[PATCH] powerpc: Don't continue with PCI Error recovery if slot reset failed.
[linux-2.6/kmemtrace.git] / arch / powerpc / platforms / pseries / eeh.c
blobb0fa76d0c78ace1708a2bf6f2de15bc63b698f83
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
36 #undef DEBUG
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 100000
79 /* RTAS tokens */
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
86 static int ibm_configure_bridge;
88 int eeh_subsystem_enabled;
89 EXPORT_SYMBOL(eeh_subsystem_enabled);
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
99 /* System monitoring statistics */
100 static DEFINE_PER_CPU(unsigned long, no_device);
101 static DEFINE_PER_CPU(unsigned long, no_dn);
102 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
103 static DEFINE_PER_CPU(unsigned long, ignored_check);
104 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
105 static DEFINE_PER_CPU(unsigned long, false_positives);
106 static DEFINE_PER_CPU(unsigned long, ignored_failures);
107 static DEFINE_PER_CPU(unsigned long, slot_resets);
109 /* --------------------------------------------------------------- */
110 /* Below lies the EEH event infrastructure */
112 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
114 int config_addr;
115 unsigned long flags;
116 int rc;
118 /* Log the error with the rtas logger */
119 spin_lock_irqsave(&slot_errbuf_lock, flags);
120 memset(slot_errbuf, 0, eeh_error_buf_size);
122 /* Use PE configuration address, if present */
123 config_addr = pdn->eeh_config_addr;
124 if (pdn->eeh_pe_config_addr)
125 config_addr = pdn->eeh_pe_config_addr;
127 rc = rtas_call(ibm_slot_error_detail,
128 8, 1, NULL, config_addr,
129 BUID_HI(pdn->phb->buid),
130 BUID_LO(pdn->phb->buid), NULL, 0,
131 virt_to_phys(slot_errbuf),
132 eeh_error_buf_size,
133 severity);
135 if (rc == 0)
136 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
137 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
141 * read_slot_reset_state - Read the reset state of a device node's slot
142 * @dn: device node to read
143 * @rets: array to return results in
145 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
147 int token, outputs;
148 int config_addr;
150 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
151 token = ibm_read_slot_reset_state2;
152 outputs = 4;
153 } else {
154 token = ibm_read_slot_reset_state;
155 rets[2] = 0; /* fake PE Unavailable info */
156 outputs = 3;
159 /* Use PE configuration address, if present */
160 config_addr = pdn->eeh_config_addr;
161 if (pdn->eeh_pe_config_addr)
162 config_addr = pdn->eeh_pe_config_addr;
164 return rtas_call(token, 3, outputs, rets, config_addr,
165 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
169 * eeh_token_to_phys - convert EEH address token to phys address
170 * @token i/o token, should be address in the form 0xA....
172 static inline unsigned long eeh_token_to_phys(unsigned long token)
174 pte_t *ptep;
175 unsigned long pa;
177 ptep = find_linux_pte(init_mm.pgd, token);
178 if (!ptep)
179 return token;
180 pa = pte_pfn(*ptep) << PAGE_SHIFT;
182 return pa | (token & (PAGE_SIZE-1));
185 /**
186 * Return the "partitionable endpoint" (pe) under which this device lies
188 struct device_node * find_device_pe(struct device_node *dn)
190 while ((dn->parent) && PCI_DN(dn->parent) &&
191 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
192 dn = dn->parent;
194 return dn;
197 /** Mark all devices that are peers of this device as failed.
198 * Mark the device driver too, so that it can see the failure
199 * immediately; this is critical, since some drivers poll
200 * status registers in interrupts ... If a driver is polling,
201 * and the slot is frozen, then the driver can deadlock in
202 * an interrupt context, which is bad.
