sparc/led: Convert timers to use timer_setup()
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blobec4e15494901665f99329f2ad094cd3ed3ceed2e
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
82 #include "internal.h"
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
116 #else
118 #endif
120 static int __init disable_randmaps(char *s)
122 randomize_va_space = 0;
123 return 1;
125 __setup("norandmaps", disable_randmaps);
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
130 unsigned long highest_memmap_pfn __read_mostly;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init init_zero_pfn(void)
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
140 core_initcall(init_zero_pfn);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct *mm)
147 int i;
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
155 current->rss_stat.events = 0;
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 struct task_struct *task = current;
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct *task)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather *tlb)
194 struct mmu_gather_batch *batch;
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
214 tlb->active->next = batch;
215 tlb->active = batch;
217 return true;
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
223 tlb->mm = mm;
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
239 __tlb_reset_range(tlb);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
244 if (!tlb->end)
245 return;
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb);
251 #endif
252 __tlb_reset_range(tlb);
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
257 struct mmu_gather_batch *batch;
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
263 tlb->active = &tlb->local;
266 void tlb_flush_mmu(struct mmu_gather *tlb)
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
279 struct mmu_gather_batch *batch, *next;
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
284 tlb_flush_mmu(tlb);
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
293 tlb->local.next = NULL;
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 struct mmu_gather_batch *batch;
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
310 batch = tlb->active;
312 * Add the page and check if we are full. If so
313 * force a flush.
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323 return false;
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
334 static void tlb_remove_table_smp_sync(void *arg)
336 /* Simply deliver the interrupt */
339 static void tlb_remove_table_one(void *table)
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
348 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 __tlb_remove_table(table);
352 static void tlb_remove_table_rcu(struct rcu_head *head)
354 struct mmu_table_batch *batch;
355 int i;
357 batch = container_of(head, struct mmu_table_batch, rcu);
359 for (i = 0; i < batch->nr; i++)
360 __tlb_remove_table(batch->tables[i]);
362 free_page((unsigned long)batch);
365 void tlb_table_flush(struct mmu_gather *tlb)
367 struct mmu_table_batch **batch = &tlb->batch;
369 if (*batch) {
370 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 *batch = NULL;
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
377 struct mmu_table_batch **batch = &tlb->batch;
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
383 if (atomic_read(&tlb->mm->mm_users) < 2) {
384 __tlb_remove_table(table);
385 return;
388 if (*batch == NULL) {
389 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 if (*batch == NULL) {
391 tlb_remove_table_one(table);
392 return;
394 (*batch)->nr = 0;
396 (*batch)->tables[(*batch)->nr++] = table;
397 if ((*batch)->nr == MAX_TABLE_BATCH)
398 tlb_table_flush(tlb);
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
403 /* tlb_gather_mmu
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 unsigned long start, unsigned long end)
411 arch_tlb_gather_mmu(tlb, mm, start, end);
412 inc_tlb_flush_pending(tlb->mm);
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 unsigned long start, unsigned long end)
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
425 bool force = mm_tlb_flush_nested(tlb->mm);
427 arch_tlb_finish_mmu(tlb, start, end, force);
428 dec_tlb_flush_pending(tlb->mm);
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 unsigned long addr)
438 pgtable_t token = pmd_pgtable(*pmd);
439 pmd_clear(pmd);
440 pte_free_tlb(tlb, token, addr);
441 atomic_long_dec(&tlb->mm->nr_ptes);
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 unsigned long addr, unsigned long end,
446 unsigned long floor, unsigned long ceiling)
448 pmd_t *pmd;
449 unsigned long next;
450 unsigned long start;
452 start = addr;
453 pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
457 continue;
458 free_pte_range(tlb, pmd, addr);
459 } while (pmd++, addr = next, addr != end);
461 start &= PUD_MASK;
462 if (start < floor)
463 return;
464 if (ceiling) {
465 ceiling &= PUD_MASK;
466 if (!ceiling)
467 return;
469 if (end - 1 > ceiling - 1)
470 return;
472 pmd = pmd_offset(pud, start);
473 pud_clear(pud);
474 pmd_free_tlb(tlb, pmd, start);
475 mm_dec_nr_pmds(tlb->mm);
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 unsigned long addr, unsigned long end,
480 unsigned long floor, unsigned long ceiling)
482 pud_t *pud;
483 unsigned long next;
484 unsigned long start;
486 start = addr;
487 pud = pud_offset(p4d, addr);
488 do {
489 next = pud_addr_end(addr, end);
490 if (pud_none_or_clear_bad(pud))
491 continue;
492 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 } while (pud++, addr = next, addr != end);
495 start &= P4D_MASK;
496 if (start < floor)
497 return;
498 if (ceiling) {
499 ceiling &= P4D_MASK;
500 if (!ceiling)
501 return;
503 if (end - 1 > ceiling - 1)
504 return;
506 pud = pud_offset(p4d, start);
507 p4d_clear(p4d);
508 pud_free_tlb(tlb, pud, start);
511 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
512 unsigned long addr, unsigned long end,
513 unsigned long floor, unsigned long ceiling)
515 p4d_t *p4d;
516 unsigned long next;
517 unsigned long start;
519 start = addr;
520 p4d = p4d_offset(pgd, addr);
521 do {
522 next = p4d_addr_end(addr, end);
523 if (p4d_none_or_clear_bad(p4d))
524 continue;
525 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
526 } while (p4d++, addr = next, addr != end);
528 start &= PGDIR_MASK;
529 if (start < floor)
530 return;
531 if (ceiling) {
532 ceiling &= PGDIR_MASK;
533 if (!ceiling)
534 return;
536 if (end - 1 > ceiling - 1)
537 return;
539 p4d = p4d_offset(pgd, start);
540 pgd_clear(pgd);
541 p4d_free_tlb(tlb, p4d, start);
545 * This function frees user-level page tables of a process.
547 void free_pgd_range(struct mmu_gather *tlb,
548 unsigned long addr, unsigned long end,
549 unsigned long floor, unsigned long ceiling)
551 pgd_t *pgd;
552 unsigned long next;
555 * The next few lines have given us lots of grief...
557 * Why are we testing PMD* at this top level? Because often
558 * there will be no work to do at all, and we'd prefer not to
559 * go all the way down to the bottom just to discover that.
561 * Why all these "- 1"s? Because 0 represents both the bottom
562 * of the address space and the top of it (using -1 for the
563 * top wouldn't help much: the masks would do the wrong thing).
564 * The rule is that addr 0 and floor 0 refer to the bottom of
565 * the address space, but end 0 and ceiling 0 refer to the top
566 * Comparisons need to use "end - 1" and "ceiling - 1" (though
567 * that end 0 case should be mythical).
569 * Wherever addr is brought up or ceiling brought down, we must
570 * be careful to reject "the opposite 0" before it confuses the
571 * subsequent tests. But what about where end is brought down
572 * by PMD_SIZE below? no, end can't go down to 0 there.
574 * Whereas we round start (addr) and ceiling down, by different
575 * masks at different levels, in order to test whether a table
576 * now has no other vmas using it, so can be freed, we don't
577 * bother to round floor or end up - the tests don't need that.
580 addr &= PMD_MASK;
581 if (addr < floor) {
582 addr += PMD_SIZE;
583 if (!addr)
584 return;
586 if (ceiling) {
587 ceiling &= PMD_MASK;
588 if (!ceiling)
589 return;
591 if (end - 1 > ceiling - 1)
592 end -= PMD_SIZE;
593 if (addr > end - 1)
594 return;
596 * We add page table cache pages with PAGE_SIZE,
597 * (see pte_free_tlb()), flush the tlb if we need
599 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
600 pgd = pgd_offset(tlb->mm, addr);
601 do {
602 next = pgd_addr_end(addr, end);
603 if (pgd_none_or_clear_bad(pgd))
604 continue;
605 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
606 } while (pgd++, addr = next, addr != end);
609 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
610 unsigned long floor, unsigned long ceiling)
612 while (vma) {
613 struct vm_area_struct *next = vma->vm_next;
614 unsigned long addr = vma->vm_start;
617 * Hide vma from rmap and truncate_pagecache before freeing
618 * pgtables
620 unlink_anon_vmas(vma);
621 unlink_file_vma(vma);
623 if (is_vm_hugetlb_page(vma)) {
624 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
625 floor, next ? next->vm_start : ceiling);
626 } else {
628 * Optimization: gather nearby vmas into one call down
630 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
631 && !is_vm_hugetlb_page(next)) {
632 vma = next;
633 next = vma->vm_next;
634 unlink_anon_vmas(vma);
635 unlink_file_vma(vma);
637 free_pgd_range(tlb, addr, vma->vm_end,
638 floor, next ? next->vm_start : ceiling);
640 vma = next;
644 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
646 spinlock_t *ptl;
647 pgtable_t new = pte_alloc_one(mm, address);
648 if (!new)
649 return -ENOMEM;
652 * Ensure all pte setup (eg. pte page lock and page clearing) are
653 * visible before the pte is made visible to other CPUs by being
654 * put into page tables.
656 * The other side of the story is the pointer chasing in the page
657 * table walking code (when walking the page table without locking;
658 * ie. most of the time). Fortunately, these data accesses consist
659 * of a chain of data-dependent loads, meaning most CPUs (alpha
660 * being the notable exception) will already guarantee loads are
661 * seen in-order. See the alpha page table accessors for the
662 * smp_read_barrier_depends() barriers in page table walking code.
664 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
666 ptl = pmd_lock(mm, pmd);
667 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
668 atomic_long_inc(&mm->nr_ptes);
669 pmd_populate(mm, pmd, new);
670 new = NULL;
672 spin_unlock(ptl);
673 if (new)
674 pte_free(mm, new);
675 return 0;
678 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
680 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
681 if (!new)
682 return -ENOMEM;
684 smp_wmb(); /* See comment in __pte_alloc */
686 spin_lock(&init_mm.page_table_lock);
687 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
688 pmd_populate_kernel(&init_mm, pmd, new);
689 new = NULL;
691 spin_unlock(&init_mm.page_table_lock);
692 if (new)
693 pte_free_kernel(&init_mm, new);
694 return 0;
697 static inline void init_rss_vec(int *rss)
699 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
702 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
704 int i;
706 if (current->mm == mm)
707 sync_mm_rss(mm);
708 for (i = 0; i < NR_MM_COUNTERS; i++)
709 if (rss[i])
710 add_mm_counter(mm, i, rss[i]);
714 * This function is called to print an error when a bad pte
715 * is found. For example, we might have a PFN-mapped pte in
716 * a region that doesn't allow it.
718 * The calling function must still handle the error.
720 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
721 pte_t pte, struct page *page)
723 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
724 p4d_t *p4d = p4d_offset(pgd, addr);
725 pud_t *pud = pud_offset(p4d, addr);
726 pmd_t *pmd = pmd_offset(pud, addr);
727 struct address_space *mapping;
728 pgoff_t index;
729 static unsigned long resume;
730 static unsigned long nr_shown;
731 static unsigned long nr_unshown;
734 * Allow a burst of 60 reports, then keep quiet for that minute;
735 * or allow a steady drip of one report per second.
737 if (nr_shown == 60) {
738 if (time_before(jiffies, resume)) {
739 nr_unshown++;
740 return;
742 if (nr_unshown) {
743 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
744 nr_unshown);
745 nr_unshown = 0;
747 nr_shown = 0;
749 if (nr_shown++ == 0)
750 resume = jiffies + 60 * HZ;
752 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
753 index = linear_page_index(vma, addr);
755 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
756 current->comm,
757 (long long)pte_val(pte), (long long)pmd_val(*pmd));
758 if (page)
759 dump_page(page, "bad pte");
760 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
761 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
763 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
765 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
766 vma->vm_file,
767 vma->vm_ops ? vma->vm_ops->fault : NULL,
768 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
769 mapping ? mapping->a_ops->readpage : NULL);
770 dump_stack();
771 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
775 * vm_normal_page -- This function gets the "struct page" associated with a pte.
777 * "Special" mappings do not wish to be associated with a "struct page" (either
778 * it doesn't exist, or it exists but they don't want to touch it). In this
779 * case, NULL is returned here. "Normal" mappings do have a struct page.
781 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
782 * pte bit, in which case this function is trivial. Secondly, an architecture
783 * may not have a spare pte bit, which requires a more complicated scheme,
784 * described below.
786 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
787 * special mapping (even if there are underlying and valid "struct pages").
788 * COWed pages of a VM_PFNMAP are always normal.
790 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
791 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
792 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
793 * mapping will always honor the rule
795 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
797 * And for normal mappings this is false.
799 * This restricts such mappings to be a linear translation from virtual address
800 * to pfn. To get around this restriction, we allow arbitrary mappings so long
801 * as the vma is not a COW mapping; in that case, we know that all ptes are
802 * special (because none can have been COWed).
805 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
807 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
808 * page" backing, however the difference is that _all_ pages with a struct
809 * page (that is, those where pfn_valid is true) are refcounted and considered
810 * normal pages by the VM. The disadvantage is that pages are refcounted
811 * (which can be slower and simply not an option for some PFNMAP users). The
812 * advantage is that we don't have to follow the strict linearity rule of
813 * PFNMAP mappings in order to support COWable mappings.
816 #ifdef __HAVE_ARCH_PTE_SPECIAL
817 # define HAVE_PTE_SPECIAL 1
818 #else
819 # define HAVE_PTE_SPECIAL 0
820 #endif
821 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
822 pte_t pte, bool with_public_device)
824 unsigned long pfn = pte_pfn(pte);
826 if (HAVE_PTE_SPECIAL) {
827 if (likely(!pte_special(pte)))
828 goto check_pfn;
829 if (vma->vm_ops && vma->vm_ops->find_special_page)
830 return vma->vm_ops->find_special_page(vma, addr);
831 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
832 return NULL;
833 if (is_zero_pfn(pfn))
834 return NULL;
837 * Device public pages are special pages (they are ZONE_DEVICE
838 * pages but different from persistent memory). They behave
839 * allmost like normal pages. The difference is that they are
840 * not on the lru and thus should never be involve with any-
841 * thing that involve lru manipulation (mlock, numa balancing,
842 * ...).
844 * This is why we still want to return NULL for such page from
845 * vm_normal_page() so that we do not have to special case all
846 * call site of vm_normal_page().
848 if (likely(pfn < highest_memmap_pfn)) {
849 struct page *page = pfn_to_page(pfn);
851 if (is_device_public_page(page)) {
852 if (with_public_device)
853 return page;
854 return NULL;
857 print_bad_pte(vma, addr, pte, NULL);
858 return NULL;
861 /* !HAVE_PTE_SPECIAL case follows: */
863 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
864 if (vma->vm_flags & VM_MIXEDMAP) {
865 if (!pfn_valid(pfn))
866 return NULL;
867 goto out;
868 } else {
869 unsigned long off;
870 off = (addr - vma->vm_start) >> PAGE_SHIFT;
871 if (pfn == vma->vm_pgoff + off)
872 return NULL;
873 if (!is_cow_mapping(vma->vm_flags))
874 return NULL;
878 if (is_zero_pfn(pfn))
879 return NULL;
880 check_pfn:
881 if (unlikely(pfn > highest_memmap_pfn)) {
882 print_bad_pte(vma, addr, pte, NULL);
883 return NULL;
887 * NOTE! We still have PageReserved() pages in the page tables.
