NOMMU: Remove an extraneous no_printk()
[linux-2.6/cjktty.git] / drivers / spi / spi.c
blob1bb1b88780cefc4cd69e88e15d4e1f5413c55d1e
1 /*
2 * spi.c - SPI init/core code
4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/spi/spi.h>
29 #include <linux/of_spi.h>
32 /* SPI bustype and spi_master class are registered after board init code
33 * provides the SPI device tables, ensuring that both are present by the
34 * time controller driver registration causes spi_devices to "enumerate".
36 static void spidev_release(struct device *dev)
38 struct spi_device *spi = to_spi_device(dev);
40 /* spi masters may cleanup for released devices */
41 if (spi->master->cleanup)
42 spi->master->cleanup(spi);
44 spi_master_put(spi->master);
45 kfree(spi);
48 static ssize_t
49 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
51 const struct spi_device *spi = to_spi_device(dev);
53 return sprintf(buf, "%s\n", spi->modalias);
56 static struct device_attribute spi_dev_attrs[] = {
57 __ATTR_RO(modalias),
58 __ATTR_NULL,
61 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
62 * and the sysfs version makes coldplug work too.
65 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
66 const struct spi_device *sdev)
68 while (id->name[0]) {
69 if (!strcmp(sdev->modalias, id->name))
70 return id;
71 id++;
73 return NULL;
76 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
78 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
80 return spi_match_id(sdrv->id_table, sdev);
82 EXPORT_SYMBOL_GPL(spi_get_device_id);
84 static int spi_match_device(struct device *dev, struct device_driver *drv)
86 const struct spi_device *spi = to_spi_device(dev);
87 const struct spi_driver *sdrv = to_spi_driver(drv);
89 if (sdrv->id_table)
90 return !!spi_match_id(sdrv->id_table, spi);
92 return strcmp(spi->modalias, drv->name) == 0;
95 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
97 const struct spi_device *spi = to_spi_device(dev);
99 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
100 return 0;
103 #ifdef CONFIG_PM
105 static int spi_suspend(struct device *dev, pm_message_t message)
107 int value = 0;
108 struct spi_driver *drv = to_spi_driver(dev->driver);
110 /* suspend will stop irqs and dma; no more i/o */
111 if (drv) {
112 if (drv->suspend)
113 value = drv->suspend(to_spi_device(dev), message);
114 else
115 dev_dbg(dev, "... can't suspend\n");
117 return value;
120 static int spi_resume(struct device *dev)
122 int value = 0;
123 struct spi_driver *drv = to_spi_driver(dev->driver);
125 /* resume may restart the i/o queue */
126 if (drv) {
127 if (drv->resume)
128 value = drv->resume(to_spi_device(dev));
129 else
130 dev_dbg(dev, "... can't resume\n");
132 return value;
135 #else
136 #define spi_suspend NULL
137 #define spi_resume NULL
138 #endif
140 struct bus_type spi_bus_type = {
141 .name = "spi",
142 .dev_attrs = spi_dev_attrs,
143 .match = spi_match_device,
144 .uevent = spi_uevent,
145 .suspend = spi_suspend,
146 .resume = spi_resume,
148 EXPORT_SYMBOL_GPL(spi_bus_type);
151 static int spi_drv_probe(struct device *dev)
153 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
155 return sdrv->probe(to_spi_device(dev));
158 static int spi_drv_remove(struct device *dev)
160 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
162 return sdrv->remove(to_spi_device(dev));
165 static void spi_drv_shutdown(struct device *dev)
167 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
169 sdrv->shutdown(to_spi_device(dev));
173 * spi_register_driver - register a SPI driver
174 * @sdrv: the driver to register
175 * Context: can sleep
177 int spi_register_driver(struct spi_driver *sdrv)
179 sdrv->driver.bus = &spi_bus_type;
180 if (sdrv->probe)
181 sdrv->driver.probe = spi_drv_probe;
182 if (sdrv->remove)
183 sdrv->driver.remove = spi_drv_remove;
184 if (sdrv->shutdown)
185 sdrv->driver.shutdown = spi_drv_shutdown;
186 return driver_register(&sdrv->driver);
188 EXPORT_SYMBOL_GPL(spi_register_driver);
190 /*-------------------------------------------------------------------------*/
192 /* SPI devices should normally not be created by SPI device drivers; that
193 * would make them board-specific. Similarly with SPI master drivers.
