATS_COUNTER(cnt_unmap_single);
2599 domain = get_domain(dev);
2600 if (IS_ERR(domain))
2601 return;
2603 spin_lock_irqsave(&domain->lock, flags);
2605 __unmap_single(domain->priv, dma_addr, size, dir);
2607 domain_flush_complete(domain);
2609 spin_unlock_irqrestore(&domain->lock, flags);
2613 * This is a special map_sg function which is used if we should map a
2614 * device which is not handled by an AMD IOMMU in the system.
2616 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2617 int nelems, int dir)
2619 struct scatterlist *s;
2620 int i;
2622 for_each_sg(sglist, s, nelems, i) {
2623 s->dma_address = (dma_addr_t)sg_phys(s);
2624 s->dma_length = s->length;
2627 return nelems;
2631 * The exported map_sg function for dma_ops (handles scatter-gather
2632 * lists).
2634 static int map_sg(struct device *dev, struct scatterlist *sglist,
2635 int nelems, enum dma_data_direction dir,
2636 struct dma_attrs *attrs)
2638 unsigned long flags;
2639 struct protection_domain *domain;
2640 int i;
2641 struct scatterlist *s;
2642 phys_addr_t paddr;
2643 int mapped_elems = 0;
2644 u64 dma_mask;
2646 INC_STATS_COUNTER(cnt_map_sg);
2648 domain = get_domain(dev);
2649 if (PTR_ERR(domain) == -EINVAL)
2650 return map_sg_no_iommu(dev, sglist, nelems, dir);
2651 else if (IS_ERR(domain))
2652 return 0;
2654 dma_mask = *dev->dma_mask;
2656 spin_lock_irqsave(&domain->lock, flags);
2658 for_each_sg(sglist, s, nelems, i) {
2659 paddr = sg_phys(s);
2661 s->dma_address = __map_single(dev, domain->priv,
2662 paddr, s->length, dir, false,
2663 dma_mask);
2665 if (s->dma_address) {
2666 s->dma_length = s->length;
2667 mapped_elems++;
2668 } else
2669 goto unmap;
2672 domain_flush_complete(domain);
2674 out:
2675 spin_unlock_irqrestore(&domain->lock, flags);
2677 return mapped_elems;
2678 unmap:
2679 for_each_sg(sglist, s, mapped_elems, i) {
2680 if (s->dma_address)
2681 __unmap_single(domain->priv, s->dma_address,
2682 s->dma_length, dir);
2683 s->dma_address = s->dma_length = 0;
2686 mapped_elems = 0;
2688 goto out;
2692 * The exported map_sg function for dma_ops (handles scatter-gather
2693 * lists).
2695 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2696 int nelems, enum dma_data_direction dir,
2697 struct dma_attrs *attrs)
2699 unsigned long flags;
2700 struct protection_domain *domain;
2701 struct scatterlist *s;
2702 int i;
2704 INC_STATS_COUNTER(cnt_unmap_sg);
2706 domain = get_domain(dev);
2707 if (IS_ERR(domain))
2708 return;
2710 spin_lock_irqsave(&domain->lock, flags);
2712 for_each_sg(sglist, s, nelems, i) {
2713 __unmap_single(domain->priv, s->dma_address,
2714 s->dma_length, dir);
2715 s->dma_address = s->dma_length = 0;
2718 domain_flush_complete(domain);
2720 spin_unlock_irqrestore(&domain->lock, flags);
2724 * The exported alloc_coherent function for dma_ops.
2726 static void *alloc_coherent(struct device *dev, size_t size,
2727 dma_addr_t *dma_addr, gfp_t flag,
2728 struct dma_attrs *attrs)
2730 unsigned long flags;
2731 void *virt_addr;
2732 struct protection_domain *domain;
2733 phys_addr_t paddr;
2734 u64 dma_mask = dev->coherent_dma_mask;
2736 INC_STATS_COUNTER(cnt_alloc_coherent);
2738 domain = get_domain(dev);
2739 if (PTR_ERR(domain) == -EINVAL) {
2740 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2741 *dma_addr = __pa(virt_addr);
2742 return virt_addr;
2743 } else if (IS_ERR(domain))
2744 return NULL;
2746 dma_mask = dev->coherent_dma_mask;
2747 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2748 flag |= __GFP_ZERO;
2750 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2751 if (!virt_addr)
2752 return NULL;
2754 paddr = virt_to_phys(virt_addr);
2756 if (!dma_mask)
2757 dma_mask = *dev->dma_mask;
2759 spin_lock_irqsave(&domain->lock, flags);
2761 *dma_addr = __map_single(dev, domain->priv, paddr,
2762 size, DMA_BIDIRECTIONAL, true, dma_mask);
2764 if (*dma_addr == DMA_ERROR_CODE) {
2765 spin_unlock_irqrestore(&domain->lock, flags);
2766 goto out_free;
2769 domain_flush_complete(domain);
2771 spin_unlock_irqrestore(&domain->lock, flags);
2773 return virt_addr;
2775 out_free:
2777 free_pages((unsigned long)virt_addr, get_order(size));
2779 return NULL;
2783 * The exported free_coherent function for dma_ops.
