net: ethernet: freescale: fix false-positive string overflow warning
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / freescale / fec_main.c
blobc729665107f59c4431529b971a765059bee837c1
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/platform_device.h>
52 #include <linux/mdio.h>
53 #include <linux/phy.h>
54 #include <linux/fec.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/of_gpio.h>
58 #include <linux/of_mdio.h>
59 #include <linux/of_net.h>
60 #include <linux/regulator/consumer.h>
61 #include <linux/if_vlan.h>
62 #include <linux/pinctrl/consumer.h>
63 #include <linux/prefetch.h>
64 #include <soc/imx/cpuidle.h>
66 #include <asm/cacheflush.h>
68 #include "fec.h"
70 static void set_multicast_list(struct net_device *ndev);
71 static void fec_enet_itr_coal_init(struct net_device *ndev);
73 #define DRIVER_NAME "fec"
75 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
77 /* Pause frame feild and FIFO threshold */
78 #define FEC_ENET_FCE (1 << 5)
79 #define FEC_ENET_RSEM_V 0x84
80 #define FEC_ENET_RSFL_V 16
81 #define FEC_ENET_RAEM_V 0x8
82 #define FEC_ENET_RAFL_V 0x8
83 #define FEC_ENET_OPD_V 0xFFF0
84 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
86 static struct platform_device_id fec_devtype[] = {
88 /* keep it for coldfire */
89 .name = DRIVER_NAME,
90 .driver_data = 0,
91 }, {
92 .name = "imx25-fec",
93 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
94 }, {
95 .name = "imx27-fec",
96 .driver_data = FEC_QUIRK_MIB_CLEAR,
97 }, {
98 .name = "imx28-fec",
99 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
100 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
101 }, {
102 .name = "imx6q-fec",
103 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
104 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
105 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
106 FEC_QUIRK_HAS_RACC,
107 }, {
108 .name = "mvf600-fec",
109 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
110 }, {
111 .name = "imx6sx-fec",
112 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
113 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
114 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
115 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
116 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
117 }, {
118 .name = "imx6ul-fec",
119 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
122 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
123 FEC_QUIRK_HAS_COALESCE,
124 }, {
125 /* sentinel */
128 MODULE_DEVICE_TABLE(platform, fec_devtype);
130 enum imx_fec_type {
131 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
132 IMX27_FEC, /* runs on i.mx27/35/51 */
133 IMX28_FEC,
134 IMX6Q_FEC,
135 MVF600_FEC,
136 IMX6SX_FEC,
137 IMX6UL_FEC,
140 static const struct of_device_id fec_dt_ids[] = {
141 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
142 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
143 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
144 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
145 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
146 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
147 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
148 { /* sentinel */ }
150 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152 static unsigned char macaddr[ETH_ALEN];
153 module_param_array(macaddr, byte, NULL, 0);
154 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156 #if defined(CONFIG_M5272)
158 * Some hardware gets it MAC address out of local flash memory.
159 * if this is non-zero then assume it is the address to get MAC from.
161 #if defined(CONFIG_NETtel)
162 #define FEC_FLASHMAC 0xf0006006
163 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
164 #define FEC_FLASHMAC 0xf0006000
165 #elif defined(CONFIG_CANCam)
166 #define FEC_FLASHMAC 0xf0020000
167 #elif defined (CONFIG_M5272C3)
168 #define FEC_FLASHMAC (0xffe04000 + 4)
169 #elif defined(CONFIG_MOD5272)
170 #define FEC_FLASHMAC 0xffc0406b
171 #else
172 #define FEC_FLASHMAC 0
173 #endif
174 #endif /* CONFIG_M5272 */
176 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
178 * 2048 byte skbufs are allocated. However, alignment requirements
179 * varies between FEC variants. Worst case is 64, so round down by 64.
181 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
182 #define PKT_MINBUF_SIZE 64
184 /* FEC receive acceleration */
185 #define FEC_RACC_IPDIS (1 << 1)
186 #define FEC_RACC_PRODIS (1 << 2)
187 #define FEC_RACC_SHIFT16 BIT(7)
188 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
190 /* MIB Control Register */
191 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
194 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
195 * size bits. Other FEC hardware does not, so we need to take that into
196 * account when setting it.
198 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
199 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
200 defined(CONFIG_ARM64)
201 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
202 #else
203 #define OPT_FRAME_SIZE 0
204 #endif
206 /* FEC MII MMFR bits definition */
207 #define FEC_MMFR_ST (1 << 30)
208 #define FEC_MMFR_OP_READ (2 << 28)
209 #define FEC_MMFR_OP_WRITE (1 << 28)
210 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
211 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
212 #define FEC_MMFR_TA (2 << 16)
213 #define FEC_MMFR_DATA(v) (v & 0xffff)
214 /* FEC ECR bits definition */
215 #define FEC_ECR_MAGICEN (1 << 2)
216 #define FEC_ECR_SLEEP (1 << 3)
218 #define FEC_MII_TIMEOUT 30000 /* us */
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
223 #define FEC_PAUSE_FLAG_AUTONEG 0x1
224 #define FEC_PAUSE_FLAG_ENABLE 0x2
225 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
226 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
227 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
229 #define COPYBREAK_DEFAULT 256
231 /* Max number of allowed TCP segments for software TSO */
232 #define FEC_MAX_TSO_SEGS 100
233 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
235 #define IS_TSO_HEADER(txq, addr) \
236 ((addr >= txq->tso_hdrs_dma) && \
237 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
239 static int mii_cnt;
241 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
242 struct bufdesc_prop *bd)
244 return (bdp >= bd->last) ? bd->base
245 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
248 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
249 struct bufdesc_prop *bd)
251 return (bdp <= bd->base) ? bd->last
252 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
255 static int fec_enet_get_bd_index(struct bufdesc *bdp,
256 struct bufdesc_prop *bd)
258 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
261 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
263 int entries;
265 entries = (((const char *)txq->dirty_tx -
266 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
268 return entries >= 0 ? entries : entries + txq->bd.ring_size;
271 static void swap_buffer(void *bufaddr, int len)
273 int i;
274 unsigned int *buf = bufaddr;
276 for (i = 0; i < len; i += 4, buf++)
277 swab32s(buf);
280 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
282 int i;
283 unsigned int *src = src_buf;
284 unsigned int *dst = dst_buf;
286 for (i = 0; i < len; i += 4, src++, dst++)
287 *dst = swab32p(src);
290 static void fec_dump(struct net_device *ndev)
292 struct fec_enet_private *fep = netdev_priv(ndev);
293 struct bufdesc *bdp;
294 struct fec_enet_priv_tx_q *txq;
295 int index = 0;
297 netdev_info(ndev, "TX ring dump\n");
298 pr_info("Nr SC addr len SKB\n");
300 txq = fep->tx_queue[0];
301 bdp = txq->bd.base;
303 do {
304 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
305 index,
306 bdp == txq->bd.cur ? 'S' : ' ',
307 bdp == txq->dirty_tx ? 'H' : ' ',
308 fec16_to_cpu(bdp->cbd_sc),
309 fec32_to_cpu(bdp->cbd_bufaddr),
310 fec16_to_cpu(bdp->cbd_datlen),
311 txq->tx_skbuff[index]);
312 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
313 index++;
314 } while (bdp != txq->bd.base);
317 static inline bool is_ipv4_pkt(struct sk_buff *skb)
319 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
322 static int
323 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
325 /* Only run for packets requiring a checksum. */
326 if (skb->ip_summed != CHECKSUM_PARTIAL)
327 return 0;
329 if (unlikely(skb_cow_head(skb, 0)))
330 return -1;
332 if (is_ipv4_pkt(skb))
333 ip_hdr(skb)->check = 0;
334 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
336 return 0;
339 static struct bufdesc *
340 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
341 struct sk_buff *skb,
342 struct net_device *ndev)
344 struct fec_enet_private *fep = netdev_priv(ndev);
345 struct bufdesc *bdp = txq->bd.cur;
346 struct bufdesc_ex *ebdp;
347 int nr_frags = skb_shinfo(skb)->nr_frags;
348 int frag, frag_len;
349 unsigned short status;
350 unsigned int estatus = 0;
351 skb_frag_t *this_frag;
352 unsigned int index;
353 void *bufaddr;
354 dma_addr_t addr;
355 int i;
357 for (frag = 0; frag < nr_frags; frag++) {
358 this_frag = &skb_shinfo(skb)->frags[frag];
359 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
360 ebdp = (struct bufdesc_ex *)bdp;
362 status = fec16_to_cpu(bdp->cbd_sc);
363 status &= ~BD_ENET_TX_STATS;
364 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
365 frag_len = skb_shinfo(skb)->frags[frag].size;
367 /* Handle the last BD specially */
368 if (frag == nr_frags - 1) {
369 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
370 if (fep->bufdesc_ex) {
371 estatus |= BD_ENET_TX_INT;
372 if (unlikely(skb_shinfo(skb)->tx_flags &
373 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
374 estatus |= BD_ENET_TX_TS;
378 if (fep->bufdesc_ex) {
379 if (fep->quirks & FEC_QUIRK_HAS_AVB)
380 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
381 if (skb->ip_summed == CHECKSUM_PARTIAL)
382 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
383 ebdp->cbd_bdu = 0;
384 ebdp->cbd_esc = cpu_to_fec32(estatus);
387 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
389 index = fec_enet_get_bd_index(bdp, &txq->bd);
390 if (((unsigned long) bufaddr) & fep->tx_align ||
391 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
392 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
393 bufaddr = txq->tx_bounce[index];
395 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
396 swap_buffer(bufaddr, frag_len);
399 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
400 DMA_TO_DEVICE);
401 if (dma_mapping_error(&fep->pdev->dev, addr)) {
402 if (net_ratelimit())
403 netdev_err(ndev, "Tx DMA memory map failed\n");
404 goto dma_mapping_error;
407 bdp->cbd_bufaddr = cpu_to_fec32(addr);
408 bdp->cbd_datlen = cpu_to_fec16(frag_len);
409 /* Make sure the updates to rest of the descriptor are
410 * performed before transferring ownership.
