[PATCH] Fix up 'linux-dvb' maintainers entry
[linux-2.6/history.git] / mm / memory.c
blobd0c834a8ce97649df37c6185f52d0c6eec4ea0bb
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
39 #include <linux/kernel_stat.h>
40 #include <linux/mm.h>
41 #include <linux/hugetlb.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/rmap-locking.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
50 #include <asm/pgalloc.h>
51 #include <asm/rmap.h>
52 #include <asm/uaccess.h>
53 #include <asm/tlb.h>
54 #include <asm/tlbflush.h>
55 #include <asm/pgtable.h>
57 #include <linux/swapops.h>
59 #ifndef CONFIG_DISCONTIGMEM
60 /* use the per-pgdat data instead for discontigmem - mbligh */
61 unsigned long max_mapnr;
62 struct page *mem_map;
64 EXPORT_SYMBOL(max_mapnr);
65 EXPORT_SYMBOL(mem_map);
66 #endif
68 unsigned long num_physpages;
69 void * high_memory;
70 struct page *highmem_start_page;
72 EXPORT_SYMBOL(num_physpages);
73 EXPORT_SYMBOL(highmem_start_page);
74 EXPORT_SYMBOL(high_memory);
77 * We special-case the C-O-W ZERO_PAGE, because it's such
78 * a common occurrence (no need to read the page to know
79 * that it's zero - better for the cache and memory subsystem).
81 static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
83 if (from == ZERO_PAGE(address)) {
84 clear_user_highpage(to, address);
85 return;
87 copy_user_highpage(to, from, address);
91 * Note: this doesn't free the actual pages themselves. That
92 * has been handled earlier when unmapping all the memory regions.
94 static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir)
96 struct page *page;
98 if (pmd_none(*dir))
99 return;
100 if (pmd_bad(*dir)) {
101 pmd_ERROR(*dir);
102 pmd_clear(dir);
103 return;
105 page = pmd_page(*dir);
106 pmd_clear(dir);
107 pgtable_remove_rmap(page);
108 pte_free_tlb(tlb, page);
111 static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir)
113 int j;
114 pmd_t * pmd;
116 if (pgd_none(*dir))
117 return;
118 if (pgd_bad(*dir)) {
119 pgd_ERROR(*dir);
120 pgd_clear(dir);
121 return;
123 pmd = pmd_offset(dir, 0);
124 pgd_clear(dir);
125 for (j = 0; j < PTRS_PER_PMD ; j++)
126 free_one_pmd(tlb, pmd+j);
127 pmd_free_tlb(tlb, pmd);
131 * This function clears all user-level page tables of a process - this
132 * is needed by execve(), so that old pages aren't in the way.
134 * Must be called with pagetable lock held.
136 void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr)
138 pgd_t * page_dir = tlb->mm->pgd;
140 page_dir += first;
141 do {
142 free_one_pgd(tlb, page_dir);
143 page_dir++;
144 } while (--nr);
147 pte_t * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
149 if (!pmd_present(*pmd)) {
150 struct page *new;
152 spin_unlock(&mm->page_table_lock);
153 new = pte_alloc_one(mm, address);
154 spin_lock(&mm->page_table_lock);
155 if (!new)
156 return NULL;
159 * Because we dropped the lock, we should re-check the
160 * entry, as somebody else could have populated it..
162 if (pmd_present(*pmd)) {
163 pte_free(new);
164 goto out;
166 pgtable_add_rmap(new, mm, address);
167 pmd_populate(mm, pmd, new);
169 out:
170 return pte_offset_map(pmd, address);
173 pte_t * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
175 if (!pmd_present(*pmd)) {
176 pte_t *new;
178 spin_unlock(&mm->page_table_lock);
179 new = pte_alloc_one_kernel(mm, address);
180 spin_lock(&mm->page_table_lock);
181 if (!new)
182 return NULL;
185 * Because we dropped the lock, we should re-check the
186 * entry, as somebody else could have populated it..
188 if (pmd_present(*pmd)) {
189 pte_free_kernel(new);
190 goto out;
192 pgtable_add_rmap(virt_to_page(new), mm, address);
193 pmd_populate_kernel(mm, pmd, new);
195 out:
196 return pte_offset_kernel(pmd, address);
198 #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
199 #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
202 * copy one vm_area from one task to the other. Assumes the page tables
203 * already present in the new task to be cleared in the whole range
204 * covered by this vma.
206 * 08Jan98 Merged into one routine from several inline routines to reduce
207 * variable count and make things faster. -jj
209 * dst->page_table_lock is held on entry and exit,
210 * but may be dropped within pmd_alloc() and pte_alloc_map().
212 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
213 struct vm_area_struct *vma)
215 pgd_t * src_pgd, * dst_pgd;
216 unsigned long address = vma->vm_start;
217 unsigned long end = vma->vm_end;
218 unsigned long cow;
219 struct pte_chain *pte_chain = NULL;
221 if (is_vm_hugetlb_page(vma))
222 return copy_hugetlb_page_range(dst, src, vma);
224 pte_chain = pte_chain_alloc(GFP_ATOMIC);
225 if (!pte_chain) {
226 spin_unlock(&dst->page_table_lock);
227 pte_chain = pte_chain_alloc(GFP_KERNEL);
228 spin_lock(&dst->page_table_lock);
229 if (!pte_chain)
230 goto nomem;
233 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
234 src_pgd = pgd_offset(src, address)-1;
235 dst_pgd = pgd_offset(dst, address)-1;
237 for (;;) {
238 pmd_t * src_pmd, * dst_pmd;
240 src_pgd++; dst_pgd++;
242 /* copy_pmd_range */
244 if (pgd_none(*src_pgd))
245 goto skip_copy_pmd_range;
246 if (pgd_bad(*src_pgd)) {
247 pgd_ERROR(*src_pgd);
248 pgd_clear(src_pgd);
249 skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
250 if (!address || (address >= end))
251 goto out;
252 continue;
255 src_pmd = pmd_offset(src_pgd, address);
256 dst_pmd = pmd_alloc(dst, dst_pgd, address);
257 if (!dst_pmd)
258 goto nomem;
260 do {
261 pte_t * src_pte, * dst_pte;
263 /* copy_pte_range */
265 if (pmd_none(*src_pmd))
266 goto skip_copy_pte_range;
267 if (pmd_bad(*src_pmd)) {
268 pmd_ERROR(*src_pmd);
269 pmd_clear(src_pmd);
270 skip_copy_pte_range:
271 address = (address + PMD_SIZE) & PMD_MASK;
272 if (address >= end)
273 goto out;
274 goto cont_copy_pmd_range;
277 dst_pte = pte_alloc_map(dst, dst_pmd, address);
278 if (!dst_pte)
279 goto nomem;
280 spin_lock(&src->page_table_lock);
281 src_pte = pte_offset_map_nested(src_pmd, address);
282 do {
283 pte_t pte = *src_pte;
284 struct page *page;
285 unsigned long pfn;
287 /* copy_one_pte */
289 if (pte_none(pte))
290 goto cont_copy_pte_range_noset;
291 /* pte contains position in swap, so copy. */
292 if (!pte_present(pte)) {
293 if (!pte_file(pte))
294 swap_duplicate(pte_to_swp_entry(pte));
295 set_pte(dst_pte, pte);
296 goto cont_copy_pte_range_noset;
298 pfn = pte_pfn(pte);
299 /* the pte points outside of valid memory, the
300 * mapping is assumed to be good, meaningful
301 * and not mapped via rmap - duplicate the
302 * mapping as is.