2785 static void free_coherent(struct device *dev, size_t size,
2786 void *virt_addr, dma_addr_t dma_addr,
2787 struct dma_attrs *attrs)
2789 unsigned long flags;
2790 struct protection_domain *domain;
2792 INC_STATS_COUNTER(cnt_free_coherent);
2794 domain = get_domain(dev);
2795 if (IS_ERR(domain))
2796 goto free_mem;
2798 spin_lock_irqsave(&domain->lock, flags);
2800 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2802 domain_flush_complete(domain);
2804 spin_unlock_irqrestore(&domain->lock, flags);
2806 free_mem:
2807 free_pages((unsigned long)virt_addr, get_order(size));
2811 * This function is called by the DMA layer to find out if we can handle a
2812 * particular device. It is part of the dma_ops.
2814 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2816 return check_device(dev);
2820 * The function for pre-allocating protection domains.
2822 * If the driver core informs the DMA layer if a driver grabs a device
2823 * we don't need to preallocate the protection domains anymore.
2824 * For now we have to.
2826 static void __init prealloc_protection_domains(void)
2828 struct iommu_dev_data *dev_data;
2829 struct dma_ops_domain *dma_dom;
2830 struct pci_dev *dev = NULL;
2831 u16 devid;
2833 for_each_pci_dev(dev) {
2835 /* Do we handle this device? */
2836 if (!check_device(&dev->dev))
2837 continue;
2839 dev_data = get_dev_data(&dev->dev);
2840 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2841 /* Make sure passthrough domain is allocated */
2842 alloc_passthrough_domain();
2843 dev_data->passthrough = true;
2844 attach_device(&dev->dev, pt_domain);
2845 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2846 dev_name(&dev->dev));
2849 /* Is there already any domain for it? */
2850 if (domain_for_device(&dev->dev))
2851 continue;
2853 devid = get_device_id(&dev->dev);
2855 dma_dom = dma_ops_domain_alloc();
2856 if (!dma_dom)
2857 continue;
2858 init_unity_mappings_for_device(dma_dom, devid);
2859 dma_dom->target_dev = devid;
2861 attach_device(&dev->dev, &dma_dom->domain);
2863 list_add_tail(&dma_dom->list, &iommu_pd_list);
2867 static struct dma_map_ops amd_iommu_dma_ops = {
2868 .alloc = alloc_coherent,
2869 .free = free_coherent,
2870 .map_page = map_page,
2871 .unmap_page = unmap_page,
2872 .map_sg = map_sg,
2873 .unmap_sg = unmap_sg,
2874 .dma_supported = amd_iommu_dma_supported,
2877 static unsigned device_dma_ops_init(void)
2879 struct iommu_dev_data *dev_data;
2880 struct pci_dev *pdev = NULL;
2881 unsigned unhandled = 0;
2883 for_each_pci_dev(pdev) {
2884 if (!check_device(&pdev->dev)) {
2886 iommu_ignore_device(&pdev->dev);
2888 unhandled += 1;
2889 continue;
2892 dev_data = get_dev_data(&pdev->dev);
2894 if (!dev_data->passthrough)
2895 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2896 else
2897 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2900 return unhandled;
2904 * The function which clues the AMD IOMMU driver into dma_ops.
2907 void __init amd_iommu_init_api(void)
2909 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2912 int __init amd_iommu_init_dma_ops(void)
2914 struct amd_iommu *iommu;
2915 int ret, unhandled;
2918 * first allocate a default protection domain for every IOMMU we
2919 * found in the system. Devices not assigned to any other
2920 * protection domain will be assigned to the default one.
