y2038: ipc: Enable COMPAT_32BIT_TIME
[linux-2.6/btrfs-unstable.git] / ipc / sem.c
blobcfd94d48a9aa7ad719ed17e2e9f1a2d53ca028ee
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
89 #include <linux/uaccess.h>
90 #include "util.h"
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 int semval; /* current value */
96 * PID of the process that last modified the semaphore. For
97 * Linux, specifically these are:
98 * - semop
99 * - semctl, via SETVAL and SETALL.
100 * - at task exit when performing undo adjustments (see exit_sem).
102 struct pid *sempid;
103 spinlock_t lock; /* spinlock for fine-grained semtimedop */
104 struct list_head pending_alter; /* pending single-sop operations */
105 /* that alter the semaphore */
106 struct list_head pending_const; /* pending single-sop operations */
107 /* that do not alter the semaphore*/
108 time64_t sem_otime; /* candidate for sem_otime */
109 } ____cacheline_aligned_in_smp;
111 /* One sem_array data structure for each set of semaphores in the system. */
112 struct sem_array {
113 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
114 time64_t sem_ctime; /* create/last semctl() time */
115 struct list_head pending_alter; /* pending operations */
116 /* that alter the array */
117 struct list_head pending_const; /* pending complex operations */
118 /* that do not alter semvals */
119 struct list_head list_id; /* undo requests on this array */
120 int sem_nsems; /* no. of semaphores in array */
121 int complex_count; /* pending complex operations */
122 unsigned int use_global_lock;/* >0: global lock required */
124 struct sem sems[];
125 } __randomize_layout;
127 /* One queue for each sleeping process in the system. */
128 struct sem_queue {
129 struct list_head list; /* queue of pending operations */
130 struct task_struct *sleeper; /* this process */
131 struct sem_undo *undo; /* undo structure */
132 struct pid *pid; /* process id of requesting process */
133 int status; /* completion status of operation */
134 struct sembuf *sops; /* array of pending operations */
135 struct sembuf *blocking; /* the operation that blocked */
136 int nsops; /* number of operations */
137 bool alter; /* does *sops alter the array? */
138 bool dupsop; /* sops on more than one sem_num */
141 /* Each task has a list of undo requests. They are executed automatically
142 * when the process exits.
144 struct sem_undo {
145 struct list_head list_proc; /* per-process list: *
146 * all undos from one process
147 * rcu protected */
148 struct rcu_head rcu; /* rcu struct for sem_undo */
149 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
150 struct list_head list_id; /* per semaphore array list:
151 * all undos for one array */
152 int semid; /* semaphore set identifier */
153 short *semadj; /* array of adjustments */
154 /* one per semaphore */
157 /* sem_undo_list controls shared access to the list of sem_undo structures
158 * that may be shared among all a CLONE_SYSVSEM task group.
160 struct sem_undo_list {
161 refcount_t refcnt;
162 spinlock_t lock;
163 struct list_head list_proc;
167 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
169 static int newary(struct ipc_namespace *, struct ipc_params *);
170 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
171 #ifdef CONFIG_PROC_FS
172 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
173 #endif
175 #define SEMMSL_FAST 256 /* 512 bytes on stack */
176 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179 * Switching from the mode suitable for simple ops
180 * to the mode for complex ops is costly. Therefore:
181 * use some hysteresis
183 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186 * Locking:
187 * a) global sem_lock() for read/write
188 * sem_undo.id_next,
189 * sem_array.complex_count,
190 * sem_array.pending{_alter,_const},
191 * sem_array.sem_undo
193 * b) global or semaphore sem_lock() for read/write:
194 * sem_array.sems[i].pending_{const,alter}:
196 * c) special:
197 * sem_undo_list.list_proc:
198 * * undo_list->lock for write
199 * * rcu for read
200 * use_global_lock:
201 * * global sem_lock() for write
202 * * either local or global sem_lock() for read.
204 * Memory ordering:
205 * Most ordering is enforced by using spin_lock() and spin_unlock().
206 * The special case is use_global_lock:
207 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
208 * using smp_store_release().
209 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
210 * smp_load_acquire().
211 * Setting it from 0 to non-zero must be ordered with regards to
212 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
213 * is inside a spin_lock() and after a write from 0 to non-zero a
214 * spin_lock()+spin_unlock() is done.
217 #define sc_semmsl sem_ctls[0]
218 #define sc_semmns sem_ctls[1]
219 #define sc_semopm sem_ctls[2]
220 #define sc_semmni sem_ctls[3]
222 int sem_init_ns(struct ipc_namespace *ns)
224 ns->sc_semmsl = SEMMSL;
225 ns->sc_semmns = SEMMNS;
226 ns->sc_semopm = SEMOPM;
227 ns->sc_semmni = SEMMNI;
228 ns->used_sems = 0;
229 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 #ifdef CONFIG_IPC_NS
233 void sem_exit_ns(struct ipc_namespace *ns)
235 free_ipcs(ns, &sem_ids(ns), freeary);
236 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
237 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
239 #endif
241 int __init sem_init(void)
243 const int err = sem_init_ns(&init_ipc_ns);
245 ipc_init_proc_interface("sysvipc/sem",
246 " key semid perms nsems uid gid cuid cgid otime ctime\n",
247 IPC_SEM_IDS, sysvipc_sem_proc_show);
248 return err;
252 * unmerge_queues - unmerge queues, if possible.
253 * @sma: semaphore array
255 * The function unmerges the wait queues if complex_count is 0.
256 * It must be called prior to dropping the global semaphore array lock.
258 static void unmerge_queues(struct sem_array *sma)
260 struct sem_queue *q, *tq;
262 /* complex operations still around? */
263 if (sma->complex_count)
264 return;
266 * We will switch back to simple mode.
267 * Move all pending operation back into the per-semaphore
268 * queues.
270 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
271 struct sem *curr;
272 curr = &sma->sems[q->sops[0].sem_num];
274 list_add_tail(&q->list, &curr->pending_alter);
276 INIT_LIST_HEAD(&sma->pending_alter);
280 * merge_queues - merge single semop queues into global queue
281 * @sma: semaphore array
283 * This function merges all per-semaphore queues into the global queue.
284 * It is necessary to achieve FIFO ordering for the pending single-sop
285 * operations when a multi-semop operation must sleep.
286 * Only the alter operations must be moved, the const operations can stay.
288 static void merge_queues(struct sem_array *sma)
290 int i;
291 for (i = 0; i < sma->sem_nsems; i++) {
292 struct sem *sem = &sma->sems[i];
294 list_splice_init(&sem->pending_alter, &sma->pending_alter);
298 static void sem_rcu_free(struct rcu_head *head)
300 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
301 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
303 security_sem_free(&sma->sem_perm);
304 kvfree(sma);
308 * Enter the mode suitable for non-simple operations:
309 * Caller must own sem_perm.lock.
311 static void complexmode_enter(struct sem_array *sma)
313 int i;
314 struct sem *sem;
316 if (sma->use_global_lock > 0) {
318 * We are already in global lock mode.
319 * Nothing to do, just reset the
320 * counter until we return to simple mode.
322 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
323 return;
325 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
327 for (i = 0; i < sma->sem_nsems; i++) {
328 sem = &sma->sems[i];
329 spin_lock(&sem->lock);
330 spin_unlock(&sem->lock);
335 * Try to leave the mode that disallows simple operations:
336 * Caller must own sem_perm.lock.
338 static void complexmode_tryleave(struct sem_array *sma)
340 if (sma->complex_count) {
341 /* Complex ops are sleeping.
342 * We must stay in complex mode
344 return;
346 if (sma->use_global_lock == 1) {
348 * Immediately after setting use_global_lock to 0,
349 * a simple op can start. Thus: all memory writes
350 * performed by the current operation must be visible
351 * before we set use_global_lock to 0.
353 smp_store_release(&sma->use_global_lock, 0);
354 } else {
355 sma->use_global_lock--;
359 #define SEM_GLOBAL_LOCK (-1)
361 * If the request contains only one semaphore operation, and there are
362 * no complex transactions pending, lock only the semaphore involved.