194 * Device registration normally goes into like arch/.../mach.../board-YYY.c
195 * with other readonly (flashable) information about mainboard devices.
198 struct boardinfo {
199 struct list_head list;
200 unsigned n_board_info;
201 struct spi_board_info board_info[0];
204 static LIST_HEAD(board_list);
205 static DEFINE_MUTEX(board_lock);
208 * spi_alloc_device - Allocate a new SPI device
209 * @master: Controller to which device is connected
210 * Context: can sleep
212 * Allows a driver to allocate and initialize a spi_device without
213 * registering it immediately. This allows a driver to directly
214 * fill the spi_device with device parameters before calling
215 * spi_add_device() on it.
217 * Caller is responsible to call spi_add_device() on the returned
218 * spi_device structure to add it to the SPI master. If the caller
219 * needs to discard the spi_device without adding it, then it should
220 * call spi_dev_put() on it.
222 * Returns a pointer to the new device, or NULL.
224 struct spi_device *spi_alloc_device(struct spi_master *master)
226 struct spi_device *spi;
227 struct device *dev = master->dev.parent;
229 if (!spi_master_get(master))
230 return NULL;
232 spi = kzalloc(sizeof *spi, GFP_KERNEL);
233 if (!spi) {
234 dev_err(dev, "cannot alloc spi_device\n");
235 spi_master_put(master);
236 return NULL;
239 spi->master = master;
240 spi->dev.parent = dev;
241 spi->dev.bus = &spi_bus_type;
242 spi->dev.release = spidev_release;
243 device_initialize(&spi->dev);
244 return spi;
246 EXPORT_SYMBOL_GPL(spi_alloc_device);
249 * spi_add_device - Add spi_device allocated with spi_alloc_device
250 * @spi: spi_device to register
252 * Companion function to spi_alloc_device. Devices allocated with
253 * spi_alloc_device can be added onto the spi bus with this function.
255 * Returns 0 on success; negative errno on failure
257 int spi_add_device(struct spi_device *spi)
259 static DEFINE_MUTEX(spi_add_lock);
260 struct device *dev = spi->master->dev.parent;
261 struct device *d;
262 int status;
264 /* Chipselects are numbered 0..max; validate. */
265 if (spi->chip_select >= spi->master->num_chipselect) {
266 dev_err(dev, "cs%d >= max %d\n",
267 spi->chip_select,
268 spi->master->num_chipselect);
269 return -EINVAL;
272 /* Set the bus ID string */
273 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
274 spi->chip_select);
277 /* We need to make sure there's no other device with this
278 * chipselect **BEFORE** we call setup(), else we'll trash
279 * its configuration. Lock against concurrent add() calls.
281 mutex_lock(&spi_add_lock);
283 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
284 if (d != NULL) {
285 dev_err(dev, "chipselect %d already in use\n",
286 spi->chip_select);
287 put_device(d);
288 status = -EBUSY;
289 goto done;
292 /* Drivers may modify this initial i/o setup, but will
293 * normally rely on the device being setup. Devices
294 * using SPI_CS_HIGH can't coexist well otherwise...
296 status = spi_setup(spi);
297 if (status < 0) {
298 dev_err(dev, "can't %s %s, status %d\n",
299 "setup", dev_name(&spi->dev), status);
300 goto done;
303 /* Device may be bound to an active driver when this returns */
304 status = device_add(&spi->dev);
305 if (status < 0)
306 dev_err(dev, "can't %s %s, status %d\n",
307 "add", dev_name(&spi->dev), status);
308 else
309 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
311 done:
312 mutex_unlock(&spi_add_lock);
313 return status;
315 EXPORT_SYMBOL_GPL(spi_add_device);
318 * spi_new_device - instantiate one new SPI device
319 * @master: Controller to which device is connected
320 * @chip: Describes the SPI device
321 * Context: can sleep
323 * On typical mainboards, this is purely internal; and it's not needed
324 * after board init creates the hard-wired devices. Some development
325 * platforms may not be able to use spi_register_board_info though, and
326 * this is exported so that for example a USB or parport based adapter
327 * driver could add devices (which it would learn about out-of-band).