2922 for_each_iommu(iommu) {
2923 iommu->default_dom = dma_ops_domain_alloc();
2924 if (iommu->default_dom == NULL)
2925 return -ENOMEM;
2926 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2927 ret = iommu_init_unity_mappings(iommu);
2928 if (ret)
2929 goto free_domains;
2933 * Pre-allocate the protection domains for each device.
2935 prealloc_protection_domains();
2937 iommu_detected = 1;
2938 swiotlb = 0;
2940 /* Make the driver finally visible to the drivers */
2941 unhandled = device_dma_ops_init();
2942 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2943 /* There are unhandled devices - initialize swiotlb for them */
2944 swiotlb = 1;
2947 amd_iommu_stats_init();
2949 return 0;
2951 free_domains:
2953 for_each_iommu(iommu) {
2954 if (iommu->default_dom)
2955 dma_ops_domain_free(iommu->default_dom);
2958 return ret;
2961 /*****************************************************************************
2963 * The following functions belong to the exported interface of AMD IOMMU
2965 * This interface allows access to lower level functions of the IOMMU
2966 * like protection domain handling and assignement of devices to domains
2967 * which is not possible with the dma_ops interface.
2969 *****************************************************************************/
2971 static void cleanup_domain(struct protection_domain *domain)
2973 struct iommu_dev_data *dev_data, *next;
2974 unsigned long flags;
2976 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2978 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2979 __detach_device(dev_data);
2980 atomic_set(&dev_data->bind, 0);
2983 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2986 static void protection_domain_free(struct protection_domain *domain)
2988 if (!domain)
2989 return;
2991 del_domain_from_list(domain);
2993 if (domain->id)
2994 domain_id_free(domain->id);
2996 kfree(domain);
2999 static struct protection_domain *protection_domain_alloc(void)
3001 struct protection_domain *domain;
3003 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3004 if (!domain)
3005 return NULL;
3007 spin_lock_init(&domain->lock);
3008 mutex_init(&domain->api_lock);
3009 domain->id = domain_id_alloc();
3010 if (!domain->id)
3011 goto out_err;
3012 INIT_LIST_HEAD(&domain->dev_list);
3014 add_domain_to_list(domain);
3016 return domain;
3018 out_err:
3019 kfree(domain);
3021 return NULL;
3024 static int __init alloc_passthrough_domain(void)
3026 if (pt_domain != NULL)
3027 return 0;
3029 /* allocate passthrough domain */
3030 pt_domain = protection_domain_alloc();
3031 if (!pt_domain)
3032 return -ENOMEM;
3034 pt_domain->mode = PAGE_MODE_NONE;
3036 return 0;
3038 static int amd_iommu_domain_init(struct iommu_domain *dom)
3040 struct protection_domain *domain;
3042 domain = protection_domain_alloc();
3043 if (!domain)
3044 goto out_free;
3046 domain->mode = PAGE_MODE_3_LEVEL;
3047 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3048 if (!domain->pt_root)
3049 goto out_free;
3051 domain->iommu_domain = dom;
3053 dom->priv = domain;
3055 return 0;
3057 out_free:
3058 protection_domain_free(domain);
3060 return -ENOMEM;
3063 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3065 struct protection_domain *domain = dom->priv;
3067 if (!domain)
3068 return;
3070 if (domain->dev_cnt > 0)
3071 cleanup_domain(domain);
3073 BUG_ON(domain->dev_cnt != 0);
3075 if (domain->mode != PAGE_MODE_NONE)
3076 free_pagetable(domain);
3078 if (domain->flags & PD_IOMMUV2_MASK)
3079 free_gcr3_table(domain);
3081 protection_domain_free(domain);
3083 dom->priv = NULL;
3086 static void amd_iommu_detach_device(struct iommu_domain *dom,
3087 struct device *dev)
3089 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3090 struct amd_iommu *iommu;
3091 u16 devid;