205 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
207 while (dn) {
208 if (PCI_DN(dn)) {
209 PCI_DN(dn)->eeh_mode |= mode_flag;
211 /* Mark the pci device driver too */
212 struct pci_dev *dev = PCI_DN(dn)->pcidev;
213 if (dev && dev->driver)
214 dev->error_state = pci_channel_io_frozen;
216 if (dn->child)
217 __eeh_mark_slot (dn->child, mode_flag);
219 dn = dn->sibling;
223 void eeh_mark_slot (struct device_node *dn, int mode_flag)
225 dn = find_device_pe (dn);
226 PCI_DN(dn)->eeh_mode |= mode_flag;
227 __eeh_mark_slot (dn->child, mode_flag);
230 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
232 while (dn) {
233 if (PCI_DN(dn)) {
234 PCI_DN(dn)->eeh_mode &= ~mode_flag;
235 PCI_DN(dn)->eeh_check_count = 0;
236 if (dn->child)
237 __eeh_clear_slot (dn->child, mode_flag);
239 dn = dn->sibling;
243 void eeh_clear_slot (struct device_node *dn, int mode_flag)
245 unsigned long flags;
246 spin_lock_irqsave(&confirm_error_lock, flags);
247 dn = find_device_pe (dn);
248 PCI_DN(dn)->eeh_mode &= ~mode_flag;
249 PCI_DN(dn)->eeh_check_count = 0;
250 __eeh_clear_slot (dn->child, mode_flag);
251 spin_unlock_irqrestore(&confirm_error_lock, flags);
255 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
256 * @dn device node
257 * @dev pci device, if known
259 * Check for an EEH failure for the given device node. Call this
260 * routine if the result of a read was all 0xff's and you want to
261 * find out if this is due to an EEH slot freeze. This routine
262 * will query firmware for the EEH status.
264 * Returns 0 if there has not been an EEH error; otherwise returns
265 * a non-zero value and queues up a slot isolation event notification.
267 * It is safe to call this routine in an interrupt context.
269 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
271 int ret;
272 int rets[3];
273 unsigned long flags;
274 struct pci_dn *pdn;
275 enum pci_channel_state state;
276 int rc = 0;
278 __get_cpu_var(total_mmio_ffs)++;
280 if (!eeh_subsystem_enabled)
281 return 0;
283 if (!dn) {
284 __get_cpu_var(no_dn)++;
285 return 0;
287 pdn = PCI_DN(dn);
289 /* Access to IO BARs might get this far and still not want checking. */
290 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
291 pdn->eeh_mode & EEH_MODE_NOCHECK) {
292 __get_cpu_var(ignored_check)++;
293 #ifdef DEBUG
294 printk ("EEH:ignored check (%x) for %s %s\n",
295 pdn->eeh_mode, pci_name (dev), dn->full_name);
296 #endif
297 return 0;
300 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
301 __get_cpu_var(no_cfg_addr)++;
302 return 0;
305 /* If we already have a pending isolation event for this
306 * slot, we know it's bad already, we don't need to check.
307 * Do this checking under a lock; as multiple PCI devices
308 * in one slot might report errors simultaneously, and we
309 * only want one error recovery routine running.
311 spin_lock_irqsave(&confirm_error_lock, flags);
312 rc = 1;
313 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
314 pdn->eeh_check_count ++;
315 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
316 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
317 pdn->eeh_check_count);
318 dump_stack();
320 /* re-read the slot reset state */
321 if (read_slot_reset_state(pdn, rets) != 0)
322 rets[0] = -1; /* reset state unknown */
324 /* If we are here, then we hit an infinite loop. Stop. */
325 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
327 goto dn_unlock;
331 * Now test for an EEH failure. This is VERY expensive.
332 * Note that the eeh_config_addr may be a parent device
333 * in the case of a device behind a bridge, or it may be
334 * function zero of a multi-function device.
335 * In any case they must share a common PHB.
337 ret = read_slot_reset_state(pdn, rets);
339 /* If the call to firmware failed, punt */
340 if (ret != 0) {
341 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
342 ret, dn->full_name);
343 __get_cpu_var(false_positives)++;
344 rc = 0;
345 goto dn_unlock;
348 /* If EEH is not supported on this device, punt. */
349 if (rets[1] != 1) {
350 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
351 ret, dn->full_name);
352 __get_cpu_var(false_positives)++;
353 rc = 0;
354 goto dn_unlock;
357 /* If not the kind of error we know about, punt. */
358 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
359 __get_cpu_var(false_positives)++;
360 rc = 0;
361 goto dn_unlock;
364 /* Note that config-io to empty slots may fail;
365 * we recognize empty because they don't have children. */
366 if ((rets[0] == 5) && (dn->child == NULL)) {
367 __get_cpu_var(false_positives)++;
368 rc = 0;
369 goto dn_unlock;
372 __get_cpu_var(slot_resets)++;
374 /* Avoid repeated reports of this failure, including problems
375 * with other functions on this device, and functions under
376 * bridges. */
377 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
378 spin_unlock_irqrestore(&confirm_error_lock, flags);
380 state = pci_channel_io_normal;
381 if ((rets[0] == 2) || (rets[0] == 4))
382 state = pci_channel_io_frozen;
383 if (rets[0] == 5)
384 state = pci_channel_io_perm_failure;
385 eeh_send_failure_event (dn, dev, state, rets[2]);
387 /* Most EEH events are due to device driver bugs. Having
388 * a stack trace will help the device-driver authors figure
389 * out what happened. So print that out. */
390 if (rets[0] != 5) dump_stack();
391 return 1;
393 dn_unlock:
394 spin_unlock_irqrestore(&confirm_error_lock, flags);
395 return rc;
398 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
401 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
402 * @token i/o token, should be address in the form 0xA....