888 * eg. VDSO mappings can cause them to exist.
890 out:
891 return pfn_to_page(pfn);
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 pmd_t pmd)
898 unsigned long pfn = pmd_pfn(pmd);
901 * There is no pmd_special() but there may be special pmds, e.g.
902 * in a direct-access (dax) mapping, so let's just replicate the
903 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 if (vma->vm_flags & VM_MIXEDMAP) {
907 if (!pfn_valid(pfn))
908 return NULL;
909 goto out;
910 } else {
911 unsigned long off;
912 off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 if (pfn == vma->vm_pgoff + off)
914 return NULL;
915 if (!is_cow_mapping(vma->vm_flags))
916 return NULL;
920 if (is_zero_pfn(pfn))
921 return NULL;
922 if (unlikely(pfn > highest_memmap_pfn))
923 return NULL;
926 * NOTE! We still have PageReserved() pages in the page tables.
927 * eg. VDSO mappings can cause them to exist.
929 out:
930 return pfn_to_page(pfn);
932 #endif
935 * copy one vm_area from one task to the other. Assumes the page tables
936 * already present in the new task to be cleared in the whole range
937 * covered by this vma.
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 unsigned long addr, int *rss)
945 unsigned long vm_flags = vma->vm_flags;
946 pte_t pte = *src_pte;
947 struct page *page;
949 /* pte contains position in swap or file, so copy. */
950 if (unlikely(!pte_present(pte))) {
951 swp_entry_t entry = pte_to_swp_entry(pte);
953 if (likely(!non_swap_entry(entry))) {
954 if (swap_duplicate(entry) < 0)
955 return entry.val;
957 /* make sure dst_mm is on swapoff's mmlist. */
958 if (unlikely(list_empty(&dst_mm->mmlist))) {
959 spin_lock(&mmlist_lock);
960 if (list_empty(&dst_mm->mmlist))
961 list_add(&dst_mm->mmlist,
962 &src_mm->mmlist);
963 spin_unlock(&mmlist_lock);
965 rss[MM_SWAPENTS]++;
966 } else if (is_migration_entry(entry)) {
967 page = migration_entry_to_page(entry);
969 rss[mm_counter(page)]++;
971 if (is_write_migration_entry(entry) &&
972 is_cow_mapping(vm_flags)) {
974 * COW mappings require pages in both
975 * parent and child to be set to read.
977 make_migration_entry_read(&entry);
978 pte = swp_entry_to_pte(entry);
979 if (pte_swp_soft_dirty(*src_pte))
980 pte = pte_swp_mksoft_dirty(pte);
981 set_pte_at(src_mm, addr, src_pte, pte);
983 } else if (is_device_private_entry(entry)) {
984 page = device_private_entry_to_page(entry);
987 * Update rss count even for unaddressable pages, as
988 * they should treated just like normal pages in this
989 * respect.
991 * We will likely want to have some new rss counters
992 * for unaddressable pages, at some point. But for now
993 * keep things as they are.
995 get_page(page);
996 rss[mm_counter(page)]++;
997 page_dup_rmap(page, false);
1000 * We do not preserve soft-dirty information, because so
1001 * far, checkpoint/restore is the only feature that
1002 * requires that. And checkpoint/restore does not work
1003 * when a device driver is involved (you cannot easily
1004 * save and restore device driver state).
1006 if (is_write_device_private_entry(entry) &&
1007 is_cow_mapping(vm_flags)) {
1008 make_device_private_entry_read(&entry);
1009 pte = swp_entry_to_pte(entry);
1010 set_pte_at(src_mm, addr, src_pte, pte);
1013 goto out_set_pte;
1017 * If it's a COW mapping, write protect it both
1018 * in the parent and the child
1020 if (is_cow_mapping(vm_flags)) {
1021 ptep_set_wrprotect(src_mm, addr, src_pte);
1022 pte = pte_wrprotect(pte);
1026 * If it's a shared mapping, mark it clean in
1027 * the child
1029 if (vm_flags & VM_SHARED)
1030 pte = pte_mkclean(pte);
1031 pte = pte_mkold(pte);
1033 page = vm_normal_page(vma, addr, pte);
1034 if (page) {
1035 get_page(page);
1036 page_dup_rmap(page, false);
1037 rss[mm_counter(page)]++;
1038 } else if (pte_devmap(pte)) {
1039 page = pte_page(pte);
1042 * Cache coherent device memory behave like regular page and
1043 * not like persistent memory page. For more informations see
1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 if (is_device_public_page(page)) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1053 out_set_pte:
1054 set_pte_at(dst_mm, addr, dst_pte, pte);
1055 return 0;
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 unsigned long addr, unsigned long end)
1062 pte_t *orig_src_pte, *orig_dst_pte;
1063 pte_t *src_pte, *dst_pte;
1064 spinlock_t *src_ptl, *dst_ptl;
1065 int progress = 0;
1066 int rss[NR_MM_COUNTERS];
1067 swp_entry_t entry = (swp_entry_t){0};
1069 again:
1070 init_rss_vec(rss);
1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 if (!dst_pte)
1074 return -ENOMEM;
1075 src_pte = pte_offset_map(src_pmd, addr);
1076 src_ptl = pte_lockptr(src_mm, src_pmd);
1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 orig_src_pte = src_pte;
1079 orig_dst_pte = dst_pte;
1080 arch_enter_lazy_mmu_mode();
1082 do {
1084 * We are holding two locks at this point - either of them
1085 * could generate latencies in another task on another CPU.
1087 if (progress >= 32) {
1088 progress = 0;
1089 if (need_resched() ||
1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 break;
1093 if (pte_none(*src_pte)) {
1094 progress++;
1095 continue;
1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 vma, addr, rss);
1099 if (entry.val)
1100 break;
1101 progress += 8;
1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 arch_leave_lazy_mmu_mode();
1105 spin_unlock(src_ptl);
1106 pte_unmap(orig_src_pte);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1111 if (entry.val) {
1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 return -ENOMEM;
1114 progress = 0;
1116 if (addr != end)
1117 goto again;
1118 return 0;
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 unsigned long addr, unsigned long end)
1125 pmd_t *src_pmd, *dst_pmd;
1126 unsigned long next;
1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 if (!dst_pmd)
1130 return -ENOMEM;
1131 src_pmd = pmd_offset(src_pud, addr);
1132 do {
1133 next = pmd_addr_end(addr, end);
1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 || pmd_devmap(*src_pmd)) {
1136 int err;
1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 err = copy_huge_pmd(dst_mm, src_mm,
1139 dst_pmd, src_pmd, addr, vma);
1140 if (err == -ENOMEM)
1141 return -ENOMEM;
1142 if (!err)
1143 continue;
1144 /* fall through */
1146 if (pmd_none_or_clear_bad(src_pmd))
1147 continue;
1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 vma, addr, next))
1150 return -ENOMEM;
1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 return 0;
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 unsigned long addr, unsigned long end)
1159 pud_t *src_pud, *dst_pud;
1160 unsigned long next;
1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 if (!dst_pud)
1164 return -ENOMEM;
1165 src_pud = pud_offset(src_p4d, addr);
1166 do {
1167 next = pud_addr_end(addr, end);
1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 int err;
1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 err = copy_huge_pud(dst_mm, src_mm,
1173 dst_pud, src_pud, addr, vma);
1174 if (err == -ENOMEM)
1175 return -ENOMEM;
1176 if (!err)
1177 continue;
1178 /* fall through */
1180 if (pud_none_or_clear_bad(src_pud))
1181 continue;
1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 vma, addr, next))
1184 return -ENOMEM;
1185 } while (dst_pud++, src_pud++, addr = next, addr != end);
1186 return 0;
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 unsigned long addr, unsigned long end)
1193 p4d_t *src_p4d, *dst_p4d;
1194 unsigned long next;
1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 if (!dst_p4d)
1198 return -ENOMEM;
1199 src_p4d = p4d_offset(src_pgd, addr);
1200 do {
1201 next = p4d_addr_end(addr, end);
1202 if (p4d_none_or_clear_bad(src_p4d))
1203 continue;
1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 vma, addr, next))
1206 return -ENOMEM;
1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 return 0;
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 struct vm_area_struct *vma)
1214 pgd_t *src_pgd, *dst_pgd;
1215 unsigned long next;
1216 unsigned long addr = vma->vm_start;
1217 unsigned long end = vma->vm_end;
1218 unsigned long mmun_start; /* For mmu_notifiers */
1219 unsigned long mmun_end; /* For mmu_notifiers */
1220 bool is_cow;
1221 int ret;
1224 * Don't copy ptes where a page fault will fill them correctly.
1225 * Fork becomes much lighter when there are big shared or private
1226 * readonly mappings. The tradeoff is that copy_page_range is more
1227 * efficient than faulting.
1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 !vma->anon_vma)
1231 return 0;
1233 if (is_vm_hugetlb_page(vma))
1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 * We do not free on error cases below as remove_vma
1239 * gets called on error from higher level routine
1241 ret = track_pfn_copy(vma);
1242 if (ret)
1243 return ret;
1247 * We need to invalidate the secondary MMU mappings only when
1248 * there could be a permission downgrade on the ptes of the
1249 * parent mm. And a permission downgrade will only happen if
1250 * is_cow_mapping() returns true.
1252 is_cow = is_cow_mapping(vma->vm_flags);
1253 mmun_start = addr;
1254 mmun_end = end;
1255 if (is_cow)
1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 mmun_end);
1259 ret = 0;
1260 dst_pgd = pgd_offset(dst_mm, addr);
1261 src_pgd = pgd_offset(src_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(src_pgd))
1265 continue;
1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 vma, addr, next))) {
1268 ret = -ENOMEM;
1269 break;
1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273 if (is_cow)
1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 return ret;
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pmd_t *pmd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1283 struct mm_struct *mm = tlb->mm;
1284 int force_flush = 0;
1285 int rss[NR_MM_COUNTERS];
1286 spinlock_t *ptl;
1287 pte_t *start_pte;
1288 pte_t *pte;
1289 swp_entry_t entry;
1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 init_rss_vec(rss);
1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 pte = start_pte;
1296 flush_tlb_batched_pending(mm);
1297 arch_enter_lazy_mmu_mode();
1298 do {
1299 pte_t ptent = *pte;
1300 if (pte_none(ptent))
1301 continue;
1303 if (pte_present(ptent)) {
1304 struct page *page;
1306 page = _vm_normal_page(vma, addr, ptent, true);
1307 if (unlikely(details) && page) {
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1313 if (details->check_mapping &&
1314 details->check_mapping != page_rmapping(page))
1315 continue;
1317 ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 tlb->fullmm);
1319 tlb_remove_tlb_entry(tlb, pte, addr);
1320 if (unlikely(!page))
1321 continue;
1323 if (!PageAnon(page)) {
1324 if (pte_dirty(ptent)) {
1325 force_flush = 1;
1326 set_page_dirty(page);
1328 if (pte_young(ptent) &&
1329 likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 mark_page_accessed(page);
1332 rss[mm_counter(page)]--;
1333 page_remove_rmap(page, false);
1334 if (unlikely(page_mapcount(page) < 0))
1335 print_bad_pte(vma, addr, ptent, page);
1336 if (unlikely(__tlb_remove_page(tlb, page))) {
1337 force_flush = 1;
1338 addr += PAGE_SIZE;
1339 break;
1341 continue;
1344 entry = pte_to_swp_entry(ptent);
1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 struct page *page = device_private_entry_to_page(entry);
1348 if (unlikely(details && details->check_mapping)) {
1350 * unmap_shared_mapping_pages() wants to
1351 * invalidate cache without truncating:
1352 * unmap shared but keep private pages.
1354 if (details->check_mapping !=
1355 page_rmapping(page))
1356 continue;
1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 rss[mm_counter(page)]--;
1361 page_remove_rmap(page, false);
1362 put_page(page);
1363 continue;
1366 /* If details->check_mapping, we leave swap entries. */
1367 if (unlikely(details))
1368 continue;
1370 entry = pte_to_swp_entry(ptent);
1371 if (!non_swap_entry(entry))
1372 rss[MM_SWAPENTS]--;
1373 else if (is_migration_entry(entry)) {
1374 struct page *page;
1376 page = migration_entry_to_page(entry);
1377 rss[mm_counter(page)]--;
1379 if (unlikely(!free_swap_and_cache(entry)))
1380 print_bad_pte(vma, addr, ptent, NULL);
1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 } while (pte++, addr += PAGE_SIZE, addr != end);
1384 add_mm_rss_vec(mm, rss);
1385 arch_leave_lazy_mmu_mode();
1387 /* Do the actual TLB flush before dropping ptl */
1388 if (force_flush)
1389 tlb_flush_mmu_tlbonly(tlb);
1390 pte_unmap_unlock(start_pte, ptl);
1393 * If we forced a TLB flush (either due to running out of
1394 * batch buffers or because we needed to flush dirty TLB
1395 * entries before releasing the ptl), free the batched
1396 * memory too. Restart if we didn't do everything.
1398 if (force_flush) {
1399 force_flush = 0;
1400 tlb_flush_mmu_free(tlb);
1401 if (addr != end)
1402 goto again;
1405 return addr;
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 struct vm_area_struct *vma, pud_t *pud,
1410 unsigned long addr, unsigned long end,
1411 struct zap_details *details)
1413 pmd_t *pmd;
1414 unsigned long next;
1416 pmd = pmd_offset(pud, addr);
1417 do {
1418 next = pmd_addr_end(addr, end);
1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 if (next - addr != HPAGE_PMD_SIZE) {
1421 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1422 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1423 __split_huge_pmd(vma, pmd, addr, false, NULL);
1424 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1425 goto next;
1426 /* fall through */
1429 * Here there can be other concurrent MADV_DONTNEED or
1430 * trans huge page faults running, and if the pmd is
1431 * none or trans huge it can change under us. This is
1432 * because MADV_DONTNEED holds the mmap_sem in read
1433 * mode.