363 * Otherwise, lock the entire semaphore array, since we either have
364 * multiple semaphores in our own semops, or we need to look at
365 * semaphores from other pending complex operations.
367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
368 int nsops)
370 struct sem *sem;
372 if (nsops != 1) {
373 /* Complex operation - acquire a full lock */
374 ipc_lock_object(&sma->sem_perm);
376 /* Prevent parallel simple ops */
377 complexmode_enter(sma);
378 return SEM_GLOBAL_LOCK;
382 * Only one semaphore affected - try to optimize locking.
383 * Optimized locking is possible if no complex operation
384 * is either enqueued or processed right now.
386 * Both facts are tracked by use_global_mode.
388 sem = &sma->sems[sops->sem_num];
391 * Initial check for use_global_lock. Just an optimization,
392 * no locking, no memory barrier.
394 if (!sma->use_global_lock) {
396 * It appears that no complex operation is around.
397 * Acquire the per-semaphore lock.
399 spin_lock(&sem->lock);
401 /* pairs with smp_store_release() */
402 if (!smp_load_acquire(&sma->use_global_lock)) {
403 /* fast path successful! */
404 return sops->sem_num;
406 spin_unlock(&sem->lock);
409 /* slow path: acquire the full lock */
410 ipc_lock_object(&sma->sem_perm);
412 if (sma->use_global_lock == 0) {
414 * The use_global_lock mode ended while we waited for
415 * sma->sem_perm.lock. Thus we must switch to locking
416 * with sem->lock.
417 * Unlike in the fast path, there is no need to recheck
418 * sma->use_global_lock after we have acquired sem->lock:
419 * We own sma->sem_perm.lock, thus use_global_lock cannot
420 * change.
422 spin_lock(&sem->lock);
424 ipc_unlock_object(&sma->sem_perm);
425 return sops->sem_num;
426 } else {
428 * Not a false alarm, thus continue to use the global lock
429 * mode. No need for complexmode_enter(), this was done by
430 * the caller that has set use_global_mode to non-zero.
432 return SEM_GLOBAL_LOCK;
436 static inline void sem_unlock(struct sem_array *sma, int locknum)
438 if (locknum == SEM_GLOBAL_LOCK) {
439 unmerge_queues(sma);
440 complexmode_tryleave(sma);
441 ipc_unlock_object(&sma->sem_perm);
442 } else {
443 struct sem *sem = &sma->sems[locknum];
444 spin_unlock(&sem->lock);
449 * sem_lock_(check_) routines are called in the paths where the rwsem
450 * is not held.
452 * The caller holds the RCU read lock.
454 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
456 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
458 if (IS_ERR(ipcp))
459 return ERR_CAST(ipcp);
461 return container_of(ipcp, struct sem_array, sem_perm);
464 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
465 int id)
467 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
469 if (IS_ERR(ipcp))
470 return ERR_CAST(ipcp);
472 return container_of(ipcp, struct sem_array, sem_perm);
475 static inline void sem_lock_and_putref(struct sem_array *sma)
477 sem_lock(sma, NULL, -1);
478 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
481 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
483 ipc_rmid(&sem_ids(ns), &s->sem_perm);
486 static struct sem_array *sem_alloc(size_t nsems)
488 struct sem_array *sma;
489 size_t size;
491 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
492 return NULL;
494 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
495 sma = kvmalloc(size, GFP_KERNEL);
496 if (unlikely(!sma))
497 return NULL;
499 memset(sma, 0, size);
501 return sma;
505 * newary - Create a new semaphore set
506 * @ns: namespace
507 * @params: ptr to the structure that contains key, semflg and nsems
509 * Called with sem_ids.rwsem held (as a writer)
511 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
513 int retval;
514 struct sem_array *sma;
515 key_t key = params->key;
516 int nsems = params->u.nsems;
517 int semflg = params->flg;
518 int i;
520 if (!nsems)
521 return -EINVAL;
522 if (ns->used_sems + nsems > ns->sc_semmns)
523 return -ENOSPC;
525 sma = sem_alloc(nsems);
526 if (!sma)
527 return -ENOMEM;
529 sma->sem_perm.mode = (semflg & S_IRWXUGO);
530 sma->sem_perm.key = key;
532 sma->sem_perm.security = NULL;
533 retval = security_sem_alloc(&sma->sem_perm);
534 if (retval) {
535 kvfree(sma);
536 return retval;
539 for (i = 0; i < nsems; i++) {
540 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
541 INIT_LIST_HEAD(&sma->sems[i].pending_const);
542 spin_lock_init(&sma->sems[i].lock);
545 sma->complex_count = 0;
546 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
547 INIT_LIST_HEAD(&sma->pending_alter);
548 INIT_LIST_HEAD(&sma->pending_const);
549 INIT_LIST_HEAD(&sma->list_id);
550 sma->sem_nsems = nsems;
551 sma->sem_ctime = ktime_get_real_seconds();
553 /* ipc_addid() locks sma upon success. */
554 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
555 if (retval < 0) {
556 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
557 return retval;
559 ns->used_sems += nsems;
561 sem_unlock(sma, -1);
562 rcu_read_unlock();
564 return sma->sem_perm.id;
569 * Called with sem_ids.rwsem and ipcp locked.
571 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
572 struct ipc_params *params)
574 struct sem_array *sma;
576 sma = container_of(ipcp, struct sem_array, sem_perm);
577 if (params->u.nsems > sma->sem_nsems)
578 return -EINVAL;
580 return 0;
583 long ksys_semget(key_t key, int nsems, int semflg)
585 struct ipc_namespace *ns;
586 static const struct ipc_ops sem_ops = {
587 .getnew = newary,
588 .associate = security_sem_associate,
589 .more_checks = sem_more_checks,
591 struct ipc_params sem_params;
593 ns = current->nsproxy->ipc_ns;
595 if (nsems < 0 || nsems > ns->sc_semmsl)
596 return -EINVAL;
598 sem_params.key = key;
599 sem_params.flg = semflg;
600 sem_params.u.nsems = nsems;
602 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
605 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
607 return ksys_semget(key, nsems, semflg);
611 * perform_atomic_semop[_slow] - Attempt to perform semaphore
612 * operations on a given array.
613 * @sma: semaphore array
614 * @q: struct sem_queue that describes the operation
616 * Caller blocking are as follows, based the value
617 * indicated by the semaphore operation (sem_op):
619 * (1) >0 never blocks.
620 * (2) 0 (wait-for-zero operation): semval is non-zero.
621 * (3) <0 attempting to decrement semval to a value smaller than zero.
623 * Returns 0 if the operation was possible.
624 * Returns 1 if the operation is impossible, the caller must sleep.
625 * Returns <0 for error codes.
627 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
629 int result, sem_op, nsops;
630 struct pid *pid;
631 struct sembuf *sop;
632 struct sem *curr;
633 struct sembuf *sops;
634 struct sem_undo *un;
636 sops = q->sops;
637 nsops = q->nsops;
638 un = q->undo;
640 for (sop = sops; sop < sops + nsops; sop++) {
641 curr = &sma->sems[sop->sem_num];
642 sem_op = sop->sem_op;
643 result = curr->semval;
645 if (!sem_op && result)
646 goto would_block;
648 result += sem_op;
649 if (result < 0)
650 goto would_block;
651 if (result > SEMVMX)
652 goto out_of_range;
654 if (sop->sem_flg & SEM_UNDO) {
655 int undo = un->semadj[sop->sem_num] - sem_op;
656 /* Exceeding the undo range is an error. */
657 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
658 goto out_of_range;
659 un->semadj[sop->sem_num] = undo;
662 curr->semval = result;
665 sop--;
666 pid = q->pid;
667 while (sop >= sops) {
668 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
669 sop--;
672 return 0;
674 out_of_range:
675 result = -ERANGE;
676 goto undo;
678 would_block:
679 q->blocking = sop;
681 if (sop->sem_flg & IPC_NOWAIT)
682 result = -EAGAIN;
683 else
684 result = 1;
686 undo:
687 sop--;
688 while (sop >= sops) {
689 sem_op = sop->sem_op;
690 sma->sems[sop->sem_num].semval -= sem_op;
691 if (sop->sem_flg & SEM_UNDO)
692 un->semadj[sop->sem_num] += sem_op;
693 sop--;
696 return result;
699 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
701 int result, sem_op, nsops;
702 struct sembuf *sop;
703 struct sem *curr;
704 struct sembuf *sops;
705 struct sem_undo *un;
707 sops = q->sops;
708 nsops = q->nsops;
709 un = q->undo;
711 if (unlikely(q->dupsop))
712 return perform_atomic_semop_slow(sma, q);
715 * We scan the semaphore set twice, first to ensure that the entire
716 * operation can succeed, therefore avoiding any pointless writes
717 * to shared memory and having to undo such changes in order to block
718 * until the operations can go through.