403 * @val value, should be all 1's (XXX why do we need this arg??)
405 * Check for an EEH failure at the given token address. Call this
406 * routine if the result of a read was all 0xff's and you want to
407 * find out if this is due to an EEH slot freeze event. This routine
408 * will query firmware for the EEH status.
410 * Note this routine is safe to call in an interrupt context.
412 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
414 unsigned long addr;
415 struct pci_dev *dev;
416 struct device_node *dn;
418 /* Finding the phys addr + pci device; this is pretty quick. */
419 addr = eeh_token_to_phys((unsigned long __force) token);
420 dev = pci_get_device_by_addr(addr);
421 if (!dev) {
422 __get_cpu_var(no_device)++;
423 return val;
426 dn = pci_device_to_OF_node(dev);
427 eeh_dn_check_failure (dn, dev);
429 pci_dev_put(dev);
430 return val;
433 EXPORT_SYMBOL(eeh_check_failure);
435 /* ------------------------------------------------------------- */
436 /* The code below deals with error recovery */
438 /** Return negative value if a permanent error, else return
439 * a number of milliseconds to wait until the PCI slot is
440 * ready to be used.
442 static int
443 eeh_slot_availability(struct pci_dn *pdn)
445 int rc;
446 int rets[3];
448 rc = read_slot_reset_state(pdn, rets);
450 if (rc) return rc;
452 if (rets[1] == 0) return -1; /* EEH is not supported */
453 if (rets[0] == 0) return 0; /* Oll Korrect */
454 if (rets[0] == 5) {
455 if (rets[2] == 0) return -1; /* permanently unavailable */
456 return rets[2]; /* number of millisecs to wait */
458 if (rets[0] == 1)
459 return 250;
461 printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
462 rc, rets[0], rets[1], rets[2]);
463 return -1;
466 /** rtas_pci_slot_reset raises/lowers the pci #RST line
467 * state: 1/0 to raise/lower the #RST
469 * Clear the EEH-frozen condition on a slot. This routine
470 * asserts the PCI #RST line if the 'state' argument is '1',
471 * and drops the #RST line if 'state is '0'. This routine is
472 * safe to call in an interrupt context.
476 static void
477 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
479 int config_addr;
480 int rc;
482 BUG_ON (pdn==NULL);
484 if (!pdn->phb) {
485 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
486 pdn->node->full_name);
487 return;
490 /* Use PE configuration address, if present */
491 config_addr = pdn->eeh_config_addr;
492 if (pdn->eeh_pe_config_addr)
493 config_addr = pdn->eeh_pe_config_addr;
495 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
496 config_addr,
497 BUID_HI(pdn->phb->buid),
498 BUID_LO(pdn->phb->buid),
499 state);
500 if (rc) {
501 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
502 rc, state, pdn->node->full_name);
503 return;
507 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
508 * dn -- device node to be reset.
510 * Return 0 if success, else a non-zero value.
514 rtas_set_slot_reset(struct pci_dn *pdn)
516 int i, rc;
518 rtas_pci_slot_reset (pdn, 1);
520 /* The PCI bus requires that the reset be held high for at least
521 * a 100 milliseconds. We wait a bit longer 'just in case'. */
523 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
524 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
526 /* We might get hit with another EEH freeze as soon as the
527 * pci slot reset line is dropped. Make sure we don't miss
528 * these, and clear the flag now. */
529 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
531 rtas_pci_slot_reset (pdn, 0);
533 /* After a PCI slot has been reset, the PCI Express spec requires
534 * a 1.5 second idle time for the bus to stabilize, before starting
535 * up traffic. */
536 #define PCI_BUS_SETTLE_TIME_MSEC 1800
537 msleep (PCI_BUS_SETTLE_TIME_MSEC);
539 /* Now double check with the firmware to make sure the device is
540 * ready to be used; if not, wait for recovery. */
541 for (i=0; i<10; i++) {
542 rc = eeh_slot_availability (pdn);
543 if (rc < 0)
544 printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n", rc, pdn->node->full_name);
545 if (rc == 0)
546 return 0;
547 if (rc < 0)
548 return -1;
550 msleep (rc+100);
553 rc = eeh_slot_availability (pdn);
554 if (rc)
555 printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
557 return rc;
560 /* ------------------------------------------------------- */
561 /** Save and restore of PCI BARs
563 * Although firmware will set up BARs during boot, it doesn't
564 * set up device BAR's after a device reset, although it will,
565 * if requested, set up bridge configuration. Thus, we need to
566 * configure the PCI devices ourselves.