3093 if (!check_device(dev))
3094 return;
3096 devid = get_device_id(dev);
3098 if (dev_data->domain != NULL)
3099 detach_device(dev);
3101 iommu = amd_iommu_rlookup_table[devid];
3102 if (!iommu)
3103 return;
3105 iommu_completion_wait(iommu);
3108 static int amd_iommu_attach_device(struct iommu_domain *dom,
3109 struct device *dev)
3111 struct protection_domain *domain = dom->priv;
3112 struct iommu_dev_data *dev_data;
3113 struct amd_iommu *iommu;
3114 int ret;
3116 if (!check_device(dev))
3117 return -EINVAL;
3119 dev_data = dev->archdata.iommu;
3121 iommu = amd_iommu_rlookup_table[dev_data->devid];
3122 if (!iommu)
3123 return -EINVAL;
3125 if (dev_data->domain)
3126 detach_device(dev);
3128 ret = attach_device(dev, domain);
3130 iommu_completion_wait(iommu);
3132 return ret;
3135 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3136 phys_addr_t paddr, size_t page_size, int iommu_prot)
3138 struct protection_domain *domain = dom->priv;
3139 int prot = 0;
3140 int ret;
3142 if (domain->mode == PAGE_MODE_NONE)
3143 return -EINVAL;
3145 if (iommu_prot & IOMMU_READ)
3146 prot |= IOMMU_PROT_IR;
3147 if (iommu_prot & IOMMU_WRITE)
3148 prot |= IOMMU_PROT_IW;
3150 mutex_lock(&domain->api_lock);
3151 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3152 mutex_unlock(&domain->api_lock);
3154 return ret;
3157 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3158 size_t page_size)
3160 struct protection_domain *domain = dom->priv;
3161 size_t unmap_size;
3163 if (domain->mode == PAGE_MODE_NONE)
3164 return -EINVAL;
3166 mutex_lock(&domain->api_lock);
3167 unmap_size = iommu_unmap_page(domain, iova, page_size);
3168 mutex_unlock(&domain->api_lock);
3170 domain_flush_tlb_pde(domain);
3172 return unmap_size;
3175 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3176 unsigned long iova)
3178 struct protection_domain *domain = dom->priv;
3179 unsigned long offset_mask;
3180 phys_addr_t paddr;
3181 u64 *pte, __pte;
3183 if (domain->mode == PAGE_MODE_NONE)
3184 return iova;
3186 pte = fetch_pte(domain, iova);
3188 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3189 return 0;
3191 if (PM_PTE_LEVEL(*pte) == 0)
3192 offset_mask = PAGE_SIZE - 1;
3193 else
3194 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3196 __pte = *pte & PM_ADDR_MASK;
3197 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3199 return paddr;
3202 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3203 unsigned long cap)
3205 switch (cap) {
3206 case IOMMU_CAP_CACHE_COHERENCY:
3207 return 1;
3210 return 0;
3213 static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3215 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3216 struct pci_dev *pdev = to_pci_dev(dev);
3217 u16 devid;
3219 if (!dev_data)
3220 return -ENODEV;
3222 if (pdev->is_virtfn || !iommu_group_mf)
3223 devid = dev_data->devid;
3224 else
3225 devid = calc_devid(pdev->bus->number,
3226 PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3228 *groupid = amd_iommu_alias_table[devid];
3230 return 0;
3233 static struct iommu_ops amd_iommu_ops = {
3234 .domain_init = amd_iommu_domain_init,
3235 .domain_destroy = amd_iommu_domain_destroy,
3236 .attach_dev = amd_iommu_attach_device,
3237 .detach_dev = amd_iommu_detach_device,
3238 .map = amd_iommu_map,
3239 .unmap = amd_iommu_unmap,
3240 .iova_to_phys = amd_iommu_iova_to_phys,
3241 .domain_has_cap = amd_iommu_domain_has_cap,
3242 .device_group = amd_iommu_device_group,
3243 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3246 /*****************************************************************************
3248 * The next functions do a basic initialization of IOMMU for pass through
3249 * mode
3251 * In passthrough mode the IOMMU is initialized and enabled but not used for
3252 * DMA-API translation.