1435 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1436 goto next;
1437 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1438 next:
1439 cond_resched();
1440 } while (pmd++, addr = next, addr != end);
1442 return addr;
1445 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1446 struct vm_area_struct *vma, p4d_t *p4d,
1447 unsigned long addr, unsigned long end,
1448 struct zap_details *details)
1450 pud_t *pud;
1451 unsigned long next;
1453 pud = pud_offset(p4d, addr);
1454 do {
1455 next = pud_addr_end(addr, end);
1456 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1457 if (next - addr != HPAGE_PUD_SIZE) {
1458 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1459 split_huge_pud(vma, pud, addr);
1460 } else if (zap_huge_pud(tlb, vma, pud, addr))
1461 goto next;
1462 /* fall through */
1464 if (pud_none_or_clear_bad(pud))
1465 continue;
1466 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1467 next:
1468 cond_resched();
1469 } while (pud++, addr = next, addr != end);
1471 return addr;
1474 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1475 struct vm_area_struct *vma, pgd_t *pgd,
1476 unsigned long addr, unsigned long end,
1477 struct zap_details *details)
1479 p4d_t *p4d;
1480 unsigned long next;
1482 p4d = p4d_offset(pgd, addr);
1483 do {
1484 next = p4d_addr_end(addr, end);
1485 if (p4d_none_or_clear_bad(p4d))
1486 continue;
1487 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1488 } while (p4d++, addr = next, addr != end);
1490 return addr;
1493 void unmap_page_range(struct mmu_gather *tlb,
1494 struct vm_area_struct *vma,
1495 unsigned long addr, unsigned long end,
1496 struct zap_details *details)
1498 pgd_t *pgd;
1499 unsigned long next;
1501 BUG_ON(addr >= end);
1502 tlb_start_vma(tlb, vma);
1503 pgd = pgd_offset(vma->vm_mm, addr);
1504 do {
1505 next = pgd_addr_end(addr, end);
1506 if (pgd_none_or_clear_bad(pgd))
1507 continue;
1508 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1509 } while (pgd++, addr = next, addr != end);
1510 tlb_end_vma(tlb, vma);
1514 static void unmap_single_vma(struct mmu_gather *tlb,
1515 struct vm_area_struct *vma, unsigned long start_addr,
1516 unsigned long end_addr,
1517 struct zap_details *details)
1519 unsigned long start = max(vma->vm_start, start_addr);
1520 unsigned long end;
1522 if (start >= vma->vm_end)
1523 return;
1524 end = min(vma->vm_end, end_addr);
1525 if (end <= vma->vm_start)
1526 return;
1528 if (vma->vm_file)
1529 uprobe_munmap(vma, start, end);
1531 if (unlikely(vma->vm_flags & VM_PFNMAP))
1532 untrack_pfn(vma, 0, 0);
1534 if (start != end) {
1535 if (unlikely(is_vm_hugetlb_page(vma))) {
1537 * It is undesirable to test vma->vm_file as it
1538 * should be non-null for valid hugetlb area.
1539 * However, vm_file will be NULL in the error
1540 * cleanup path of mmap_region. When
1541 * hugetlbfs ->mmap method fails,
1542 * mmap_region() nullifies vma->vm_file
1543 * before calling this function to clean up.
1544 * Since no pte has actually been setup, it is
1545 * safe to do nothing in this case.
1547 if (vma->vm_file) {
1548 i_mmap_lock_write(vma->vm_file->f_mapping);
1549 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1550 i_mmap_unlock_write(vma->vm_file->f_mapping);
1552 } else
1553 unmap_page_range(tlb, vma, start, end, details);
1558 * unmap_vmas - unmap a range of memory covered by a list of vma's
1559 * @tlb: address of the caller's struct mmu_gather
1560 * @vma: the starting vma
1561 * @start_addr: virtual address at which to start unmapping
1562 * @end_addr: virtual address at which to end unmapping
1564 * Unmap all pages in the vma list.
1566 * Only addresses between `start' and `end' will be unmapped.
1568 * The VMA list must be sorted in ascending virtual address order.
1570 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571 * range after unmap_vmas() returns. So the only responsibility here is to
1572 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573 * drops the lock and schedules.
1575 void unmap_vmas(struct mmu_gather *tlb,
1576 struct vm_area_struct *vma, unsigned long start_addr,
1577 unsigned long end_addr)
1579 struct mm_struct *mm = vma->vm_mm;
1581 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1582 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1583 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1584 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588 * zap_page_range - remove user pages in a given range
1589 * @vma: vm_area_struct holding the applicable pages
1590 * @start: starting address of pages to zap
1591 * @size: number of bytes to zap
1593 * Caller must protect the VMA list
1595 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1596 unsigned long size)
1598 struct mm_struct *mm = vma->vm_mm;
1599 struct mmu_gather tlb;
1600 unsigned long end = start + size;
1602 lru_add_drain();
1603 tlb_gather_mmu(&tlb, mm, start, end);
1604 update_hiwater_rss(mm);
1605 mmu_notifier_invalidate_range_start(mm, start, end);
1606 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1607 unmap_single_vma(&tlb, vma, start, end, NULL);
1610 * zap_page_range does not specify whether mmap_sem should be
1611 * held for read or write. That allows parallel zap_page_range
1612 * operations to unmap a PTE and defer a flush meaning that
1613 * this call observes pte_none and fails to flush the TLB.
1614 * Rather than adding a complex API, ensure that no stale
1615 * TLB entries exist when this call returns.
1617 flush_tlb_range(vma, start, end);
1620 mmu_notifier_invalidate_range_end(mm, start, end);
1621 tlb_finish_mmu(&tlb, start, end);
1625 * zap_page_range_single - remove user pages in a given range
1626 * @vma: vm_area_struct holding the applicable pages
1627 * @address: starting address of pages to zap
1628 * @size: number of bytes to zap
1629 * @details: details of shared cache invalidation
1631 * The range must fit into one VMA.
1633 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1634 unsigned long size, struct zap_details *details)
1636 struct mm_struct *mm = vma->vm_mm;
1637 struct mmu_gather tlb;
1638 unsigned long end = address + size;
1640 lru_add_drain();
1641 tlb_gather_mmu(&tlb, mm, address, end);
1642 update_hiwater_rss(mm);
1643 mmu_notifier_invalidate_range_start(mm, address, end);
1644 unmap_single_vma(&tlb, vma, address, end, details);
1645 mmu_notifier_invalidate_range_end(mm, address, end);
1646 tlb_finish_mmu(&tlb, address, end);
1650 * zap_vma_ptes - remove ptes mapping the vma
1651 * @vma: vm_area_struct holding ptes to be zapped
1652 * @address: starting address of pages to zap
1653 * @size: number of bytes to zap
1655 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 * The entire address range must be fully contained within the vma.
1659 * Returns 0 if successful.
1661 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1662 unsigned long size)
1664 if (address < vma->vm_start || address + size > vma->vm_end ||
1665 !(vma->vm_flags & VM_PFNMAP))
1666 return -1;
1667 zap_page_range_single(vma, address, size, NULL);
1668 return 0;
1670 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1672 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1673 spinlock_t **ptl)
1675 pgd_t *pgd;
1676 p4d_t *p4d;
1677 pud_t *pud;
1678 pmd_t *pmd;
1680 pgd = pgd_offset(mm, addr);
1681 p4d = p4d_alloc(mm, pgd, addr);
1682 if (!p4d)
1683 return NULL;
1684 pud = pud_alloc(mm, p4d, addr);
1685 if (!pud)
1686 return NULL;
1687 pmd = pmd_alloc(mm, pud, addr);
1688 if (!pmd)
1689 return NULL;
1691 VM_BUG_ON(pmd_trans_huge(*pmd));
1692 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1696 * This is the old fallback for page remapping.
1698 * For historical reasons, it only allows reserved pages. Only
1699 * old drivers should use this, and they needed to mark their
1700 * pages reserved for the old functions anyway.
1702 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1703 struct page *page, pgprot_t prot)
1705 struct mm_struct *mm = vma->vm_mm;
1706 int retval;
1707 pte_t *pte;
1708 spinlock_t *ptl;
1710 retval = -EINVAL;
1711 if (PageAnon(page))
1712 goto out;
1713 retval = -ENOMEM;
1714 flush_dcache_page(page);
1715 pte = get_locked_pte(mm, addr, &ptl);
1716 if (!pte)
1717 goto out;
1718 retval = -EBUSY;
1719 if (!pte_none(*pte))
1720 goto out_unlock;
1722 /* Ok, finally just insert the thing.. */
1723 get_page(page);
1724 inc_mm_counter_fast(mm, mm_counter_file(page));
1725 page_add_file_rmap(page, false);
1726 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1728 retval = 0;
1729 pte_unmap_unlock(pte, ptl);
1730 return retval;
1731 out_unlock:
1732 pte_unmap_unlock(pte, ptl);
1733 out:
1734 return retval;
1738 * vm_insert_page - insert single page into user vma
1739 * @vma: user vma to map to
1740 * @addr: target user address of this page
1741 * @page: source kernel page
1743 * This allows drivers to insert individual pages they've allocated
1744 * into a user vma.
1746 * The page has to be a nice clean _individual_ kernel allocation.
1747 * If you allocate a compound page, you need to have marked it as
1748 * such (__GFP_COMP), or manually just split the page up yourself
1749 * (see split_page()).
1751 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1752 * took an arbitrary page protection parameter. This doesn't allow
1753 * that. Your vma protection will have to be set up correctly, which
1754 * means that if you want a shared writable mapping, you'd better
1755 * ask for a shared writable mapping!
1757 * The page does not need to be reserved.
1759 * Usually this function is called from f_op->mmap() handler
1760 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1761 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1762 * function from other places, for example from page-fault handler.
1764 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1765 struct page *page)
1767 if (addr < vma->vm_start || addr >= vma->vm_end)
1768 return -EFAULT;
1769 if (!page_count(page))
1770 return -EINVAL;
1771 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1772 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1773 BUG_ON(vma->vm_flags & VM_PFNMAP);
1774 vma->vm_flags |= VM_MIXEDMAP;
1776 return insert_page(vma, addr, page, vma->vm_page_prot);
1778 EXPORT_SYMBOL(vm_insert_page);
1780 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1781 pfn_t pfn, pgprot_t prot, bool mkwrite)
1783 struct mm_struct *mm = vma->vm_mm;
1784 int retval;
1785 pte_t *pte, entry;
1786 spinlock_t *ptl;
1788 retval = -ENOMEM;
1789 pte = get_locked_pte(mm, addr, &ptl);
1790 if (!pte)
1791 goto out;
1792 retval = -EBUSY;
1793 if (!pte_none(*pte)) {
1794 if (mkwrite) {
1796 * For read faults on private mappings the PFN passed
1797 * in may not match the PFN we have mapped if the
1798 * mapped PFN is a writeable COW page. In the mkwrite
1799 * case we are creating a writable PTE for a shared
1800 * mapping and we expect the PFNs to match.
1802 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1803 goto out_unlock;
1804 entry = *pte;
1805 goto out_mkwrite;
1806 } else
1807 goto out_unlock;
1810 /* Ok, finally just insert the thing.. */
1811 if (pfn_t_devmap(pfn))
1812 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1813 else
1814 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1816 out_mkwrite:
1817 if (mkwrite) {
1818 entry = pte_mkyoung(entry);
1819 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1822 set_pte_at(mm, addr, pte, entry);
1823 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1825 retval = 0;
1826 out_unlock:
1827 pte_unmap_unlock(pte, ptl);
1828 out:
1829 return retval;
1833 * vm_insert_pfn - insert single pfn into user vma
1834 * @vma: user vma to map to
1835 * @addr: target user address of this page
1836 * @pfn: source kernel pfn
1838 * Similar to vm_insert_page, this allows drivers to insert individual pages
1839 * they've allocated into a user vma. Same comments apply.
1841 * This function should only be called from a vm_ops->fault handler, and
1842 * in that case the handler should return NULL.
1844 * vma cannot be a COW mapping.
1846 * As this is called only for pages that do not currently exist, we
1847 * do not need to flush old virtual caches or the TLB.
1849 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1850 unsigned long pfn)
1852 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1854 EXPORT_SYMBOL(vm_insert_pfn);
1857 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1858 * @vma: user vma to map to
1859 * @addr: target user address of this page
1860 * @pfn: source kernel pfn
1861 * @pgprot: pgprot flags for the inserted page
1863 * This is exactly like vm_insert_pfn, except that it allows drivers to
1864 * to override pgprot on a per-page basis.
1866 * This only makes sense for IO mappings, and it makes no sense for
1867 * cow mappings. In general, using multiple vmas is preferable;
1868 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1869 * impractical.
1871 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1872 unsigned long pfn, pgprot_t pgprot)
1874 int ret;
1876 * Technically, architectures with pte_special can avoid all these
1877 * restrictions (same for remap_pfn_range). However we would like
1878 * consistency in testing and feature parity among all, so we should
1879 * try to keep these invariants in place for everybody.
1881 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1882 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1883 (VM_PFNMAP|VM_MIXEDMAP));
1884 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1885 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1887 if (addr < vma->vm_start || addr >= vma->vm_end)
1888 return -EFAULT;
1890 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1892 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893 false);
1895 return ret;
1897 EXPORT_SYMBOL(vm_insert_pfn_prot);
1899 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1900 pfn_t pfn, bool mkwrite)
1902 pgprot_t pgprot = vma->vm_page_prot;
1904 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1906 if (addr < vma->vm_start || addr >= vma->vm_end)
1907 return -EFAULT;
1909 track_pfn_insert(vma, &pgprot, pfn);
1912 * If we don't have pte special, then we have to use the pfn_valid()
1913 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1914 * refcount the page if pfn_valid is true (hence insert_page rather
1915 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1916 * without pte special, it would there be refcounted as a normal page.
1918 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1919 struct page *page;
1922 * At this point we are committed to insert_page()
1923 * regardless of whether the caller specified flags that
1924 * result in pfn_t_has_page() == false.