720 for (sop = sops; sop < sops + nsops; sop++) {
721 curr = &sma->sems[sop->sem_num];
722 sem_op = sop->sem_op;
723 result = curr->semval;
725 if (!sem_op && result)
726 goto would_block; /* wait-for-zero */
728 result += sem_op;
729 if (result < 0)
730 goto would_block;
732 if (result > SEMVMX)
733 return -ERANGE;
735 if (sop->sem_flg & SEM_UNDO) {
736 int undo = un->semadj[sop->sem_num] - sem_op;
738 /* Exceeding the undo range is an error. */
739 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
740 return -ERANGE;
744 for (sop = sops; sop < sops + nsops; sop++) {
745 curr = &sma->sems[sop->sem_num];
746 sem_op = sop->sem_op;
747 result = curr->semval;
749 if (sop->sem_flg & SEM_UNDO) {
750 int undo = un->semadj[sop->sem_num] - sem_op;
752 un->semadj[sop->sem_num] = undo;
754 curr->semval += sem_op;
755 ipc_update_pid(&curr->sempid, q->pid);
758 return 0;
760 would_block:
761 q->blocking = sop;
762 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
765 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
766 struct wake_q_head *wake_q)
768 wake_q_add(wake_q, q->sleeper);
770 * Rely on the above implicit barrier, such that we can
771 * ensure that we hold reference to the task before setting
772 * q->status. Otherwise we could race with do_exit if the
773 * task is awoken by an external event before calling
774 * wake_up_process().
776 WRITE_ONCE(q->status, error);
779 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
781 list_del(&q->list);
782 if (q->nsops > 1)
783 sma->complex_count--;
786 /** check_restart(sma, q)
787 * @sma: semaphore array
788 * @q: the operation that just completed
790 * update_queue is O(N^2) when it restarts scanning the whole queue of
791 * waiting operations. Therefore this function checks if the restart is
792 * really necessary. It is called after a previously waiting operation
793 * modified the array.
794 * Note that wait-for-zero operations are handled without restart.
796 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
798 /* pending complex alter operations are too difficult to analyse */
799 if (!list_empty(&sma->pending_alter))
800 return 1;
802 /* we were a sleeping complex operation. Too difficult */
803 if (q->nsops > 1)
804 return 1;
806 /* It is impossible that someone waits for the new value:
807 * - complex operations always restart.
808 * - wait-for-zero are handled seperately.
809 * - q is a previously sleeping simple operation that
810 * altered the array. It must be a decrement, because
811 * simple increments never sleep.
812 * - If there are older (higher priority) decrements
813 * in the queue, then they have observed the original
814 * semval value and couldn't proceed. The operation
815 * decremented to value - thus they won't proceed either.
817 return 0;
821 * wake_const_ops - wake up non-alter tasks
822 * @sma: semaphore array.
823 * @semnum: semaphore that was modified.
824 * @wake_q: lockless wake-queue head.
826 * wake_const_ops must be called after a semaphore in a semaphore array
827 * was set to 0. If complex const operations are pending, wake_const_ops must
828 * be called with semnum = -1, as well as with the number of each modified
829 * semaphore.
830 * The tasks that must be woken up are added to @wake_q. The return code
831 * is stored in q->pid.
832 * The function returns 1 if at least one operation was completed successfully.
834 static int wake_const_ops(struct sem_array *sma, int semnum,
835 struct wake_q_head *wake_q)
837 struct sem_queue *q, *tmp;
838 struct list_head *pending_list;
839 int semop_completed = 0;
841 if (semnum == -1)
842 pending_list = &sma->pending_const;
843 else
844 pending_list = &sma->sems[semnum].pending_const;
846 list_for_each_entry_safe(q, tmp, pending_list, list) {
847 int error = perform_atomic_semop(sma, q);
849 if (error > 0)
850 continue;
851 /* operation completed, remove from queue & wakeup */
852 unlink_queue(sma, q);
854 wake_up_sem_queue_prepare(q, error, wake_q);
855 if (error == 0)
856 semop_completed = 1;
859 return semop_completed;
863 * do_smart_wakeup_zero - wakeup all wait for zero tasks
864 * @sma: semaphore array
865 * @sops: operations that were performed
866 * @nsops: number of operations
867 * @wake_q: lockless wake-queue head
869 * Checks all required queue for wait-for-zero operations, based
870 * on the actual changes that were performed on the semaphore array.
871 * The function returns 1 if at least one operation was completed successfully.
873 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
874 int nsops, struct wake_q_head *wake_q)
876 int i;
877 int semop_completed = 0;
878 int got_zero = 0;
880 /* first: the per-semaphore queues, if known */
881 if (sops) {
882 for (i = 0; i < nsops; i++) {
883 int num = sops[i].sem_num;
885 if (sma->sems[num].semval == 0) {
886 got_zero = 1;
887 semop_completed |= wake_const_ops(sma, num, wake_q);
890 } else {
892 * No sops means modified semaphores not known.
893 * Assume all were changed.
895 for (i = 0; i < sma->sem_nsems; i++) {
896 if (sma->sems[i].semval == 0) {
897 got_zero = 1;
898 semop_completed |= wake_const_ops(sma, i, wake_q);
903 * If one of the modified semaphores got 0,
904 * then check the global queue, too.
906 if (got_zero)
907 semop_completed |= wake_const_ops(sma, -1, wake_q);
909 return semop_completed;
914 * update_queue - look for tasks that can be completed.
915 * @sma: semaphore array.
916 * @semnum: semaphore that was modified.
917 * @wake_q: lockless wake-queue head.
919 * update_queue must be called after a semaphore in a semaphore array
920 * was modified. If multiple semaphores were modified, update_queue must
921 * be called with semnum = -1, as well as with the number of each modified
922 * semaphore.
923 * The tasks that must be woken up are added to @wake_q. The return code
924 * is stored in q->pid.
925 * The function internally checks if const operations can now succeed.
927 * The function return 1 if at least one semop was completed successfully.
929 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
931 struct sem_queue *q, *tmp;
932 struct list_head *pending_list;
933 int semop_completed = 0;
935 if (semnum == -1)
936 pending_list = &sma->pending_alter;
937 else
938 pending_list = &sma->sems[semnum].pending_alter;
940 again:
941 list_for_each_entry_safe(q, tmp, pending_list, list) {
942 int error, restart;
944 /* If we are scanning the single sop, per-semaphore list of
945 * one semaphore and that semaphore is 0, then it is not
946 * necessary to scan further: simple increments
947 * that affect only one entry succeed immediately and cannot
948 * be in the per semaphore pending queue, and decrements
949 * cannot be successful if the value is already 0.
951 if (semnum != -1 && sma->sems[semnum].semval == 0)
952 break;
954 error = perform_atomic_semop(sma, q);
956 /* Does q->sleeper still need to sleep? */
957 if (error > 0)
958 continue;
960 unlink_queue(sma, q);
962 if (error) {
963 restart = 0;
964 } else {
965 semop_completed = 1;
966 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
967 restart = check_restart(sma, q);
970 wake_up_sem_queue_prepare(q, error, wake_q);
971 if (restart)
972 goto again;
974 return semop_completed;
978 * set_semotime - set sem_otime
979 * @sma: semaphore array
980 * @sops: operations that modified the array, may be NULL
982 * sem_otime is replicated to avoid cache line trashing.
983 * This function sets one instance to the current time.