329 * Returns the new device, or NULL.
331 struct spi_device *spi_new_device(struct spi_master *master,
332 struct spi_board_info *chip)
334 struct spi_device *proxy;
335 int status;
337 /* NOTE: caller did any chip->bus_num checks necessary.
339 * Also, unless we change the return value convention to use
340 * error-or-pointer (not NULL-or-pointer), troubleshootability
341 * suggests syslogged diagnostics are best here (ugh).
344 proxy = spi_alloc_device(master);
345 if (!proxy)
346 return NULL;
348 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
350 proxy->chip_select = chip->chip_select;
351 proxy->max_speed_hz = chip->max_speed_hz;
352 proxy->mode = chip->mode;
353 proxy->irq = chip->irq;
354 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
355 proxy->dev.platform_data = (void *) chip->platform_data;
356 proxy->controller_data = chip->controller_data;
357 proxy->controller_state = NULL;
359 status = spi_add_device(proxy);
360 if (status < 0) {
361 spi_dev_put(proxy);
362 return NULL;
365 return proxy;
367 EXPORT_SYMBOL_GPL(spi_new_device);
370 * spi_register_board_info - register SPI devices for a given board
371 * @info: array of chip descriptors
372 * @n: how many descriptors are provided
373 * Context: can sleep
375 * Board-specific early init code calls this (probably during arch_initcall)
376 * with segments of the SPI device table. Any device nodes are created later,
377 * after the relevant parent SPI controller (bus_num) is defined. We keep
378 * this table of devices forever, so that reloading a controller driver will
379 * not make Linux forget about these hard-wired devices.
381 * Other code can also call this, e.g. a particular add-on board might provide
382 * SPI devices through its expansion connector, so code initializing that board
383 * would naturally declare its SPI devices.
385 * The board info passed can safely be __initdata ... but be careful of
386 * any embedded pointers (platform_data, etc), they're copied as-is.
388 int __init
389 spi_register_board_info(struct spi_board_info const *info, unsigned n)
391 struct boardinfo *bi;
393 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
394 if (!bi)
395 return -ENOMEM;
396 bi->n_board_info = n;
397 memcpy(bi->board_info, info, n * sizeof *info);
399 mutex_lock(&board_lock);
400 list_add_tail(&bi->list, &board_list);
401 mutex_unlock(&board_lock);
402 return 0;
405 /* FIXME someone should add support for a __setup("spi", ...) that
406 * creates board info from kernel command lines
409 static void scan_boardinfo(struct spi_master *master)
411 struct boardinfo *bi;
413 mutex_lock(&board_lock);
414 list_for_each_entry(bi, &board_list, list) {
415 struct spi_board_info *chip = bi->board_info;
416 unsigned n;
418 for (n = bi->n_board_info; n > 0; n--, chip++) {
419 if (chip->bus_num != master->bus_num)
420 continue;
421 /* NOTE: this relies on spi_new_device to
422 * issue diagnostics when given bogus inputs
424 (void) spi_new_device(master, chip);
427 mutex_unlock(&board_lock);
430 /*-------------------------------------------------------------------------*/
432 static void spi_master_release(struct device *dev)
434 struct spi_master *master;
436 master = container_of(dev, struct spi_master, dev);
437 kfree(master);
440 static struct class spi_master_class = {
441 .name = "spi_master",
442 .owner = THIS_MODULE,
443 .dev_release = spi_master_release,
448 * spi_alloc_master - allocate SPI master controller
449 * @dev: the controller, possibly using the platform_bus
450 * @size: how much zeroed driver-private data to allocate; the pointer to this
451 * memory is in the driver_data field of the returned device,
452 * accessible with spi_master_get_devdata().
453 * Context: can sleep
455 * This call is used only by SPI master controller drivers, which are the
456 * only ones directly touching chip registers. It's how they allocate
457 * an spi_master structure, prior to calling spi_register_master().
459 * This must be called from context that can sleep. It returns the SPI
460 * master structure on success, else NULL.
462 * The caller is responsible for assigning the bus number and initializing
463 * the master's methods before calling spi_register_master(); and (after errors
464 * adding the device) calling spi_master_put() to prevent a memory leak.