570 * __restore_bars - Restore the Base Address Registers
571 * Loads the PCI configuration space base address registers,
572 * the expansion ROM base address, the latency timer, and etc.
573 * from the saved values in the device node.
575 static inline void __restore_bars (struct pci_dn *pdn)
577 int i;
579 if (NULL==pdn->phb) return;
580 for (i=4; i<10; i++) {
581 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
584 /* 12 == Expansion ROM Address */
585 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
587 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
588 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
590 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
591 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
593 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
594 SAVED_BYTE(PCI_LATENCY_TIMER));
596 /* max latency, min grant, interrupt pin and line */
597 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
601 * eeh_restore_bars - restore the PCI config space info
603 * This routine performs a recursive walk to the children
604 * of this device as well.
606 void eeh_restore_bars(struct pci_dn *pdn)
608 struct device_node *dn;
609 if (!pdn)
610 return;
612 if (! pdn->eeh_is_bridge)
613 __restore_bars (pdn);
615 dn = pdn->node->child;
616 while (dn) {
617 eeh_restore_bars (PCI_DN(dn));
618 dn = dn->sibling;
623 * eeh_save_bars - save device bars
625 * Save the values of the device bars. Unlike the restore
626 * routine, this routine is *not* recursive. This is because
627 * PCI devices are added individuallly; but, for the restore,
628 * an entire slot is reset at a time.
630 void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
632 int i;
634 if (!pdev || !pdn )
635 return;
637 for (i = 0; i < 16; i++)
638 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
640 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
641 pdn->eeh_is_bridge = 1;
644 void
645 rtas_configure_bridge(struct pci_dn *pdn)
647 int config_addr;
648 int rc;
650 /* Use PE configuration address, if present */
651 config_addr = pdn->eeh_config_addr;
652 if (pdn->eeh_pe_config_addr)
653 config_addr = pdn->eeh_pe_config_addr;
655 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
656 config_addr,
657 BUID_HI(pdn->phb->buid),
658 BUID_LO(pdn->phb->buid));
659 if (rc) {
660 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
661 rc, pdn->node->full_name);
665 /* ------------------------------------------------------------- */
666 /* The code below deals with enabling EEH for devices during the
667 * early boot sequence. EEH must be enabled before any PCI probing
668 * can be done.
671 #define EEH_ENABLE 1
673 struct eeh_early_enable_info {
674 unsigned int buid_hi;
675 unsigned int buid_lo;
678 /* Enable eeh for the given device node. */
679 static void *early_enable_eeh(struct device_node *dn, void *data)
681 struct eeh_early_enable_info *info = data;
682 int ret;
683 char *status = get_property(dn, "status", NULL);
684 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
685 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
686 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
687 u32 *regs;
688 int enable;
689 struct pci_dn *pdn = PCI_DN(dn);
691 pdn->eeh_mode = 0;
692 pdn->eeh_check_count = 0;
693 pdn->eeh_freeze_count = 0;
695 if (status && strcmp(status, "ok") != 0)
696 return NULL; /* ignore devices with bad status */
698 /* Ignore bad nodes. */
699 if (!class_code || !vendor_id || !device_id)
700 return NULL;
702 /* There is nothing to check on PCI to ISA bridges */
703 if (dn->type && !strcmp(dn->type, "isa")) {
704 pdn->eeh_mode |= EEH_MODE_NOCHECK;
705 return NULL;
709 * Now decide if we are going to "Disable" EEH checking
710 * for this device. We still run with the EEH hardware active,
711 * but we won't be checking for ff's. This means a driver
712 * could return bad data (very bad!), an interrupt handler could
713 * hang waiting on status bits that won't change, etc.
714 * But there are a few cases like display devices that make sense.