304 page = NULL;
305 if (pfn_valid(pfn))
306 page = pfn_to_page(pfn);
308 if (!page || PageReserved(page)) {
309 set_pte(dst_pte, pte);
310 goto cont_copy_pte_range_noset;
314 * If it's a COW mapping, write protect it both
315 * in the parent and the child
317 if (cow) {
318 ptep_set_wrprotect(src_pte);
319 pte = *src_pte;
323 * If it's a shared mapping, mark it clean in
324 * the child
326 if (vma->vm_flags & VM_SHARED)
327 pte = pte_mkclean(pte);
328 pte = pte_mkold(pte);
329 get_page(page);
330 dst->rss++;
332 set_pte(dst_pte, pte);
333 pte_chain = page_add_rmap(page, dst_pte,
334 pte_chain);
335 if (pte_chain)
336 goto cont_copy_pte_range_noset;
337 pte_chain = pte_chain_alloc(GFP_ATOMIC);
338 if (pte_chain)
339 goto cont_copy_pte_range_noset;
342 * pte_chain allocation failed, and we need to
343 * run page reclaim.
345 pte_unmap_nested(src_pte);
346 pte_unmap(dst_pte);
347 spin_unlock(&src->page_table_lock);
348 spin_unlock(&dst->page_table_lock);
349 pte_chain = pte_chain_alloc(GFP_KERNEL);
350 spin_lock(&dst->page_table_lock);
351 if (!pte_chain)
352 goto nomem;
353 spin_lock(&src->page_table_lock);
354 dst_pte = pte_offset_map(dst_pmd, address);
355 src_pte = pte_offset_map_nested(src_pmd,
356 address);
357 cont_copy_pte_range_noset:
358 address += PAGE_SIZE;
359 if (address >= end) {
360 pte_unmap_nested(src_pte);
361 pte_unmap(dst_pte);
362 goto out_unlock;
364 src_pte++;
365 dst_pte++;
366 } while ((unsigned long)src_pte & PTE_TABLE_MASK);
367 pte_unmap_nested(src_pte-1);
368 pte_unmap(dst_pte-1);
369 spin_unlock(&src->page_table_lock);
371 cont_copy_pmd_range:
372 src_pmd++;
373 dst_pmd++;
374 } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
376 out_unlock:
377 spin_unlock(&src->page_table_lock);
378 out:
379 pte_chain_free(pte_chain);
380 return 0;
381 nomem:
382 pte_chain_free(pte_chain);
383 return -ENOMEM;
386 static void
387 zap_pte_range(struct mmu_gather *tlb, pmd_t * pmd,
388 unsigned long address, unsigned long size)
390 unsigned long offset;
391 pte_t *ptep;
393 if (pmd_none(*pmd))
394 return;
395 if (pmd_bad(*pmd)) {
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398 return;
400 ptep = pte_offset_map(pmd, address);
401 offset = address & ~PMD_MASK;
402 if (offset + size > PMD_SIZE)
403 size = PMD_SIZE - offset;
404 size &= PAGE_MASK;
405 for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
406 pte_t pte = *ptep;
407 if (pte_none(pte))
408 continue;
409 if (pte_present(pte)) {
410 unsigned long pfn = pte_pfn(pte);
412 pte = ptep_get_and_clear(ptep);
413 tlb_remove_tlb_entry(tlb, ptep, address+offset);
414 if (pfn_valid(pfn)) {
415 struct page *page = pfn_to_page(pfn);
416 if (!PageReserved(page)) {
417 if (pte_dirty(pte))
418 set_page_dirty(page);
419 if (page->mapping && pte_young(pte) &&
420 !PageSwapCache(page))
421 mark_page_accessed(page);
422 tlb->freed++;
423 page_remove_rmap(page, ptep);
424 tlb_remove_page(tlb, page);
427 } else {
428 if (!pte_file(pte))
429 free_swap_and_cache(pte_to_swp_entry(pte));
430 pte_clear(ptep);
433 pte_unmap(ptep-1);
436 static void
437 zap_pmd_range(struct mmu_gather *tlb, pgd_t * dir,
438 unsigned long address, unsigned long size)
440 pmd_t * pmd;
441 unsigned long end;
443 if (pgd_none(*dir))
444 return;
445 if (pgd_bad(*dir)) {
446 pgd_ERROR(*dir);
447 pgd_clear(dir);
448 return;
450 pmd = pmd_offset(dir, address);
451 end = address + size;
452 if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
453 end = ((address + PGDIR_SIZE) & PGDIR_MASK);
454 do {
455 zap_pte_range(tlb, pmd, address, end - address);
456 address = (address + PMD_SIZE) & PMD_MASK;
457 pmd++;
458 } while (address < end);
461 void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
462 unsigned long address, unsigned long end)
464 pgd_t * dir;
466 if (is_vm_hugetlb_page(vma)) {
467 unmap_hugepage_range(vma, address, end);
468 return;
471 BUG_ON(address >= end);
473 dir = pgd_offset(vma->vm_mm, address);
474 tlb_start_vma(tlb, vma);
475 do {
476 zap_pmd_range(tlb, dir, address, end - address);
477 address = (address + PGDIR_SIZE) & PGDIR_MASK;
478 dir++;
479 } while (address && (address < end));
480 tlb_end_vma(tlb, vma);
483 /* Dispose of an entire struct mmu_gather per rescheduling point */
484 #if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
485 #define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE)
486 #endif
488 /* For UP, 256 pages at a time gives nice low latency */
489 #if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
490 #define ZAP_BLOCK_SIZE (256 * PAGE_SIZE)
491 #endif
493 /* No preempt: go for the best straight-line efficiency */
494 #if !defined(CONFIG_PREEMPT)
495 #define ZAP_BLOCK_SIZE (~(0UL))
496 #endif
499 * unmap_vmas - unmap a range of memory covered by a list of vma's
500 * @tlbp: address of the caller's struct mmu_gather
501 * @mm: the controlling mm_struct
502 * @vma: the starting vma
503 * @start_addr: virtual address at which to start unmapping
504 * @end_addr: virtual address at which to end unmapping
505 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
507 * Returns the number of vma's which were covered by the unmapping.