1926 page = pfn_to_page(pfn_t_to_pfn(pfn));
1927 return insert_page(vma, addr, page, pgprot);
1929 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1932 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1933 pfn_t pfn)
1935 return __vm_insert_mixed(vma, addr, pfn, false);
1938 EXPORT_SYMBOL(vm_insert_mixed);
1940 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1941 pfn_t pfn)
1943 return __vm_insert_mixed(vma, addr, pfn, true);
1945 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1948 * maps a range of physical memory into the requested pages. the old
1949 * mappings are removed. any references to nonexistent pages results
1950 * in null mappings (currently treated as "copy-on-access")
1952 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1953 unsigned long addr, unsigned long end,
1954 unsigned long pfn, pgprot_t prot)
1956 pte_t *pte;
1957 spinlock_t *ptl;
1959 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1960 if (!pte)
1961 return -ENOMEM;
1962 arch_enter_lazy_mmu_mode();
1963 do {
1964 BUG_ON(!pte_none(*pte));
1965 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1966 pfn++;
1967 } while (pte++, addr += PAGE_SIZE, addr != end);
1968 arch_leave_lazy_mmu_mode();
1969 pte_unmap_unlock(pte - 1, ptl);
1970 return 0;
1973 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1974 unsigned long addr, unsigned long end,
1975 unsigned long pfn, pgprot_t prot)
1977 pmd_t *pmd;
1978 unsigned long next;
1980 pfn -= addr >> PAGE_SHIFT;
1981 pmd = pmd_alloc(mm, pud, addr);
1982 if (!pmd)
1983 return -ENOMEM;
1984 VM_BUG_ON(pmd_trans_huge(*pmd));
1985 do {
1986 next = pmd_addr_end(addr, end);
1987 if (remap_pte_range(mm, pmd, addr, next,
1988 pfn + (addr >> PAGE_SHIFT), prot))
1989 return -ENOMEM;
1990 } while (pmd++, addr = next, addr != end);
1991 return 0;
1994 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1995 unsigned long addr, unsigned long end,
1996 unsigned long pfn, pgprot_t prot)
1998 pud_t *pud;
1999 unsigned long next;
2001 pfn -= addr >> PAGE_SHIFT;
2002 pud = pud_alloc(mm, p4d, addr);
2003 if (!pud)
2004 return -ENOMEM;
2005 do {
2006 next = pud_addr_end(addr, end);
2007 if (remap_pmd_range(mm, pud, addr, next,
2008 pfn + (addr >> PAGE_SHIFT), prot))
2009 return -ENOMEM;
2010 } while (pud++, addr = next, addr != end);
2011 return 0;
2014 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2015 unsigned long addr, unsigned long end,
2016 unsigned long pfn, pgprot_t prot)
2018 p4d_t *p4d;
2019 unsigned long next;
2021 pfn -= addr >> PAGE_SHIFT;
2022 p4d = p4d_alloc(mm, pgd, addr);
2023 if (!p4d)
2024 return -ENOMEM;
2025 do {
2026 next = p4d_addr_end(addr, end);
2027 if (remap_pud_range(mm, p4d, addr, next,
2028 pfn + (addr >> PAGE_SHIFT), prot))
2029 return -ENOMEM;
2030 } while (p4d++, addr = next, addr != end);
2031 return 0;
2035 * remap_pfn_range - remap kernel memory to userspace
2036 * @vma: user vma to map to
2037 * @addr: target user address to start at
2038 * @pfn: physical address of kernel memory
2039 * @size: size of map area
2040 * @prot: page protection flags for this mapping
2042 * Note: this is only safe if the mm semaphore is held when called.
2044 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2045 unsigned long pfn, unsigned long size, pgprot_t prot)
2047 pgd_t *pgd;
2048 unsigned long next;
2049 unsigned long end = addr + PAGE_ALIGN(size);
2050 struct mm_struct *mm = vma->vm_mm;
2051 unsigned long remap_pfn = pfn;
2052 int err;
2055 * Physically remapped pages are special. Tell the
2056 * rest of the world about it:
2057 * VM_IO tells people not to look at these pages
2058 * (accesses can have side effects).
2059 * VM_PFNMAP tells the core MM that the base pages are just
2060 * raw PFN mappings, and do not have a "struct page" associated
2061 * with them.
2062 * VM_DONTEXPAND
2063 * Disable vma merging and expanding with mremap().
2064 * VM_DONTDUMP
2065 * Omit vma from core dump, even when VM_IO turned off.
2067 * There's a horrible special case to handle copy-on-write
2068 * behaviour that some programs depend on. We mark the "original"
2069 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2070 * See vm_normal_page() for details.
2072 if (is_cow_mapping(vma->vm_flags)) {
2073 if (addr != vma->vm_start || end != vma->vm_end)
2074 return -EINVAL;
2075 vma->vm_pgoff = pfn;
2078 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2079 if (err)
2080 return -EINVAL;
2082 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2084 BUG_ON(addr >= end);
2085 pfn -= addr >> PAGE_SHIFT;
2086 pgd = pgd_offset(mm, addr);
2087 flush_cache_range(vma, addr, end);
2088 do {
2089 next = pgd_addr_end(addr, end);
2090 err = remap_p4d_range(mm, pgd, addr, next,
2091 pfn + (addr >> PAGE_SHIFT), prot);
2092 if (err)
2093 break;
2094 } while (pgd++, addr = next, addr != end);
2096 if (err)
2097 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2099 return err;
2101 EXPORT_SYMBOL(remap_pfn_range);
2104 * vm_iomap_memory - remap memory to userspace
2105 * @vma: user vma to map to
2106 * @start: start of area
2107 * @len: size of area
2109 * This is a simplified io_remap_pfn_range() for common driver use. The
2110 * driver just needs to give us the physical memory range to be mapped,
2111 * we'll figure out the rest from the vma information.
2113 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2114 * whatever write-combining details or similar.
2116 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2118 unsigned long vm_len, pfn, pages;
2120 /* Check that the physical memory area passed in looks valid */
2121 if (start + len < start)
2122 return -EINVAL;
2124 * You *really* shouldn't map things that aren't page-aligned,
2125 * but we've historically allowed it because IO memory might
2126 * just have smaller alignment.
2128 len += start & ~PAGE_MASK;
2129 pfn = start >> PAGE_SHIFT;
2130 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2131 if (pfn + pages < pfn)
2132 return -EINVAL;
2134 /* We start the mapping 'vm_pgoff' pages into the area */
2135 if (vma->vm_pgoff > pages)
2136 return -EINVAL;
2137 pfn += vma->vm_pgoff;
2138 pages -= vma->vm_pgoff;
2140 /* Can we fit all of the mapping? */
2141 vm_len = vma->vm_end - vma->vm_start;
2142 if (vm_len >> PAGE_SHIFT > pages)
2143 return -EINVAL;
2145 /* Ok, let it rip */
2146 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2148 EXPORT_SYMBOL(vm_iomap_memory);
2150 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2151 unsigned long addr, unsigned long end,
2152 pte_fn_t fn, void *data)
2154 pte_t *pte;
2155 int err;
2156 pgtable_t token;
2157 spinlock_t *uninitialized_var(ptl);
2159 pte = (mm == &init_mm) ?
2160 pte_alloc_kernel(pmd, addr) :
2161 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162 if (!pte)
2163 return -ENOMEM;
2165 BUG_ON(pmd_huge(*pmd));
2167 arch_enter_lazy_mmu_mode();
2169 token = pmd_pgtable(*pmd);
2171 do {
2172 err = fn(pte++, token, addr, data);
2173 if (err)
2174 break;
2175 } while (addr += PAGE_SIZE, addr != end);
2177 arch_leave_lazy_mmu_mode();
2179 if (mm != &init_mm)
2180 pte_unmap_unlock(pte-1, ptl);
2181 return err;
2184 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2185 unsigned long addr, unsigned long end,
2186 pte_fn_t fn, void *data)
2188 pmd_t *pmd;
2189 unsigned long next;
2190 int err;
2192 BUG_ON(pud_huge(*pud));
2194 pmd = pmd_alloc(mm, pud, addr);
2195 if (!pmd)
2196 return -ENOMEM;
2197 do {
2198 next = pmd_addr_end(addr, end);
2199 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2200 if (err)
2201 break;
2202 } while (pmd++, addr = next, addr != end);
2203 return err;
2206 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2207 unsigned long addr, unsigned long end,
2208 pte_fn_t fn, void *data)
2210 pud_t *pud;
2211 unsigned long next;
2212 int err;
2214 pud = pud_alloc(mm, p4d, addr);
2215 if (!pud)
2216 return -ENOMEM;
2217 do {
2218 next = pud_addr_end(addr, end);
2219 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2220 if (err)
2221 break;
2222 } while (pud++, addr = next, addr != end);
2223 return err;
2226 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2227 unsigned long addr, unsigned long end,
2228 pte_fn_t fn, void *data)
2230 p4d_t *p4d;
2231 unsigned long next;
2232 int err;
2234 p4d = p4d_alloc(mm, pgd, addr);
2235 if (!p4d)
2236 return -ENOMEM;
2237 do {
2238 next = p4d_addr_end(addr, end);
2239 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2240 if (err)
2241 break;
2242 } while (p4d++, addr = next, addr != end);
2243 return err;
2247 * Scan a region of virtual memory, filling in page tables as necessary
2248 * and calling a provided function on each leaf page table.
2250 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2251 unsigned long size, pte_fn_t fn, void *data)
2253 pgd_t *pgd;
2254 unsigned long next;
2255 unsigned long end = addr + size;
2256 int err;
2258 if (WARN_ON(addr >= end))
2259 return -EINVAL;
2261 pgd = pgd_offset(mm, addr);
2262 do {
2263 next = pgd_addr_end(addr, end);
2264 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2265 if (err)
2266 break;
2267 } while (pgd++, addr = next, addr != end);
2269 return err;
2271 EXPORT_SYMBOL_GPL(apply_to_page_range);
2274 * handle_pte_fault chooses page fault handler according to an entry which was
2275 * read non-atomically. Before making any commitment, on those architectures
2276 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2277 * parts, do_swap_page must check under lock before unmapping the pte and
2278 * proceeding (but do_wp_page is only called after already making such a check;
2279 * and do_anonymous_page can safely check later on).
2281 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2282 pte_t *page_table, pte_t orig_pte)
2284 int same = 1;
2285 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2286 if (sizeof(pte_t) > sizeof(unsigned long)) {
2287 spinlock_t *ptl = pte_lockptr(mm, pmd);
2288 spin_lock(ptl);
2289 same = pte_same(*page_table, orig_pte);
2290 spin_unlock(ptl);
2292 #endif
2293 pte_unmap(page_table);
2294 return same;
2297 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2299 debug_dma_assert_idle(src);
2302 * If the source page was a PFN mapping, we don't have
2303 * a "struct page" for it. We do a best-effort copy by
2304 * just copying from the original user address. If that
2305 * fails, we just zero-fill it. Live with it.
2307 if (unlikely(!src)) {
2308 void *kaddr = kmap_atomic(dst);
2309 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2312 * This really shouldn't fail, because the page is there
2313 * in the page tables. But it might just be unreadable,
2314 * in which case we just give up and fill the result with
2315 * zeroes.
2317 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2318 clear_page(kaddr);
2319 kunmap_atomic(kaddr);
2320 flush_dcache_page(dst);
2321 } else
2322 copy_user_highpage(dst, src, va, vma);
2325 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2327 struct file *vm_file = vma->vm_file;
2329 if (vm_file)
2330 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2333 * Special mappings (e.g. VDSO) do not have any file so fake
2334 * a default GFP_KERNEL for them.
2336 return GFP_KERNEL;
2340 * Notify the address space that the page is about to become writable so that
2341 * it can prohibit this or wait for the page to get into an appropriate state.
2343 * We do this without the lock held, so that it can sleep if it needs to.
2345 static int do_page_mkwrite(struct vm_fault *vmf)
2347 int ret;
2348 struct page *page = vmf->page;
2349 unsigned int old_flags = vmf->flags;
2351 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2353 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2354 /* Restore original flags so that caller is not surprised */
2355 vmf->flags = old_flags;
2356 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2357 return ret;
2358 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2359 lock_page(page);
2360 if (!page->mapping) {
2361 unlock_page(page);
2362 return 0; /* retry */
2364 ret |= VM_FAULT_LOCKED;
2365 } else
2366 VM_BUG_ON_PAGE(!PageLocked(page), page);
2367 return ret;
2371 * Handle dirtying of a page in shared file mapping on a write fault.
2373 * The function expects the page to be locked and unlocks it.
2375 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2376 struct page *page)
2378 struct address_space *mapping;
2379 bool dirtied;
2380 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2382 dirtied = set_page_dirty(page);
2383 VM_BUG_ON_PAGE(PageAnon(page), page);
2385 * Take a local copy of the address_space - page.mapping may be zeroed
2386 * by truncate after unlock_page(). The address_space itself remains
2387 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2388 * release semantics to prevent the compiler from undoing this copying.
2390 mapping = page_rmapping(page);
2391 unlock_page(page);
2393 if ((dirtied || page_mkwrite) && mapping) {
2395 * Some device drivers do not set page.mapping
2396 * but still dirty their pages
2398 balance_dirty_pages_ratelimited(mapping);
2401 if (!page_mkwrite)
2402 file_update_time(vma->vm_file);
2406 * Handle write page faults for pages that can be reused in the current vma
2408 * This can happen either due to the mapping being with the VM_SHARED flag,
2409 * or due to us being the last reference standing to the page. In either
2410 * case, all we need to do here is to mark the page as writable and update
2411 * any related book-keeping.
2413 static inline void wp_page_reuse(struct vm_fault *vmf)
2414 __releases(vmf->ptl)
2416 struct vm_area_struct *vma = vmf->vma;
2417 struct page *page = vmf->page;
2418 pte_t entry;
2420 * Clear the pages cpupid information as the existing
2421 * information potentially belongs to a now completely
2422 * unrelated process.
2424 if (page)
2425 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2427 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2428 entry = pte_mkyoung(vmf->orig_pte);
2429 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2430 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2431 update_mmu_cache(vma, vmf->address, vmf->pte);
2432 pte_unmap_unlock(vmf->pte, vmf->ptl);
2436 * Handle the case of a page which we actually need to copy to a new page.
2438 * Called with mmap_sem locked and the old page referenced, but
2439 * without the ptl held.
2441 * High level logic flow:
2443 * - Allocate a page, copy the content of the old page to the new one.
2444 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2445 * - Take the PTL. If the pte changed, bail out and release the allocated page
2446 * - If the pte is still the way we remember it, update the page table and all
2447 * relevant references. This includes dropping the reference the page-table
2448 * held to the old page, as well as updating the rmap.
2449 * - In any case, unlock the PTL and drop the reference we took to the old page.
2451 static int wp_page_copy(struct vm_fault *vmf)
2453 struct vm_area_struct *vma = vmf->vma;
2454 struct mm_struct *mm = vma->vm_mm;
2455 struct page *old_page = vmf->page;
2456 struct page *new_page = NULL;
2457 pte_t entry;
2458 int page_copied = 0;
2459 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2460 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2461 struct mem_cgroup *memcg;
2463 if (unlikely(anon_vma_prepare(vma)))
2464 goto oom;
2466 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2467 new_page = alloc_zeroed_user_highpage_movable(vma,
2468 vmf->address);
2469 if (!new_page)
2470 goto oom;
2471 } else {
2472 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2473 vmf->address);
2474 if (!new_page)
2475 goto oom;
2476 cow_user_page(new_page, old_page, vmf->address, vma);
2479 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2480 goto oom_free_new;
2482 __SetPageUptodate(new_page);
2484 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2487 * Re-check the pte - we dropped the lock
2489 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2490 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2491 if (old_page) {
2492 if (!PageAnon(old_page)) {
2493 dec_mm_counter_fast(mm,
2494 mm_counter_file(old_page));
2495 inc_mm_counter_fast(mm, MM_ANONPAGES);
2497 } else {
2498 inc_mm_counter_fast(mm, MM_ANONPAGES);
2500 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2501 entry = mk_pte(new_page, vma->vm_page_prot);
2502 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2504 * Clear the pte entry and flush it first, before updating the
2505 * pte with the new entry. This will avoid a race condition
2506 * seen in the presence of one thread doing SMC and another
2507 * thread doing COW.