466 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
468 struct spi_master *master;
470 if (!dev)
471 return NULL;
473 master = kzalloc(size + sizeof *master, GFP_KERNEL);
474 if (!master)
475 return NULL;
477 device_initialize(&master->dev);
478 master->dev.class = &spi_master_class;
479 master->dev.parent = get_device(dev);
480 spi_master_set_devdata(master, &master[1]);
482 return master;
484 EXPORT_SYMBOL_GPL(spi_alloc_master);
487 * spi_register_master - register SPI master controller
488 * @master: initialized master, originally from spi_alloc_master()
489 * Context: can sleep
491 * SPI master controllers connect to their drivers using some non-SPI bus,
492 * such as the platform bus. The final stage of probe() in that code
493 * includes calling spi_register_master() to hook up to this SPI bus glue.
495 * SPI controllers use board specific (often SOC specific) bus numbers,
496 * and board-specific addressing for SPI devices combines those numbers
497 * with chip select numbers. Since SPI does not directly support dynamic
498 * device identification, boards need configuration tables telling which
499 * chip is at which address.
501 * This must be called from context that can sleep. It returns zero on
502 * success, else a negative error code (dropping the master's refcount).
503 * After a successful return, the caller is responsible for calling
504 * spi_unregister_master().
506 int spi_register_master(struct spi_master *master)
508 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
509 struct device *dev = master->dev.parent;
510 int status = -ENODEV;
511 int dynamic = 0;
513 if (!dev)
514 return -ENODEV;
516 /* even if it's just one always-selected device, there must
517 * be at least one chipselect
519 if (master->num_chipselect == 0)
520 return -EINVAL;
522 /* convention: dynamically assigned bus IDs count down from the max */
523 if (master->bus_num < 0) {
524 /* FIXME switch to an IDR based scheme, something like
525 * I2C now uses, so we can't run out of "dynamic" IDs
527 master->bus_num = atomic_dec_return(&dyn_bus_id);
528 dynamic = 1;
531 /* register the device, then userspace will see it.
532 * registration fails if the bus ID is in use.
534 dev_set_name(&master->dev, "spi%u", master->bus_num);
535 status = device_add(&master->dev);
536 if (status < 0)
537 goto done;
538 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
539 dynamic ? " (dynamic)" : "");
541 /* populate children from any spi device tables */
542 scan_boardinfo(master);
543 status = 0;
545 /* Register devices from the device tree */
546 of_register_spi_devices(master);
547 done:
548 return status;
550 EXPORT_SYMBOL_GPL(spi_register_master);
553 static int __unregister(struct device *dev, void *master_dev)
555 /* note: before about 2.6.14-rc1 this would corrupt memory: */
556 if (dev != master_dev)
557 spi_unregister_device(to_spi_device(dev));
558 return 0;
562 * spi_unregister_master - unregister SPI master controller
563 * @master: the master being unregistered
564 * Context: can sleep
566 * This call is used only by SPI master controller drivers, which are the
567 * only ones directly touching chip registers.
569 * This must be called from context that can sleep.
571 void spi_unregister_master(struct spi_master *master)
573 int dummy;
575 dummy = device_for_each_child(master->dev.parent, &master->dev,
576 __unregister);
577 device_unregister(&master->dev);
579 EXPORT_SYMBOL_GPL(spi_unregister_master);
581 static int __spi_master_match(struct device *dev, void *data)
583 struct spi_master *m;
584 u16 *bus_num = data;
586 m = container_of(dev, struct spi_master, dev);
587 return m->bus_num == *bus_num;
591 * spi_busnum_to_master - look up master associated with bus_num
592 * @bus_num: the master's bus number
593 * Context: can sleep
595 * This call may be used with devices that are registered after
596 * arch init time. It returns a refcounted pointer to the relevant
597 * spi_master (which the caller must release), or NULL if there is
598 * no such master registered.
600 struct spi_master *spi_busnum_to_master(u16 bus_num)
602 struct device *dev;
603 struct spi_master *master = NULL;
605 dev = class_find_device(&spi_master_class, NULL, &bus_num,
606 __spi_master_match);
607 if (dev)
608 master = container_of(dev, struct spi_master, dev);
609 /* reference got in class_find_device */
610 return master;
612 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
615 /*-------------------------------------------------------------------------*/
617 /* Core methods for SPI master protocol drivers. Some of the
618 * other core methods are currently defined as inline functions.