412 wmb();
413 bdp->cbd_sc = cpu_to_fec16(status);
416 return bdp;
417 dma_mapping_error:
418 bdp = txq->bd.cur;
419 for (i = 0; i < frag; i++) {
420 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
421 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
422 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
424 return ERR_PTR(-ENOMEM);
427 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
428 struct sk_buff *skb, struct net_device *ndev)
430 struct fec_enet_private *fep = netdev_priv(ndev);
431 int nr_frags = skb_shinfo(skb)->nr_frags;
432 struct bufdesc *bdp, *last_bdp;
433 void *bufaddr;
434 dma_addr_t addr;
435 unsigned short status;
436 unsigned short buflen;
437 unsigned int estatus = 0;
438 unsigned int index;
439 int entries_free;
441 entries_free = fec_enet_get_free_txdesc_num(txq);
442 if (entries_free < MAX_SKB_FRAGS + 1) {
443 dev_kfree_skb_any(skb);
444 if (net_ratelimit())
445 netdev_err(ndev, "NOT enough BD for SG!\n");
446 return NETDEV_TX_OK;
449 /* Protocol checksum off-load for TCP and UDP. */
450 if (fec_enet_clear_csum(skb, ndev)) {
451 dev_kfree_skb_any(skb);
452 return NETDEV_TX_OK;
455 /* Fill in a Tx ring entry */
456 bdp = txq->bd.cur;
457 last_bdp = bdp;
458 status = fec16_to_cpu(bdp->cbd_sc);
459 status &= ~BD_ENET_TX_STATS;
461 /* Set buffer length and buffer pointer */
462 bufaddr = skb->data;
463 buflen = skb_headlen(skb);
465 index = fec_enet_get_bd_index(bdp, &txq->bd);
466 if (((unsigned long) bufaddr) & fep->tx_align ||
467 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
468 memcpy(txq->tx_bounce[index], skb->data, buflen);
469 bufaddr = txq->tx_bounce[index];
471 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
472 swap_buffer(bufaddr, buflen);
475 /* Push the data cache so the CPM does not get stale memory data. */
476 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
477 if (dma_mapping_error(&fep->pdev->dev, addr)) {
478 dev_kfree_skb_any(skb);
479 if (net_ratelimit())
480 netdev_err(ndev, "Tx DMA memory map failed\n");
481 return NETDEV_TX_OK;
484 if (nr_frags) {
485 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
486 if (IS_ERR(last_bdp)) {
487 dma_unmap_single(&fep->pdev->dev, addr,
488 buflen, DMA_TO_DEVICE);
489 dev_kfree_skb_any(skb);
490 return NETDEV_TX_OK;
492 } else {
493 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
494 if (fep->bufdesc_ex) {
495 estatus = BD_ENET_TX_INT;
496 if (unlikely(skb_shinfo(skb)->tx_flags &
497 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
498 estatus |= BD_ENET_TX_TS;
501 bdp->cbd_bufaddr = cpu_to_fec32(addr);
502 bdp->cbd_datlen = cpu_to_fec16(buflen);
504 if (fep->bufdesc_ex) {
506 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
508 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
509 fep->hwts_tx_en))
510 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
512 if (fep->quirks & FEC_QUIRK_HAS_AVB)
513 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
515 if (skb->ip_summed == CHECKSUM_PARTIAL)
516 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
518 ebdp->cbd_bdu = 0;
519 ebdp->cbd_esc = cpu_to_fec32(estatus);
522 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
523 /* Save skb pointer */
524 txq->tx_skbuff[index] = skb;
526 /* Make sure the updates to rest of the descriptor are performed before
527 * transferring ownership.
529 wmb();
531 /* Send it on its way. Tell FEC it's ready, interrupt when done,
532 * it's the last BD of the frame, and to put the CRC on the end.
534 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
535 bdp->cbd_sc = cpu_to_fec16(status);
537 /* If this was the last BD in the ring, start at the beginning again. */
538 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
540 skb_tx_timestamp(skb);
542 /* Make sure the update to bdp and tx_skbuff are performed before
543 * txq->bd.cur.
545 wmb();
546 txq->bd.cur = bdp;
548 /* Trigger transmission start */
549 writel(0, txq->bd.reg_desc_active);
551 return 0;
554 static int
555 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
556 struct net_device *ndev,
557 struct bufdesc *bdp, int index, char *data,
558 int size, bool last_tcp, bool is_last)
560 struct fec_enet_private *fep = netdev_priv(ndev);
561 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
562 unsigned short status;
563 unsigned int estatus = 0;
564 dma_addr_t addr;
566 status = fec16_to_cpu(bdp->cbd_sc);
567 status &= ~BD_ENET_TX_STATS;
569 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
571 if (((unsigned long) data) & fep->tx_align ||
572 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
573 memcpy(txq->tx_bounce[index], data, size);
574 data = txq->tx_bounce[index];
576 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
577 swap_buffer(data, size);
580 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
581 if (dma_mapping_error(&fep->pdev->dev, addr)) {
582 dev_kfree_skb_any(skb);
583 if (net_ratelimit())
584 netdev_err(ndev, "Tx DMA memory map failed\n");
585 return NETDEV_TX_BUSY;
588 bdp->cbd_datlen = cpu_to_fec16(size);
589 bdp->cbd_bufaddr = cpu_to_fec32(addr);
591 if (fep->bufdesc_ex) {
592 if (fep->quirks & FEC_QUIRK_HAS_AVB)
593 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
594 if (skb->ip_summed == CHECKSUM_PARTIAL)
595 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
596 ebdp->cbd_bdu = 0;
597 ebdp->cbd_esc = cpu_to_fec32(estatus);
600 /* Handle the last BD specially */
601 if (last_tcp)
602 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
603 if (is_last) {
604 status |= BD_ENET_TX_INTR;
605 if (fep->bufdesc_ex)
606 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
609 bdp->cbd_sc = cpu_to_fec16(status);
611 return 0;
614 static int
615 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
616 struct sk_buff *skb, struct net_device *ndev,
617 struct bufdesc *bdp, int index)
619 struct fec_enet_private *fep = netdev_priv(ndev);
620 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
621 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
622 void *bufaddr;
623 unsigned long dmabuf;
624 unsigned short status;
625 unsigned int estatus = 0;
627 status = fec16_to_cpu(bdp->cbd_sc);
628 status &= ~BD_ENET_TX_STATS;
629 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
631 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
632 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
633 if (((unsigned long)bufaddr) & fep->tx_align ||
634 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
635 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
636 bufaddr = txq->tx_bounce[index];
638 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
639 swap_buffer(bufaddr, hdr_len);
641 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
642 hdr_len, DMA_TO_DEVICE);
643 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
644 dev_kfree_skb_any(skb);
645 if (net_ratelimit())
646 netdev_err(ndev, "Tx DMA memory map failed\n");
647 return NETDEV_TX_BUSY;
651 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
652 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
654 if (fep->bufdesc_ex) {
655 if (fep->quirks & FEC_QUIRK_HAS_AVB)
656 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
657 if (skb->ip_summed == CHECKSUM_PARTIAL)
658 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
659 ebdp->cbd_bdu = 0;
660 ebdp->cbd_esc = cpu_to_fec32(estatus);
663 bdp->cbd_sc = cpu_to_fec16(status);
665 return 0;
668 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
669 struct sk_buff *skb,
670 struct net_device *ndev)
672 struct fec_enet_private *fep = netdev_priv(ndev);
673 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
674 int total_len, data_left;
675 struct bufdesc *bdp = txq->bd.cur;
676 struct tso_t tso;
677 unsigned int index = 0;
678 int ret;
680 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
681 dev_kfree_skb_any(skb);
682 if (net_ratelimit())
683 netdev_err(ndev, "NOT enough BD for TSO!\n");
684 return NETDEV_TX_OK;
687 /* Protocol checksum off-load for TCP and UDP. */
688 if (fec_enet_clear_csum(skb, ndev)) {
689 dev_kfree_skb_any(skb);
690 return NETDEV_TX_OK;
693 /* Initialize the TSO handler, and prepare the first payload */
694 tso_start(skb, &tso);
696 total_len = skb->len - hdr_len;
697 while (total_len > 0) {
698 char *hdr;
700 index = fec_enet_get_bd_index(bdp, &txq->bd);
701 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
702 total_len -= data_left;
704 /* prepare packet headers: MAC + IP + TCP */
705 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
707 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
708 if (ret)
709 goto err_release;
711 while (data_left > 0) {
712 int size;
714 size = min_t(int, tso.size, data_left);
715 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
716 index = fec_enet_get_bd_index(bdp, &txq->bd);
717 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
718 bdp, index,
719 tso.data, size,
720 size == data_left,
721 total_len == 0);
722 if (ret)
723 goto err_release;
725 data_left -= size;
726 tso_build_data(skb, &tso, size);
729 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
732 /* Save skb pointer */
733 txq->tx_skbuff[index] = skb;
735 skb_tx_timestamp(skb);
736 txq->bd.cur = bdp;
738 /* Trigger transmission start */
739 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
740 !readl(txq->bd.reg_desc_active) ||
741 !readl(txq->bd.reg_desc_active) ||
742 !readl(txq->bd.reg_desc_active) ||
743 !readl(txq->bd.reg_desc_active))
744 writel(0, txq->bd.reg_desc_active);
746 return 0;
748 err_release:
749 /* TODO: Release all used data descriptors for TSO */
750 return ret;
753 static netdev_tx_t
754 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
756 struct fec_enet_private *fep = netdev_priv(ndev);
757 int entries_free;
758 unsigned short queue;
759 struct fec_enet_priv_tx_q *txq;
760 struct netdev_queue *nq;
761 int ret;
763 queue = skb_get_queue_mapping(skb);
764 txq = fep->tx_queue[queue];
765 nq = netdev_get_tx_queue(ndev, queue);
767 if (skb_is_gso(skb))
768 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
769 else
770 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
771 if (ret)
772 return ret;
774 entries_free = fec_enet_get_free_txdesc_num(txq);
775 if (entries_free <= txq->tx_stop_threshold)
776 netif_tx_stop_queue(nq);
778 return NETDEV_TX_OK;
781 /* Init RX & TX buffer descriptors
783 static void fec_enet_bd_init(struct net_device *dev)
785 struct fec_enet_private *fep = netdev_priv(dev);
786 struct fec_enet_priv_tx_q *txq;
787 struct fec_enet_priv_rx_q *rxq;
788 struct bufdesc *bdp;
789 unsigned int i;
790 unsigned int q;
792 for (q = 0; q < fep->num_rx_queues; q++) {
793 /* Initialize the receive buffer descriptors. */
794 rxq = fep->rx_queue[q];
795 bdp = rxq->bd.base;
797 for (i = 0; i < rxq->bd.ring_size; i++) {
799 /* Initialize the BD for every fragment in the page. */
800 if (bdp->cbd_bufaddr)
801 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
802 else
803 bdp->cbd_sc = cpu_to_fec16(0);
804 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
807 /* Set the last buffer to wrap */
808 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
809 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
811 rxq->bd.cur = rxq->bd.base;
814 for (q = 0; q < fep->num_tx_queues; q++) {
815 /* ...and the same for transmit */
816 txq = fep->tx_queue[q];
817 bdp = txq->bd.base;
818 txq->bd.cur = bdp;
820 for (i = 0; i < txq->bd.ring_size; i++) {
821 /* Initialize the BD for every fragment in the page. */
822 bdp->cbd_sc = cpu_to_fec16(0);
823 if (bdp->cbd_bufaddr &&
824 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
825 dma_unmap_single(&fep->pdev->dev,
826 fec32_to_cpu(bdp->cbd_bufaddr),
827 fec16_to_cpu(bdp->cbd_datlen),
828 DMA_TO_DEVICE);
829 if (txq->tx_skbuff[i]) {
830 dev_kfree_skb_any(txq->tx_skbuff[i]);
831 txq->tx_skbuff[i] = NULL;
833 bdp->cbd_bufaddr = cpu_to_fec32(0);
834 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
837 /* Set the last buffer to wrap */
838 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
839 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
840 txq->dirty_tx = bdp;
844 static void fec_enet_active_rxring(struct net_device *ndev)
846 struct fec_enet_private *fep = netdev_priv(ndev);
847 int i;
849 for (i = 0; i < fep->num_rx_queues; i++)
850 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
853 static void fec_enet_enable_ring(struct net_device *ndev)
855 struct fec_enet_private *fep = netdev_priv(ndev);
856 struct fec_enet_priv_tx_q *txq;
857 struct fec_enet_priv_rx_q *rxq;
858 int i;
860 for (i = 0; i < fep->num_rx_queues; i++) {
861 rxq = fep->rx_queue[i];
862 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
863 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
865 /* enable DMA1/2 */
866 if (i)
867 writel(RCMR_MATCHEN | RCMR_CMP(i),
868 fep->hwp + FEC_RCMR(i));
871 for (i = 0; i < fep->num_tx_queues; i++) {
872 txq = fep->tx_queue[i];
873 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
875 /* enable DMA1/2 */
876 if (i)
877 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
878 fep->hwp + FEC_DMA_CFG(i));
882 static void fec_enet_reset_skb(struct net_device *ndev)
884 struct fec_enet_private *fep = netdev_priv(ndev);
885 struct fec_enet_priv_tx_q *txq;
886 int i, j;
888 for (i = 0; i < fep->num_tx_queues; i++) {
889 txq = fep->tx_queue[i];
891 for (j = 0; j < txq->bd.ring_size; j++) {
892 if (txq->tx_skbuff[j]) {
893 dev_kfree_skb_any(txq->tx_skbuff[j]);
894 txq->tx_skbuff[j] = NULL;
901 * This function is called to start or restart the FEC during a link
902 * change, transmit timeout, or to reconfigure the FEC. The network
903 * packet processing for this device must be stopped before this call.