2509 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2510 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2511 mem_cgroup_commit_charge(new_page, memcg, false, false);
2512 lru_cache_add_active_or_unevictable(new_page, vma);
2514 * We call the notify macro here because, when using secondary
2515 * mmu page tables (such as kvm shadow page tables), we want the
2516 * new page to be mapped directly into the secondary page table.
2518 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2519 update_mmu_cache(vma, vmf->address, vmf->pte);
2520 if (old_page) {
2522 * Only after switching the pte to the new page may
2523 * we remove the mapcount here. Otherwise another
2524 * process may come and find the rmap count decremented
2525 * before the pte is switched to the new page, and
2526 * "reuse" the old page writing into it while our pte
2527 * here still points into it and can be read by other
2528 * threads.
2530 * The critical issue is to order this
2531 * page_remove_rmap with the ptp_clear_flush above.
2532 * Those stores are ordered by (if nothing else,)
2533 * the barrier present in the atomic_add_negative
2534 * in page_remove_rmap.
2536 * Then the TLB flush in ptep_clear_flush ensures that
2537 * no process can access the old page before the
2538 * decremented mapcount is visible. And the old page
2539 * cannot be reused until after the decremented
2540 * mapcount is visible. So transitively, TLBs to
2541 * old page will be flushed before it can be reused.
2543 page_remove_rmap(old_page, false);
2546 /* Free the old page.. */
2547 new_page = old_page;
2548 page_copied = 1;
2549 } else {
2550 mem_cgroup_cancel_charge(new_page, memcg, false);
2553 if (new_page)
2554 put_page(new_page);
2556 pte_unmap_unlock(vmf->pte, vmf->ptl);
2557 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2558 if (old_page) {
2560 * Don't let another task, with possibly unlocked vma,
2561 * keep the mlocked page.
2563 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2564 lock_page(old_page); /* LRU manipulation */
2565 if (PageMlocked(old_page))
2566 munlock_vma_page(old_page);
2567 unlock_page(old_page);
2569 put_page(old_page);
2571 return page_copied ? VM_FAULT_WRITE : 0;
2572 oom_free_new:
2573 put_page(new_page);
2574 oom:
2575 if (old_page)
2576 put_page(old_page);
2577 return VM_FAULT_OOM;
2581 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2582 * writeable once the page is prepared
2584 * @vmf: structure describing the fault
2586 * This function handles all that is needed to finish a write page fault in a
2587 * shared mapping due to PTE being read-only once the mapped page is prepared.
2588 * It handles locking of PTE and modifying it. The function returns
2589 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2590 * lock.
2592 * The function expects the page to be locked or other protection against
2593 * concurrent faults / writeback (such as DAX radix tree locks).
2595 int finish_mkwrite_fault(struct vm_fault *vmf)
2597 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2598 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2599 &vmf->ptl);
2601 * We might have raced with another page fault while we released the
2602 * pte_offset_map_lock.
2604 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2605 pte_unmap_unlock(vmf->pte, vmf->ptl);
2606 return VM_FAULT_NOPAGE;
2608 wp_page_reuse(vmf);
2609 return 0;
2613 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2614 * mapping
2616 static int wp_pfn_shared(struct vm_fault *vmf)
2618 struct vm_area_struct *vma = vmf->vma;
2620 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2621 int ret;
2623 pte_unmap_unlock(vmf->pte, vmf->ptl);
2624 vmf->flags |= FAULT_FLAG_MKWRITE;
2625 ret = vma->vm_ops->pfn_mkwrite(vmf);
2626 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2627 return ret;
2628 return finish_mkwrite_fault(vmf);
2630 wp_page_reuse(vmf);
2631 return VM_FAULT_WRITE;
2634 static int wp_page_shared(struct vm_fault *vmf)
2635 __releases(vmf->ptl)
2637 struct vm_area_struct *vma = vmf->vma;
2639 get_page(vmf->page);
2641 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2642 int tmp;
2644 pte_unmap_unlock(vmf->pte, vmf->ptl);
2645 tmp = do_page_mkwrite(vmf);
2646 if (unlikely(!tmp || (tmp &
2647 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2648 put_page(vmf->page);
2649 return tmp;
2651 tmp = finish_mkwrite_fault(vmf);
2652 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2653 unlock_page(vmf->page);
2654 put_page(vmf->page);
2655 return tmp;
2657 } else {
2658 wp_page_reuse(vmf);
2659 lock_page(vmf->page);
2661 fault_dirty_shared_page(vma, vmf->page);
2662 put_page(vmf->page);
2664 return VM_FAULT_WRITE;
2668 * This routine handles present pages, when users try to write
2669 * to a shared page. It is done by copying the page to a new address
2670 * and decrementing the shared-page counter for the old page.
2672 * Note that this routine assumes that the protection checks have been
2673 * done by the caller (the low-level page fault routine in most cases).
2674 * Thus we can safely just mark it writable once we've done any necessary
2675 * COW.
2677 * We also mark the page dirty at this point even though the page will
2678 * change only once the write actually happens. This avoids a few races,
2679 * and potentially makes it more efficient.
2681 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2682 * but allow concurrent faults), with pte both mapped and locked.
2683 * We return with mmap_sem still held, but pte unmapped and unlocked.
2685 static int do_wp_page(struct vm_fault *vmf)
2686 __releases(vmf->ptl)
2688 struct vm_area_struct *vma = vmf->vma;
2690 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2691 if (!vmf->page) {
2693 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2694 * VM_PFNMAP VMA.
2696 * We should not cow pages in a shared writeable mapping.
2697 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2699 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2700 (VM_WRITE|VM_SHARED))
2701 return wp_pfn_shared(vmf);
2703 pte_unmap_unlock(vmf->pte, vmf->ptl);
2704 return wp_page_copy(vmf);
2708 * Take out anonymous pages first, anonymous shared vmas are
2709 * not dirty accountable.
2711 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2712 int total_map_swapcount;
2713 if (!trylock_page(vmf->page)) {
2714 get_page(vmf->page);
2715 pte_unmap_unlock(vmf->pte, vmf->ptl);
2716 lock_page(vmf->page);
2717 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2718 vmf->address, &vmf->ptl);
2719 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2720 unlock_page(vmf->page);
2721 pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 put_page(vmf->page);
2723 return 0;
2725 put_page(vmf->page);
2727 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2728 if (total_map_swapcount == 1) {
2730 * The page is all ours. Move it to
2731 * our anon_vma so the rmap code will
2732 * not search our parent or siblings.
2733 * Protected against the rmap code by
2734 * the page lock.
2736 page_move_anon_rmap(vmf->page, vma);
2738 unlock_page(vmf->page);
2739 wp_page_reuse(vmf);
2740 return VM_FAULT_WRITE;
2742 unlock_page(vmf->page);
2743 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2744 (VM_WRITE|VM_SHARED))) {
2745 return wp_page_shared(vmf);
2749 * Ok, we need to copy. Oh, well..
2751 get_page(vmf->page);
2753 pte_unmap_unlock(vmf->pte, vmf->ptl);
2754 return wp_page_copy(vmf);
2757 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2758 unsigned long start_addr, unsigned long end_addr,
2759 struct zap_details *details)
2761 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2764 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2765 struct zap_details *details)
2767 struct vm_area_struct *vma;
2768 pgoff_t vba, vea, zba, zea;
2770 vma_interval_tree_foreach(vma, root,
2771 details->first_index, details->last_index) {
2773 vba = vma->vm_pgoff;
2774 vea = vba + vma_pages(vma) - 1;
2775 zba = details->first_index;
2776 if (zba < vba)
2777 zba = vba;
2778 zea = details->last_index;
2779 if (zea > vea)
2780 zea = vea;
2782 unmap_mapping_range_vma(vma,
2783 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2784 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2785 details);
2790 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2791 * address_space corresponding to the specified page range in the underlying
2792 * file.
2794 * @mapping: the address space containing mmaps to be unmapped.
2795 * @holebegin: byte in first page to unmap, relative to the start of
2796 * the underlying file. This will be rounded down to a PAGE_SIZE
2797 * boundary. Note that this is different from truncate_pagecache(), which
2798 * must keep the partial page. In contrast, we must get rid of
2799 * partial pages.
2800 * @holelen: size of prospective hole in bytes. This will be rounded
2801 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2802 * end of the file.
2803 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2804 * but 0 when invalidating pagecache, don't throw away private data.
2806 void unmap_mapping_range(struct address_space *mapping,
2807 loff_t const holebegin, loff_t const holelen, int even_cows)
2809 struct zap_details details = { };
2810 pgoff_t hba = holebegin >> PAGE_SHIFT;
2811 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2813 /* Check for overflow. */
2814 if (sizeof(holelen) > sizeof(hlen)) {
2815 long long holeend =
2816 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 if (holeend & ~(long long)ULONG_MAX)
2818 hlen = ULONG_MAX - hba + 1;
2821 details.check_mapping = even_cows ? NULL : mapping;
2822 details.first_index = hba;
2823 details.last_index = hba + hlen - 1;
2824 if (details.last_index < details.first_index)
2825 details.last_index = ULONG_MAX;
2827 i_mmap_lock_write(mapping);
2828 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2829 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2830 i_mmap_unlock_write(mapping);
2832 EXPORT_SYMBOL(unmap_mapping_range);
2835 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2836 * but allow concurrent faults), and pte mapped but not yet locked.
2837 * We return with pte unmapped and unlocked.
2839 * We return with the mmap_sem locked or unlocked in the same cases
2840 * as does filemap_fault().
2842 int do_swap_page(struct vm_fault *vmf)
2844 struct vm_area_struct *vma = vmf->vma;
2845 struct page *page = NULL, *swapcache;
2846 struct mem_cgroup *memcg;
2847 struct vma_swap_readahead swap_ra;
2848 swp_entry_t entry;
2849 pte_t pte;
2850 int locked;
2851 int exclusive = 0;
2852 int ret = 0;
2853 bool vma_readahead = swap_use_vma_readahead();
2855 if (vma_readahead)
2856 page = swap_readahead_detect(vmf, &swap_ra);
2857 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2858 if (page)
2859 put_page(page);
2860 goto out;
2863 entry = pte_to_swp_entry(vmf->orig_pte);
2864 if (unlikely(non_swap_entry(entry))) {
2865 if (is_migration_entry(entry)) {
2866 migration_entry_wait(vma->vm_mm, vmf->pmd,
2867 vmf->address);
2868 } else if (is_device_private_entry(entry)) {
2870 * For un-addressable device memory we call the pgmap
2871 * fault handler callback. The callback must migrate
2872 * the page back to some CPU accessible page.
2874 ret = device_private_entry_fault(vma, vmf->address, entry,
2875 vmf->flags, vmf->pmd);
2876 } else if (is_hwpoison_entry(entry)) {
2877 ret = VM_FAULT_HWPOISON;
2878 } else {
2879 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2880 ret = VM_FAULT_SIGBUS;
2882 goto out;
2884 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2885 if (!page)
2886 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2887 vmf->address);
2888 if (!page) {
2889 if (vma_readahead)
2890 page = do_swap_page_readahead(entry,
2891 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2892 else
2893 page = swapin_readahead(entry,
2894 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2895 if (!page) {
2897 * Back out if somebody else faulted in this pte
2898 * while we released the pte lock.
2900 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2901 vmf->address, &vmf->ptl);
2902 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2903 ret = VM_FAULT_OOM;
2904 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2905 goto unlock;
2908 /* Had to read the page from swap area: Major fault */
2909 ret = VM_FAULT_MAJOR;
2910 count_vm_event(PGMAJFAULT);
2911 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2912 } else if (PageHWPoison(page)) {
2914 * hwpoisoned dirty swapcache pages are kept for killing
2915 * owner processes (which may be unknown at hwpoison time)
2917 ret = VM_FAULT_HWPOISON;
2918 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2919 swapcache = page;
2920 goto out_release;
2923 swapcache = page;
2924 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2926 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2927 if (!locked) {
2928 ret |= VM_FAULT_RETRY;
2929 goto out_release;
2933 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2934 * release the swapcache from under us. The page pin, and pte_same
2935 * test below, are not enough to exclude that. Even if it is still
2936 * swapcache, we need to check that the page's swap has not changed.
2938 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2939 goto out_page;
2941 page = ksm_might_need_to_copy(page, vma, vmf->address);
2942 if (unlikely(!page)) {
2943 ret = VM_FAULT_OOM;
2944 page = swapcache;
2945 goto out_page;
2948 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2949 &memcg, false)) {
2950 ret = VM_FAULT_OOM;
2951 goto out_page;
2955 * Back out if somebody else already faulted in this pte.
2957 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2958 &vmf->ptl);
2959 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2960 goto out_nomap;
2962 if (unlikely(!PageUptodate(page))) {
2963 ret = VM_FAULT_SIGBUS;
2964 goto out_nomap;
2968 * The page isn't present yet, go ahead with the fault.
2970 * Be careful about the sequence of operations here.
2971 * To get its accounting right, reuse_swap_page() must be called
2972 * while the page is counted on swap but not yet in mapcount i.e.
2973 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2974 * must be called after the swap_free(), or it will never succeed.
2977 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2978 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2979 pte = mk_pte(page, vma->vm_page_prot);
2980 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2981 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2982 vmf->flags &= ~FAULT_FLAG_WRITE;
2983 ret |= VM_FAULT_WRITE;
2984 exclusive = RMAP_EXCLUSIVE;
2986 flush_icache_page(vma, page);
2987 if (pte_swp_soft_dirty(vmf->orig_pte))
2988 pte = pte_mksoft_dirty(pte);
2989 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2990 vmf->orig_pte = pte;
2991 if (page == swapcache) {
2992 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2993 mem_cgroup_commit_charge(page, memcg, true, false);
2994 activate_page(page);
2995 } else { /* ksm created a completely new copy */
2996 page_add_new_anon_rmap(page, vma, vmf->address, false);
2997 mem_cgroup_commit_charge(page, memcg, false, false);
2998 lru_cache_add_active_or_unevictable(page, vma);
3001 swap_free(entry);
3002 if (mem_cgroup_swap_full(page) ||
3003 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3004 try_to_free_swap(page);
3005 unlock_page(page);
3006 if (page != swapcache) {
3008 * Hold the lock to avoid the swap entry to be reused
3009 * until we take the PT lock for the pte_same() check
3010 * (to avoid false positives from pte_same). For
3011 * further safety release the lock after the swap_free
3012 * so that the swap count won't change under a
3013 * parallel locked swapcache.