716 enable = 1; /* i.e. we will do checking */
717 #if 0
718 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
719 enable = 0;
720 #endif
722 if (!enable)
723 pdn->eeh_mode |= EEH_MODE_NOCHECK;
725 /* Ok... see if this device supports EEH. Some do, some don't,
726 * and the only way to find out is to check each and every one. */
727 regs = (u32 *)get_property(dn, "reg", NULL);
728 if (regs) {
729 /* First register entry is addr (00BBSS00) */
730 /* Try to enable eeh */
731 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
732 regs[0], info->buid_hi, info->buid_lo,
733 EEH_ENABLE);
735 if (ret == 0) {
736 eeh_subsystem_enabled = 1;
737 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
738 pdn->eeh_config_addr = regs[0];
740 /* If the newer, better, ibm,get-config-addr-info is supported,
741 * then use that instead. */
742 pdn->eeh_pe_config_addr = 0;
743 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
744 unsigned int rets[2];
745 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
746 pdn->eeh_config_addr,
747 info->buid_hi, info->buid_lo,
749 if (ret == 0)
750 pdn->eeh_pe_config_addr = rets[0];
752 #ifdef DEBUG
753 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
754 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
755 #endif
756 } else {
758 /* This device doesn't support EEH, but it may have an
759 * EEH parent, in which case we mark it as supported. */
760 if (dn->parent && PCI_DN(dn->parent)
761 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
762 /* Parent supports EEH. */
763 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
764 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
765 return NULL;
768 } else {
769 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
770 dn->full_name);
773 return NULL;
777 * Initialize EEH by trying to enable it for all of the adapters in the system.
778 * As a side effect we can determine here if eeh is supported at all.
779 * Note that we leave EEH on so failed config cycles won't cause a machine
780 * check. If a user turns off EEH for a particular adapter they are really
781 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
782 * grant access to a slot if EEH isn't enabled, and so we always enable
783 * EEH for all slots/all devices.
785 * The eeh-force-off option disables EEH checking globally, for all slots.
786 * Even if force-off is set, the EEH hardware is still enabled, so that
787 * newer systems can boot.
789 void __init eeh_init(void)
791 struct device_node *phb, *np;
792 struct eeh_early_enable_info info;
794 spin_lock_init(&confirm_error_lock);
795 spin_lock_init(&slot_errbuf_lock);
797 np = of_find_node_by_path("/rtas");
798 if (np == NULL)
799 return;
801 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
802 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
803 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
804 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
805 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
806 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
807 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
809 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
810 return;
812 eeh_error_buf_size = rtas_token("rtas-error-log-max");
813 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
814 eeh_error_buf_size = 1024;
816 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
817 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
818 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
819 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
822 /* Enable EEH for all adapters. Note that eeh requires buid's */
823 for (phb = of_find_node_by_name(NULL, "pci"); phb;
824 phb = of_find_node_by_name(phb, "pci")) {
825 unsigned long buid;
827 buid = get_phb_buid(phb);
828 if (buid == 0 || PCI_DN(phb) == NULL)
829 continue;
831 info.buid_lo = BUID_LO(buid);
832 info.buid_hi = BUID_HI(buid);
833 traverse_pci_devices(phb, early_enable_eeh, &info);
836 if (eeh_subsystem_enabled)
837 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
838 else
839 printk(KERN_WARNING "EEH: No capable adapters found\n");
843 * eeh_add_device_early - enable EEH for the indicated device_node
844 * @dn: device node for which to set up EEH
846 * This routine must be used to perform EEH initialization for PCI
847 * devices that were added after system boot (e.g. hotplug, dlpar).
848 * This routine must be called before any i/o is performed to the
849 * adapter (inluding any config-space i/o).
850 * Whether this actually enables EEH or not for this device depends
851 * on the CEC architecture, type of the device, on earlier boot
852 * command-line arguments & etc.