622 * spi_setup - setup SPI mode and clock rate
623 * @spi: the device whose settings are being modified
624 * Context: can sleep, and no requests are queued to the device
626 * SPI protocol drivers may need to update the transfer mode if the
627 * device doesn't work with its default. They may likewise need
628 * to update clock rates or word sizes from initial values. This function
629 * changes those settings, and must be called from a context that can sleep.
630 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
631 * effect the next time the device is selected and data is transferred to
632 * or from it. When this function returns, the spi device is deselected.
634 * Note that this call will fail if the protocol driver specifies an option
635 * that the underlying controller or its driver does not support. For
636 * example, not all hardware supports wire transfers using nine bit words,
637 * LSB-first wire encoding, or active-high chipselects.
639 int spi_setup(struct spi_device *spi)
641 unsigned bad_bits;
642 int status;
644 /* help drivers fail *cleanly* when they need options
645 * that aren't supported with their current master
647 bad_bits = spi->mode & ~spi->master->mode_bits;
648 if (bad_bits) {
649 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
650 bad_bits);
651 return -EINVAL;
654 if (!spi->bits_per_word)
655 spi->bits_per_word = 8;
657 status = spi->master->setup(spi);
659 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
660 "%u bits/w, %u Hz max --> %d\n",
661 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
662 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
663 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
664 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
665 (spi->mode & SPI_LOOP) ? "loopback, " : "",
666 spi->bits_per_word, spi->max_speed_hz,
667 status);
669 return status;
671 EXPORT_SYMBOL_GPL(spi_setup);
674 * spi_async - asynchronous SPI transfer
675 * @spi: device with which data will be exchanged
676 * @message: describes the data transfers, including completion callback
677 * Context: any (irqs may be blocked, etc)
679 * This call may be used in_irq and other contexts which can't sleep,
680 * as well as from task contexts which can sleep.
682 * The completion callback is invoked in a context which can't sleep.
683 * Before that invocation, the value of message->status is undefined.
684 * When the callback is issued, message->status holds either zero (to
685 * indicate complete success) or a negative error code. After that
686 * callback returns, the driver which issued the transfer request may
687 * deallocate the associated memory; it's no longer in use by any SPI
688 * core or controller driver code.
690 * Note that although all messages to a spi_device are handled in
691 * FIFO order, messages may go to different devices in other orders.
692 * Some device might be higher priority, or have various "hard" access
693 * time requirements, for example.
695 * On detection of any fault during the transfer, processing of
696 * the entire message is aborted, and the device is deselected.
697 * Until returning from the associated message completion callback,
698 * no other spi_message queued to that device will be processed.
699 * (This rule applies equally to all the synchronous transfer calls,
700 * which are wrappers around this core asynchronous primitive.)
702 int spi_async(struct spi_device *spi, struct spi_message *message)
704 struct spi_master *master = spi->master;
706 /* Half-duplex links include original MicroWire, and ones with
707 * only one data pin like SPI_3WIRE (switches direction) or where
708 * either MOSI or MISO is missing. They can also be caused by
709 * software limitations.
711 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
712 || (spi->mode & SPI_3WIRE)) {
713 struct spi_transfer *xfer;
714 unsigned flags = master->flags;
716 list_for_each_entry(xfer, &message->transfers, transfer_list) {
717 if (xfer->rx_buf && xfer->tx_buf)
718 return -EINVAL;
719 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
720 return -EINVAL;
721 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
722 return -EINVAL;
726 message->spi = spi;
727 message->status = -EINPROGRESS;
728 return master->transfer(spi, message);
730 EXPORT_SYMBOL_GPL(spi_async);
733 /*-------------------------------------------------------------------------*/
735 /* Utility methods for SPI master protocol drivers, layered on
736 * top of the core. Some other utility methods are defined as
737 * inline functions.
740 static void spi_complete(void *arg)
742 complete(arg);
746 * spi_sync - blocking/synchronous SPI data transfers
747 * @spi: device with which data will be exchanged
748 * @message: describes the data transfers
749 * Context: can sleep
751 * This call may only be used from a context that may sleep. The sleep
752 * is non-interruptible, and has no timeout. Low-overhead controller
753 * drivers may DMA directly into and out of the message buffers.