3015 unlock_page(swapcache);
3016 put_page(swapcache);
3019 if (vmf->flags & FAULT_FLAG_WRITE) {
3020 ret |= do_wp_page(vmf);
3021 if (ret & VM_FAULT_ERROR)
3022 ret &= VM_FAULT_ERROR;
3023 goto out;
3026 /* No need to invalidate - it was non-present before */
3027 update_mmu_cache(vma, vmf->address, vmf->pte);
3028 unlock:
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 out:
3031 return ret;
3032 out_nomap:
3033 mem_cgroup_cancel_charge(page, memcg, false);
3034 pte_unmap_unlock(vmf->pte, vmf->ptl);
3035 out_page:
3036 unlock_page(page);
3037 out_release:
3038 put_page(page);
3039 if (page != swapcache) {
3040 unlock_page(swapcache);
3041 put_page(swapcache);
3043 return ret;
3047 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3048 * but allow concurrent faults), and pte mapped but not yet locked.
3049 * We return with mmap_sem still held, but pte unmapped and unlocked.
3051 static int do_anonymous_page(struct vm_fault *vmf)
3053 struct vm_area_struct *vma = vmf->vma;
3054 struct mem_cgroup *memcg;
3055 struct page *page;
3056 int ret = 0;
3057 pte_t entry;
3059 /* File mapping without ->vm_ops ? */
3060 if (vma->vm_flags & VM_SHARED)
3061 return VM_FAULT_SIGBUS;
3064 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3065 * pte_offset_map() on pmds where a huge pmd might be created
3066 * from a different thread.
3068 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3069 * parallel threads are excluded by other means.
3071 * Here we only have down_read(mmap_sem).
3073 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3074 return VM_FAULT_OOM;
3076 /* See the comment in pte_alloc_one_map() */
3077 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3078 return 0;
3080 /* Use the zero-page for reads */
3081 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3082 !mm_forbids_zeropage(vma->vm_mm)) {
3083 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3084 vma->vm_page_prot));
3085 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3086 vmf->address, &vmf->ptl);
3087 if (!pte_none(*vmf->pte))
3088 goto unlock;
3089 ret = check_stable_address_space(vma->vm_mm);
3090 if (ret)
3091 goto unlock;
3092 /* Deliver the page fault to userland, check inside PT lock */
3093 if (userfaultfd_missing(vma)) {
3094 pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 return handle_userfault(vmf, VM_UFFD_MISSING);
3097 goto setpte;
3100 /* Allocate our own private page. */
3101 if (unlikely(anon_vma_prepare(vma)))
3102 goto oom;
3103 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3104 if (!page)
3105 goto oom;
3107 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3108 goto oom_free_page;
3111 * The memory barrier inside __SetPageUptodate makes sure that
3112 * preceeding stores to the page contents become visible before
3113 * the set_pte_at() write.
3115 __SetPageUptodate(page);
3117 entry = mk_pte(page, vma->vm_page_prot);
3118 if (vma->vm_flags & VM_WRITE)
3119 entry = pte_mkwrite(pte_mkdirty(entry));
3121 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3122 &vmf->ptl);
3123 if (!pte_none(*vmf->pte))
3124 goto release;
3126 ret = check_stable_address_space(vma->vm_mm);
3127 if (ret)
3128 goto release;
3130 /* Deliver the page fault to userland, check inside PT lock */
3131 if (userfaultfd_missing(vma)) {
3132 pte_unmap_unlock(vmf->pte, vmf->ptl);
3133 mem_cgroup_cancel_charge(page, memcg, false);
3134 put_page(page);
3135 return handle_userfault(vmf, VM_UFFD_MISSING);
3138 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3139 page_add_new_anon_rmap(page, vma, vmf->address, false);
3140 mem_cgroup_commit_charge(page, memcg, false, false);
3141 lru_cache_add_active_or_unevictable(page, vma);
3142 setpte:
3143 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3145 /* No need to invalidate - it was non-present before */
3146 update_mmu_cache(vma, vmf->address, vmf->pte);
3147 unlock:
3148 pte_unmap_unlock(vmf->pte, vmf->ptl);
3149 return ret;
3150 release:
3151 mem_cgroup_cancel_charge(page, memcg, false);
3152 put_page(page);
3153 goto unlock;
3154 oom_free_page:
3155 put_page(page);
3156 oom:
3157 return VM_FAULT_OOM;
3161 * The mmap_sem must have been held on entry, and may have been
3162 * released depending on flags and vma->vm_ops->fault() return value.
3163 * See filemap_fault() and __lock_page_retry().
3165 static int __do_fault(struct vm_fault *vmf)
3167 struct vm_area_struct *vma = vmf->vma;
3168 int ret;
3170 ret = vma->vm_ops->fault(vmf);
3171 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3172 VM_FAULT_DONE_COW)))
3173 return ret;
3175 if (unlikely(PageHWPoison(vmf->page))) {
3176 if (ret & VM_FAULT_LOCKED)
3177 unlock_page(vmf->page);
3178 put_page(vmf->page);
3179 vmf->page = NULL;
3180 return VM_FAULT_HWPOISON;
3183 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3184 lock_page(vmf->page);
3185 else
3186 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3188 return ret;
3192 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3193 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3194 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3195 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3197 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3199 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3202 static int pte_alloc_one_map(struct vm_fault *vmf)
3204 struct vm_area_struct *vma = vmf->vma;
3206 if (!pmd_none(*vmf->pmd))
3207 goto map_pte;
3208 if (vmf->prealloc_pte) {
3209 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3210 if (unlikely(!pmd_none(*vmf->pmd))) {
3211 spin_unlock(vmf->ptl);
3212 goto map_pte;
3215 atomic_long_inc(&vma->vm_mm->nr_ptes);
3216 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3217 spin_unlock(vmf->ptl);
3218 vmf->prealloc_pte = NULL;
3219 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3220 return VM_FAULT_OOM;
3222 map_pte:
3224 * If a huge pmd materialized under us just retry later. Use
3225 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3226 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3227 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3228 * running immediately after a huge pmd fault in a different thread of
3229 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3230 * All we have to ensure is that it is a regular pmd that we can walk
3231 * with pte_offset_map() and we can do that through an atomic read in
3232 * C, which is what pmd_trans_unstable() provides.
3234 if (pmd_devmap_trans_unstable(vmf->pmd))
3235 return VM_FAULT_NOPAGE;
3238 * At this point we know that our vmf->pmd points to a page of ptes
3239 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3240 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3241 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3242 * be valid and we will re-check to make sure the vmf->pte isn't
3243 * pte_none() under vmf->ptl protection when we return to
3244 * alloc_set_pte().
3246 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3247 &vmf->ptl);
3248 return 0;
3251 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3253 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3254 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3255 unsigned long haddr)
3257 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3258 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3259 return false;
3260 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3261 return false;
3262 return true;
3265 static void deposit_prealloc_pte(struct vm_fault *vmf)
3267 struct vm_area_struct *vma = vmf->vma;
3269 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3271 * We are going to consume the prealloc table,
3272 * count that as nr_ptes.
3274 atomic_long_inc(&vma->vm_mm->nr_ptes);
3275 vmf->prealloc_pte = NULL;
3278 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3280 struct vm_area_struct *vma = vmf->vma;
3281 bool write = vmf->flags & FAULT_FLAG_WRITE;
3282 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3283 pmd_t entry;
3284 int i, ret;
3286 if (!transhuge_vma_suitable(vma, haddr))
3287 return VM_FAULT_FALLBACK;
3289 ret = VM_FAULT_FALLBACK;
3290 page = compound_head(page);
3293 * Archs like ppc64 need additonal space to store information
3294 * related to pte entry. Use the preallocated table for that.
3296 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3297 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3298 if (!vmf->prealloc_pte)
3299 return VM_FAULT_OOM;
3300 smp_wmb(); /* See comment in __pte_alloc() */
3303 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3304 if (unlikely(!pmd_none(*vmf->pmd)))
3305 goto out;
3307 for (i = 0; i < HPAGE_PMD_NR; i++)
3308 flush_icache_page(vma, page + i);
3310 entry = mk_huge_pmd(page, vma->vm_page_prot);
3311 if (write)
3312 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3314 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3315 page_add_file_rmap(page, true);
3317 * deposit and withdraw with pmd lock held
3319 if (arch_needs_pgtable_deposit())
3320 deposit_prealloc_pte(vmf);
3322 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3324 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3326 /* fault is handled */
3327 ret = 0;
3328 count_vm_event(THP_FILE_MAPPED);
3329 out:
3330 spin_unlock(vmf->ptl);
3331 return ret;
3333 #else
3334 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3336 BUILD_BUG();
3337 return 0;
3339 #endif
3342 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3343 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3345 * @vmf: fault environment
3346 * @memcg: memcg to charge page (only for private mappings)
3347 * @page: page to map
3349 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3350 * return.
3352 * Target users are page handler itself and implementations of
3353 * vm_ops->map_pages.
3355 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3356 struct page *page)
3358 struct vm_area_struct *vma = vmf->vma;
3359 bool write = vmf->flags & FAULT_FLAG_WRITE;
3360 pte_t entry;
3361 int ret;
3363 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3364 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3365 /* THP on COW? */
3366 VM_BUG_ON_PAGE(memcg, page);
3368 ret = do_set_pmd(vmf, page);
3369 if (ret != VM_FAULT_FALLBACK)
3370 return ret;
3373 if (!vmf->pte) {
3374 ret = pte_alloc_one_map(vmf);
3375 if (ret)
3376 return ret;
3379 /* Re-check under ptl */
3380 if (unlikely(!pte_none(*vmf->pte)))
3381 return VM_FAULT_NOPAGE;
3383 flush_icache_page(vma, page);
3384 entry = mk_pte(page, vma->vm_page_prot);
3385 if (write)
3386 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3387 /* copy-on-write page */
3388 if (write && !(vma->vm_flags & VM_SHARED)) {
3389 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3390 page_add_new_anon_rmap(page, vma, vmf->address, false);
3391 mem_cgroup_commit_charge(page, memcg, false, false);
3392 lru_cache_add_active_or_unevictable(page, vma);
3393 } else {
3394 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3395 page_add_file_rmap(page, false);
3397 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3399 /* no need to invalidate: a not-present page won't be cached */
3400 update_mmu_cache(vma, vmf->address, vmf->pte);
3402 return 0;
3407 * finish_fault - finish page fault once we have prepared the page to fault
3409 * @vmf: structure describing the fault
3411 * This function handles all that is needed to finish a page fault once the
3412 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3413 * given page, adds reverse page mapping, handles memcg charges and LRU
3414 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3415 * error.
3417 * The function expects the page to be locked and on success it consumes a
3418 * reference of a page being mapped (for the PTE which maps it).
3420 int finish_fault(struct vm_fault *vmf)
3422 struct page *page;
3423 int ret = 0;
3425 /* Did we COW the page? */
3426 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3427 !(vmf->vma->vm_flags & VM_SHARED))
3428 page = vmf->cow_page;
3429 else
3430 page = vmf->page;
3433 * check even for read faults because we might have lost our CoWed
3434 * page
3436 if (!(vmf->vma->vm_flags & VM_SHARED))
3437 ret = check_stable_address_space(vmf->vma->vm_mm);
3438 if (!ret)
3439 ret = alloc_set_pte(vmf, vmf->memcg, page);
3440 if (vmf->pte)
3441 pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 return ret;
3445 static unsigned long fault_around_bytes __read_mostly =
3446 rounddown_pow_of_two(65536);
3448 #ifdef CONFIG_DEBUG_FS
3449 static int fault_around_bytes_get(void *data, u64 *val)
3451 *val = fault_around_bytes;
3452 return 0;
3456 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3457 * rounded down to nearest page order. It's what do_fault_around() expects to
3458 * see.
3460 static int fault_around_bytes_set(void *data, u64 val)
3462 if (val / PAGE_SIZE > PTRS_PER_PTE)
3463 return -EINVAL;
3464 if (val > PAGE_SIZE)
3465 fault_around_bytes = rounddown_pow_of_two(val);
3466 else
3467 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3468 return 0;
3470 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3471 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3473 static int __init fault_around_debugfs(void)
3475 void *ret;
3477 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3478 &fault_around_bytes_fops);
3479 if (!ret)
3480 pr_warn("Failed to create fault_around_bytes in debugfs");
3481 return 0;
3483 late_initcall(fault_around_debugfs);
3484 #endif
3487 * do_fault_around() tries to map few pages around the fault address. The hope
3488 * is that the pages will be needed soon and this will lower the number of
3489 * faults to handle.
3491 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3492 * not ready to be mapped: not up-to-date, locked, etc.
3494 * This function is called with the page table lock taken. In the split ptlock
3495 * case the page table lock only protects only those entries which belong to
3496 * the page table corresponding to the fault address.
3498 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3499 * only once.
3501 * fault_around_pages() defines how many pages we'll try to map.
3502 * do_fault_around() expects it to return a power of two less than or equal to
3503 * PTRS_PER_PTE.
3505 * The virtual address of the area that we map is naturally aligned to the
3506 * fault_around_pages() value (and therefore to page order). This way it's
3507 * easier to guarantee that we don't cross page table boundaries.
3509 static int do_fault_around(struct vm_fault *vmf)
3511 unsigned long address = vmf->address, nr_pages, mask;
3512 pgoff_t start_pgoff = vmf->pgoff;
3513 pgoff_t end_pgoff;
3514 int off, ret = 0;
3516 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3517 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3519 vmf->address = max(address & mask, vmf->vma->vm_start);
3520 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3521 start_pgoff -= off;
3524 * end_pgoff is either end of page table or end of vma
3525 * or fault_around_pages() from start_pgoff, depending what is nearest.
3527 end_pgoff = start_pgoff -
3528 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3529 PTRS_PER_PTE - 1;
3530 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3531 start_pgoff + nr_pages - 1);
3533 if (pmd_none(*vmf->pmd)) {
3534 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3535 vmf->address);
3536 if (!vmf->prealloc_pte)
3537 goto out;
3538 smp_wmb(); /* See comment in __pte_alloc() */
3541 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3543 /* Huge page is mapped? Page fault is solved */
3544 if (pmd_trans_huge(*vmf->pmd)) {
3545 ret = VM_FAULT_NOPAGE;
3546 goto out;
3549 /* ->map_pages() haven't done anything useful. Cold page cache? */
3550 if (!vmf->pte)
3551 goto out;
3553 /* check if the page fault is solved */
3554 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3555 if (!pte_none(*vmf->pte))
3556 ret = VM_FAULT_NOPAGE;
3557 pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 out:
3559 vmf->address = address;
3560 vmf->pte = NULL;
3561 return ret;
3564 static int do_read_fault(struct vm_fault *vmf)
3566 struct vm_area_struct *vma = vmf->vma;
3567 int ret = 0;
3570 * Let's call ->map_pages() first and use ->fault() as fallback
3571 * if page by the offset is not ready to be mapped (cold cache or
3572 * something).