985 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
987 if (sops == NULL) {
988 sma->sems[0].sem_otime = ktime_get_real_seconds();
989 } else {
990 sma->sems[sops[0].sem_num].sem_otime =
991 ktime_get_real_seconds();
996 * do_smart_update - optimized update_queue
997 * @sma: semaphore array
998 * @sops: operations that were performed
999 * @nsops: number of operations
1000 * @otime: force setting otime
1001 * @wake_q: lockless wake-queue head
1003 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1004 * based on the actual changes that were performed on the semaphore array.
1005 * Note that the function does not do the actual wake-up: the caller is
1006 * responsible for calling wake_up_q().
1007 * It is safe to perform this call after dropping all locks.
1009 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1010 int otime, struct wake_q_head *wake_q)
1012 int i;
1014 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1016 if (!list_empty(&sma->pending_alter)) {
1017 /* semaphore array uses the global queue - just process it. */
1018 otime |= update_queue(sma, -1, wake_q);
1019 } else {
1020 if (!sops) {
1022 * No sops, thus the modified semaphores are not
1023 * known. Check all.
1025 for (i = 0; i < sma->sem_nsems; i++)
1026 otime |= update_queue(sma, i, wake_q);
1027 } else {
1029 * Check the semaphores that were increased:
1030 * - No complex ops, thus all sleeping ops are
1031 * decrease.
1032 * - if we decreased the value, then any sleeping
1033 * semaphore ops wont be able to run: If the
1034 * previous value was too small, then the new
1035 * value will be too small, too.
1037 for (i = 0; i < nsops; i++) {
1038 if (sops[i].sem_op > 0) {
1039 otime |= update_queue(sma,
1040 sops[i].sem_num, wake_q);
1045 if (otime)
1046 set_semotime(sma, sops);
1050 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1052 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1053 bool count_zero)
1055 struct sembuf *sop = q->blocking;
1058 * Linux always (since 0.99.10) reported a task as sleeping on all
1059 * semaphores. This violates SUS, therefore it was changed to the
1060 * standard compliant behavior.
1061 * Give the administrators a chance to notice that an application
1062 * might misbehave because it relies on the Linux behavior.
1064 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1065 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1066 current->comm, task_pid_nr(current));
1068 if (sop->sem_num != semnum)
1069 return 0;
1071 if (count_zero && sop->sem_op == 0)
1072 return 1;
1073 if (!count_zero && sop->sem_op < 0)
1074 return 1;
1076 return 0;
1079 /* The following counts are associated to each semaphore:
1080 * semncnt number of tasks waiting on semval being nonzero
1081 * semzcnt number of tasks waiting on semval being zero
1083 * Per definition, a task waits only on the semaphore of the first semop
1084 * that cannot proceed, even if additional operation would block, too.
1086 static int count_semcnt(struct sem_array *sma, ushort semnum,
1087 bool count_zero)
1089 struct list_head *l;
1090 struct sem_queue *q;
1091 int semcnt;
1093 semcnt = 0;
1094 /* First: check the simple operations. They are easy to evaluate */
1095 if (count_zero)
1096 l = &sma->sems[semnum].pending_const;
1097 else
1098 l = &sma->sems[semnum].pending_alter;
1100 list_for_each_entry(q, l, list) {
1101 /* all task on a per-semaphore list sleep on exactly
1102 * that semaphore
1104 semcnt++;
1107 /* Then: check the complex operations. */
1108 list_for_each_entry(q, &sma->pending_alter, list) {
1109 semcnt += check_qop(sma, semnum, q, count_zero);
1111 if (count_zero) {
1112 list_for_each_entry(q, &sma->pending_const, list) {
1113 semcnt += check_qop(sma, semnum, q, count_zero);
1116 return semcnt;
1119 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1120 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1121 * remains locked on exit.
1123 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1125 struct sem_undo *un, *tu;
1126 struct sem_queue *q, *tq;
1127 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1128 int i;
1129 DEFINE_WAKE_Q(wake_q);
1131 /* Free the existing undo structures for this semaphore set. */
1132 ipc_assert_locked_object(&sma->sem_perm);
1133 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1134 list_del(&un->list_id);
1135 spin_lock(&un->ulp->lock);
1136 un->semid = -1;
1137 list_del_rcu(&un->list_proc);
1138 spin_unlock(&un->ulp->lock);
1139 kfree_rcu(un, rcu);
1142 /* Wake up all pending processes and let them fail with EIDRM. */
1143 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1144 unlink_queue(sma, q);
1145 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1148 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1149 unlink_queue(sma, q);
1150 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1152 for (i = 0; i < sma->sem_nsems; i++) {
1153 struct sem *sem = &sma->sems[i];
1154 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1155 unlink_queue(sma, q);
1156 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1159 unlink_queue(sma, q);
1160 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1162 ipc_update_pid(&sem->sempid, NULL);
1165 /* Remove the semaphore set from the IDR */
1166 sem_rmid(ns, sma);
1167 sem_unlock(sma, -1);
1168 rcu_read_unlock();
1170 wake_up_q(&wake_q);
1171 ns->used_sems -= sma->sem_nsems;
1172 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1175 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1177 switch (version) {
1178 case IPC_64:
1179 return copy_to_user(buf, in, sizeof(*in));
1180 case IPC_OLD:
1182 struct semid_ds out;
1184 memset(&out, 0, sizeof(out));
1186 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1188 out.sem_otime = in->sem_otime;
1189 out.sem_ctime = in->sem_ctime;
1190 out.sem_nsems = in->sem_nsems;
1192 return copy_to_user(buf, &out, sizeof(out));
1194 default:
1195 return -EINVAL;
1199 static time64_t get_semotime(struct sem_array *sma)
1201 int i;
1202 time64_t res;
1204 res = sma->sems[0].sem_otime;
1205 for (i = 1; i < sma->sem_nsems; i++) {
1206 time64_t to = sma->sems[i].sem_otime;
1208 if (to > res)
1209 res = to;
1211 return res;
1214 static int semctl_stat(struct ipc_namespace *ns, int semid,
1215 int cmd, struct semid64_ds *semid64)
1217 struct sem_array *sma;
1218 time64_t semotime;
1219 int id = 0;
1220 int err;
1222 memset(semid64, 0, sizeof(*semid64));
1224 rcu_read_lock();
1225 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1226 sma = sem_obtain_object(ns, semid);
1227 if (IS_ERR(sma)) {
1228 err = PTR_ERR(sma);
1229 goto out_unlock;
1231 id = sma->sem_perm.id;
1232 } else { /* IPC_STAT */
1233 sma = sem_obtain_object_check(ns, semid);
1234 if (IS_ERR(sma)) {
1235 err = PTR_ERR(sma);
1236 goto out_unlock;
1240 /* see comment for SHM_STAT_ANY */
1241 if (cmd == SEM_STAT_ANY)
1242 audit_ipc_obj(&sma->sem_perm);
1243 else {
1244 err = -EACCES;
1245 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1246 goto out_unlock;
1249 err = security_sem_semctl(&sma->sem_perm, cmd);
1250 if (err)
1251 goto out_unlock;
1253 ipc_lock_object(&sma->sem_perm);
1255 if (!ipc_valid_object(&sma->sem_perm)) {
1256 ipc_unlock_object(&sma->sem_perm);
1257 err = -EIDRM;
1258 goto out_unlock;