755 * Note that the SPI device's chip select is active during the message,
756 * and then is normally disabled between messages. Drivers for some
757 * frequently-used devices may want to minimize costs of selecting a chip,
758 * by leaving it selected in anticipation that the next message will go
759 * to the same chip. (That may increase power usage.)
761 * Also, the caller is guaranteeing that the memory associated with the
762 * message will not be freed before this call returns.
764 * It returns zero on success, else a negative error code.
766 int spi_sync(struct spi_device *spi, struct spi_message *message)
768 DECLARE_COMPLETION_ONSTACK(done);
769 int status;
771 message->complete = spi_complete;
772 message->context = &done;
773 status = spi_async(spi, message);
774 if (status == 0) {
775 wait_for_completion(&done);
776 status = message->status;
778 message->context = NULL;
779 return status;
781 EXPORT_SYMBOL_GPL(spi_sync);
783 /* portable code must never pass more than 32 bytes */
784 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
786 static u8 *buf;
789 * spi_write_then_read - SPI synchronous write followed by read
790 * @spi: device with which data will be exchanged
791 * @txbuf: data to be written (need not be dma-safe)
792 * @n_tx: size of txbuf, in bytes
793 * @rxbuf: buffer into which data will be read (need not be dma-safe)
794 * @n_rx: size of rxbuf, in bytes
795 * Context: can sleep
797 * This performs a half duplex MicroWire style transaction with the
798 * device, sending txbuf and then reading rxbuf. The return value
799 * is zero for success, else a negative errno status code.
800 * This call may only be used from a context that may sleep.
802 * Parameters to this routine are always copied using a small buffer;
803 * portable code should never use this for more than 32 bytes.
804 * Performance-sensitive or bulk transfer code should instead use
805 * spi_{async,sync}() calls with dma-safe buffers.
807 int spi_write_then_read(struct spi_device *spi,
808 const u8 *txbuf, unsigned n_tx,
809 u8 *rxbuf, unsigned n_rx)
811 static DEFINE_MUTEX(lock);
813 int status;
814 struct spi_message message;
815 struct spi_transfer x[2];
816 u8 *local_buf;
818 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
819 * (as a pure convenience thing), but we can keep heap costs
820 * out of the hot path ...
822 if ((n_tx + n_rx) > SPI_BUFSIZ)
823 return -EINVAL;
825 spi_message_init(&message);
826 memset(x, 0, sizeof x);
827 if (n_tx) {
828 x[0].len = n_tx;
829 spi_message_add_tail(&x[0], &message);
831 if (n_rx) {
832 x[1].len = n_rx;
833 spi_message_add_tail(&x[1], &message);
836 /* ... unless someone else is using the pre-allocated buffer */
837 if (!mutex_trylock(&lock)) {
838 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
839 if (!local_buf)
840 return -ENOMEM;
841 } else
842 local_buf = buf;
844 memcpy(local_buf, txbuf, n_tx);
845 x[0].tx_buf = local_buf;
846 x[1].rx_buf = local_buf + n_tx;
848 /* do the i/o */
849 status = spi_sync(spi, &message);
850 if (status == 0)
851 memcpy(rxbuf, x[1].rx_buf, n_rx);
853 if (x[0].tx_buf == buf)
854 mutex_unlock(&lock);
855 else
856 kfree(local_buf);
858 return status;
860 EXPORT_SYMBOL_GPL(spi_write_then_read);
862 /*-------------------------------------------------------------------------*/
864 static int __init spi_init(void)
866 int status;
868 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
869 if (!buf) {
870 status = -ENOMEM;
871 goto err0;
874 status = bus_register(&spi_bus_type);
875 if (status < 0)
876 goto err1;
878 status = class_register(&spi_master_class);
879 if (status < 0)
880 goto err2;
881 return 0;
883 err2:
884 bus_unregister(&spi_bus_type);
885 err1:
886 kfree(buf);
887 buf = NULL;
888 err0:
889 return status;
892 /* board_info is normally registered in arch_initcall(),
893 * but even essential drivers wait till later
895 * REVISIT only boardinfo really needs static linking. the rest (device and
896 * driver registration) _could_ be dynamically linked (modular) ... costs
897 * include needing to have boardinfo data structures be much more public.
899 postcore_initcall(spi_init);