509 * Unmap all pages in the vma list. Called under page_table_lock.
511 * We aim to not hold page_table_lock for too long (for scheduling latency
512 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
513 * return the ending mmu_gather to the caller.
515 * Only addresses between `start' and `end' will be unmapped.
517 * The VMA list must be sorted in ascending virtual address order.
519 * unmap_vmas() assumes that the caller will flush the whole unmapped address
520 * range after unmap_vmas() returns. So the only responsibility here is to
521 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
522 * drops the lock and schedules.
524 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
525 struct vm_area_struct *vma, unsigned long start_addr,
526 unsigned long end_addr, unsigned long *nr_accounted)
528 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
529 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
530 int tlb_start_valid = 0;
531 int ret = 0;
533 if (vma) { /* debug. killme. */
534 if (end_addr <= vma->vm_start)
535 printk("%s: end_addr(0x%08lx) <= vm_start(0x%08lx)\n",
536 __FUNCTION__, end_addr, vma->vm_start);
537 if (start_addr >= vma->vm_end)
538 printk("%s: start_addr(0x%08lx) <= vm_end(0x%08lx)\n",
539 __FUNCTION__, start_addr, vma->vm_end);
542 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
543 unsigned long start;
544 unsigned long end;
546 start = max(vma->vm_start, start_addr);
547 if (start >= vma->vm_end)
548 continue;
549 end = min(vma->vm_end, end_addr);
550 if (end <= vma->vm_start)
551 continue;
553 if (vma->vm_flags & VM_ACCOUNT)
554 *nr_accounted += (end - start) >> PAGE_SHIFT;
556 ret++;
557 while (start != end) {
558 unsigned long block;
560 if (is_vm_hugetlb_page(vma))
561 block = end - start;
562 else
563 block = min(zap_bytes, end - start);
565 if (!tlb_start_valid) {
566 tlb_start = start;
567 tlb_start_valid = 1;
570 unmap_page_range(*tlbp, vma, start, start + block);
571 start += block;
572 zap_bytes -= block;
573 if ((long)zap_bytes > 0)
574 continue;
575 if (need_resched()) {
576 tlb_finish_mmu(*tlbp, tlb_start, start);
577 cond_resched_lock(&mm->page_table_lock);
578 *tlbp = tlb_gather_mmu(mm, 0);
579 tlb_start_valid = 0;
581 zap_bytes = ZAP_BLOCK_SIZE;
583 if (vma->vm_next && vma->vm_next->vm_start < vma->vm_end)
584 printk("%s: VMA list is not sorted correctly!\n",
585 __FUNCTION__);
587 return ret;
591 * zap_page_range - remove user pages in a given range
592 * @vma: vm_area_struct holding the applicable pages
593 * @address: starting address of pages to zap
594 * @size: number of bytes to zap
596 void zap_page_range(struct vm_area_struct *vma,
597 unsigned long address, unsigned long size)
599 struct mm_struct *mm = vma->vm_mm;
600 struct mmu_gather *tlb;
601 unsigned long end = address + size;
602 unsigned long nr_accounted = 0;
604 might_sleep();
606 if (is_vm_hugetlb_page(vma)) {
607 zap_hugepage_range(vma, address, size);
608 return;
611 lru_add_drain();
612 spin_lock(&mm->page_table_lock);
613 tlb = tlb_gather_mmu(mm, 0);
614 unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted);
615 tlb_finish_mmu(tlb, address, end);
616 spin_unlock(&mm->page_table_lock);
620 * Do a quick page-table lookup for a single page.
621 * mm->page_table_lock must be held.
623 struct page *
624 follow_page(struct mm_struct *mm, unsigned long address, int write)
626 pgd_t *pgd;
627 pmd_t *pmd;
628 pte_t *ptep, pte;
629 unsigned long pfn;
630 struct vm_area_struct *vma;
632 vma = hugepage_vma(mm, address);
633 if (vma)
634 return follow_huge_addr(mm, vma, address, write);
636 pgd = pgd_offset(mm, address);
637 if (pgd_none(*pgd) || pgd_bad(*pgd))
638 goto out;
640 pmd = pmd_offset(pgd, address);
641 if (pmd_none(*pmd))
642 goto out;
643 if (pmd_huge(*pmd))
644 return follow_huge_pmd(mm, address, pmd, write);
645 if (pmd_bad(*pmd))
646 goto out;
648 ptep = pte_offset_map(pmd, address);
649 if (!ptep)
650 goto out;
652 pte = *ptep;
653 pte_unmap(ptep);
654 if (pte_present(pte)) {
655 if (write && !pte_write(pte))
656 goto out;
657 if (write && !pte_dirty(pte)) {
658 struct page *page = pte_page(pte);
659 if (!PageDirty(page))
660 set_page_dirty(page);
662 pfn = pte_pfn(pte);
663 if (pfn_valid(pfn)) {
664 struct page *page = pfn_to_page(pfn);
666 mark_page_accessed(page);
667 return page;
671 out:
672 return NULL;
676 * Given a physical address, is there a useful struct page pointing to
677 * it? This may become more complex in the future if we start dealing
678 * with IO-aperture pages for direct-IO.
681 static inline struct page *get_page_map(struct page *page)
683 if (!pfn_valid(page_to_pfn(page)))
684 return 0;
685 return page;
689 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
690 unsigned long start, int len, int write, int force,
691 struct page **pages, struct vm_area_struct **vmas)
693 int i;
694 unsigned int flags;
697 * Require read or write permissions.