905 static void
906 fec_restart(struct net_device *ndev)
908 struct fec_enet_private *fep = netdev_priv(ndev);
909 u32 val;
910 u32 temp_mac[2];
911 u32 rcntl = OPT_FRAME_SIZE | 0x04;
912 u32 ecntl = 0x2; /* ETHEREN */
914 /* Whack a reset. We should wait for this.
915 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
916 * instead of reset MAC itself.
918 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
919 writel(0, fep->hwp + FEC_ECNTRL);
920 } else {
921 writel(1, fep->hwp + FEC_ECNTRL);
922 udelay(10);
926 * enet-mac reset will reset mac address registers too,
927 * so need to reconfigure it.
929 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
930 writel((__force u32)cpu_to_be32(temp_mac[0]),
931 fep->hwp + FEC_ADDR_LOW);
932 writel((__force u32)cpu_to_be32(temp_mac[1]),
933 fep->hwp + FEC_ADDR_HIGH);
935 /* Clear any outstanding interrupt. */
936 writel(0xffffffff, fep->hwp + FEC_IEVENT);
938 fec_enet_bd_init(ndev);
940 fec_enet_enable_ring(ndev);
942 /* Reset tx SKB buffers. */
943 fec_enet_reset_skb(ndev);
945 /* Enable MII mode */
946 if (fep->full_duplex == DUPLEX_FULL) {
947 /* FD enable */
948 writel(0x04, fep->hwp + FEC_X_CNTRL);
949 } else {
950 /* No Rcv on Xmit */
951 rcntl |= 0x02;
952 writel(0x0, fep->hwp + FEC_X_CNTRL);
955 /* Set MII speed */
956 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
958 #if !defined(CONFIG_M5272)
959 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
960 val = readl(fep->hwp + FEC_RACC);
961 /* align IP header */
962 val |= FEC_RACC_SHIFT16;
963 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
964 /* set RX checksum */
965 val |= FEC_RACC_OPTIONS;
966 else
967 val &= ~FEC_RACC_OPTIONS;
968 writel(val, fep->hwp + FEC_RACC);
969 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
971 #endif
974 * The phy interface and speed need to get configured
975 * differently on enet-mac.
977 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
978 /* Enable flow control and length check */
979 rcntl |= 0x40000000 | 0x00000020;
981 /* RGMII, RMII or MII */
982 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
983 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
984 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
985 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
986 rcntl |= (1 << 6);
987 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
988 rcntl |= (1 << 8);
989 else
990 rcntl &= ~(1 << 8);
992 /* 1G, 100M or 10M */
993 if (ndev->phydev) {
994 if (ndev->phydev->speed == SPEED_1000)
995 ecntl |= (1 << 5);
996 else if (ndev->phydev->speed == SPEED_100)
997 rcntl &= ~(1 << 9);
998 else
999 rcntl |= (1 << 9);
1001 } else {
1002 #ifdef FEC_MIIGSK_ENR
1003 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004 u32 cfgr;
1005 /* disable the gasket and wait */
1006 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008 udelay(1);
1011 * configure the gasket:
1012 * RMII, 50 MHz, no loopback, no echo
1013 * MII, 25 MHz, no loopback, no echo
1015 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1021 /* re-enable the gasket */
1022 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1024 #endif
1027 #if !defined(CONFIG_M5272)
1028 /* enable pause frame*/
1029 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031 ndev->phydev && ndev->phydev->pause)) {
1032 rcntl |= FEC_ENET_FCE;
1034 /* set FIFO threshold parameter to reduce overrun */
1035 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1040 /* OPD */
1041 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042 } else {
1043 rcntl &= ~FEC_ENET_FCE;
1045 #endif /* !defined(CONFIG_M5272) */
1047 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1049 /* Setup multicast filter. */
1050 set_multicast_list(ndev);
1051 #ifndef CONFIG_M5272
1052 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054 #endif
1056 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057 /* enable ENET endian swap */
1058 ecntl |= (1 << 8);
1059 /* enable ENET store and forward mode */
1060 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1063 if (fep->bufdesc_ex)
1064 ecntl |= (1 << 4);
1066 #ifndef CONFIG_M5272
1067 /* Enable the MIB statistic event counters */
1068 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069 #endif
1071 /* And last, enable the transmit and receive processing */
1072 writel(ecntl, fep->hwp + FEC_ECNTRL);
1073 fec_enet_active_rxring(ndev);
1075 if (fep->bufdesc_ex)
1076 fec_ptp_start_cyclecounter(ndev);
1078 /* Enable interrupts we wish to service */
1079 if (fep->link)
1080 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081 else
1082 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1084 /* Init the interrupt coalescing */
1085 fec_enet_itr_coal_init(ndev);
1089 static void
1090 fec_stop(struct net_device *ndev)
1092 struct fec_enet_private *fep = netdev_priv(ndev);
1093 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1094 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095 u32 val;
1097 /* We cannot expect a graceful transmit stop without link !!! */
1098 if (fep->link) {
1099 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100 udelay(10);
1101 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1105 /* Whack a reset. We should wait for this.
1106 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107 * instead of reset MAC itself.
1109 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111 writel(0, fep->hwp + FEC_ECNTRL);
1112 } else {
1113 writel(1, fep->hwp + FEC_ECNTRL);
1114 udelay(10);
1116 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117 } else {
1118 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119 val = readl(fep->hwp + FEC_ECNTRL);
1120 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121 writel(val, fep->hwp + FEC_ECNTRL);
1123 if (pdata && pdata->sleep_mode_enable)
1124 pdata->sleep_mode_enable(true);
1126 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1128 /* We have to keep ENET enabled to have MII interrupt stay working */
1129 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131 writel(2, fep->hwp + FEC_ECNTRL);
1132 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1137 static void
1138 fec_timeout(struct net_device *ndev)
1140 struct fec_enet_private *fep = netdev_priv(ndev);
1142 fec_dump(ndev);
1144 ndev->stats.tx_errors++;
1146 schedule_work(&fep->tx_timeout_work);
1149 static void fec_enet_timeout_work(struct work_struct *work)
1151 struct fec_enet_private *fep =
1152 container_of(work, struct fec_enet_private, tx_timeout_work);
1153 struct net_device *ndev = fep->netdev;
1155 rtnl_lock();
1156 if (netif_device_present(ndev) || netif_running(ndev)) {
1157 napi_disable(&fep->napi);
1158 netif_tx_lock_bh(ndev);
1159 fec_restart(ndev);
1160 netif_wake_queue(ndev);
1161 netif_tx_unlock_bh(ndev);
1162 napi_enable(&fep->napi);
1164 rtnl_unlock();
1167 static void
1168 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169 struct skb_shared_hwtstamps *hwtstamps)
1171 unsigned long flags;
1172 u64 ns;
1174 spin_lock_irqsave(&fep->tmreg_lock, flags);
1175 ns = timecounter_cyc2time(&fep->tc, ts);
1176 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1178 memset(hwtstamps, 0, sizeof(*hwtstamps));
1179 hwtstamps->hwtstamp = ns_to_ktime(ns);
1182 static void
1183 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1185 struct fec_enet_private *fep;
1186 struct bufdesc *bdp;
1187 unsigned short status;
1188 struct sk_buff *skb;
1189 struct fec_enet_priv_tx_q *txq;
1190 struct netdev_queue *nq;
1191 int index = 0;
1192 int entries_free;
1194 fep = netdev_priv(ndev);
1196 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1198 txq = fep->tx_queue[queue_id];
1199 /* get next bdp of dirty_tx */
1200 nq = netdev_get_tx_queue(ndev, queue_id);
1201 bdp = txq->dirty_tx;
1203 /* get next bdp of dirty_tx */
1204 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1206 while (bdp != READ_ONCE(txq->bd.cur)) {
1207 /* Order the load of bd.cur and cbd_sc */
1208 rmb();
1209 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210 if (status & BD_ENET_TX_READY)
1211 break;
1213 index = fec_enet_get_bd_index(bdp, &txq->bd);
1215 skb = txq->tx_skbuff[index];
1216 txq->tx_skbuff[index] = NULL;
1217 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218 dma_unmap_single(&fep->pdev->dev,
1219 fec32_to_cpu(bdp->cbd_bufaddr),
1220 fec16_to_cpu(bdp->cbd_datlen),
1221 DMA_TO_DEVICE);
1222 bdp->cbd_bufaddr = cpu_to_fec32(0);
1223 if (!skb)
1224 goto skb_done;
1226 /* Check for errors. */
1227 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228 BD_ENET_TX_RL | BD_ENET_TX_UN |
1229 BD_ENET_TX_CSL)) {
1230 ndev->stats.tx_errors++;
1231 if (status & BD_ENET_TX_HB) /* No heartbeat */
1232 ndev->stats.tx_heartbeat_errors++;
1233 if (status & BD_ENET_TX_LC) /* Late collision */
1234 ndev->stats.tx_window_errors++;
1235 if (status & BD_ENET_TX_RL) /* Retrans limit */
1236 ndev->stats.tx_aborted_errors++;
1237 if (status & BD_ENET_TX_UN) /* Underrun */
1238 ndev->stats.tx_fifo_errors++;
1239 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240 ndev->stats.tx_carrier_errors++;
1241 } else {
1242 ndev->stats.tx_packets++;
1243 ndev->stats.tx_bytes += skb->len;
1246 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247 fep->bufdesc_ex) {
1248 struct skb_shared_hwtstamps shhwtstamps;
1249 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1251 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1252 skb_tstamp_tx(skb, &shhwtstamps);
1255 /* Deferred means some collisions occurred during transmit,
1256 * but we eventually sent the packet OK.