3574 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3575 ret = do_fault_around(vmf);
3576 if (ret)
3577 return ret;
3580 ret = __do_fault(vmf);
3581 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3582 return ret;
3584 ret |= finish_fault(vmf);
3585 unlock_page(vmf->page);
3586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3587 put_page(vmf->page);
3588 return ret;
3591 static int do_cow_fault(struct vm_fault *vmf)
3593 struct vm_area_struct *vma = vmf->vma;
3594 int ret;
3596 if (unlikely(anon_vma_prepare(vma)))
3597 return VM_FAULT_OOM;
3599 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3600 if (!vmf->cow_page)
3601 return VM_FAULT_OOM;
3603 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3604 &vmf->memcg, false)) {
3605 put_page(vmf->cow_page);
3606 return VM_FAULT_OOM;
3609 ret = __do_fault(vmf);
3610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3611 goto uncharge_out;
3612 if (ret & VM_FAULT_DONE_COW)
3613 return ret;
3615 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3616 __SetPageUptodate(vmf->cow_page);
3618 ret |= finish_fault(vmf);
3619 unlock_page(vmf->page);
3620 put_page(vmf->page);
3621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3622 goto uncharge_out;
3623 return ret;
3624 uncharge_out:
3625 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3626 put_page(vmf->cow_page);
3627 return ret;
3630 static int do_shared_fault(struct vm_fault *vmf)
3632 struct vm_area_struct *vma = vmf->vma;
3633 int ret, tmp;
3635 ret = __do_fault(vmf);
3636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3637 return ret;
3640 * Check if the backing address space wants to know that the page is
3641 * about to become writable
3643 if (vma->vm_ops->page_mkwrite) {
3644 unlock_page(vmf->page);
3645 tmp = do_page_mkwrite(vmf);
3646 if (unlikely(!tmp ||
3647 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3648 put_page(vmf->page);
3649 return tmp;
3653 ret |= finish_fault(vmf);
3654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3655 VM_FAULT_RETRY))) {
3656 unlock_page(vmf->page);
3657 put_page(vmf->page);
3658 return ret;
3661 fault_dirty_shared_page(vma, vmf->page);
3662 return ret;
3666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3667 * but allow concurrent faults).
3668 * The mmap_sem may have been released depending on flags and our
3669 * return value. See filemap_fault() and __lock_page_or_retry().
3671 static int do_fault(struct vm_fault *vmf)
3673 struct vm_area_struct *vma = vmf->vma;
3674 int ret;
3676 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3677 if (!vma->vm_ops->fault)
3678 ret = VM_FAULT_SIGBUS;
3679 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3680 ret = do_read_fault(vmf);
3681 else if (!(vma->vm_flags & VM_SHARED))
3682 ret = do_cow_fault(vmf);
3683 else
3684 ret = do_shared_fault(vmf);
3686 /* preallocated pagetable is unused: free it */
3687 if (vmf->prealloc_pte) {
3688 pte_free(vma->vm_mm, vmf->prealloc_pte);
3689 vmf->prealloc_pte = NULL;
3691 return ret;
3694 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3695 unsigned long addr, int page_nid,
3696 int *flags)
3698 get_page(page);
3700 count_vm_numa_event(NUMA_HINT_FAULTS);
3701 if (page_nid == numa_node_id()) {
3702 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3703 *flags |= TNF_FAULT_LOCAL;
3706 return mpol_misplaced(page, vma, addr);
3709 static int do_numa_page(struct vm_fault *vmf)
3711 struct vm_area_struct *vma = vmf->vma;
3712 struct page *page = NULL;
3713 int page_nid = -1;
3714 int last_cpupid;
3715 int target_nid;
3716 bool migrated = false;
3717 pte_t pte;
3718 bool was_writable = pte_savedwrite(vmf->orig_pte);
3719 int flags = 0;
3722 * The "pte" at this point cannot be used safely without
3723 * validation through pte_unmap_same(). It's of NUMA type but
3724 * the pfn may be screwed if the read is non atomic.
3726 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3727 spin_lock(vmf->ptl);
3728 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3729 pte_unmap_unlock(vmf->pte, vmf->ptl);
3730 goto out;
3734 * Make it present again, Depending on how arch implementes non
3735 * accessible ptes, some can allow access by kernel mode.
3737 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3738 pte = pte_modify(pte, vma->vm_page_prot);
3739 pte = pte_mkyoung(pte);
3740 if (was_writable)
3741 pte = pte_mkwrite(pte);
3742 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3743 update_mmu_cache(vma, vmf->address, vmf->pte);
3745 page = vm_normal_page(vma, vmf->address, pte);
3746 if (!page) {
3747 pte_unmap_unlock(vmf->pte, vmf->ptl);
3748 return 0;
3751 /* TODO: handle PTE-mapped THP */
3752 if (PageCompound(page)) {
3753 pte_unmap_unlock(vmf->pte, vmf->ptl);
3754 return 0;
3758 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3759 * much anyway since they can be in shared cache state. This misses
3760 * the case where a mapping is writable but the process never writes
3761 * to it but pte_write gets cleared during protection updates and
3762 * pte_dirty has unpredictable behaviour between PTE scan updates,
3763 * background writeback, dirty balancing and application behaviour.
3765 if (!pte_write(pte))
3766 flags |= TNF_NO_GROUP;
3769 * Flag if the page is shared between multiple address spaces. This
3770 * is later used when determining whether to group tasks together
3772 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3773 flags |= TNF_SHARED;
3775 last_cpupid = page_cpupid_last(page);
3776 page_nid = page_to_nid(page);
3777 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3778 &flags);
3779 pte_unmap_unlock(vmf->pte, vmf->ptl);
3780 if (target_nid == -1) {
3781 put_page(page);
3782 goto out;
3785 /* Migrate to the requested node */
3786 migrated = migrate_misplaced_page(page, vma, target_nid);
3787 if (migrated) {
3788 page_nid = target_nid;
3789 flags |= TNF_MIGRATED;
3790 } else
3791 flags |= TNF_MIGRATE_FAIL;
3793 out:
3794 if (page_nid != -1)
3795 task_numa_fault(last_cpupid, page_nid, 1, flags);
3796 return 0;
3799 static inline int create_huge_pmd(struct vm_fault *vmf)
3801 if (vma_is_anonymous(vmf->vma))
3802 return do_huge_pmd_anonymous_page(vmf);
3803 if (vmf->vma->vm_ops->huge_fault)
3804 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3805 return VM_FAULT_FALLBACK;
3808 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3810 if (vma_is_anonymous(vmf->vma))
3811 return do_huge_pmd_wp_page(vmf, orig_pmd);
3812 if (vmf->vma->vm_ops->huge_fault)
3813 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3815 /* COW handled on pte level: split pmd */
3816 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3817 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3819 return VM_FAULT_FALLBACK;
3822 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3824 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3827 static int create_huge_pud(struct vm_fault *vmf)
3829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3830 /* No support for anonymous transparent PUD pages yet */
3831 if (vma_is_anonymous(vmf->vma))
3832 return VM_FAULT_FALLBACK;
3833 if (vmf->vma->vm_ops->huge_fault)
3834 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3836 return VM_FAULT_FALLBACK;
3839 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3842 /* No support for anonymous transparent PUD pages yet */
3843 if (vma_is_anonymous(vmf->vma))
3844 return VM_FAULT_FALLBACK;
3845 if (vmf->vma->vm_ops->huge_fault)
3846 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3848 return VM_FAULT_FALLBACK;
3852 * These routines also need to handle stuff like marking pages dirty
3853 * and/or accessed for architectures that don't do it in hardware (most
3854 * RISC architectures). The early dirtying is also good on the i386.
3856 * There is also a hook called "update_mmu_cache()" that architectures
3857 * with external mmu caches can use to update those (ie the Sparc or
3858 * PowerPC hashed page tables that act as extended TLBs).
3860 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3861 * concurrent faults).
3863 * The mmap_sem may have been released depending on flags and our return value.
3864 * See filemap_fault() and __lock_page_or_retry().
3866 static int handle_pte_fault(struct vm_fault *vmf)
3868 pte_t entry;
3870 if (unlikely(pmd_none(*vmf->pmd))) {
3872 * Leave __pte_alloc() until later: because vm_ops->fault may
3873 * want to allocate huge page, and if we expose page table
3874 * for an instant, it will be difficult to retract from
3875 * concurrent faults and from rmap lookups.
3877 vmf->pte = NULL;
3878 } else {
3879 /* See comment in pte_alloc_one_map() */
3880 if (pmd_devmap_trans_unstable(vmf->pmd))
3881 return 0;
3883 * A regular pmd is established and it can't morph into a huge
3884 * pmd from under us anymore at this point because we hold the
3885 * mmap_sem read mode and khugepaged takes it in write mode.
3886 * So now it's safe to run pte_offset_map().
3888 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3889 vmf->orig_pte = *vmf->pte;
3892 * some architectures can have larger ptes than wordsize,
3893 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3894 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3895 * atomic accesses. The code below just needs a consistent
3896 * view for the ifs and we later double check anyway with the
3897 * ptl lock held. So here a barrier will do.
3899 barrier();
3900 if (pte_none(vmf->orig_pte)) {
3901 pte_unmap(vmf->pte);
3902 vmf->pte = NULL;
3906 if (!vmf->pte) {
3907 if (vma_is_anonymous(vmf->vma))
3908 return do_anonymous_page(vmf);
3909 else
3910 return do_fault(vmf);
3913 if (!pte_present(vmf->orig_pte))
3914 return do_swap_page(vmf);
3916 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3917 return do_numa_page(vmf);
3919 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3920 spin_lock(vmf->ptl);
3921 entry = vmf->orig_pte;
3922 if (unlikely(!pte_same(*vmf->pte, entry)))
3923 goto unlock;
3924 if (vmf->flags & FAULT_FLAG_WRITE) {
3925 if (!pte_write(entry))
3926 return do_wp_page(vmf);
3927 entry = pte_mkdirty(entry);
3929 entry = pte_mkyoung(entry);
3930 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3931 vmf->flags & FAULT_FLAG_WRITE)) {
3932 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3933 } else {
3935 * This is needed only for protection faults but the arch code
3936 * is not yet telling us if this is a protection fault or not.
3937 * This still avoids useless tlb flushes for .text page faults
3938 * with threads.
3940 if (vmf->flags & FAULT_FLAG_WRITE)
3941 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3943 unlock:
3944 pte_unmap_unlock(vmf->pte, vmf->ptl);
3945 return 0;
3949 * By the time we get here, we already hold the mm semaphore
3951 * The mmap_sem may have been released depending on flags and our
3952 * return value. See filemap_fault() and __lock_page_or_retry().
3954 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3955 unsigned int flags)
3957 struct vm_fault vmf = {
3958 .vma = vma,
3959 .address = address & PAGE_MASK,
3960 .flags = flags,
3961 .pgoff = linear_page_index(vma, address),
3962 .gfp_mask = __get_fault_gfp_mask(vma),
3964 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3965 struct mm_struct *mm = vma->vm_mm;
3966 pgd_t *pgd;
3967 p4d_t *p4d;
3968 int ret;
3970 pgd = pgd_offset(mm, address);
3971 p4d = p4d_alloc(mm, pgd, address);
3972 if (!p4d)
3973 return VM_FAULT_OOM;
3975 vmf.pud = pud_alloc(mm, p4d, address);
3976 if (!vmf.pud)
3977 return VM_FAULT_OOM;
3978 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3979 ret = create_huge_pud(&vmf);
3980 if (!(ret & VM_FAULT_FALLBACK))
3981 return ret;
3982 } else {
3983 pud_t orig_pud = *vmf.pud;
3985 barrier();
3986 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3988 /* NUMA case for anonymous PUDs would go here */
3990 if (dirty && !pud_write(orig_pud)) {
3991 ret = wp_huge_pud(&vmf, orig_pud);
3992 if (!(ret & VM_FAULT_FALLBACK))
3993 return ret;
3994 } else {
3995 huge_pud_set_accessed(&vmf, orig_pud);
3996 return 0;
4001 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4002 if (!vmf.pmd)
4003 return VM_FAULT_OOM;
4004 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4005 ret = create_huge_pmd(&vmf);
4006 if (!(ret & VM_FAULT_FALLBACK))
4007 return ret;
4008 } else {
4009 pmd_t orig_pmd = *vmf.pmd;
4011 barrier();
4012 if (unlikely(is_swap_pmd(orig_pmd))) {
4013 VM_BUG_ON(thp_migration_supported() &&
4014 !is_pmd_migration_entry(orig_pmd));
4015 if (is_pmd_migration_entry(orig_pmd))
4016 pmd_migration_entry_wait(mm, vmf.pmd);
4017 return 0;
4019 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4020 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4021 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4023 if (dirty && !pmd_write(orig_pmd)) {
4024 ret = wp_huge_pmd(&vmf, orig_pmd);
4025 if (!(ret & VM_FAULT_FALLBACK))
4026 return ret;
4027 } else {
4028 huge_pmd_set_accessed(&vmf, orig_pmd);
4029 return 0;
4034 return handle_pte_fault(&vmf);
4038 * By the time we get here, we already hold the mm semaphore
4040 * The mmap_sem may have been released depending on flags and our
4041 * return value. See filemap_fault() and __lock_page_or_retry().
4043 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4044 unsigned int flags)
4046 int ret;
4048 __set_current_state(TASK_RUNNING);
4050 count_vm_event(PGFAULT);
4051 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4053 /* do counter updates before entering really critical section. */
4054 check_sync_rss_stat(current);
4056 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4057 flags & FAULT_FLAG_INSTRUCTION,
4058 flags & FAULT_FLAG_REMOTE))
4059 return VM_FAULT_SIGSEGV;
4062 * Enable the memcg OOM handling for faults triggered in user
4063 * space. Kernel faults are handled more gracefully.
4065 if (flags & FAULT_FLAG_USER)
4066 mem_cgroup_oom_enable();
4068 if (unlikely(is_vm_hugetlb_page(vma)))
4069 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4070 else
4071 ret = __handle_mm_fault(vma, address, flags);
4073 if (flags & FAULT_FLAG_USER) {
4074 mem_cgroup_oom_disable();
4076 * The task may have entered a memcg OOM situation but
4077 * if the allocation error was handled gracefully (no
4078 * VM_FAULT_OOM), there is no need to kill anything.
4079 * Just clean up the OOM state peacefully.
4081 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4082 mem_cgroup_oom_synchronize(false);
4085 return ret;
4087 EXPORT_SYMBOL_GPL(handle_mm_fault);
4089 #ifndef __PAGETABLE_P4D_FOLDED
4091 * Allocate p4d page table.
4092 * We've already handled the fast-path in-line.
4094 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4096 p4d_t *new = p4d_alloc_one(mm, address);
4097 if (!new)
4098 return -ENOMEM;
4100 smp_wmb(); /* See comment in __pte_alloc */
4102 spin_lock(&mm->page_table_lock);
4103 if (pgd_present(*pgd)) /* Another has populated it */
4104 p4d_free(mm, new);
4105 else
4106 pgd_populate(mm, pgd, new);
4107 spin_unlock(&mm->page_table_lock);
4108 return 0;
4110 #endif /* __PAGETABLE_P4D_FOLDED */
4112 #ifndef __PAGETABLE_PUD_FOLDED
4114 * Allocate page upper directory.