3254 *****************************************************************************/
3256 int __init amd_iommu_init_passthrough(void)
3258 struct iommu_dev_data *dev_data;
3259 struct pci_dev *dev = NULL;
3260 struct amd_iommu *iommu;
3261 u16 devid;
3262 int ret;
3264 ret = alloc_passthrough_domain();
3265 if (ret)
3266 return ret;
3268 for_each_pci_dev(dev) {
3269 if (!check_device(&dev->dev))
3270 continue;
3272 dev_data = get_dev_data(&dev->dev);
3273 dev_data->passthrough = true;
3275 devid = get_device_id(&dev->dev);
3277 iommu = amd_iommu_rlookup_table[devid];
3278 if (!iommu)
3279 continue;
3281 attach_device(&dev->dev, pt_domain);
3284 amd_iommu_stats_init();
3286 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3288 return 0;
3291 /* IOMMUv2 specific functions */
3292 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3294 return atomic_notifier_chain_register(&ppr_notifier, nb);
3296 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3298 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3300 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3302 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3304 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3306 struct protection_domain *domain = dom->priv;
3307 unsigned long flags;
3309 spin_lock_irqsave(&domain->lock, flags);
3311 /* Update data structure */
3312 domain->mode = PAGE_MODE_NONE;
3313 domain->updated = true;
3315 /* Make changes visible to IOMMUs */
3316 update_domain(domain);
3318 /* Page-table is not visible to IOMMU anymore, so free it */
3319 free_pagetable(domain);
3321 spin_unlock_irqrestore(&domain->lock, flags);
3323 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3325 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3327 struct protection_domain *domain = dom->priv;
3328 unsigned long flags;
3329 int levels, ret;
3331 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3332 return -EINVAL;
3334 /* Number of GCR3 table levels required */
3335 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3336 levels += 1;
3338 if (levels > amd_iommu_max_glx_val)
3339 return -EINVAL;
3341 spin_lock_irqsave(&domain->lock, flags);
3344 * Save us all sanity checks whether devices already in the
3345 * domain support IOMMUv2. Just force that the domain has no
3346 * devices attached when it is switched into IOMMUv2 mode.
3348 ret = -EBUSY;
3349 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3350 goto out;
3352 ret = -ENOMEM;
3353 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3354 if (domain->gcr3_tbl == NULL)
3355 goto out;
3357 domain->glx = levels;
3358 domain->flags |= PD_IOMMUV2_MASK;
3359 domain->updated = true;
3361 update_domain(domain);
3363 ret = 0;
3365 out:
3366 spin_unlock_irqrestore(&domain->lock, flags);
3368 return ret;
3370 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3372 static int __flush_pasid(struct protection_domain *domain, int pasid,
3373 u64 address, bool size)
3375 struct iommu_dev_data *dev_data;
3376 struct iommu_cmd cmd;
3377 int i, ret;
3379 if (!(domain->flags & PD_IOMMUV2_MASK))
3380 return -EINVAL;
3382 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3385 * IOMMU TLB needs to be flushed before Device TLB to
3386 * prevent device TLB refill from IOMMU TLB
3388 for (i = 0; i < amd_iommus_present; ++i) {
3389 if (domain->dev_iommu[i] == 0)
3390 continue;
3392 ret = iommu_queue_command(amd_iommus[i], &cmd);
3393 if (ret != 0)
3394 goto out;
3397 /* Wait until IOMMU TLB flushes are complete */
3398 domain_flush_complete(domain);
3400 /* Now flush device TLBs */
3401 list_for_each_entry(dev_data, &domain->dev_list, list) {
3402 struct amd_iommu *iommu;
3403 int qdep;
3405 BUG_ON(!dev_data->ats.enabled);
3407 qdep = dev_data->ats.qdep;
3408 iommu = amd_iommu_rlookup_table[dev_data->devid];
3410 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3411 qdep, address, size);
3413 ret = iommu_queue_command(iommu, &cmd);
3414 if (ret != 0)
3415 goto out;
3418 /* Wait until all device TLBs are flushed */
3419 domain_flush_complete(domain);
3421 ret = 0;
3423 out:
3425 return ret;
3428 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3429 u64 address)
3431 INC_STATS_COUNTER(invalidate_iotlb);
3433 return __flush_pasid(domain, pasid, address, false);
3436 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3437 u64 address)
3439 struct protection_domain *domain = dom->priv;
3440 unsigned long flags;
3441 int ret;
3443 spin_lock_irqsave(&domain->lock, flags);
3444 ret = __amd_iommu_flush_page(domain, pasid, address);
3445 spin_unlock_irqrestore(&domain->lock, flags);
3447 return ret;
3449 EXPORT_SYMBOL(amd_iommu_flush_page);