698 * If 'force' is set, we only require the "MAY" flags.
700 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
701 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
702 i = 0;
704 do {
705 struct vm_area_struct * vma;
707 vma = find_extend_vma(mm, start);
708 if (!vma && in_gate_area(tsk, start)) {
709 unsigned long pg = start & PAGE_MASK;
710 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
711 pgd_t *pgd;
712 pmd_t *pmd;
713 pte_t *pte;
714 if (write) /* user gate pages are read-only */
715 return i ? : -EFAULT;
716 pgd = pgd_offset_k(pg);
717 if (!pgd)
718 return i ? : -EFAULT;
719 pmd = pmd_offset(pgd, pg);
720 if (!pmd)
721 return i ? : -EFAULT;
722 pte = pte_offset_kernel(pmd, pg);
723 if (!pte || !pte_present(*pte))
724 return i ? : -EFAULT;
725 if (pages) {
726 pages[i] = pte_page(*pte);
727 get_page(pages[i]);
729 if (vmas)
730 vmas[i] = gate_vma;
731 i++;
732 start += PAGE_SIZE;
733 len--;
734 continue;
737 if (!vma || (pages && (vma->vm_flags & VM_IO))
738 || !(flags & vma->vm_flags))
739 return i ? : -EFAULT;
741 if (is_vm_hugetlb_page(vma)) {
742 i = follow_hugetlb_page(mm, vma, pages, vmas,
743 &start, &len, i);
744 continue;
746 spin_lock(&mm->page_table_lock);
747 do {
748 struct page *map;
749 while (!(map = follow_page(mm, start, write))) {
750 spin_unlock(&mm->page_table_lock);
751 switch (handle_mm_fault(mm,vma,start,write)) {
752 case VM_FAULT_MINOR:
753 tsk->min_flt++;
754 break;
755 case VM_FAULT_MAJOR:
756 tsk->maj_flt++;
757 break;
758 case VM_FAULT_SIGBUS:
759 return i ? i : -EFAULT;
760 case VM_FAULT_OOM:
761 return i ? i : -ENOMEM;
762 default:
763 BUG();
765 spin_lock(&mm->page_table_lock);
767 if (pages) {
768 pages[i] = get_page_map(map);
769 if (!pages[i]) {
770 spin_unlock(&mm->page_table_lock);
771 while (i--)
772 page_cache_release(pages[i]);
773 i = -EFAULT;
774 goto out;
776 flush_dcache_page(pages[i]);
777 if (!PageReserved(pages[i]))
778 page_cache_get(pages[i]);
780 if (vmas)
781 vmas[i] = vma;
782 i++;
783 start += PAGE_SIZE;
784 len--;
785 } while(len && start < vma->vm_end);
786 spin_unlock(&mm->page_table_lock);
787 } while(len);
788 out:
789 return i;
792 EXPORT_SYMBOL(get_user_pages);
794 static void zeromap_pte_range(pte_t * pte, unsigned long address,
795 unsigned long size, pgprot_t prot)
797 unsigned long end;
799 address &= ~PMD_MASK;
800 end = address + size;
801 if (end > PMD_SIZE)
802 end = PMD_SIZE;
803 do {
804 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
805 BUG_ON(!pte_none(*pte));
806 set_pte(pte, zero_pte);
807 address += PAGE_SIZE;
808 pte++;
809 } while (address && (address < end));
812 static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
813 unsigned long size, pgprot_t prot)
815 unsigned long base, end;
817 base = address & PGDIR_MASK;
818 address &= ~PGDIR_MASK;
819 end = address + size;
820 if (end > PGDIR_SIZE)
821 end = PGDIR_SIZE;
822 do {
823 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
824 if (!pte)
825 return -ENOMEM;
826 zeromap_pte_range(pte, base + address, end - address, prot);
827 pte_unmap(pte);
828 address = (address + PMD_SIZE) & PMD_MASK;
829 pmd++;
830 } while (address && (address < end));
831 return 0;
834 int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot)
836 int error = 0;
837 pgd_t * dir;
838 unsigned long beg = address;
839 unsigned long end = address + size;
840 struct mm_struct *mm = vma->vm_mm;
842 dir = pgd_offset(mm, address);
843 flush_cache_range(vma, beg, end);
844 if (address >= end)
845 BUG();
847 spin_lock(&mm->page_table_lock);
848 do {
849 pmd_t *pmd = pmd_alloc(mm, dir, address);
850 error = -ENOMEM;
851 if (!pmd)
852 break;
853 error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
854 if (error)
855 break;
856 address = (address + PGDIR_SIZE) & PGDIR_MASK;
857 dir++;
858 } while (address && (address < end));
860 * Why flush? zeromap_pte_range has a BUG_ON for !pte_none()
862 flush_tlb_range(vma, beg, end);
863 spin_unlock(&mm->page_table_lock);
864 return error;
868 * maps a range of physical memory into the requested pages. the old
869 * mappings are removed. any references to nonexistent pages results
870 * in null mappings (currently treated as "copy-on-access")
872 static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
873 unsigned long phys_addr, pgprot_t prot)
875 unsigned long end;
876 unsigned long pfn;
878 address &= ~PMD_MASK;
879 end = address + size;
880 if (end > PMD_SIZE)
881 end = PMD_SIZE;
882 pfn = phys_addr >> PAGE_SHIFT;
883 do {
884 BUG_ON(!pte_none(*pte));
885 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
886 set_pte(pte, pfn_pte(pfn, prot));
887 address += PAGE_SIZE;
888 pfn++;
889 pte++;
890 } while (address && (address < end));
893 static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
894 unsigned long phys_addr, pgprot_t prot)
896 unsigned long base, end;
898 base = address & PGDIR_MASK;
899 address &= ~PGDIR_MASK;
900 end = address + size;
901 if (end > PGDIR_SIZE)
902 end = PGDIR_SIZE;
903 phys_addr -= address;
904 do {
905 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
906 if (!pte)
907 return -ENOMEM;
908 remap_pte_range(pte, base + address, end - address, address + phys_addr, prot);
909 pte_unmap(pte);
910 address = (address + PMD_SIZE) & PMD_MASK;
911 pmd++;
912 } while (address && (address < end));
913 return 0;
916 /* Note: this is only safe if the mm semaphore is held when called. */
917 int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
919 int error = 0;
920 pgd_t * dir;
921 unsigned long beg = from;
922 unsigned long end = from + size;
923 struct mm_struct *mm = vma->vm_mm;
925 phys_addr -= from;
926 dir = pgd_offset(mm, from);
927 flush_cache_range(vma, beg, end);
928 if (from >= end)
929 BUG();
931 spin_lock(&mm->page_table_lock);
932 do {
933 pmd_t *pmd = pmd_alloc(mm, dir, from);
934 error = -ENOMEM;
935 if (!pmd)
936 break;
937 error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
938 if (error)
939 break;
940 from = (from + PGDIR_SIZE) & PGDIR_MASK;
941 dir++;
942 } while (from && (from < end));
944 * Why flush? remap_pte_range has a BUG_ON for !pte_none()
946 flush_tlb_range(vma, beg, end);
947 spin_unlock(&mm->page_table_lock);
948 return error;
951 EXPORT_SYMBOL(remap_page_range);
954 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
956 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
957 pte_t *page_table)
959 pte_t entry;
961 flush_cache_page(vma, address);
962 entry = pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)));
963 ptep_establish(vma, address, page_table, entry);
964 update_mmu_cache(vma, address, entry);
968 * This routine handles present pages, when users try to write
969 * to a shared page. It is done by copying the page to a new address
970 * and decrementing the shared-page counter for the old page.