4115 * We've already handled the fast-path in-line.
4117 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4119 pud_t *new = pud_alloc_one(mm, address);
4120 if (!new)
4121 return -ENOMEM;
4123 smp_wmb(); /* See comment in __pte_alloc */
4125 spin_lock(&mm->page_table_lock);
4126 #ifndef __ARCH_HAS_5LEVEL_HACK
4127 if (p4d_present(*p4d)) /* Another has populated it */
4128 pud_free(mm, new);
4129 else
4130 p4d_populate(mm, p4d, new);
4131 #else
4132 if (pgd_present(*p4d)) /* Another has populated it */
4133 pud_free(mm, new);
4134 else
4135 pgd_populate(mm, p4d, new);
4136 #endif /* __ARCH_HAS_5LEVEL_HACK */
4137 spin_unlock(&mm->page_table_lock);
4138 return 0;
4140 #endif /* __PAGETABLE_PUD_FOLDED */
4142 #ifndef __PAGETABLE_PMD_FOLDED
4144 * Allocate page middle directory.
4145 * We've already handled the fast-path in-line.
4147 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4149 spinlock_t *ptl;
4150 pmd_t *new = pmd_alloc_one(mm, address);
4151 if (!new)
4152 return -ENOMEM;
4154 smp_wmb(); /* See comment in __pte_alloc */
4156 ptl = pud_lock(mm, pud);
4157 #ifndef __ARCH_HAS_4LEVEL_HACK
4158 if (!pud_present(*pud)) {
4159 mm_inc_nr_pmds(mm);
4160 pud_populate(mm, pud, new);
4161 } else /* Another has populated it */
4162 pmd_free(mm, new);
4163 #else
4164 if (!pgd_present(*pud)) {
4165 mm_inc_nr_pmds(mm);
4166 pgd_populate(mm, pud, new);
4167 } else /* Another has populated it */
4168 pmd_free(mm, new);
4169 #endif /* __ARCH_HAS_4LEVEL_HACK */
4170 spin_unlock(ptl);
4171 return 0;
4173 #endif /* __PAGETABLE_PMD_FOLDED */
4175 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4176 unsigned long *start, unsigned long *end,
4177 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4179 pgd_t *pgd;
4180 p4d_t *p4d;
4181 pud_t *pud;
4182 pmd_t *pmd;
4183 pte_t *ptep;
4185 pgd = pgd_offset(mm, address);
4186 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4187 goto out;
4189 p4d = p4d_offset(pgd, address);
4190 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4191 goto out;
4193 pud = pud_offset(p4d, address);
4194 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4195 goto out;
4197 pmd = pmd_offset(pud, address);
4198 VM_BUG_ON(pmd_trans_huge(*pmd));
4200 if (pmd_huge(*pmd)) {
4201 if (!pmdpp)
4202 goto out;
4204 if (start && end) {
4205 *start = address & PMD_MASK;
4206 *end = *start + PMD_SIZE;
4207 mmu_notifier_invalidate_range_start(mm, *start, *end);
4209 *ptlp = pmd_lock(mm, pmd);
4210 if (pmd_huge(*pmd)) {
4211 *pmdpp = pmd;
4212 return 0;
4214 spin_unlock(*ptlp);
4215 if (start && end)
4216 mmu_notifier_invalidate_range_end(mm, *start, *end);
4219 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4220 goto out;
4222 if (start && end) {
4223 *start = address & PAGE_MASK;
4224 *end = *start + PAGE_SIZE;
4225 mmu_notifier_invalidate_range_start(mm, *start, *end);
4227 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4228 if (!pte_present(*ptep))
4229 goto unlock;
4230 *ptepp = ptep;
4231 return 0;
4232 unlock:
4233 pte_unmap_unlock(ptep, *ptlp);
4234 if (start && end)
4235 mmu_notifier_invalidate_range_end(mm, *start, *end);
4236 out:
4237 return -EINVAL;
4240 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4241 pte_t **ptepp, spinlock_t **ptlp)
4243 int res;
4245 /* (void) is needed to make gcc happy */
4246 (void) __cond_lock(*ptlp,
4247 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4248 ptepp, NULL, ptlp)));
4249 return res;
4252 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4253 unsigned long *start, unsigned long *end,
4254 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4256 int res;
4258 /* (void) is needed to make gcc happy */
4259 (void) __cond_lock(*ptlp,
4260 !(res = __follow_pte_pmd(mm, address, start, end,
4261 ptepp, pmdpp, ptlp)));
4262 return res;
4264 EXPORT_SYMBOL(follow_pte_pmd);
4267 * follow_pfn - look up PFN at a user virtual address
4268 * @vma: memory mapping
4269 * @address: user virtual address
4270 * @pfn: location to store found PFN
4272 * Only IO mappings and raw PFN mappings are allowed.
4274 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4276 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4277 unsigned long *pfn)
4279 int ret = -EINVAL;
4280 spinlock_t *ptl;
4281 pte_t *ptep;
4283 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4284 return ret;
4286 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4287 if (ret)
4288 return ret;
4289 *pfn = pte_pfn(*ptep);
4290 pte_unmap_unlock(ptep, ptl);
4291 return 0;
4293 EXPORT_SYMBOL(follow_pfn);
4295 #ifdef CONFIG_HAVE_IOREMAP_PROT
4296 int follow_phys(struct vm_area_struct *vma,
4297 unsigned long address, unsigned int flags,
4298 unsigned long *prot, resource_size_t *phys)
4300 int ret = -EINVAL;
4301 pte_t *ptep, pte;
4302 spinlock_t *ptl;
4304 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4305 goto out;
4307 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4308 goto out;
4309 pte = *ptep;
4311 if ((flags & FOLL_WRITE) && !pte_write(pte))
4312 goto unlock;
4314 *prot = pgprot_val(pte_pgprot(pte));
4315 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4317 ret = 0;
4318 unlock:
4319 pte_unmap_unlock(ptep, ptl);
4320 out:
4321 return ret;
4324 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4325 void *buf, int len, int write)
4327 resource_size_t phys_addr;
4328 unsigned long prot = 0;
4329 void __iomem *maddr;
4330 int offset = addr & (PAGE_SIZE-1);
4332 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4333 return -EINVAL;
4335 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4336 if (write)
4337 memcpy_toio(maddr + offset, buf, len);
4338 else
4339 memcpy_fromio(buf, maddr + offset, len);
4340 iounmap(maddr);
4342 return len;
4344 EXPORT_SYMBOL_GPL(generic_access_phys);
4345 #endif
4348 * Access another process' address space as given in mm. If non-NULL, use the
4349 * given task for page fault accounting.
4351 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4352 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4354 struct vm_area_struct *vma;
4355 void *old_buf = buf;
4356 int write = gup_flags & FOLL_WRITE;
4358 down_read(&mm->mmap_sem);
4359 /* ignore errors, just check how much was successfully transferred */
4360 while (len) {
4361 int bytes, ret, offset;
4362 void *maddr;
4363 struct page *page = NULL;
4365 ret = get_user_pages_remote(tsk, mm, addr, 1,
4366 gup_flags, &page, &vma, NULL);
4367 if (ret <= 0) {
4368 #ifndef CONFIG_HAVE_IOREMAP_PROT
4369 break;
4370 #else
4372 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4373 * we can access using slightly different code.
4375 vma = find_vma(mm, addr);
4376 if (!vma || vma->vm_start > addr)
4377 break;
4378 if (vma->vm_ops && vma->vm_ops->access)
4379 ret = vma->vm_ops->access(vma, addr, buf,
4380 len, write);
4381 if (ret <= 0)
4382 break;
4383 bytes = ret;
4384 #endif
4385 } else {
4386 bytes = len;
4387 offset = addr & (PAGE_SIZE-1);
4388 if (bytes > PAGE_SIZE-offset)
4389 bytes = PAGE_SIZE-offset;
4391 maddr = kmap(page);
4392 if (write) {
4393 copy_to_user_page(vma, page, addr,
4394 maddr + offset, buf, bytes);
4395 set_page_dirty_lock(page);
4396 } else {
4397 copy_from_user_page(vma, page, addr,
4398 buf, maddr + offset, bytes);
4400 kunmap(page);
4401 put_page(page);
4403 len -= bytes;
4404 buf += bytes;
4405 addr += bytes;
4407 up_read(&mm->mmap_sem);
4409 return buf - old_buf;
4413 * access_remote_vm - access another process' address space
4414 * @mm: the mm_struct of the target address space
4415 * @addr: start address to access
4416 * @buf: source or destination buffer
4417 * @len: number of bytes to transfer
4418 * @gup_flags: flags modifying lookup behaviour
4420 * The caller must hold a reference on @mm.
4422 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4423 void *buf, int len, unsigned int gup_flags)
4425 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4429 * Access another process' address space.
4430 * Source/target buffer must be kernel space,
4431 * Do not walk the page table directly, use get_user_pages
4433 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4434 void *buf, int len, unsigned int gup_flags)
4436 struct mm_struct *mm;
4437 int ret;
4439 mm = get_task_mm(tsk);
4440 if (!mm)
4441 return 0;
4443 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4445 mmput(mm);
4447 return ret;
4449 EXPORT_SYMBOL_GPL(access_process_vm);
4452 * Print the name of a VMA.
4454 void print_vma_addr(char *prefix, unsigned long ip)
4456 struct mm_struct *mm = current->mm;
4457 struct vm_area_struct *vma;
4460 * Do not print if we are in atomic
4461 * contexts (in exception stacks, etc.):
4463 if (preempt_count())
4464 return;
4466 down_read(&mm->mmap_sem);
4467 vma = find_vma(mm, ip);
4468 if (vma && vma->vm_file) {
4469 struct file *f = vma->vm_file;
4470 char *buf = (char *)__get_free_page(GFP_KERNEL);
4471 if (buf) {
4472 char *p;
4474 p = file_path(f, buf, PAGE_SIZE);
4475 if (IS_ERR(p))
4476 p = "?";
4477 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4478 vma->vm_start,
4479 vma->vm_end - vma->vm_start);
4480 free_page((unsigned long)buf);
4483 up_read(&mm->mmap_sem);
4486 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4487 void __might_fault(const char *file, int line)
4490 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4491 * holding the mmap_sem, this is safe because kernel memory doesn't
4492 * get paged out, therefore we'll never actually fault, and the
4493 * below annotations will generate false positives.
4495 if (uaccess_kernel())
4496 return;
4497 if (pagefault_disabled())
4498 return;
4499 __might_sleep(file, line, 0);
4500 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4501 if (current->mm)
4502 might_lock_read(&current->mm->mmap_sem);
4503 #endif
4505 EXPORT_SYMBOL(__might_fault);
4506 #endif
4508 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4509 static void clear_gigantic_page(struct page *page,
4510 unsigned long addr,
4511 unsigned int pages_per_huge_page)
4513 int i;
4514 struct page *p = page;
4516 might_sleep();
4517 for (i = 0; i < pages_per_huge_page;
4518 i++, p = mem_map_next(p, page, i)) {
4519 cond_resched();
4520 clear_user_highpage(p, addr + i * PAGE_SIZE);
4523 void clear_huge_page(struct page *page,
4524 unsigned long addr_hint, unsigned int pages_per_huge_page)
4526 int i, n, base, l;
4527 unsigned long addr = addr_hint &
4528 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4530 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4531 clear_gigantic_page(page, addr, pages_per_huge_page);
4532 return;
4535 /* Clear sub-page to access last to keep its cache lines hot */
4536 might_sleep();
4537 n = (addr_hint - addr) / PAGE_SIZE;
4538 if (2 * n <= pages_per_huge_page) {
4539 /* If sub-page to access in first half of huge page */
4540 base = 0;
4541 l = n;
4542 /* Clear sub-pages at the end of huge page */
4543 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4544 cond_resched();
4545 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4547 } else {
4548 /* If sub-page to access in second half of huge page */
4549 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4550 l = pages_per_huge_page - n;
4551 /* Clear sub-pages at the begin of huge page */
4552 for (i = 0; i < base; i++) {
4553 cond_resched();
4554 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4558 * Clear remaining sub-pages in left-right-left-right pattern
4559 * towards the sub-page to access
4561 for (i = 0; i < l; i++) {
4562 int left_idx = base + i;
4563 int right_idx = base + 2 * l - 1 - i;
4565 cond_resched();
4566 clear_user_highpage(page + left_idx,
4567 addr + left_idx * PAGE_SIZE);
4568 cond_resched();
4569 clear_user_highpage(page + right_idx,
4570 addr + right_idx * PAGE_SIZE);
4574 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4575 unsigned long addr,
4576 struct vm_area_struct *vma,
4577 unsigned int pages_per_huge_page)
4579 int i;
4580 struct page *dst_base = dst;
4581 struct page *src_base = src;
4583 for (i = 0; i < pages_per_huge_page; ) {
4584 cond_resched();
4585 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4587 i++;
4588 dst = mem_map_next(dst, dst_base, i);
4589 src = mem_map_next(src, src_base, i);
4593 void copy_user_huge_page(struct page *dst, struct page *src,
4594 unsigned long addr, struct vm_area_struct *vma,
4595 unsigned int pages_per_huge_page)
4597 int i;
4599 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4600 copy_user_gigantic_page(dst, src, addr, vma,
4601 pages_per_huge_page);
4602 return;
4605 might_sleep();
4606 for (i = 0; i < pages_per_huge_page; i++) {
4607 cond_resched();
4608 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4612 long copy_huge_page_from_user(struct page *dst_page,
4613 const void __user *usr_src,
4614 unsigned int pages_per_huge_page,
4615 bool allow_pagefault)
4617 void *src = (void *)usr_src;
4618 void *page_kaddr;
4619 unsigned long i, rc = 0;
4620 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4622 for (i = 0; i < pages_per_huge_page; i++) {
4623 if (allow_pagefault)
4624 page_kaddr = kmap(dst_page + i);
4625 else
4626 page_kaddr = kmap_atomic(dst_page + i);
4627 rc = copy_from_user(page_kaddr,
4628 (const void __user *)(src + i * PAGE_SIZE),
4629 PAGE_SIZE);
4630 if (allow_pagefault)
4631 kunmap(dst_page + i);
4632 else
4633 kunmap_atomic(page_kaddr);
4635 ret_val -= (PAGE_SIZE - rc);
4636 if (rc)
4637 break;
4639 cond_resched();
4641 return ret_val;
4643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4645 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4647 static struct kmem_cache *page_ptl_cachep;
4649 void __init ptlock_cache_init(void)
4651 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4652 SLAB_PANIC, NULL);
4655 bool ptlock_alloc(struct page *page)
4657 spinlock_t *ptl;
4659 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4660 if (!ptl)
4661 return false;
4662 page->ptl = ptl;
4663 return true;
4666 void ptlock_free(struct page *page)
4668 kmem_cache_free(page_ptl_cachep, page->ptl);
4670 #endif