1258 if (status & BD_ENET_TX_DEF)
1259 ndev->stats.collisions++;
1261 /* Free the sk buffer associated with this last transmit */
1262 dev_kfree_skb_any(skb);
1263 skb_done:
1264 /* Make sure the update to bdp and tx_skbuff are performed
1265 * before dirty_tx
1267 wmb();
1268 txq->dirty_tx = bdp;
1270 /* Update pointer to next buffer descriptor to be transmitted */
1271 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1273 /* Since we have freed up a buffer, the ring is no longer full
1275 if (netif_queue_stopped(ndev)) {
1276 entries_free = fec_enet_get_free_txdesc_num(txq);
1277 if (entries_free >= txq->tx_wake_threshold)
1278 netif_tx_wake_queue(nq);
1282 /* ERR006358: Keep the transmitter going */
1283 if (bdp != txq->bd.cur &&
1284 readl(txq->bd.reg_desc_active) == 0)
1285 writel(0, txq->bd.reg_desc_active);
1288 static void
1289 fec_enet_tx(struct net_device *ndev)
1291 struct fec_enet_private *fep = netdev_priv(ndev);
1292 u16 queue_id;
1293 /* First process class A queue, then Class B and Best Effort queue */
1294 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295 clear_bit(queue_id, &fep->work_tx);
1296 fec_enet_tx_queue(ndev, queue_id);
1298 return;
1301 static int
1302 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1304 struct fec_enet_private *fep = netdev_priv(ndev);
1305 int off;
1307 off = ((unsigned long)skb->data) & fep->rx_align;
1308 if (off)
1309 skb_reserve(skb, fep->rx_align + 1 - off);
1311 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313 if (net_ratelimit())
1314 netdev_err(ndev, "Rx DMA memory map failed\n");
1315 return -ENOMEM;
1318 return 0;
1321 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322 struct bufdesc *bdp, u32 length, bool swap)
1324 struct fec_enet_private *fep = netdev_priv(ndev);
1325 struct sk_buff *new_skb;
1327 if (length > fep->rx_copybreak)
1328 return false;
1330 new_skb = netdev_alloc_skb(ndev, length);
1331 if (!new_skb)
1332 return false;
1334 dma_sync_single_for_cpu(&fep->pdev->dev,
1335 fec32_to_cpu(bdp->cbd_bufaddr),
1336 FEC_ENET_RX_FRSIZE - fep->rx_align,
1337 DMA_FROM_DEVICE);
1338 if (!swap)
1339 memcpy(new_skb->data, (*skb)->data, length);
1340 else
1341 swap_buffer2(new_skb->data, (*skb)->data, length);
1342 *skb = new_skb;
1344 return true;
1347 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1348 * When we update through the ring, if the next incoming buffer has
1349 * not been given to the system, we just set the empty indicator,
1350 * effectively tossing the packet.
1352 static int
1353 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1355 struct fec_enet_private *fep = netdev_priv(ndev);
1356 struct fec_enet_priv_rx_q *rxq;
1357 struct bufdesc *bdp;
1358 unsigned short status;
1359 struct sk_buff *skb_new = NULL;
1360 struct sk_buff *skb;
1361 ushort pkt_len;
1362 __u8 *data;
1363 int pkt_received = 0;
1364 struct bufdesc_ex *ebdp = NULL;
1365 bool vlan_packet_rcvd = false;
1366 u16 vlan_tag;
1367 int index = 0;
1368 bool is_copybreak;
1369 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1371 #ifdef CONFIG_M532x
1372 flush_cache_all();
1373 #endif
1374 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375 rxq = fep->rx_queue[queue_id];
1377 /* First, grab all of the stats for the incoming packet.
1378 * These get messed up if we get called due to a busy condition.
1380 bdp = rxq->bd.cur;
1382 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1384 if (pkt_received >= budget)
1385 break;
1386 pkt_received++;
1388 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1390 /* Check for errors. */
1391 status ^= BD_ENET_RX_LAST;
1392 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394 BD_ENET_RX_CL)) {
1395 ndev->stats.rx_errors++;
1396 if (status & BD_ENET_RX_OV) {
1397 /* FIFO overrun */
1398 ndev->stats.rx_fifo_errors++;
1399 goto rx_processing_done;
1401 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402 | BD_ENET_RX_LAST)) {
1403 /* Frame too long or too short. */
1404 ndev->stats.rx_length_errors++;
1405 if (status & BD_ENET_RX_LAST)
1406 netdev_err(ndev, "rcv is not +last\n");
1408 if (status & BD_ENET_RX_CR) /* CRC Error */
1409 ndev->stats.rx_crc_errors++;
1410 /* Report late collisions as a frame error. */
1411 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412 ndev->stats.rx_frame_errors++;
1413 goto rx_processing_done;
1416 /* Process the incoming frame. */
1417 ndev->stats.rx_packets++;
1418 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419 ndev->stats.rx_bytes += pkt_len;
1421 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422 skb = rxq->rx_skbuff[index];
1424 /* The packet length includes FCS, but we don't want to
1425 * include that when passing upstream as it messes up
1426 * bridging applications.
1428 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429 need_swap);
1430 if (!is_copybreak) {
1431 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432 if (unlikely(!skb_new)) {
1433 ndev->stats.rx_dropped++;
1434 goto rx_processing_done;
1436 dma_unmap_single(&fep->pdev->dev,
1437 fec32_to_cpu(bdp->cbd_bufaddr),
1438 FEC_ENET_RX_FRSIZE - fep->rx_align,
1439 DMA_FROM_DEVICE);
1442 prefetch(skb->data - NET_IP_ALIGN);
1443 skb_put(skb, pkt_len - 4);
1444 data = skb->data;
1446 if (!is_copybreak && need_swap)
1447 swap_buffer(data, pkt_len);
1449 #if !defined(CONFIG_M5272)
1450 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451 data = skb_pull_inline(skb, 2);
1452 #endif
1454 /* Extract the enhanced buffer descriptor */
1455 ebdp = NULL;
1456 if (fep->bufdesc_ex)
1457 ebdp = (struct bufdesc_ex *)bdp;
1459 /* If this is a VLAN packet remove the VLAN Tag */
1460 vlan_packet_rcvd = false;
1461 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 fep->bufdesc_ex &&
1463 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464 /* Push and remove the vlan tag */
1465 struct vlan_hdr *vlan_header =
1466 (struct vlan_hdr *) (data + ETH_HLEN);
1467 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1469 vlan_packet_rcvd = true;
1471 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472 skb_pull(skb, VLAN_HLEN);
1475 skb->protocol = eth_type_trans(skb, ndev);
1477 /* Get receive timestamp from the skb */
1478 if (fep->hwts_rx_en && fep->bufdesc_ex)
1479 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480 skb_hwtstamps(skb));
1482 if (fep->bufdesc_ex &&
1483 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485 /* don't check it */
1486 skb->ip_summed = CHECKSUM_UNNECESSARY;
1487 } else {
1488 skb_checksum_none_assert(skb);
1492 /* Handle received VLAN packets */
1493 if (vlan_packet_rcvd)
1494 __vlan_hwaccel_put_tag(skb,
1495 htons(ETH_P_8021Q),
1496 vlan_tag);
1498 napi_gro_receive(&fep->napi, skb);
1500 if (is_copybreak) {
1501 dma_sync_single_for_device(&fep->pdev->dev,
1502 fec32_to_cpu(bdp->cbd_bufaddr),
1503 FEC_ENET_RX_FRSIZE - fep->rx_align,
1504 DMA_FROM_DEVICE);
1505 } else {
1506 rxq->rx_skbuff[index] = skb_new;
1507 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1510 rx_processing_done:
1511 /* Clear the status flags for this buffer */
1512 status &= ~BD_ENET_RX_STATS;
1514 /* Mark the buffer empty */
1515 status |= BD_ENET_RX_EMPTY;
1517 if (fep->bufdesc_ex) {
1518 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1520 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521 ebdp->cbd_prot = 0;
1522 ebdp->cbd_bdu = 0;
1524 /* Make sure the updates to rest of the descriptor are
1525 * performed before transferring ownership.
1527 wmb();
1528 bdp->cbd_sc = cpu_to_fec16(status);
1530 /* Update BD pointer to next entry */
1531 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1533 /* Doing this here will keep the FEC running while we process
1534 * incoming frames. On a heavily loaded network, we should be
1535 * able to keep up at the expense of system resources.
1537 writel(0, rxq->bd.reg_desc_active);
1539 rxq->bd.cur = bdp;
1540 return pkt_received;
1543 static int
1544 fec_enet_rx(struct net_device *ndev, int budget)
1546 int pkt_received = 0;
1547 u16 queue_id;
1548 struct fec_enet_private *fep = netdev_priv(ndev);
1550 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551 int ret;
1553 ret = fec_enet_rx_queue(ndev,
1554 budget - pkt_received, queue_id);
1556 if (ret < budget - pkt_received)
1557 clear_bit(queue_id, &fep->work_rx);
1559 pkt_received += ret;
1561 return pkt_received;
1564 static bool
1565 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1567 if (int_events == 0)
1568 return false;
1570 if (int_events & FEC_ENET_RXF_0)
1571 fep->work_rx |= (1 << 2);
1572 if (int_events & FEC_ENET_RXF_1)
1573 fep->work_rx |= (1 << 0);
1574 if (int_events & FEC_ENET_RXF_2)
1575 fep->work_rx |= (1 << 1);
1577 if (int_events & FEC_ENET_TXF_0)
1578 fep->work_tx |= (1 << 2);
1579 if (int_events & FEC_ENET_TXF_1)
1580 fep->work_tx |= (1 << 0);
1581 if (int_events & FEC_ENET_TXF_2)
1582 fep->work_tx |= (1 << 1);
1584 return true;
1587 static irqreturn_t
1588 fec_enet_interrupt(int irq, void *dev_id)
1590 struct net_device *ndev = dev_id;
1591 struct fec_enet_private *fep = netdev_priv(ndev);
1592 uint int_events;
1593 irqreturn_t ret = IRQ_NONE;
1595 int_events = readl(fep->hwp + FEC_IEVENT);
1596 writel(int_events, fep->hwp + FEC_IEVENT);
1597 fec_enet_collect_events(fep, int_events);
1599 if ((fep->work_tx || fep->work_rx) && fep->link) {
1600 ret = IRQ_HANDLED;
1602 if (napi_schedule_prep(&fep->napi)) {
1603 /* Disable the NAPI interrupts */
1604 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605 __napi_schedule(&fep->napi);
1609 if (int_events & FEC_ENET_MII) {
1610 ret = IRQ_HANDLED;
1611 complete(&fep->mdio_done);
1613 return ret;
1616 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1618 struct net_device *ndev = napi->dev;
1619 struct fec_enet_private *fep = netdev_priv(ndev);
1620 int pkts;
1622 pkts = fec_enet_rx(ndev, budget);
1624 fec_enet_tx(ndev);
1626 if (pkts < budget) {
1627 napi_complete_done(napi, pkts);
1628 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1630 return pkts;
1633 /* ------------------------------------------------------------------------- */
1634 static void fec_get_mac(struct net_device *ndev)
1636 struct fec_enet_private *fep = netdev_priv(ndev);
1637 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638 unsigned char *iap, tmpaddr[ETH_ALEN];
1641 * try to get mac address in following order:
1643 * 1) module parameter via kernel command line in form
1644 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1646 iap = macaddr;
1649 * 2) from device tree data
1651 if (!is_valid_ether_addr(iap)) {
1652 struct device_node *np = fep->pdev->dev.of_node;
1653 if (np) {
1654 const char *mac = of_get_mac_address(np);
1655 if (mac)
1656 iap = (unsigned char *) mac;
1661 * 3) from flash or fuse (via platform data)
1663 if (!is_valid_ether_addr(iap)) {
1664 #ifdef CONFIG_M5272
1665 if (FEC_FLASHMAC)
1666 iap = (unsigned char *)FEC_FLASHMAC;
1667 #else
1668 if (pdata)
1669 iap = (unsigned char *)&pdata->mac;
1670 #endif
1674 * 4) FEC mac registers set by bootloader
1676 if (!is_valid_ether_addr(iap)) {
1677 *((__be32 *) &tmpaddr[0]) =
1678 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1679 *((__be16 *) &tmpaddr[4]) =
1680 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1681 iap = &tmpaddr[0];
1685 * 5) random mac address
1687 if (!is_valid_ether_addr(iap)) {
1688 /* Report it and use a random ethernet address instead */
1689 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1690 eth_hw_addr_random(ndev);
1691 netdev_info(ndev, "Using random MAC address: %pM\n",
1692 ndev->dev_addr);
1693 return;
1696 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1698 /* Adjust MAC if using macaddr */
1699 if (iap == macaddr)
1700 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1703 /* ------------------------------------------------------------------------- */
1706 * Phy section
1708 static void fec_enet_adjust_link(struct net_device *ndev)
1710 struct fec_enet_private *fep = netdev_priv(ndev);
1711 struct phy_device *phy_dev = ndev->phydev;
1712 int status_change = 0;
1714 /* Prevent a state halted on mii error */
1715 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1716 phy_dev->state = PHY_RESUMING;
1717 return;
1721 * If the netdev is down, or is going down, we're not interested
1722 * in link state events, so just mark our idea of the link as down
1723 * and ignore the event.