972 * Goto-purists beware: the only reason for goto's here is that it results
973 * in better assembly code.. The "default" path will see no jumps at all.
975 * Note that this routine assumes that the protection checks have been
976 * done by the caller (the low-level page fault routine in most cases).
977 * Thus we can safely just mark it writable once we've done any necessary
978 * COW.
980 * We also mark the page dirty at this point even though the page will
981 * change only once the write actually happens. This avoids a few races,
982 * and potentially makes it more efficient.
984 * We hold the mm semaphore and the page_table_lock on entry and exit
985 * with the page_table_lock released.
987 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
988 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
990 struct page *old_page, *new_page;
991 unsigned long pfn = pte_pfn(pte);
992 struct pte_chain *pte_chain;
993 pte_t entry;
995 if (unlikely(!pfn_valid(pfn))) {
997 * This should really halt the system so it can be debugged or
998 * at least the kernel stops what it's doing before it corrupts
999 * data, but for the moment just pretend this is OOM.
1001 pte_unmap(page_table);
1002 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1003 address);
1004 spin_unlock(&mm->page_table_lock);
1005 return VM_FAULT_OOM;
1007 old_page = pfn_to_page(pfn);
1009 if (!TestSetPageLocked(old_page)) {
1010 int reuse = can_share_swap_page(old_page);
1011 unlock_page(old_page);
1012 if (reuse) {
1013 flush_cache_page(vma, address);
1014 entry = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte)));
1015 ptep_establish(vma, address, page_table, entry);
1016 update_mmu_cache(vma, address, entry);
1017 pte_unmap(page_table);
1018 spin_unlock(&mm->page_table_lock);
1019 return VM_FAULT_MINOR;
1022 pte_unmap(page_table);
1025 * Ok, we need to copy. Oh, well..
1027 page_cache_get(old_page);
1028 spin_unlock(&mm->page_table_lock);
1030 pte_chain = pte_chain_alloc(GFP_KERNEL);
1031 if (!pte_chain)
1032 goto no_pte_chain;
1033 new_page = alloc_page(GFP_HIGHUSER);
1034 if (!new_page)
1035 goto no_new_page;
1036 copy_cow_page(old_page,new_page,address);
1039 * Re-check the pte - we dropped the lock
1041 spin_lock(&mm->page_table_lock);
1042 page_table = pte_offset_map(pmd, address);
1043 if (pte_same(*page_table, pte)) {
1044 if (PageReserved(old_page))
1045 ++mm->rss;
1046 page_remove_rmap(old_page, page_table);
1047 break_cow(vma, new_page, address, page_table);
1048 pte_chain = page_add_rmap(new_page, page_table, pte_chain);
1049 lru_cache_add_active(new_page);
1051 /* Free the old page.. */
1052 new_page = old_page;
1054 pte_unmap(page_table);
1055 page_cache_release(new_page);
1056 page_cache_release(old_page);
1057 spin_unlock(&mm->page_table_lock);
1058 pte_chain_free(pte_chain);
1059 return VM_FAULT_MINOR;
1061 no_new_page:
1062 pte_chain_free(pte_chain);
1063 no_pte_chain:
1064 page_cache_release(old_page);
1065 return VM_FAULT_OOM;
1069 * Helper function for invalidate_mmap_range().
1070 * Both hba and hlen are page numbers in PAGE_SIZE units.
1071 * An hlen of zero blows away the entire portion file after hba.
1073 static void
1074 invalidate_mmap_range_list(struct list_head *head,
1075 unsigned long const hba,
1076 unsigned long const hlen)
1078 struct list_head *curr;
1079 unsigned long hea; /* last page of hole. */
1080 unsigned long vba;
1081 unsigned long vea; /* last page of corresponding uva hole. */
1082 struct vm_area_struct *vp;
1083 unsigned long zba;
1084 unsigned long zea;
1086 hea = hba + hlen - 1; /* avoid overflow. */
1087 if (hea < hba)
1088 hea = ULONG_MAX;
1089 list_for_each(curr, head) {
1090 vp = list_entry(curr, struct vm_area_struct, shared);
1091 vba = vp->vm_pgoff;
1092 vea = vba + ((vp->vm_end - vp->vm_start) >> PAGE_SHIFT) - 1;
1093 if (hea < vba || vea < hba)
1094 continue; /* Mapping disjoint from hole. */
1095 zba = (hba <= vba) ? vba : hba;
1096 zea = (vea <= hea) ? vea : hea;
1097 zap_page_range(vp,
1098 ((zba - vba) << PAGE_SHIFT) + vp->vm_start,
1099 (zea - zba + 1) << PAGE_SHIFT);
1104 * invalidate_mmap_range - invalidate the portion of all mmaps
1105 * in the specified address_space corresponding to the specified
1106 * page range in the underlying file.
1107 * @address_space: the address space containing mmaps to be invalidated.
1108 * @holebegin: byte in first page to invalidate, relative to the start of
1109 * the underlying file. This will be rounded down to a PAGE_SIZE
1110 * boundary. Note that this is different from vmtruncate(), which
1111 * must keep the partial page. In contrast, we must get rid of
1112 * partial pages.