1261 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1262 semotime = get_semotime(sma);
1263 semid64->sem_otime = semotime;
1264 semid64->sem_ctime = sma->sem_ctime;
1265 #ifndef CONFIG_64BIT
1266 semid64->sem_otime_high = semotime >> 32;
1267 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1268 #endif
1269 semid64->sem_nsems = sma->sem_nsems;
1271 ipc_unlock_object(&sma->sem_perm);
1272 rcu_read_unlock();
1273 return id;
1275 out_unlock:
1276 rcu_read_unlock();
1277 return err;
1280 static int semctl_info(struct ipc_namespace *ns, int semid,
1281 int cmd, void __user *p)
1283 struct seminfo seminfo;
1284 int max_id;
1285 int err;
1287 err = security_sem_semctl(NULL, cmd);
1288 if (err)
1289 return err;
1291 memset(&seminfo, 0, sizeof(seminfo));
1292 seminfo.semmni = ns->sc_semmni;
1293 seminfo.semmns = ns->sc_semmns;
1294 seminfo.semmsl = ns->sc_semmsl;
1295 seminfo.semopm = ns->sc_semopm;
1296 seminfo.semvmx = SEMVMX;
1297 seminfo.semmnu = SEMMNU;
1298 seminfo.semmap = SEMMAP;
1299 seminfo.semume = SEMUME;
1300 down_read(&sem_ids(ns).rwsem);
1301 if (cmd == SEM_INFO) {
1302 seminfo.semusz = sem_ids(ns).in_use;
1303 seminfo.semaem = ns->used_sems;
1304 } else {
1305 seminfo.semusz = SEMUSZ;
1306 seminfo.semaem = SEMAEM;
1308 max_id = ipc_get_maxid(&sem_ids(ns));
1309 up_read(&sem_ids(ns).rwsem);
1310 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1311 return -EFAULT;
1312 return (max_id < 0) ? 0 : max_id;
1315 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1316 int val)
1318 struct sem_undo *un;
1319 struct sem_array *sma;
1320 struct sem *curr;
1321 int err;
1322 DEFINE_WAKE_Q(wake_q);
1324 if (val > SEMVMX || val < 0)
1325 return -ERANGE;
1327 rcu_read_lock();
1328 sma = sem_obtain_object_check(ns, semid);
1329 if (IS_ERR(sma)) {
1330 rcu_read_unlock();
1331 return PTR_ERR(sma);
1334 if (semnum < 0 || semnum >= sma->sem_nsems) {
1335 rcu_read_unlock();
1336 return -EINVAL;
1340 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1341 rcu_read_unlock();
1342 return -EACCES;
1345 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1346 if (err) {
1347 rcu_read_unlock();
1348 return -EACCES;
1351 sem_lock(sma, NULL, -1);
1353 if (!ipc_valid_object(&sma->sem_perm)) {
1354 sem_unlock(sma, -1);
1355 rcu_read_unlock();
1356 return -EIDRM;
1359 curr = &sma->sems[semnum];
1361 ipc_assert_locked_object(&sma->sem_perm);
1362 list_for_each_entry(un, &sma->list_id, list_id)
1363 un->semadj[semnum] = 0;
1365 curr->semval = val;
1366 ipc_update_pid(&curr->sempid, task_tgid(current));
1367 sma->sem_ctime = ktime_get_real_seconds();
1368 /* maybe some queued-up processes were waiting for this */
1369 do_smart_update(sma, NULL, 0, 0, &wake_q);
1370 sem_unlock(sma, -1);
1371 rcu_read_unlock();
1372 wake_up_q(&wake_q);
1373 return 0;
1376 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1377 int cmd, void __user *p)
1379 struct sem_array *sma;
1380 struct sem *curr;
1381 int err, nsems;
1382 ushort fast_sem_io[SEMMSL_FAST];
1383 ushort *sem_io = fast_sem_io;
1384 DEFINE_WAKE_Q(wake_q);
1386 rcu_read_lock();
1387 sma = sem_obtain_object_check(ns, semid);
1388 if (IS_ERR(sma)) {
1389 rcu_read_unlock();
1390 return PTR_ERR(sma);
1393 nsems = sma->sem_nsems;
1395 err = -EACCES;
1396 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1397 goto out_rcu_wakeup;
1399 err = security_sem_semctl(&sma->sem_perm, cmd);
1400 if (err)
1401 goto out_rcu_wakeup;
1403 err = -EACCES;
1404 switch (cmd) {
1405 case GETALL:
1407 ushort __user *array = p;
1408 int i;
1410 sem_lock(sma, NULL, -1);
1411 if (!ipc_valid_object(&sma->sem_perm)) {
1412 err = -EIDRM;
1413 goto out_unlock;
1415 if (nsems > SEMMSL_FAST) {
1416 if (!ipc_rcu_getref(&sma->sem_perm)) {
1417 err = -EIDRM;
1418 goto out_unlock;
1420 sem_unlock(sma, -1);
1421 rcu_read_unlock();
1422 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1423 GFP_KERNEL);
1424 if (sem_io == NULL) {
1425 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1426 return -ENOMEM;
1429 rcu_read_lock();
1430 sem_lock_and_putref(sma);
1431 if (!ipc_valid_object(&sma->sem_perm)) {
1432 err = -EIDRM;
1433 goto out_unlock;
1436 for (i = 0; i < sma->sem_nsems; i++)
1437 sem_io[i] = sma->sems[i].semval;
1438 sem_unlock(sma, -1);
1439 rcu_read_unlock();
1440 err = 0;
1441 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1442 err = -EFAULT;
1443 goto out_free;
1445 case SETALL:
1447 int i;
1448 struct sem_undo *un;
1450 if (!ipc_rcu_getref(&sma->sem_perm)) {
1451 err = -EIDRM;
1452 goto out_rcu_wakeup;
1454 rcu_read_unlock();
1456 if (nsems > SEMMSL_FAST) {
1457 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1458 GFP_KERNEL);
1459 if (sem_io == NULL) {
1460 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1461 return -ENOMEM;
1465 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1466 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1467 err = -EFAULT;
1468 goto out_free;
1471 for (i = 0; i < nsems; i++) {
1472 if (sem_io[i] > SEMVMX) {
1473 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1474 err = -ERANGE;
1475 goto out_free;
1478 rcu_read_lock();
1479 sem_lock_and_putref(sma);
1480 if (!ipc_valid_object(&sma->sem_perm)) {
1481 err = -EIDRM;
1482 goto out_unlock;
1485 for (i = 0; i < nsems; i++) {
1486 sma->sems[i].semval = sem_io[i];
1487 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1490 ipc_assert_locked_object(&sma->sem_perm);
1491 list_for_each_entry(un, &sma->list_id, list_id) {
1492 for (i = 0; i < nsems; i++)
1493 un->semadj[i] = 0;
1495 sma->sem_ctime = ktime_get_real_seconds();
1496 /* maybe some queued-up processes were waiting for this */
1497 do_smart_update(sma, NULL, 0, 0, &wake_q);
1498 err = 0;
1499 goto out_unlock;
1501 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1503 err = -EINVAL;
1504 if (semnum < 0 || semnum >= nsems)
1505 goto out_rcu_wakeup;
1507 sem_lock(sma, NULL, -1);
1508 if (!ipc_valid_object(&sma->sem_perm)) {
1509 err = -EIDRM;
1510 goto out_unlock;
1512 curr = &sma->sems[semnum];
1514 switch (cmd) {
1515 case GETVAL:
1516 err = curr->semval;
1517 goto out_unlock;
1518 case GETPID:
1519 err = pid_vnr(curr->sempid);
1520 goto out_unlock;
1521 case GETNCNT:
1522 err = count_semcnt(sma, semnum, 0);
1523 goto out_unlock;
1524 case GETZCNT:
1525 err = count_semcnt(sma, semnum, 1);
1526 goto out_unlock;
1529 out_unlock:
1530 sem_unlock(sma, -1);
1531 out_rcu_wakeup:
1532 rcu_read_unlock();
1533 wake_up_q(&wake_q);
1534 out_free:
1535 if (sem_io != fast_sem_io)
1536 kvfree(sem_io);
1537 return err;
1540 static inline unsigned long
1541 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1543 switch (version) {
1544 case IPC_64:
1545 if (copy_from_user(out, buf, sizeof(*out)))
1546 return -EFAULT;
1547 return 0;
1548 case IPC_OLD:
1550 struct semid_ds tbuf_old;
1552 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1553 return -EFAULT;
1555 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1556 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1557 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1559 return 0;
1561 default:
1562 return -EINVAL;
1567 * This function handles some semctl commands which require the rwsem
1568 * to be held in write mode.
1569 * NOTE: no locks must be held, the rwsem is taken inside this function.