1725 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726 fep->link = 0;
1727 } else if (phy_dev->link) {
1728 if (!fep->link) {
1729 fep->link = phy_dev->link;
1730 status_change = 1;
1733 if (fep->full_duplex != phy_dev->duplex) {
1734 fep->full_duplex = phy_dev->duplex;
1735 status_change = 1;
1738 if (phy_dev->speed != fep->speed) {
1739 fep->speed = phy_dev->speed;
1740 status_change = 1;
1743 /* if any of the above changed restart the FEC */
1744 if (status_change) {
1745 napi_disable(&fep->napi);
1746 netif_tx_lock_bh(ndev);
1747 fec_restart(ndev);
1748 netif_wake_queue(ndev);
1749 netif_tx_unlock_bh(ndev);
1750 napi_enable(&fep->napi);
1752 } else {
1753 if (fep->link) {
1754 napi_disable(&fep->napi);
1755 netif_tx_lock_bh(ndev);
1756 fec_stop(ndev);
1757 netif_tx_unlock_bh(ndev);
1758 napi_enable(&fep->napi);
1759 fep->link = phy_dev->link;
1760 status_change = 1;
1764 if (status_change)
1765 phy_print_status(phy_dev);
1768 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1770 struct fec_enet_private *fep = bus->priv;
1771 struct device *dev = &fep->pdev->dev;
1772 unsigned long time_left;
1773 int ret = 0;
1775 ret = pm_runtime_get_sync(dev);
1776 if (ret < 0)
1777 return ret;
1779 fep->mii_timeout = 0;
1780 reinit_completion(&fep->mdio_done);
1782 /* start a read op */
1783 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1784 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1787 /* wait for end of transfer */
1788 time_left = wait_for_completion_timeout(&fep->mdio_done,
1789 usecs_to_jiffies(FEC_MII_TIMEOUT));
1790 if (time_left == 0) {
1791 fep->mii_timeout = 1;
1792 netdev_err(fep->netdev, "MDIO read timeout\n");
1793 ret = -ETIMEDOUT;
1794 goto out;
1797 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1799 out:
1800 pm_runtime_mark_last_busy(dev);
1801 pm_runtime_put_autosuspend(dev);
1803 return ret;
1806 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1807 u16 value)
1809 struct fec_enet_private *fep = bus->priv;
1810 struct device *dev = &fep->pdev->dev;
1811 unsigned long time_left;
1812 int ret;
1814 ret = pm_runtime_get_sync(dev);
1815 if (ret < 0)
1816 return ret;
1817 else
1818 ret = 0;
1820 fep->mii_timeout = 0;
1821 reinit_completion(&fep->mdio_done);
1823 /* start a write op */
1824 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1825 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1826 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1827 fep->hwp + FEC_MII_DATA);
1829 /* wait for end of transfer */
1830 time_left = wait_for_completion_timeout(&fep->mdio_done,
1831 usecs_to_jiffies(FEC_MII_TIMEOUT));
1832 if (time_left == 0) {
1833 fep->mii_timeout = 1;
1834 netdev_err(fep->netdev, "MDIO write timeout\n");
1835 ret = -ETIMEDOUT;
1838 pm_runtime_mark_last_busy(dev);
1839 pm_runtime_put_autosuspend(dev);
1841 return ret;
1844 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1846 struct fec_enet_private *fep = netdev_priv(ndev);
1847 int ret;
1849 if (enable) {
1850 ret = clk_prepare_enable(fep->clk_ahb);
1851 if (ret)
1852 return ret;
1854 ret = clk_prepare_enable(fep->clk_enet_out);
1855 if (ret)
1856 goto failed_clk_enet_out;
1858 if (fep->clk_ptp) {
1859 mutex_lock(&fep->ptp_clk_mutex);
1860 ret = clk_prepare_enable(fep->clk_ptp);
1861 if (ret) {
1862 mutex_unlock(&fep->ptp_clk_mutex);
1863 goto failed_clk_ptp;
1864 } else {
1865 fep->ptp_clk_on = true;
1867 mutex_unlock(&fep->ptp_clk_mutex);
1870 ret = clk_prepare_enable(fep->clk_ref);
1871 if (ret)
1872 goto failed_clk_ref;
1874 phy_reset_after_clk_enable(ndev->phydev);
1875 } else {
1876 clk_disable_unprepare(fep->clk_ahb);
1877 clk_disable_unprepare(fep->clk_enet_out);
1878 if (fep->clk_ptp) {
1879 mutex_lock(&fep->ptp_clk_mutex);
1880 clk_disable_unprepare(fep->clk_ptp);
1881 fep->ptp_clk_on = false;
1882 mutex_unlock(&fep->ptp_clk_mutex);
1884 clk_disable_unprepare(fep->clk_ref);
1887 return 0;
1889 failed_clk_ref:
1890 if (fep->clk_ref)
1891 clk_disable_unprepare(fep->clk_ref);
1892 failed_clk_ptp:
1893 if (fep->clk_enet_out)
1894 clk_disable_unprepare(fep->clk_enet_out);
1895 failed_clk_enet_out:
1896 clk_disable_unprepare(fep->clk_ahb);
1898 return ret;
1901 static int fec_enet_mii_probe(struct net_device *ndev)
1903 struct fec_enet_private *fep = netdev_priv(ndev);
1904 struct phy_device *phy_dev = NULL;
1905 char mdio_bus_id[MII_BUS_ID_SIZE];
1906 char phy_name[MII_BUS_ID_SIZE + 3];
1907 int phy_id;
1908 int dev_id = fep->dev_id;
1910 if (fep->phy_node) {
1911 phy_dev = of_phy_connect(ndev, fep->phy_node,
1912 &fec_enet_adjust_link, 0,
1913 fep->phy_interface);
1914 if (!phy_dev) {
1915 netdev_err(ndev, "Unable to connect to phy\n");
1916 return -ENODEV;
1918 } else {
1919 /* check for attached phy */
1920 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1922 continue;
1923 if (dev_id--)
1924 continue;
1925 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1926 break;
1929 if (phy_id >= PHY_MAX_ADDR) {
1930 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1931 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1932 phy_id = 0;
1935 snprintf(phy_name, sizeof(phy_name),
1936 PHY_ID_FMT, mdio_bus_id, phy_id);
1937 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1938 fep->phy_interface);
1941 if (IS_ERR(phy_dev)) {
1942 netdev_err(ndev, "could not attach to PHY\n");
1943 return PTR_ERR(phy_dev);
1946 /* mask with MAC supported features */
1947 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1948 phy_dev->supported &= PHY_GBIT_FEATURES;
1949 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1950 #if !defined(CONFIG_M5272)
1951 phy_dev->supported |= SUPPORTED_Pause;
1952 #endif
1954 else
1955 phy_dev->supported &= PHY_BASIC_FEATURES;
1957 phy_dev->advertising = phy_dev->supported;
1959 fep->link = 0;
1960 fep->full_duplex = 0;
1962 phy_attached_info(phy_dev);
1964 return 0;
1967 static int fec_enet_mii_init(struct platform_device *pdev)
1969 static struct mii_bus *fec0_mii_bus;
1970 struct net_device *ndev = platform_get_drvdata(pdev);
1971 struct fec_enet_private *fep = netdev_priv(ndev);
1972 struct device_node *node;
1973 int err = -ENXIO;
1974 u32 mii_speed, holdtime;
1977 * The i.MX28 dual fec interfaces are not equal.
1978 * Here are the differences:
1980 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1981 * - fec0 acts as the 1588 time master while fec1 is slave
1982 * - external phys can only be configured by fec0
1984 * That is to say fec1 can not work independently. It only works
1985 * when fec0 is working. The reason behind this design is that the
1986 * second interface is added primarily for Switch mode.
1988 * Because of the last point above, both phys are attached on fec0
1989 * mdio interface in board design, and need to be configured by
1990 * fec0 mii_bus.
1992 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993 /* fec1 uses fec0 mii_bus */
1994 if (mii_cnt && fec0_mii_bus) {
1995 fep->mii_bus = fec0_mii_bus;
1996 mii_cnt++;
1997 return 0;
1999 return -ENOENT;
2002 fep->mii_timeout = 0;
2005 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2007 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2009 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010 * document.
2012 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014 mii_speed--;
2015 if (mii_speed > 63) {
2016 dev_err(&pdev->dev,
2017 "fec clock (%lu) too fast to get right mii speed\n",
2018 clk_get_rate(fep->clk_ipg));
2019 err = -EINVAL;
2020 goto err_out;
2024 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026 * versions are RAZ there, so just ignore the difference and write the
2027 * register always.
2028 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030 * output.
2031 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033 * holdtime cannot result in a value greater than 3.