1113 * @holelen: size of prospective hole in bytes. This will be rounded
1114 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1115 * end of the file.
1117 void invalidate_mmap_range(struct address_space *mapping,
1118 loff_t const holebegin, loff_t const holelen)
1120 unsigned long hba = holebegin >> PAGE_SHIFT;
1121 unsigned long hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123 /* Check for overflow. */
1124 if (sizeof(holelen) > sizeof(hlen)) {
1125 long long holeend =
1126 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 if (holeend & ~(long long)ULONG_MAX)
1129 hlen = ULONG_MAX - hba + 1;
1131 down(&mapping->i_shared_sem);
1132 /* Protect against page fault */
1133 atomic_inc(&mapping->truncate_count);
1134 if (unlikely(!list_empty(&mapping->i_mmap)))
1135 invalidate_mmap_range_list(&mapping->i_mmap, hba, hlen);
1136 if (unlikely(!list_empty(&mapping->i_mmap_shared)))
1137 invalidate_mmap_range_list(&mapping->i_mmap_shared, hba, hlen);
1138 up(&mapping->i_shared_sem);
1140 EXPORT_SYMBOL_GPL(invalidate_mmap_range);
1143 * Handle all mappings that got truncated by a "truncate()"
1144 * system call.
1146 * NOTE! We have to be ready to update the memory sharing
1147 * between the file and the memory map for a potential last
1148 * incomplete page. Ugly, but necessary.
1150 int vmtruncate(struct inode * inode, loff_t offset)
1152 struct address_space *mapping = inode->i_mapping;
1153 unsigned long limit;
1155 if (inode->i_size < offset)
1156 goto do_expand;
1157 i_size_write(inode, offset);
1158 invalidate_mmap_range(mapping, offset + PAGE_SIZE - 1, 0);
1159 truncate_inode_pages(mapping, offset);
1160 goto out_truncate;
1162 do_expand:
1163 limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
1164 if (limit != RLIM_INFINITY && offset > limit)
1165 goto out_sig;
1166 if (offset > inode->i_sb->s_maxbytes)
1167 goto out;
1168 i_size_write(inode, offset);
1170 out_truncate:
1171 if (inode->i_op && inode->i_op->truncate)
1172 inode->i_op->truncate(inode);
1173 return 0;
1174 out_sig:
1175 send_sig(SIGXFSZ, current, 0);
1176 out:
1177 return -EFBIG;
1180 EXPORT_SYMBOL(vmtruncate);
1183 * Primitive swap readahead code. We simply read an aligned block of
1184 * (1 << page_cluster) entries in the swap area. This method is chosen
1185 * because it doesn't cost us any seek time. We also make sure to queue
1186 * the 'original' request together with the readahead ones...
1188 void swapin_readahead(swp_entry_t entry)
1190 int i, num;
1191 struct page *new_page;
1192 unsigned long offset;
1195 * Get the number of handles we should do readahead io to.
1197 num = valid_swaphandles(entry, &offset);
1198 for (i = 0; i < num; offset++, i++) {
1199 /* Ok, do the async read-ahead now */
1200 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1201 offset));
1202 if (!new_page)
1203 break;
1204 page_cache_release(new_page);
1206 lru_add_drain(); /* Push any new pages onto the LRU now */
1210 * We hold the mm semaphore and the page_table_lock on entry and
1211 * should release the pagetable lock on exit..
1213 static int do_swap_page(struct mm_struct * mm,
1214 struct vm_area_struct * vma, unsigned long address,
1215 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1217 struct page *page;
1218 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1219 pte_t pte;
1220 int ret = VM_FAULT_MINOR;
1221 struct pte_chain *pte_chain = NULL;
1223 pte_unmap(page_table);
1224 spin_unlock(&mm->page_table_lock);
1225 page = lookup_swap_cache(entry);
1226 if (!page) {
1227 swapin_readahead(entry);
1228 page = read_swap_cache_async(entry);
1229 if (!page) {
1231 * Back out if somebody else faulted in this pte while
1232 * we released the page table lock.
1234 spin_lock(&mm->page_table_lock);
1235 page_table = pte_offset_map(pmd, address);
1236 if (pte_same(*page_table, orig_pte))
1237 ret = VM_FAULT_OOM;
1238 else
1239 ret = VM_FAULT_MINOR;
1240 pte_unmap(page_table);
1241 spin_unlock(&mm->page_table_lock);
1242 goto out;
1245 /* Had to read the page from swap area: Major fault */
1246 ret = VM_FAULT_MAJOR;
1247 inc_page_state(pgmajfault);
1250 mark_page_accessed(page);
1251 pte_chain = pte_chain_alloc(GFP_KERNEL);
1252 if (!pte_chain) {
1253 ret = -ENOMEM;
1254 goto out;
1256 lock_page(page);
1259 * Back out if somebody else faulted in this pte while we
1260 * released the page table lock.
1262 spin_lock(&mm->page_table_lock);
1263 page_table = pte_offset_map(pmd, address);
1264 if (!pte_same(*page_table, orig_pte)) {
1265 pte_unmap(page_table);
1266 spin_unlock(&mm->page_table_lock);
1267 unlock_page(page);
1268 page_cache_release(page);
1269 ret = VM_FAULT_MINOR;
1270 goto out;
1273 /* The page isn't present yet, go ahead with the fault. */
1275 swap_free(entry);
1276 if (vm_swap_full())
1277 remove_exclusive_swap_page(page);
1279 mm->rss++;
1280 pte = mk_pte(page, vma->vm_page_prot);
1281 if (write_access && can_share_swap_page(page))
1282 pte = pte_mkdirty(pte_mkwrite(pte));
1283 unlock_page(page);
1285 flush_icache_page(vma, page);
1286 set_pte(page_table, pte);
1287 pte_chain = page_add_rmap(page, page_table, pte_chain);
1289 /* No need to invalidate - it was non-present before */
1290 update_mmu_cache(vma, address, pte);
1291 pte_unmap(page_table);
1292 spin_unlock(&mm->page_table_lock);
1293 out:
1294 pte_chain_free(pte_chain);
1295 return ret;
1299 * We are called with the MM semaphore and page_table_lock
1300 * spinlock held to protect against concurrent faults in
1301 * multithreaded programs.