854 void eeh_add_device_early(struct device_node *dn)
856 struct pci_controller *phb;
857 struct eeh_early_enable_info info;
859 if (!dn || !PCI_DN(dn))
860 return;
861 phb = PCI_DN(dn)->phb;
863 /* USB Bus children of PCI devices will not have BUID's */
864 if (NULL == phb || 0 == phb->buid)
865 return;
867 info.buid_hi = BUID_HI(phb->buid);
868 info.buid_lo = BUID_LO(phb->buid);
869 early_enable_eeh(dn, &info);
871 EXPORT_SYMBOL_GPL(eeh_add_device_early);
873 void eeh_add_device_tree_early(struct device_node *dn)
875 struct device_node *sib;
876 for (sib = dn->child; sib; sib = sib->sibling)
877 eeh_add_device_tree_early(sib);
878 eeh_add_device_early(dn);
880 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
883 * eeh_add_device_late - perform EEH initialization for the indicated pci device
884 * @dev: pci device for which to set up EEH
886 * This routine must be used to complete EEH initialization for PCI
887 * devices that were added after system boot (e.g. hotplug, dlpar).
889 void eeh_add_device_late(struct pci_dev *dev)
891 struct device_node *dn;
892 struct pci_dn *pdn;
894 if (!dev || !eeh_subsystem_enabled)
895 return;
897 #ifdef DEBUG
898 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
899 #endif
901 pci_dev_get (dev);
902 dn = pci_device_to_OF_node(dev);
903 pdn = PCI_DN(dn);
904 pdn->pcidev = dev;
906 pci_addr_cache_insert_device (dev);
907 eeh_save_bars(dev, pdn);
909 EXPORT_SYMBOL_GPL(eeh_add_device_late);
912 * eeh_remove_device - undo EEH setup for the indicated pci device
913 * @dev: pci device to be removed
915 * This routine should be when a device is removed from a running
916 * system (e.g. by hotplug or dlpar).
918 void eeh_remove_device(struct pci_dev *dev)
920 struct device_node *dn;
921 if (!dev || !eeh_subsystem_enabled)
922 return;
924 /* Unregister the device with the EEH/PCI address search system */
925 #ifdef DEBUG
926 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
927 #endif
928 pci_addr_cache_remove_device(dev);
930 dn = pci_device_to_OF_node(dev);
931 PCI_DN(dn)->pcidev = NULL;
932 pci_dev_put (dev);
934 EXPORT_SYMBOL_GPL(eeh_remove_device);
936 void eeh_remove_bus_device(struct pci_dev *dev)
938 eeh_remove_device(dev);
939 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
940 struct pci_bus *bus = dev->subordinate;
941 struct list_head *ln;
942 if (!bus)
943 return;
944 for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
945 struct pci_dev *pdev = pci_dev_b(ln);
946 if (pdev)
947 eeh_remove_bus_device(pdev);
951 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
953 static int proc_eeh_show(struct seq_file *m, void *v)
955 unsigned int cpu;
956 unsigned long ffs = 0, positives = 0, failures = 0;
957 unsigned long resets = 0;
958 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
960 for_each_cpu(cpu) {
961 ffs += per_cpu(total_mmio_ffs, cpu);
962 positives += per_cpu(false_positives, cpu);
963 failures += per_cpu(ignored_failures, cpu);
964 resets += per_cpu(slot_resets, cpu);
965 no_dev += per_cpu(no_device, cpu);
966 no_dn += per_cpu(no_dn, cpu);
967 no_cfg += per_cpu(no_cfg_addr, cpu);
968 no_check += per_cpu(ignored_check, cpu);
971 if (0 == eeh_subsystem_enabled) {
972 seq_printf(m, "EEH Subsystem is globally disabled\n");
973 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
974 } else {
975 seq_printf(m, "EEH Subsystem is enabled\n");
976 seq_printf(m,
977 "no device=%ld\n"
978 "no device node=%ld\n"
979 "no config address=%ld\n"
980 "check not wanted=%ld\n"
981 "eeh_total_mmio_ffs=%ld\n"
982 "eeh_false_positives=%ld\n"
983 "eeh_ignored_failures=%ld\n"
984 "eeh_slot_resets=%ld\n",
985 no_dev, no_dn, no_cfg, no_check,
986 ffs, positives, failures, resets);
989 return 0;
992 static int proc_eeh_open(struct inode *inode, struct file *file)
994 return single_open(file, proc_eeh_show, NULL);
997 static struct file_operations proc_eeh_operations = {
998 .open = proc_eeh_open,
999 .read = seq_read,
1000 .llseek = seq_lseek,
1001 .release = single_release,
1004 static int __init eeh_init_proc(void)
1006 struct proc_dir_entry *e;
1008 if (platform_is_pseries()) {
1009 e = create_proc_entry("ppc64/eeh", 0, NULL);
1010 if (e)
1011 e->proc_fops = &proc_eeh_operations;
1014 return 0;
1016 __initcall(eeh_init_proc);