2035 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2037 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2039 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2041 fep->mii_bus = mdiobus_alloc();
2042 if (fep->mii_bus == NULL) {
2043 err = -ENOMEM;
2044 goto err_out;
2047 fep->mii_bus->name = "fec_enet_mii_bus";
2048 fep->mii_bus->read = fec_enet_mdio_read;
2049 fep->mii_bus->write = fec_enet_mdio_write;
2050 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051 pdev->name, fep->dev_id + 1);
2052 fep->mii_bus->priv = fep;
2053 fep->mii_bus->parent = &pdev->dev;
2055 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056 err = of_mdiobus_register(fep->mii_bus, node);
2057 if (node)
2058 of_node_put(node);
2059 if (err)
2060 goto err_out_free_mdiobus;
2062 mii_cnt++;
2064 /* save fec0 mii_bus */
2065 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2066 fec0_mii_bus = fep->mii_bus;
2068 return 0;
2070 err_out_free_mdiobus:
2071 mdiobus_free(fep->mii_bus);
2072 err_out:
2073 return err;
2076 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2078 if (--mii_cnt == 0) {
2079 mdiobus_unregister(fep->mii_bus);
2080 mdiobus_free(fep->mii_bus);
2084 static void fec_enet_get_drvinfo(struct net_device *ndev,
2085 struct ethtool_drvinfo *info)
2087 struct fec_enet_private *fep = netdev_priv(ndev);
2089 strlcpy(info->driver, fep->pdev->dev.driver->name,
2090 sizeof(info->driver));
2091 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2092 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2095 static int fec_enet_get_regs_len(struct net_device *ndev)
2097 struct fec_enet_private *fep = netdev_priv(ndev);
2098 struct resource *r;
2099 int s = 0;
2101 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2102 if (r)
2103 s = resource_size(r);
2105 return s;
2108 /* List of registers that can be safety be read to dump them with ethtool */
2109 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2110 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2111 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2112 static u32 fec_enet_register_offset[] = {
2113 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2114 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2115 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2116 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2117 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2118 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2119 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2120 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2121 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2122 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2123 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2124 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2125 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2126 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2127 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2128 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2129 RMON_T_P_GTE2048, RMON_T_OCTETS,
2130 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2131 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2132 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2133 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2134 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2135 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2136 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2137 RMON_R_P_GTE2048, RMON_R_OCTETS,
2138 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2139 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2141 #else
2142 static u32 fec_enet_register_offset[] = {
2143 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2144 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2145 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2146 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2147 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2148 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2149 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2150 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2151 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2153 #endif
2155 static void fec_enet_get_regs(struct net_device *ndev,
2156 struct ethtool_regs *regs, void *regbuf)
2158 struct fec_enet_private *fep = netdev_priv(ndev);
2159 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2160 u32 *buf = (u32 *)regbuf;
2161 u32 i, off;
2163 memset(buf, 0, regs->len);
2165 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2166 off = fec_enet_register_offset[i] / 4;
2167 buf[off] = readl(&theregs[off]);
2171 static int fec_enet_get_ts_info(struct net_device *ndev,
2172 struct ethtool_ts_info *info)
2174 struct fec_enet_private *fep = netdev_priv(ndev);
2176 if (fep->bufdesc_ex) {
2178 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2179 SOF_TIMESTAMPING_RX_SOFTWARE |
2180 SOF_TIMESTAMPING_SOFTWARE |
2181 SOF_TIMESTAMPING_TX_HARDWARE |
2182 SOF_TIMESTAMPING_RX_HARDWARE |
2183 SOF_TIMESTAMPING_RAW_HARDWARE;
2184 if (fep->ptp_clock)
2185 info->phc_index = ptp_clock_index(fep->ptp_clock);
2186 else
2187 info->phc_index = -1;
2189 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2190 (1 << HWTSTAMP_TX_ON);
2192 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2193 (1 << HWTSTAMP_FILTER_ALL);
2194 return 0;
2195 } else {
2196 return ethtool_op_get_ts_info(ndev, info);
2200 #if !defined(CONFIG_M5272)
2202 static void fec_enet_get_pauseparam(struct net_device *ndev,
2203 struct ethtool_pauseparam *pause)
2205 struct fec_enet_private *fep = netdev_priv(ndev);
2207 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2208 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2209 pause->rx_pause = pause->tx_pause;
2212 static int fec_enet_set_pauseparam(struct net_device *ndev,
2213 struct ethtool_pauseparam *pause)
2215 struct fec_enet_private *fep = netdev_priv(ndev);
2217 if (!ndev->phydev)
2218 return -ENODEV;
2220 if (pause->tx_pause != pause->rx_pause) {
2221 netdev_info(ndev,
2222 "hardware only support enable/disable both tx and rx");
2223 return -EINVAL;
2226 fep->pause_flag = 0;
2228 /* tx pause must be same as rx pause */
2229 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2230 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2232 if (pause->rx_pause || pause->autoneg) {
2233 ndev->phydev->supported |= ADVERTISED_Pause;
2234 ndev->phydev->advertising |= ADVERTISED_Pause;
2235 } else {
2236 ndev->phydev->supported &= ~ADVERTISED_Pause;
2237 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2240 if (pause->autoneg) {
2241 if (netif_running(ndev))
2242 fec_stop(ndev);
2243 phy_start_aneg(ndev->phydev);
2245 if (netif_running(ndev)) {
2246 napi_disable(&fep->napi);
2247 netif_tx_lock_bh(ndev);
2248 fec_restart(ndev);
2249 netif_wake_queue(ndev);
2250 netif_tx_unlock_bh(ndev);
2251 napi_enable(&fep->napi);
2254 return 0;
2257 static const struct fec_stat {
2258 char name[ETH_GSTRING_LEN];
2259 u16 offset;
2260 } fec_stats[] = {
2261 /* RMON TX */
2262 { "tx_dropped", RMON_T_DROP },
2263 { "tx_packets", RMON_T_PACKETS },
2264 { "tx_broadcast", RMON_T_BC_PKT },
2265 { "tx_multicast", RMON_T_MC_PKT },
2266 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2267 { "tx_undersize", RMON_T_UNDERSIZE },
2268 { "tx_oversize", RMON_T_OVERSIZE },
2269 { "tx_fragment", RMON_T_FRAG },
2270 { "tx_jabber", RMON_T_JAB },
2271 { "tx_collision", RMON_T_COL },
2272 { "tx_64byte", RMON_T_P64 },
2273 { "tx_65to127byte", RMON_T_P65TO127 },
2274 { "tx_128to255byte", RMON_T_P128TO255 },
2275 { "tx_256to511byte", RMON_T_P256TO511 },
2276 { "tx_512to1023byte", RMON_T_P512TO1023 },
2277 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2278 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2279 { "tx_octets", RMON_T_OCTETS },
2281 /* IEEE TX */
2282 { "IEEE_tx_drop", IEEE_T_DROP },
2283 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2284 { "IEEE_tx_1col", IEEE_T_1COL },
2285 { "IEEE_tx_mcol", IEEE_T_MCOL },
2286 { "IEEE_tx_def", IEEE_T_DEF },
2287 { "IEEE_tx_lcol", IEEE_T_LCOL },
2288 { "IEEE_tx_excol", IEEE_T_EXCOL },
2289 { "IEEE_tx_macerr", IEEE_T_MACERR },
2290 { "IEEE_tx_cserr", IEEE_T_CSERR },
2291 { "IEEE_tx_sqe", IEEE_T_SQE },
2292 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2293 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2295 /* RMON RX */
2296 { "rx_packets", RMON_R_PACKETS },
2297 { "rx_broadcast", RMON_R_BC_PKT },
2298 { "rx_multicast", RMON_R_MC_PKT },
2299 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2300 { "rx_undersize", RMON_R_UNDERSIZE },
2301 { "rx_oversize", RMON_R_OVERSIZE },
2302 { "rx_fragment", RMON_R_FRAG },
2303 { "rx_jabber", RMON_R_JAB },
2304 { "rx_64byte", RMON_R_P64 },
2305 { "rx_65to127byte", RMON_R_P65TO127 },
2306 { "rx_128to255byte", RMON_R_P128TO255 },
2307 { "rx_256to511byte", RMON_R_P256TO511 },
2308 { "rx_512to1023byte", RMON_R_P512TO1023 },
2309 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2310 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2311 { "rx_octets", RMON_R_OCTETS },
2313 /* IEEE RX */
2314 { "IEEE_rx_drop", IEEE_R_DROP },
2315 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2316 { "IEEE_rx_crc", IEEE_R_CRC },
2317 { "IEEE_rx_align", IEEE_R_ALIGN },
2318 { "IEEE_rx_macerr", IEEE_R_MACERR },
2319 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2320 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2323 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2325 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2327 struct fec_enet_private *fep = netdev_priv(dev);
2328 int i;
2330 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2331 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2334 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2335 struct ethtool_stats *stats, u64 *data)
2337 struct fec_enet_private *fep = netdev_priv(dev);
2339 if (netif_running(dev))
2340 fec_enet_update_ethtool_stats(dev);
2342 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2345 static void fec_enet_get_strings(struct net_device *netdev,
2346 u32 stringset, u8 *data)
2348 int i;
2349 switch (stringset) {
2350 case ETH_SS_STATS:
2351 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2352 memcpy(data + i * ETH_GSTRING_LEN,
2353 fec_stats[i].name, ETH_GSTRING_LEN);
2354 break;
2358 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2360 switch (sset) {
2361 case ETH_SS_STATS:
2362 return ARRAY_SIZE(fec_stats);
2363 default:
2364 return -EOPNOTSUPP;
2368 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2370 struct fec_enet_private *fep = netdev_priv(dev);
2371 int i;
2373 /* Disable MIB statistics counters */
2374 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2376 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2377 writel(0, fep->hwp + fec_stats[i].offset);
2379 /* Don't disable MIB statistics counters */
2380 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2383 #else /* !defined(CONFIG_M5272) */
2384 #define FEC_STATS_SIZE 0
2385 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2389 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2392 #endif /* !defined(CONFIG_M5272) */
2394 /* ITR clock source is enet system clock (clk_ahb).