3451 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3453 INC_STATS_COUNTER(invalidate_iotlb_all);
3455 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3456 true);
3459 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3461 struct protection_domain *domain = dom->priv;
3462 unsigned long flags;
3463 int ret;
3465 spin_lock_irqsave(&domain->lock, flags);
3466 ret = __amd_iommu_flush_tlb(domain, pasid);
3467 spin_unlock_irqrestore(&domain->lock, flags);
3469 return ret;
3471 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3473 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3475 int index;
3476 u64 *pte;
3478 while (true) {
3480 index = (pasid >> (9 * level)) & 0x1ff;
3481 pte = &root[index];
3483 if (level == 0)
3484 break;
3486 if (!(*pte & GCR3_VALID)) {
3487 if (!alloc)
3488 return NULL;
3490 root = (void *)get_zeroed_page(GFP_ATOMIC);
3491 if (root == NULL)
3492 return NULL;
3494 *pte = __pa(root) | GCR3_VALID;
3497 root = __va(*pte & PAGE_MASK);
3499 level -= 1;
3502 return pte;
3505 static int __set_gcr3(struct protection_domain *domain, int pasid,
3506 unsigned long cr3)
3508 u64 *pte;
3510 if (domain->mode != PAGE_MODE_NONE)
3511 return -EINVAL;
3513 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3514 if (pte == NULL)
3515 return -ENOMEM;
3517 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3519 return __amd_iommu_flush_tlb(domain, pasid);
3522 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3524 u64 *pte;
3526 if (domain->mode != PAGE_MODE_NONE)
3527 return -EINVAL;
3529 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3530 if (pte == NULL)
3531 return 0;
3533 *pte = 0;
3535 return __amd_iommu_flush_tlb(domain, pasid);
3538 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3539 unsigned long cr3)
3541 struct protection_domain *domain = dom->priv;
3542 unsigned long flags;
3543 int ret;
3545 spin_lock_irqsave(&domain->lock, flags);
3546 ret = __set_gcr3(domain, pasid, cr3);
3547 spin_unlock_irqrestore(&domain->lock, flags);
3549 return ret;
3551 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3553 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3555 struct protection_domain *domain = dom->priv;
3556 unsigned long flags;
3557 int ret;
3559 spin_lock_irqsave(&domain->lock, flags);
3560 ret = __clear_gcr3(domain, pasid);
3561 spin_unlock_irqrestore(&domain->lock, flags);
3563 return ret;
3565 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3567 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3568 int status, int tag)
3570 struct iommu_dev_data *dev_data;
3571 struct amd_iommu *iommu;
3572 struct iommu_cmd cmd;
3574 INC_STATS_COUNTER(complete_ppr);
3576 dev_data = get_dev_data(&pdev->dev);
3577 iommu = amd_iommu_rlookup_table[dev_data->devid];
3579 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3580 tag, dev_data->pri_tlp);
3582 return iommu_queue_command(iommu, &cmd);
3584 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3586 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3588 struct protection_domain *domain;
3590 domain = get_domain(&pdev->dev);
3591 if (IS_ERR(domain))
3592 return NULL;
3594 /* Only return IOMMUv2 domains */
3595 if (!(domain->flags & PD_IOMMUV2_MASK))
3596 return NULL;
3598 return domain->iommu_domain;
3600 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3602 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3604 struct iommu_dev_data *dev_data;
3606 if (!amd_iommu_v2_supported())
3607 return;
3609 dev_data = get_dev_data(&pdev->dev);
3610 dev_data->errata |= (1 << erratum);
3612 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3614 int amd_iommu_device_info(struct pci_dev *pdev,
3615 struct amd_iommu_device_info *info)
3617 int max_pasids;
3618 int pos;
3620 if (pdev == NULL || info == NULL)
3621 return -EINVAL;
3623 if (!amd_iommu_v2_supported())
3624 return -EINVAL;
3626 memset(info, 0, sizeof(*info));
3628 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3629 if (pos)
3630 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3633 if (pos)
3634 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3637 if (pos) {
3638 int features;
3640 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3641 max_pasids = min(max_pasids, (1 << 20));
3643 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3644 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3646 features = pci_pasid_features(pdev);
3647 if (features & PCI_PASID_CAP_EXEC)
3648 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3649 if (features & PCI_PASID_CAP_PRIV)
3650 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3653 return 0;
3655 EXPORT_SYMBOL(amd_iommu_device_info);