1571 static int semctl_down(struct ipc_namespace *ns, int semid,
1572 int cmd, struct semid64_ds *semid64)
1574 struct sem_array *sma;
1575 int err;
1576 struct kern_ipc_perm *ipcp;
1578 down_write(&sem_ids(ns).rwsem);
1579 rcu_read_lock();
1581 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1582 &semid64->sem_perm, 0);
1583 if (IS_ERR(ipcp)) {
1584 err = PTR_ERR(ipcp);
1585 goto out_unlock1;
1588 sma = container_of(ipcp, struct sem_array, sem_perm);
1590 err = security_sem_semctl(&sma->sem_perm, cmd);
1591 if (err)
1592 goto out_unlock1;
1594 switch (cmd) {
1595 case IPC_RMID:
1596 sem_lock(sma, NULL, -1);
1597 /* freeary unlocks the ipc object and rcu */
1598 freeary(ns, ipcp);
1599 goto out_up;
1600 case IPC_SET:
1601 sem_lock(sma, NULL, -1);
1602 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1603 if (err)
1604 goto out_unlock0;
1605 sma->sem_ctime = ktime_get_real_seconds();
1606 break;
1607 default:
1608 err = -EINVAL;
1609 goto out_unlock1;
1612 out_unlock0:
1613 sem_unlock(sma, -1);
1614 out_unlock1:
1615 rcu_read_unlock();
1616 out_up:
1617 up_write(&sem_ids(ns).rwsem);
1618 return err;
1621 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1623 int version;
1624 struct ipc_namespace *ns;
1625 void __user *p = (void __user *)arg;
1626 struct semid64_ds semid64;
1627 int err;
1629 if (semid < 0)
1630 return -EINVAL;
1632 version = ipc_parse_version(&cmd);
1633 ns = current->nsproxy->ipc_ns;
1635 switch (cmd) {
1636 case IPC_INFO:
1637 case SEM_INFO:
1638 return semctl_info(ns, semid, cmd, p);
1639 case IPC_STAT:
1640 case SEM_STAT:
1641 case SEM_STAT_ANY:
1642 err = semctl_stat(ns, semid, cmd, &semid64);
1643 if (err < 0)
1644 return err;
1645 if (copy_semid_to_user(p, &semid64, version))
1646 err = -EFAULT;
1647 return err;
1648 case GETALL:
1649 case GETVAL:
1650 case GETPID:
1651 case GETNCNT:
1652 case GETZCNT:
1653 case SETALL:
1654 return semctl_main(ns, semid, semnum, cmd, p);
1655 case SETVAL: {
1656 int val;
1657 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1658 /* big-endian 64bit */
1659 val = arg >> 32;
1660 #else
1661 /* 32bit or little-endian 64bit */
1662 val = arg;
1663 #endif
1664 return semctl_setval(ns, semid, semnum, val);
1666 case IPC_SET:
1667 if (copy_semid_from_user(&semid64, p, version))
1668 return -EFAULT;
1669 case IPC_RMID:
1670 return semctl_down(ns, semid, cmd, &semid64);
1671 default:
1672 return -EINVAL;
1676 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1678 return ksys_semctl(semid, semnum, cmd, arg);
1681 #ifdef CONFIG_COMPAT
1683 struct compat_semid_ds {
1684 struct compat_ipc_perm sem_perm;
1685 compat_time_t sem_otime;
1686 compat_time_t sem_ctime;
1687 compat_uptr_t sem_base;
1688 compat_uptr_t sem_pending;
1689 compat_uptr_t sem_pending_last;
1690 compat_uptr_t undo;
1691 unsigned short sem_nsems;
1694 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1695 int version)
1697 memset(out, 0, sizeof(*out));
1698 if (version == IPC_64) {
1699 struct compat_semid64_ds __user *p = buf;
1700 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1701 } else {
1702 struct compat_semid_ds __user *p = buf;
1703 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1707 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1708 int version)
1710 if (version == IPC_64) {
1711 struct compat_semid64_ds v;
1712 memset(&v, 0, sizeof(v));
1713 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1714 v.sem_otime = lower_32_bits(in->sem_otime);
1715 v.sem_otime_high = upper_32_bits(in->sem_otime);
1716 v.sem_ctime = lower_32_bits(in->sem_ctime);
1717 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1718 v.sem_nsems = in->sem_nsems;
1719 return copy_to_user(buf, &v, sizeof(v));
1720 } else {
1721 struct compat_semid_ds v;
1722 memset(&v, 0, sizeof(v));
1723 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1724 v.sem_otime = in->sem_otime;
1725 v.sem_ctime = in->sem_ctime;
1726 v.sem_nsems = in->sem_nsems;
1727 return copy_to_user(buf, &v, sizeof(v));
1731 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1733 void __user *p = compat_ptr(arg);
1734 struct ipc_namespace *ns;
1735 struct semid64_ds semid64;
1736 int version = compat_ipc_parse_version(&cmd);
1737 int err;
1739 ns = current->nsproxy->ipc_ns;
1741 if (semid < 0)
1742 return -EINVAL;
1744 switch (cmd & (~IPC_64)) {
1745 case IPC_INFO:
1746 case SEM_INFO:
1747 return semctl_info(ns, semid, cmd, p);
1748 case IPC_STAT:
1749 case SEM_STAT:
1750 case SEM_STAT_ANY:
1751 err = semctl_stat(ns, semid, cmd, &semid64);
1752 if (err < 0)
1753 return err;
1754 if (copy_compat_semid_to_user(p, &semid64, version))
1755 err = -EFAULT;
1756 return err;
1757 case GETVAL:
1758 case GETPID:
1759 case GETNCNT:
1760 case GETZCNT:
1761 case GETALL:
1762 case SETALL:
1763 return semctl_main(ns, semid, semnum, cmd, p);
1764 case SETVAL:
1765 return semctl_setval(ns, semid, semnum, arg);
1766 case IPC_SET:
1767 if (copy_compat_semid_from_user(&semid64, p, version))
1768 return -EFAULT;
1769 /* fallthru */
1770 case IPC_RMID:
1771 return semctl_down(ns, semid, cmd, &semid64);
1772 default:
1773 return -EINVAL;
1777 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1779 return compat_ksys_semctl(semid, semnum, cmd, arg);
1781 #endif
1783 /* If the task doesn't already have a undo_list, then allocate one
1784 * here. We guarantee there is only one thread using this undo list,
1785 * and current is THE ONE
1787 * If this allocation and assignment succeeds, but later
1788 * portions of this code fail, there is no need to free the sem_undo_list.
1789 * Just let it stay associated with the task, and it'll be freed later
1790 * at exit time.
1792 * This can block, so callers must hold no locks.
1794 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1796 struct sem_undo_list *undo_list;
1798 undo_list = current->sysvsem.undo_list;
1799 if (!undo_list) {
1800 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1801 if (undo_list == NULL)
1802 return -ENOMEM;
1803 spin_lock_init(&undo_list->lock);
1804 refcount_set(&undo_list->refcnt, 1);
1805 INIT_LIST_HEAD(&undo_list->list_proc);
1807 current->sysvsem.undo_list = undo_list;
1809 *undo_listp = undo_list;
1810 return 0;
1813 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1815 struct sem_undo *un;
1817 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1818 if (un->semid == semid)
1819 return un;
1821 return NULL;
1824 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1826 struct sem_undo *un;
1828 assert_spin_locked(&ulp->lock);
1830 un = __lookup_undo(ulp, semid);
1831 if (un) {
1832 list_del_rcu(&un->list_proc);
1833 list_add_rcu(&un->list_proc, &ulp->list_proc);
1835 return un;
1839 * find_alloc_undo - lookup (and if not present create) undo array
1840 * @ns: namespace
1841 * @semid: semaphore array id
1843 * The function looks up (and if not present creates) the undo structure.
1844 * The size of the undo structure depends on the size of the semaphore
1845 * array, thus the alloc path is not that straightforward.
1846 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1847 * performs a rcu_read_lock().