2395 * TCTT unit is cycle_ns * 64 cycle
2396 * So, the ICTT value = X us / (cycle_ns * 64)
2398 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2400 struct fec_enet_private *fep = netdev_priv(ndev);
2402 return us * (fep->itr_clk_rate / 64000) / 1000;
2405 /* Set threshold for interrupt coalescing */
2406 static void fec_enet_itr_coal_set(struct net_device *ndev)
2408 struct fec_enet_private *fep = netdev_priv(ndev);
2409 int rx_itr, tx_itr;
2411 /* Must be greater than zero to avoid unpredictable behavior */
2412 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2413 !fep->tx_time_itr || !fep->tx_pkts_itr)
2414 return;
2416 /* Select enet system clock as Interrupt Coalescing
2417 * timer Clock Source
2419 rx_itr = FEC_ITR_CLK_SEL;
2420 tx_itr = FEC_ITR_CLK_SEL;
2422 /* set ICFT and ICTT */
2423 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2424 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2425 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2426 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2428 rx_itr |= FEC_ITR_EN;
2429 tx_itr |= FEC_ITR_EN;
2431 writel(tx_itr, fep->hwp + FEC_TXIC0);
2432 writel(rx_itr, fep->hwp + FEC_RXIC0);
2433 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2434 writel(tx_itr, fep->hwp + FEC_TXIC1);
2435 writel(rx_itr, fep->hwp + FEC_RXIC1);
2436 writel(tx_itr, fep->hwp + FEC_TXIC2);
2437 writel(rx_itr, fep->hwp + FEC_RXIC2);
2441 static int
2442 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2444 struct fec_enet_private *fep = netdev_priv(ndev);
2446 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2447 return -EOPNOTSUPP;
2449 ec->rx_coalesce_usecs = fep->rx_time_itr;
2450 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2452 ec->tx_coalesce_usecs = fep->tx_time_itr;
2453 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2455 return 0;
2458 static int
2459 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2461 struct fec_enet_private *fep = netdev_priv(ndev);
2462 unsigned int cycle;
2464 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2465 return -EOPNOTSUPP;
2467 if (ec->rx_max_coalesced_frames > 255) {
2468 pr_err("Rx coalesced frames exceed hardware limitation\n");
2469 return -EINVAL;
2472 if (ec->tx_max_coalesced_frames > 255) {
2473 pr_err("Tx coalesced frame exceed hardware limitation\n");
2474 return -EINVAL;
2477 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2478 if (cycle > 0xFFFF) {
2479 pr_err("Rx coalesced usec exceed hardware limitation\n");
2480 return -EINVAL;
2483 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2484 if (cycle > 0xFFFF) {
2485 pr_err("Rx coalesced usec exceed hardware limitation\n");
2486 return -EINVAL;
2489 fep->rx_time_itr = ec->rx_coalesce_usecs;
2490 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2492 fep->tx_time_itr = ec->tx_coalesce_usecs;
2493 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2495 fec_enet_itr_coal_set(ndev);
2497 return 0;
2500 static void fec_enet_itr_coal_init(struct net_device *ndev)
2502 struct ethtool_coalesce ec;
2504 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2505 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2507 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2508 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510 fec_enet_set_coalesce(ndev, &ec);
2513 static int fec_enet_get_tunable(struct net_device *netdev,
2514 const struct ethtool_tunable *tuna,
2515 void *data)
2517 struct fec_enet_private *fep = netdev_priv(netdev);
2518 int ret = 0;
2520 switch (tuna->id) {
2521 case ETHTOOL_RX_COPYBREAK:
2522 *(u32 *)data = fep->rx_copybreak;
2523 break;
2524 default:
2525 ret = -EINVAL;
2526 break;
2529 return ret;
2532 static int fec_enet_set_tunable(struct net_device *netdev,
2533 const struct ethtool_tunable *tuna,
2534 const void *data)
2536 struct fec_enet_private *fep = netdev_priv(netdev);
2537 int ret = 0;
2539 switch (tuna->id) {
2540 case ETHTOOL_RX_COPYBREAK:
2541 fep->rx_copybreak = *(u32 *)data;
2542 break;
2543 default:
2544 ret = -EINVAL;
2545 break;
2548 return ret;
2551 static void
2552 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2554 struct fec_enet_private *fep = netdev_priv(ndev);
2556 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2557 wol->supported = WAKE_MAGIC;
2558 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2559 } else {
2560 wol->supported = wol->wolopts = 0;
2564 static int
2565 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2567 struct fec_enet_private *fep = netdev_priv(ndev);
2569 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2570 return -EINVAL;
2572 if (wol->wolopts & ~WAKE_MAGIC)
2573 return -EINVAL;
2575 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2576 if (device_may_wakeup(&ndev->dev)) {
2577 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2578 if (fep->irq[0] > 0)
2579 enable_irq_wake(fep->irq[0]);
2580 } else {
2581 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2582 if (fep->irq[0] > 0)
2583 disable_irq_wake(fep->irq[0]);
2586 return 0;
2589 static const struct ethtool_ops fec_enet_ethtool_ops = {
2590 .get_drvinfo = fec_enet_get_drvinfo,
2591 .get_regs_len = fec_enet_get_regs_len,
2592 .get_regs = fec_enet_get_regs,
2593 .nway_reset = phy_ethtool_nway_reset,
2594 .get_link = ethtool_op_get_link,
2595 .get_coalesce = fec_enet_get_coalesce,
2596 .set_coalesce = fec_enet_set_coalesce,
2597 #ifndef CONFIG_M5272
2598 .get_pauseparam = fec_enet_get_pauseparam,
2599 .set_pauseparam = fec_enet_set_pauseparam,
2600 .get_strings = fec_enet_get_strings,
2601 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2602 .get_sset_count = fec_enet_get_sset_count,
2603 #endif
2604 .get_ts_info = fec_enet_get_ts_info,
2605 .get_tunable = fec_enet_get_tunable,
2606 .set_tunable = fec_enet_set_tunable,
2607 .get_wol = fec_enet_get_wol,
2608 .set_wol = fec_enet_set_wol,
2609 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2610 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2613 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2615 struct fec_enet_private *fep = netdev_priv(ndev);
2616 struct phy_device *phydev = ndev->phydev;
2618 if (!netif_running(ndev))
2619 return -EINVAL;
2621 if (!phydev)
2622 return -ENODEV;
2624 if (fep->bufdesc_ex) {
2625 if (cmd == SIOCSHWTSTAMP)
2626 return fec_ptp_set(ndev, rq);
2627 if (cmd == SIOCGHWTSTAMP)
2628 return fec_ptp_get(ndev, rq);
2631 return phy_mii_ioctl(phydev, rq, cmd);
2634 static void fec_enet_free_buffers(struct net_device *ndev)
2636 struct fec_enet_private *fep = netdev_priv(ndev);
2637 unsigned int i;
2638 struct sk_buff *skb;
2639 struct bufdesc *bdp;
2640 struct fec_enet_priv_tx_q *txq;
2641 struct fec_enet_priv_rx_q *rxq;
2642 unsigned int q;
2644 for (q = 0; q < fep->num_rx_queues; q++) {
2645 rxq = fep->rx_queue[q];
2646 bdp = rxq->bd.base;
2647 for (i = 0; i < rxq->bd.ring_size; i++) {
2648 skb = rxq->rx_skbuff[i];
2649 rxq->rx_skbuff[i] = NULL;
2650 if (skb) {
2651 dma_unmap_single(&fep->pdev->dev,
2652 fec32_to_cpu(bdp->cbd_bufaddr),
2653 FEC_ENET_RX_FRSIZE - fep->rx_align,
2654 DMA_FROM_DEVICE);
2655 dev_kfree_skb(skb);
2657 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2661 for (q = 0; q < fep->num_tx_queues; q++) {
2662 txq = fep->tx_queue[q];
2663 bdp = txq->bd.base;
2664 for (i = 0; i < txq->bd.ring_size; i++) {
2665 kfree(txq->tx_bounce[i]);
2666 txq->tx_bounce[i] = NULL;
2667 skb = txq->tx_skbuff[i];
2668 txq->tx_skbuff[i] = NULL;
2669 dev_kfree_skb(skb);
2674 static void fec_enet_free_queue(struct net_device *ndev)
2676 struct fec_enet_private *fep = netdev_priv(ndev);
2677 int i;
2678 struct fec_enet_priv_tx_q *txq;
2680 for (i = 0; i < fep->num_tx_queues; i++)
2681 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2682 txq = fep->tx_queue[i];
2683 dma_free_coherent(&fep->pdev->dev,
2684 txq->bd.ring_size * TSO_HEADER_SIZE,
2685 txq->tso_hdrs,
2686 txq->tso_hdrs_dma);
2689 for (i = 0; i < fep->num_rx_queues; i++)
2690 kfree(fep->rx_queue[i]);
2691 for (i = 0; i < fep->num_tx_queues; i++)
2692 kfree(fep->tx_queue[i]);
2695 static int fec_enet_alloc_queue(struct net_device *ndev)
2697 struct fec_enet_private *fep = netdev_priv(ndev);
2698 int i;
2699 int ret = 0;
2700 struct fec_enet_priv_tx_q *txq;
2702 for (i = 0; i < fep->num_tx_queues; i++) {
2703 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2704 if (!txq) {
2705 ret = -ENOMEM;
2706 goto alloc_failed;
2709 fep->tx_queue[i] = txq;
2710 txq->bd.ring_size = TX_RING_SIZE;
2711 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2713 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2714 txq->tx_wake_threshold =
2715 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2717 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2718 txq->bd.ring_size * TSO_HEADER_SIZE,
2719 &txq->tso_hdrs_dma,
2720 GFP_KERNEL);
2721 if (!txq->tso_hdrs) {
2722 ret = -ENOMEM;
2723 goto alloc_failed;
2727 for (i = 0; i < fep->num_rx_queues; i++) {
2728 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2729 GFP_KERNEL);
2730 if (!fep->rx_queue[i]) {
2731 ret = -ENOMEM;
2732 goto alloc_failed;
2735 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2736 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2738 return ret;
2740 alloc_failed:
2741 fec_enet_free_queue(ndev);
2742 return ret;
2745 static int
2746 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2748 struct fec_enet_private *fep = netdev_priv(ndev);
2749 unsigned int i;
2750 struct sk_buff *skb;
2751 struct bufdesc *bdp;
2752 struct fec_enet_priv_rx_q *rxq;
2754 rxq = fep->rx_queue[queue];
2755 bdp = rxq->bd.base;
2756 for (i = 0; i < rxq->bd.ring_size; i++) {
2757 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2758 if (!skb)
2759 goto err_alloc;
2761 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2762 dev_kfree_skb(skb);
2763 goto err_alloc;
2766 rxq->rx_skbuff[i] = skb;
2767 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2769 if (fep->bufdesc_ex) {
2770 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2771 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2774 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2777 /* Set the last buffer to wrap. */
2778 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2779 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2780 return 0;
2782 err_alloc:
2783 fec_enet_free_buffers(ndev);
2784 return -ENOMEM;
2787 static int
2788 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2790 struct fec_enet_private *fep = netdev_priv(ndev);
2791 unsigned int i;
2792 struct bufdesc *bdp;
2793 struct fec_enet_priv_tx_q *txq;
2795 txq = fep->tx_queue[queue];
2796 bdp = txq->bd.base;
2797 for (i = 0; i < txq->bd.ring_size; i++) {
2798 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2799 if (!txq->tx_bounce[i])
2800 goto err_alloc;
2802 bdp->cbd_sc = cpu_to_fec16(0);
2803 bdp->cbd_bufaddr = cpu_to_fec32(0);
2805 if (fep->bufdesc_ex) {
2806 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2807 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2810 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2813 /* Set the last buffer to wrap. */
2814 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2815 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2817 return 0;
2819 err_alloc:
2820 fec_enet_free_buffers(ndev);
2821 return -ENOMEM;
2824 static int fec_enet_alloc_buffers(struct net_device *ndev)
2826 struct fec_enet_private *fep = netdev_priv(ndev);
2827 unsigned int i;
2829 for (i = 0; i < fep->num_rx_queues; i++)
2830 if (fec_enet_alloc_rxq_buffers(ndev, i))
2831 return -ENOMEM;
2833 for (i = 0; i < fep->num_tx_queues; i++)
2834 if (fec_enet_alloc_txq_buffers(ndev, i))
2835 return -ENOMEM;
2836 return 0;
2839 static int
2840 fec_enet_open(struct net_device *ndev)
2842 struct fec_enet_private *fep = netdev_priv(ndev);
2843 int ret;
2844 bool reset_again;
2846 ret = pm_runtime_get_sync(&fep->pdev->dev);
2847 if (ret < 0)
2848 return ret;
2850 pinctrl_pm_select_default_state(&fep->pdev->dev);
2851 ret = fec_enet_clk_enable(ndev, true);
2852 if (ret)
2853 goto clk_enable;
2855 /* During the first fec_enet_open call the PHY isn't probed at this
2856 * point. Therefore the phy_reset_after_clk_enable() call within
2857 * fec_enet_clk_enable() fails. As we need this reset in order to be
2858 * sure the PHY is working correctly we check if we need to reset again
2859 * later when the PHY is probed
2861 if (ndev->phydev && ndev->phydev->drv)
2862 reset_again = false;
2863 else
2864 reset_again = true;
2866 /* I should reset the ring buffers here, but I don't yet know
2867 * a simple way to do that.