1303 static int
1304 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1305 pte_t *page_table, pmd_t *pmd, int write_access,
1306 unsigned long addr)
1308 pte_t entry;
1309 struct page * page = ZERO_PAGE(addr);
1310 struct pte_chain *pte_chain;
1311 int ret;
1313 pte_chain = pte_chain_alloc(GFP_ATOMIC);
1314 if (!pte_chain) {
1315 pte_unmap(page_table);
1316 spin_unlock(&mm->page_table_lock);
1317 pte_chain = pte_chain_alloc(GFP_KERNEL);
1318 if (!pte_chain)
1319 goto no_mem;
1320 spin_lock(&mm->page_table_lock);
1321 page_table = pte_offset_map(pmd, addr);
1324 /* Read-only mapping of ZERO_PAGE. */
1325 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1327 /* ..except if it's a write access */
1328 if (write_access) {
1329 /* Allocate our own private page. */
1330 pte_unmap(page_table);
1331 spin_unlock(&mm->page_table_lock);
1333 page = alloc_page(GFP_HIGHUSER);
1334 if (!page)
1335 goto no_mem;
1336 clear_user_highpage(page, addr);
1338 spin_lock(&mm->page_table_lock);
1339 page_table = pte_offset_map(pmd, addr);
1341 if (!pte_none(*page_table)) {
1342 pte_unmap(page_table);
1343 page_cache_release(page);
1344 spin_unlock(&mm->page_table_lock);
1345 ret = VM_FAULT_MINOR;
1346 goto out;
1348 mm->rss++;
1349 entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1350 lru_cache_add_active(page);
1351 mark_page_accessed(page);
1354 set_pte(page_table, entry);
1355 /* ignores ZERO_PAGE */
1356 pte_chain = page_add_rmap(page, page_table, pte_chain);
1357 pte_unmap(page_table);
1359 /* No need to invalidate - it was non-present before */
1360 update_mmu_cache(vma, addr, entry);
1361 spin_unlock(&mm->page_table_lock);
1362 ret = VM_FAULT_MINOR;
1363 goto out;
1365 no_mem:
1366 ret = VM_FAULT_OOM;
1367 out:
1368 pte_chain_free(pte_chain);
1369 return ret;
1373 * do_no_page() tries to create a new page mapping. It aggressively
1374 * tries to share with existing pages, but makes a separate copy if
1375 * the "write_access" parameter is true in order to avoid the next
1376 * page fault.
1378 * As this is called only for pages that do not currently exist, we
1379 * do not need to flush old virtual caches or the TLB.
1381 * This is called with the MM semaphore held and the page table
1382 * spinlock held. Exit with the spinlock released.
1384 static int
1385 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1386 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1388 struct page * new_page;
1389 struct address_space *mapping = NULL;
1390 pte_t entry;
1391 struct pte_chain *pte_chain;
1392 int sequence = 0;
1393 int ret = VM_FAULT_MINOR;
1395 if (!vma->vm_ops || !vma->vm_ops->nopage)
1396 return do_anonymous_page(mm, vma, page_table,
1397 pmd, write_access, address);
1398 pte_unmap(page_table);
1399 spin_unlock(&mm->page_table_lock);
1401 if (vma->vm_file) {
1402 mapping = vma->vm_file->f_mapping;
1403 sequence = atomic_read(&mapping->truncate_count);
1405 smp_rmb(); /* Prevent CPU from reordering lock-free ->nopage() */
1406 retry:
1407 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1409 /* no page was available -- either SIGBUS or OOM */
1410 if (new_page == NOPAGE_SIGBUS)
1411 return VM_FAULT_SIGBUS;
1412 if (new_page == NOPAGE_OOM)
1413 return VM_FAULT_OOM;
1415 pte_chain = pte_chain_alloc(GFP_KERNEL);
1416 if (!pte_chain)
1417 goto oom;
1420 * Should we do an early C-O-W break?
1422 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1423 struct page * page = alloc_page(GFP_HIGHUSER);
1424 if (!page)
1425 goto oom;
1426 copy_user_highpage(page, new_page, address);
1427 page_cache_release(new_page);
1428 lru_cache_add_active(page);
1429 new_page = page;
1432 spin_lock(&mm->page_table_lock);
1434 * For a file-backed vma, someone could have truncated or otherwise
1435 * invalidated this page. If invalidate_mmap_range got called,
1436 * retry getting the page.
1438 if (mapping &&
1439 (unlikely(sequence != atomic_read(&mapping->truncate_count)))) {
1440 sequence = atomic_read(&mapping->truncate_count);
1441 spin_unlock(&mm->page_table_lock);
1442 page_cache_release(new_page);
1443 pte_chain_free(pte_chain);
1444 goto retry;
1446 page_table = pte_offset_map(pmd, address);
1449 * This silly early PAGE_DIRTY setting removes a race
1450 * due to the bad i386 page protection. But it's valid
1451 * for other architectures too.
1453 * Note that if write_access is true, we either now have
1454 * an exclusive copy of the page, or this is a shared mapping,
1455 * so we can make it writable and dirty to avoid having to
1456 * handle that later.
1458 /* Only go through if we didn't race with anybody else... */
1459 if (pte_none(*page_table)) {
1460 if (!PageReserved(new_page))
1461 ++mm->rss;
1462 flush_icache_page(vma, new_page);
1463 entry = mk_pte(new_page, vma->vm_page_prot);
1464 if (write_access)
1465 entry = pte_mkwrite(pte_mkdirty(entry));
1466 set_pte(page_table, entry);
1467 pte_chain = page_add_rmap(new_page, page_table, pte_chain);
1468 pte_unmap(page_table);
1469 } else {
1470 /* One of our sibling threads was faster, back out. */
1471 pte_unmap(page_table);
1472 page_cache_release(new_page);
1473 spin_unlock(&mm->page_table_lock);
1474 goto out;
1477 /* no need to invalidate: a not-present page shouldn't be cached */
1478 update_mmu_cache(vma, address, entry);
1479 spin_unlock(&mm->page_table_lock);
1480 goto out;
1481 oom:
1482 page_cache_release(new_page);
1483 ret = VM_FAULT_OOM;
1484 out:
1485 pte_chain_free(pte_chain);
1486 return ret;
1490 * Fault of a previously existing named mapping. Repopulate the pte
1491 * from the encoded file_pte if possible. This enables swappable
1492 * nonlinear vmas.