1849 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1851 struct sem_array *sma;
1852 struct sem_undo_list *ulp;
1853 struct sem_undo *un, *new;
1854 int nsems, error;
1856 error = get_undo_list(&ulp);
1857 if (error)
1858 return ERR_PTR(error);
1860 rcu_read_lock();
1861 spin_lock(&ulp->lock);
1862 un = lookup_undo(ulp, semid);
1863 spin_unlock(&ulp->lock);
1864 if (likely(un != NULL))
1865 goto out;
1867 /* no undo structure around - allocate one. */
1868 /* step 1: figure out the size of the semaphore array */
1869 sma = sem_obtain_object_check(ns, semid);
1870 if (IS_ERR(sma)) {
1871 rcu_read_unlock();
1872 return ERR_CAST(sma);
1875 nsems = sma->sem_nsems;
1876 if (!ipc_rcu_getref(&sma->sem_perm)) {
1877 rcu_read_unlock();
1878 un = ERR_PTR(-EIDRM);
1879 goto out;
1881 rcu_read_unlock();
1883 /* step 2: allocate new undo structure */
1884 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1885 if (!new) {
1886 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1887 return ERR_PTR(-ENOMEM);
1890 /* step 3: Acquire the lock on semaphore array */
1891 rcu_read_lock();
1892 sem_lock_and_putref(sma);
1893 if (!ipc_valid_object(&sma->sem_perm)) {
1894 sem_unlock(sma, -1);
1895 rcu_read_unlock();
1896 kfree(new);
1897 un = ERR_PTR(-EIDRM);
1898 goto out;
1900 spin_lock(&ulp->lock);
1903 * step 4: check for races: did someone else allocate the undo struct?
1905 un = lookup_undo(ulp, semid);
1906 if (un) {
1907 kfree(new);
1908 goto success;
1910 /* step 5: initialize & link new undo structure */
1911 new->semadj = (short *) &new[1];
1912 new->ulp = ulp;
1913 new->semid = semid;
1914 assert_spin_locked(&ulp->lock);
1915 list_add_rcu(&new->list_proc, &ulp->list_proc);
1916 ipc_assert_locked_object(&sma->sem_perm);
1917 list_add(&new->list_id, &sma->list_id);
1918 un = new;
1920 success:
1921 spin_unlock(&ulp->lock);
1922 sem_unlock(sma, -1);
1923 out:
1924 return un;
1927 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1928 unsigned nsops, const struct timespec64 *timeout)
1930 int error = -EINVAL;
1931 struct sem_array *sma;
1932 struct sembuf fast_sops[SEMOPM_FAST];
1933 struct sembuf *sops = fast_sops, *sop;
1934 struct sem_undo *un;
1935 int max, locknum;
1936 bool undos = false, alter = false, dupsop = false;
1937 struct sem_queue queue;
1938 unsigned long dup = 0, jiffies_left = 0;
1939 struct ipc_namespace *ns;
1941 ns = current->nsproxy->ipc_ns;
1943 if (nsops < 1 || semid < 0)
1944 return -EINVAL;
1945 if (nsops > ns->sc_semopm)
1946 return -E2BIG;
1947 if (nsops > SEMOPM_FAST) {
1948 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1949 if (sops == NULL)
1950 return -ENOMEM;
1953 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1954 error = -EFAULT;
1955 goto out_free;
1958 if (timeout) {
1959 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1960 timeout->tv_nsec >= 1000000000L) {
1961 error = -EINVAL;
1962 goto out_free;
1964 jiffies_left = timespec64_to_jiffies(timeout);
1967 max = 0;
1968 for (sop = sops; sop < sops + nsops; sop++) {
1969 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1971 if (sop->sem_num >= max)
1972 max = sop->sem_num;
1973 if (sop->sem_flg & SEM_UNDO)
1974 undos = true;
1975 if (dup & mask) {
1977 * There was a previous alter access that appears
1978 * to have accessed the same semaphore, thus use
1979 * the dupsop logic. "appears", because the detection
1980 * can only check % BITS_PER_LONG.
1982 dupsop = true;
1984 if (sop->sem_op != 0) {
1985 alter = true;
1986 dup |= mask;
1990 if (undos) {
1991 /* On success, find_alloc_undo takes the rcu_read_lock */
1992 un = find_alloc_undo(ns, semid);
1993 if (IS_ERR(un)) {
1994 error = PTR_ERR(un);
1995 goto out_free;
1997 } else {
1998 un = NULL;
1999 rcu_read_lock();
2002 sma = sem_obtain_object_check(ns, semid);
2003 if (IS_ERR(sma)) {
2004 rcu_read_unlock();
2005 error = PTR_ERR(sma);
2006 goto out_free;
2009 error = -EFBIG;
2010 if (max >= sma->sem_nsems) {
2011 rcu_read_unlock();
2012 goto out_free;
2015 error = -EACCES;
2016 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2017 rcu_read_unlock();
2018 goto out_free;
2021 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2022 if (error) {
2023 rcu_read_unlock();
2024 goto out_free;
2027 error = -EIDRM;
2028 locknum = sem_lock(sma, sops, nsops);
2030 * We eventually might perform the following check in a lockless
2031 * fashion, considering ipc_valid_object() locking constraints.
2032 * If nsops == 1 and there is no contention for sem_perm.lock, then
2033 * only a per-semaphore lock is held and it's OK to proceed with the
2034 * check below. More details on the fine grained locking scheme
2035 * entangled here and why it's RMID race safe on comments at sem_lock()
2037 if (!ipc_valid_object(&sma->sem_perm))
2038 goto out_unlock_free;
2040 * semid identifiers are not unique - find_alloc_undo may have
2041 * allocated an undo structure, it was invalidated by an RMID
2042 * and now a new array with received the same id. Check and fail.
2043 * This case can be detected checking un->semid. The existence of
2044 * "un" itself is guaranteed by rcu.
2046 if (un && un->semid == -1)
2047 goto out_unlock_free;
2049 queue.sops = sops;
2050 queue.nsops = nsops;
2051 queue.undo = un;
2052 queue.pid = task_tgid(current);
2053 queue.alter = alter;
2054 queue.dupsop = dupsop;
2056 error = perform_atomic_semop(sma, &queue);
2057 if (error == 0) { /* non-blocking succesfull path */
2058 DEFINE_WAKE_Q(wake_q);
2061 * If the operation was successful, then do
2062 * the required updates.
2064 if (alter)
2065 do_smart_update(sma, sops, nsops, 1, &wake_q);
2066 else
2067 set_semotime(sma, sops);
2069 sem_unlock(sma, locknum);
2070 rcu_read_unlock();
2071 wake_up_q(&wake_q);
2073 goto out_free;
2075 if (error < 0) /* non-blocking error path */
2076 goto out_unlock_free;
2079 * We need to sleep on this operation, so we put the current
2080 * task into the pending queue and go to sleep.
2082 if (nsops == 1) {
2083 struct sem *curr;
2084 curr = &sma->sems[sops->sem_num];
2086 if (alter) {
2087 if (sma->complex_count) {
2088 list_add_tail(&queue.list,
2089 &sma->pending_alter);
2090 } else {
2092 list_add_tail(&queue.list,
2093 &curr->pending_alter);
2095 } else {
2096 list_add_tail(&queue.list, &curr->pending_const);
2098 } else {
2099 if (!sma->complex_count)
2100 merge_queues(sma);
2102 if (alter)
2103 list_add_tail(&queue.list, &sma->pending_alter);
2104 else
2105 list_add_tail(&queue.list, &sma->pending_const);
2107 sma->complex_count++;
2110 do {
2111 queue.status = -EINTR;
2112 queue.sleeper = current;
2114 __set_current_state(TASK_INTERRUPTIBLE);
2115 sem_unlock(sma, locknum);
2116 rcu_read_unlock();
2118 if (timeout)
2119 jiffies_left = schedule_timeout(jiffies_left);
2120 else
2121 schedule();
2124 * fastpath: the semop has completed, either successfully or
2125 * not, from the syscall pov, is quite irrelevant to us at this
2126 * point; we're done.
2128 * We _do_ care, nonetheless, about being awoken by a signal or
2129 * spuriously. The queue.status is checked again in the
2130 * slowpath (aka after taking sem_lock), such that we can detect
2131 * scenarios where we were awakened externally, during the
2132 * window between wake_q_add() and wake_up_q().
2134 error = READ_ONCE(queue.status);
2135 if (error != -EINTR) {
2137 * User space could assume that semop() is a memory
2138 * barrier: Without the mb(), the cpu could
2139 * speculatively read in userspace stale data that was
2140 * overwritten by the previous owner of the semaphore.
2142 smp_mb();
2143 goto out_free;
2146 rcu_read_lock();
2147 locknum = sem_lock(sma, sops, nsops);
2149 if (!ipc_valid_object(&sma->sem_perm))
2150 goto out_unlock_free;
2152 error = READ_ONCE(queue.status);
2155 * If queue.status != -EINTR we are woken up by another process.
2156 * Leave without unlink_queue(), but with sem_unlock().
2158 if (error != -EINTR)
2159 goto out_unlock_free;
2162 * If an interrupt occurred we have to clean up the queue.
2164 if (timeout && jiffies_left == 0)
2165 error = -EAGAIN;
2166 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2168 unlink_queue(sma, &queue);
2170 out_unlock_free:
2171 sem_unlock(sma, locknum);
2172 rcu_read_unlock();
2173 out_free:
2174 if (sops != fast_sops)
2175 kvfree(sops);
2176 return error;
2179 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2180 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2182 if (timeout) {
2183 struct timespec64 ts;
2184 if (get_timespec64(&ts, timeout))
2185 return -EFAULT;
2186 return do_semtimedop(semid, tsops, nsops, &ts);
2188 return do_semtimedop(semid, tsops, nsops, NULL);
2191 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2192 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2194 return ksys_semtimedop(semid, tsops, nsops, timeout);
2197 #ifdef CONFIG_COMPAT_32BIT_TIME
2198 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2199 unsigned int nsops,
2200 const struct compat_timespec __user *timeout)
2202 if (timeout) {
2203 struct timespec64 ts;
2204 if (compat_get_timespec64(&ts, timeout))
2205 return -EFAULT;
2206 return do_semtimedop(semid, tsems, nsops, &ts);
2208 return do_semtimedop(semid, tsems, nsops, NULL);
2211 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2212 unsigned int, nsops,
2213 const struct compat_timespec __user *, timeout)
2215 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2217 #endif
2219 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2220 unsigned, nsops)
2222 return do_semtimedop(semid, tsops, nsops, NULL);
2225 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2226 * parent and child tasks.
2229 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2231 struct sem_undo_list *undo_list;
2232 int error;
2234 if (clone_flags & CLONE_SYSVSEM) {
2235 error = get_undo_list(&undo_list);
2236 if (error)
2237 return error;
2238 refcount_inc(&undo_list->refcnt);
2239 tsk->sysvsem.undo_list = undo_list;
2240 } else
2241 tsk->sysvsem.undo_list = NULL;
2243 return 0;
2247 * add semadj values to semaphores, free undo structures.
2248 * undo structures are not freed when semaphore arrays are destroyed
2249 * so some of them may be out of date.
2250 * IMPLEMENTATION NOTE: There is some confusion over whether the
2251 * set of adjustments that needs to be done should be done in an atomic
2252 * manner or not. That is, if we are attempting to decrement the semval
2253 * should we queue up and wait until we can do so legally?
2254 * The original implementation attempted to do this (queue and wait).
2255 * The current implementation does not do so. The POSIX standard
2256 * and SVID should be consulted to determine what behavior is mandated.
2258 void exit_sem(struct task_struct *tsk)
2260 struct sem_undo_list *ulp;
2262 ulp = tsk->sysvsem.undo_list;
2263 if (!ulp)
2264 return;
2265 tsk->sysvsem.undo_list = NULL;
2267 if (!refcount_dec_and_test(&ulp->refcnt))
2268 return;
2270 for (;;) {
2271 struct sem_array *sma;
2272 struct sem_undo *un;
2273 int semid, i;
2274 DEFINE_WAKE_Q(wake_q);
2276 cond_resched();
2278 rcu_read_lock();
2279 un = list_entry_rcu(ulp->list_proc.next,
2280 struct sem_undo, list_proc);
2281 if (&un->list_proc == &ulp->list_proc) {
2283 * We must wait for freeary() before freeing this ulp,
2284 * in case we raced with last sem_undo. There is a small
2285 * possibility where we exit while freeary() didn't
2286 * finish unlocking sem_undo_list.
2288 spin_lock(&ulp->lock);
2289 spin_unlock(&ulp->lock);
2290 rcu_read_unlock();
2291 break;
2293 spin_lock(&ulp->lock);
2294 semid = un->semid;
2295 spin_unlock(&ulp->lock);
2297 /* exit_sem raced with IPC_RMID, nothing to do */
2298 if (semid == -1) {
2299 rcu_read_unlock();
2300 continue;
2303 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2304 /* exit_sem raced with IPC_RMID, nothing to do */
2305 if (IS_ERR(sma)) {
2306 rcu_read_unlock();
2307 continue;
2310 sem_lock(sma, NULL, -1);
2311 /* exit_sem raced with IPC_RMID, nothing to do */
2312 if (!ipc_valid_object(&sma->sem_perm)) {
2313 sem_unlock(sma, -1);
2314 rcu_read_unlock();
2315 continue;
2317 un = __lookup_undo(ulp, semid);
2318 if (un == NULL) {
2319 /* exit_sem raced with IPC_RMID+semget() that created
2320 * exactly the same semid. Nothing to do.
2322 sem_unlock(sma, -1);
2323 rcu_read_unlock();
2324 continue;
2327 /* remove un from the linked lists */
2328 ipc_assert_locked_object(&sma->sem_perm);
2329 list_del(&un->list_id);
2331 /* we are the last process using this ulp, acquiring ulp->lock
2332 * isn't required. Besides that, we are also protected against
2333 * IPC_RMID as we hold sma->sem_perm lock now
2335 list_del_rcu(&un->list_proc);
2337 /* perform adjustments registered in un */
2338 for (i = 0; i < sma->sem_nsems; i++) {
2339 struct sem *semaphore = &sma->sems[i];
2340 if (un->semadj[i]) {
2341 semaphore->semval += un->semadj[i];
2343 * Range checks of the new semaphore value,
2344 * not defined by sus:
2345 * - Some unices ignore the undo entirely
2346 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2347 * - some cap the value (e.g. FreeBSD caps
2348 * at 0, but doesn't enforce SEMVMX)
2350 * Linux caps the semaphore value, both at 0
2351 * and at SEMVMX.
2353 * Manfred <manfred@colorfullife.com>
2355 if (semaphore->semval < 0)
2356 semaphore->semval = 0;
2357 if (semaphore->semval > SEMVMX)
2358 semaphore->semval = SEMVMX;
2359 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2362 /* maybe some queued-up processes were waiting for this */
2363 do_smart_update(sma, NULL, 0, 1, &wake_q);
2364 sem_unlock(sma, -1);
2365 rcu_read_unlock();
2366 wake_up_q(&wake_q);
2368 kfree_rcu(un, rcu);
2370 kfree(ulp);
2373 #ifdef CONFIG_PROC_FS
2374 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2376 struct user_namespace *user_ns = seq_user_ns(s);
2377 struct kern_ipc_perm *ipcp = it;
2378 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2379 time64_t sem_otime;
2382 * The proc interface isn't aware of sem_lock(), it calls
2383 * ipc_lock_object() directly (in sysvipc_find_ipc).
2384 * In order to stay compatible with sem_lock(), we must
2385 * enter / leave complex_mode.
2387 complexmode_enter(sma);
2389 sem_otime = get_semotime(sma);
2391 seq_printf(s,
2392 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2393 sma->sem_perm.key,
2394 sma->sem_perm.id,
2395 sma->sem_perm.mode,
2396 sma->sem_nsems,
2397 from_kuid_munged(user_ns, sma->sem_perm.uid),
2398 from_kgid_munged(user_ns, sma->sem_perm.gid),
2399 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2400 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2401 sem_otime,
2402 sma->sem_ctime);
2404 complexmode_tryleave(sma);
2406 return 0;
2408 #endif