1494 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1495 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1497 unsigned long pgoff;
1498 int err;
1500 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1502 * Fall back to the linear mapping if the fs does not support
1503 * ->populate:
1505 if (!vma->vm_ops || !vma->vm_ops->populate ||
1506 (write_access && !(vma->vm_flags & VM_SHARED))) {
1507 pte_clear(pte);
1508 return do_no_page(mm, vma, address, write_access, pte, pmd);
1511 pgoff = pte_to_pgoff(*pte);
1513 pte_unmap(pte);
1514 spin_unlock(&mm->page_table_lock);
1516 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1517 if (err == -ENOMEM)
1518 return VM_FAULT_OOM;
1519 if (err)
1520 return VM_FAULT_SIGBUS;
1521 return VM_FAULT_MAJOR;
1525 * These routines also need to handle stuff like marking pages dirty
1526 * and/or accessed for architectures that don't do it in hardware (most
1527 * RISC architectures). The early dirtying is also good on the i386.
1529 * There is also a hook called "update_mmu_cache()" that architectures
1530 * with external mmu caches can use to update those (ie the Sparc or
1531 * PowerPC hashed page tables that act as extended TLBs).
1533 * Note the "page_table_lock". It is to protect against kswapd removing
1534 * pages from under us. Note that kswapd only ever _removes_ pages, never
1535 * adds them. As such, once we have noticed that the page is not present,
1536 * we can drop the lock early.
1538 * The adding of pages is protected by the MM semaphore (which we hold),
1539 * so we don't need to worry about a page being suddenly been added into
1540 * our VM.
1542 * We enter with the pagetable spinlock held, we are supposed to
1543 * release it when done.
1545 static inline int handle_pte_fault(struct mm_struct *mm,
1546 struct vm_area_struct * vma, unsigned long address,
1547 int write_access, pte_t *pte, pmd_t *pmd)
1549 pte_t entry;
1551 entry = *pte;
1552 if (!pte_present(entry)) {
1554 * If it truly wasn't present, we know that kswapd
1555 * and the PTE updates will not touch it later. So
1556 * drop the lock.
1558 if (pte_none(entry))
1559 return do_no_page(mm, vma, address, write_access, pte, pmd);
1560 if (pte_file(entry))
1561 return do_file_page(mm, vma, address, write_access, pte, pmd);
1562 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1565 if (write_access) {
1566 if (!pte_write(entry))
1567 return do_wp_page(mm, vma, address, pte, pmd, entry);
1569 entry = pte_mkdirty(entry);
1571 entry = pte_mkyoung(entry);
1572 ptep_establish(vma, address, pte, entry);
1573 update_mmu_cache(vma, address, entry);
1574 pte_unmap(pte);
1575 spin_unlock(&mm->page_table_lock);
1576 return VM_FAULT_MINOR;
1580 * By the time we get here, we already hold the mm semaphore
1582 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1583 unsigned long address, int write_access)
1585 pgd_t *pgd;
1586 pmd_t *pmd;
1588 __set_current_state(TASK_RUNNING);
1589 pgd = pgd_offset(mm, address);
1591 inc_page_state(pgfault);
1593 if (is_vm_hugetlb_page(vma))
1594 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
1597 * We need the page table lock to synchronize with kswapd
1598 * and the SMP-safe atomic PTE updates.
1600 spin_lock(&mm->page_table_lock);
1601 pmd = pmd_alloc(mm, pgd, address);
1603 if (pmd) {
1604 pte_t * pte = pte_alloc_map(mm, pmd, address);
1605 if (pte)
1606 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
1608 spin_unlock(&mm->page_table_lock);
1609 return VM_FAULT_OOM;
1613 * Allocate page middle directory.
1615 * We've already handled the fast-path in-line, and we own the
1616 * page table lock.
1618 * On a two-level page table, this ends up actually being entirely
1619 * optimized away.
1621 pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1623 pmd_t *new;
1625 spin_unlock(&mm->page_table_lock);
1626 new = pmd_alloc_one(mm, address);
1627 spin_lock(&mm->page_table_lock);
1628 if (!new)
1629 return NULL;
1632 * Because we dropped the lock, we should re-check the
1633 * entry, as somebody else could have populated it..
1635 if (pgd_present(*pgd)) {
1636 pmd_free(new);
1637 goto out;
1639 pgd_populate(mm, pgd, new);
1640 out:
1641 return pmd_offset(pgd, address);
1644 int make_pages_present(unsigned long addr, unsigned long end)
1646 int ret, len, write;
1647 struct vm_area_struct * vma;
1649 vma = find_vma(current->mm, addr);
1650 write = (vma->vm_flags & VM_WRITE) != 0;
1651 if (addr >= end)
1652 BUG();
1653 if (end > vma->vm_end)
1654 BUG();
1655 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
1656 ret = get_user_pages(current, current->mm, addr,
1657 len, write, 0, NULL, NULL);
1658 if (ret < 0)
1659 return ret;
1660 return ret == len ? 0 : -1;
1664 * Map a vmalloc()-space virtual address to the physical page.
1666 struct page * vmalloc_to_page(void * vmalloc_addr)
1668 unsigned long addr = (unsigned long) vmalloc_addr;
1669 struct page *page = NULL;
1670 pgd_t *pgd = pgd_offset_k(addr);
1671 pmd_t *pmd;
1672 pte_t *ptep, pte;
1674 if (!pgd_none(*pgd)) {
1675 pmd = pmd_offset(pgd, addr);
1676 if (!pmd_none(*pmd)) {
1677 preempt_disable();
1678 ptep = pte_offset_map(pmd, addr);
1679 pte = *ptep;
1680 if (pte_present(pte))
1681 page = pte_page(pte);
1682 pte_unmap(ptep);
1683 preempt_enable();
1686 return page;
1689 EXPORT_SYMBOL(vmalloc_to_page);
1691 #if !defined(CONFIG_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR)
1692 struct vm_area_struct gate_vma;
1694 static int __init gate_vma_init(void)
1696 gate_vma.vm_mm = NULL;
1697 gate_vma.vm_start = FIXADDR_USER_START;
1698 gate_vma.vm_end = FIXADDR_USER_END;
1699 gate_vma.vm_page_prot = PAGE_READONLY;
1700 gate_vma.vm_flags = 0;
1701 return 0;
1703 __initcall(gate_vma_init);
1704 #endif