2870 ret = fec_enet_alloc_buffers(ndev);
2871 if (ret)
2872 goto err_enet_alloc;
2874 /* Init MAC prior to mii bus probe */
2875 fec_restart(ndev);
2877 /* Probe and connect to PHY when open the interface */
2878 ret = fec_enet_mii_probe(ndev);
2879 if (ret)
2880 goto err_enet_mii_probe;
2882 /* Call phy_reset_after_clk_enable() again if it failed during
2883 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2885 if (reset_again)
2886 phy_reset_after_clk_enable(ndev->phydev);
2888 if (fep->quirks & FEC_QUIRK_ERR006687)
2889 imx6q_cpuidle_fec_irqs_used();
2891 napi_enable(&fep->napi);
2892 phy_start(ndev->phydev);
2893 netif_tx_start_all_queues(ndev);
2895 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2896 FEC_WOL_FLAG_ENABLE);
2898 return 0;
2900 err_enet_mii_probe:
2901 fec_enet_free_buffers(ndev);
2902 err_enet_alloc:
2903 fec_enet_clk_enable(ndev, false);
2904 clk_enable:
2905 pm_runtime_mark_last_busy(&fep->pdev->dev);
2906 pm_runtime_put_autosuspend(&fep->pdev->dev);
2907 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2908 return ret;
2911 static int
2912 fec_enet_close(struct net_device *ndev)
2914 struct fec_enet_private *fep = netdev_priv(ndev);
2916 phy_stop(ndev->phydev);
2918 if (netif_device_present(ndev)) {
2919 napi_disable(&fep->napi);
2920 netif_tx_disable(ndev);
2921 fec_stop(ndev);
2924 phy_disconnect(ndev->phydev);
2926 if (fep->quirks & FEC_QUIRK_ERR006687)
2927 imx6q_cpuidle_fec_irqs_unused();
2929 fec_enet_update_ethtool_stats(ndev);
2931 fec_enet_clk_enable(ndev, false);
2932 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2933 pm_runtime_mark_last_busy(&fep->pdev->dev);
2934 pm_runtime_put_autosuspend(&fep->pdev->dev);
2936 fec_enet_free_buffers(ndev);
2938 return 0;
2941 /* Set or clear the multicast filter for this adaptor.
2942 * Skeleton taken from sunlance driver.
2943 * The CPM Ethernet implementation allows Multicast as well as individual
2944 * MAC address filtering. Some of the drivers check to make sure it is
2945 * a group multicast address, and discard those that are not. I guess I
2946 * will do the same for now, but just remove the test if you want
2947 * individual filtering as well (do the upper net layers want or support
2948 * this kind of feature?).
2951 #define FEC_HASH_BITS 6 /* #bits in hash */
2952 #define CRC32_POLY 0xEDB88320
2954 static void set_multicast_list(struct net_device *ndev)
2956 struct fec_enet_private *fep = netdev_priv(ndev);
2957 struct netdev_hw_addr *ha;
2958 unsigned int i, bit, data, crc, tmp;
2959 unsigned char hash;
2960 unsigned int hash_high = 0, hash_low = 0;
2962 if (ndev->flags & IFF_PROMISC) {
2963 tmp = readl(fep->hwp + FEC_R_CNTRL);
2964 tmp |= 0x8;
2965 writel(tmp, fep->hwp + FEC_R_CNTRL);
2966 return;
2969 tmp = readl(fep->hwp + FEC_R_CNTRL);
2970 tmp &= ~0x8;
2971 writel(tmp, fep->hwp + FEC_R_CNTRL);
2973 if (ndev->flags & IFF_ALLMULTI) {
2974 /* Catch all multicast addresses, so set the
2975 * filter to all 1's
2977 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2978 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2980 return;
2983 /* Add the addresses in hash register */
2984 netdev_for_each_mc_addr(ha, ndev) {
2985 /* calculate crc32 value of mac address */
2986 crc = 0xffffffff;
2988 for (i = 0; i < ndev->addr_len; i++) {
2989 data = ha->addr[i];
2990 for (bit = 0; bit < 8; bit++, data >>= 1) {
2991 crc = (crc >> 1) ^
2992 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2996 /* only upper 6 bits (FEC_HASH_BITS) are used
2997 * which point to specific bit in the hash registers
2999 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3001 if (hash > 31)
3002 hash_high |= 1 << (hash - 32);
3003 else
3004 hash_low |= 1 << hash;
3007 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3008 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3011 /* Set a MAC change in hardware. */
3012 static int
3013 fec_set_mac_address(struct net_device *ndev, void *p)
3015 struct fec_enet_private *fep = netdev_priv(ndev);
3016 struct sockaddr *addr = p;
3018 if (addr) {
3019 if (!is_valid_ether_addr(addr->sa_data))
3020 return -EADDRNOTAVAIL;
3021 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3024 /* Add netif status check here to avoid system hang in below case:
3025 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3026 * After ethx down, fec all clocks are gated off and then register
3027 * access causes system hang.
3029 if (!netif_running(ndev))
3030 return 0;
3032 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3033 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3034 fep->hwp + FEC_ADDR_LOW);
3035 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3036 fep->hwp + FEC_ADDR_HIGH);
3037 return 0;
3040 #ifdef CONFIG_NET_POLL_CONTROLLER
3042 * fec_poll_controller - FEC Poll controller function
3043 * @dev: The FEC network adapter
3045 * Polled functionality used by netconsole and others in non interrupt mode
3048 static void fec_poll_controller(struct net_device *dev)
3050 int i;
3051 struct fec_enet_private *fep = netdev_priv(dev);
3053 for (i = 0; i < FEC_IRQ_NUM; i++) {
3054 if (fep->irq[i] > 0) {
3055 disable_irq(fep->irq[i]);
3056 fec_enet_interrupt(fep->irq[i], dev);
3057 enable_irq(fep->irq[i]);
3061 #endif
3063 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3064 netdev_features_t features)
3066 struct fec_enet_private *fep = netdev_priv(netdev);
3067 netdev_features_t changed = features ^ netdev->features;
3069 netdev->features = features;
3071 /* Receive checksum has been changed */
3072 if (changed & NETIF_F_RXCSUM) {
3073 if (features & NETIF_F_RXCSUM)
3074 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3075 else
3076 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3080 static int fec_set_features(struct net_device *netdev,
3081 netdev_features_t features)
3083 struct fec_enet_private *fep = netdev_priv(netdev);
3084 netdev_features_t changed = features ^ netdev->features;
3086 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3087 napi_disable(&fep->napi);
3088 netif_tx_lock_bh(netdev);
3089 fec_stop(netdev);
3090 fec_enet_set_netdev_features(netdev, features);
3091 fec_restart(netdev);
3092 netif_tx_wake_all_queues(netdev);
3093 netif_tx_unlock_bh(netdev);
3094 napi_enable(&fep->napi);
3095 } else {
3096 fec_enet_set_netdev_features(netdev, features);
3099 return 0;
3102 static const struct net_device_ops fec_netdev_ops = {
3103 .ndo_open = fec_enet_open,
3104 .ndo_stop = fec_enet_close,
3105 .ndo_start_xmit = fec_enet_start_xmit,
3106 .ndo_set_rx_mode = set_multicast_list,
3107 .ndo_validate_addr = eth_validate_addr,
3108 .ndo_tx_timeout = fec_timeout,
3109 .ndo_set_mac_address = fec_set_mac_address,
3110 .ndo_do_ioctl = fec_enet_ioctl,
3111 #ifdef CONFIG_NET_POLL_CONTROLLER
3112 .ndo_poll_controller = fec_poll_controller,
3113 #endif
3114 .ndo_set_features = fec_set_features,
3117 static const unsigned short offset_des_active_rxq[] = {
3118 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3121 static const unsigned short offset_des_active_txq[] = {
3122 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3126 * XXX: We need to clean up on failure exits here.
3129 static int fec_enet_init(struct net_device *ndev)
3131 struct fec_enet_private *fep = netdev_priv(ndev);
3132 struct bufdesc *cbd_base;
3133 dma_addr_t bd_dma;
3134 int bd_size;
3135 unsigned int i;
3136 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3137 sizeof(struct bufdesc);
3138 unsigned dsize_log2 = __fls(dsize);
3140 WARN_ON(dsize != (1 << dsize_log2));
3141 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3142 fep->rx_align = 0xf;
3143 fep->tx_align = 0xf;
3144 #else
3145 fep->rx_align = 0x3;
3146 fep->tx_align = 0x3;
3147 #endif
3149 fec_enet_alloc_queue(ndev);
3151 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3153 /* Allocate memory for buffer descriptors. */
3154 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3155 GFP_KERNEL);
3156 if (!cbd_base) {
3157 return -ENOMEM;
3160 memset(cbd_base, 0, bd_size);
3162 /* Get the Ethernet address */
3163 fec_get_mac(ndev);
3164 /* make sure MAC we just acquired is programmed into the hw */
3165 fec_set_mac_address(ndev, NULL);
3167 /* Set receive and transmit descriptor base. */
3168 for (i = 0; i < fep->num_rx_queues; i++) {
3169 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3170 unsigned size = dsize * rxq->bd.ring_size;
3172 rxq->bd.qid = i;
3173 rxq->bd.base = cbd_base;
3174 rxq->bd.cur = cbd_base;
3175 rxq->bd.dma = bd_dma;
3176 rxq->bd.dsize = dsize;
3177 rxq->bd.dsize_log2 = dsize_log2;
3178 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3179 bd_dma += size;
3180 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3181 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3184 for (i = 0; i < fep->num_tx_queues; i++) {
3185 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3186 unsigned size = dsize * txq->bd.ring_size;
3188 txq->bd.qid = i;
3189 txq->bd.base = cbd_base;
3190 txq->bd.cur = cbd_base;
3191 txq->bd.dma = bd_dma;
3192 txq->bd.dsize = dsize;
3193 txq->bd.dsize_log2 = dsize_log2;
3194 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3195 bd_dma += size;
3196 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3197 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3201 /* The FEC Ethernet specific entries in the device structure */
3202 ndev->watchdog_timeo = TX_TIMEOUT;
3203 ndev->netdev_ops = &fec_netdev_ops;
3204 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3206 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3207 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3209 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3210 /* enable hw VLAN support */
3211 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3213 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3214 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3216 /* enable hw accelerator */
3217 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3218 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3219 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3222 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3223 fep->tx_align = 0;
3224 fep->rx_align = 0x3f;
3227 ndev->hw_features = ndev->features;
3229 fec_restart(ndev);
3231 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3232 fec_enet_clear_ethtool_stats(ndev);
3233 else
3234 fec_enet_update_ethtool_stats(ndev);
3236 return 0;
3239 #ifdef CONFIG_OF
3240 static int fec_reset_phy(struct platform_device *pdev)
3242 int err, phy_reset;
3243 bool active_high = false;
3244 int msec = 1, phy_post_delay = 0;
3245 struct device_node *np = pdev->dev.of_node;
3247 if (!np)
3248 return 0;
3250 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3251 /* A sane reset duration should not be longer than 1s */
3252 if (!err && msec > 1000)
3253 msec = 1;
3255 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3256 if (phy_reset == -EPROBE_DEFER)
3257 return phy_reset;
3258 else if (!gpio_is_valid(phy_reset))
3259 return 0;
3261 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3262 /* valid reset duration should be less than 1s */
3263 if (!err && phy_post_delay > 1000)
3264 return -EINVAL;
3266 active_high = of_property_read_bool(np, "phy-reset-active-high");
3268 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3269 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3270 "phy-reset");
3271 if (err) {
3272 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3273 return err;
3276 if (msec > 20)
3277 msleep(msec);
3278 else
3279 usleep_range(msec * 1000, msec * 1000 + 1000);
3281 gpio_set_value_cansleep(phy_reset, !active_high);
3283 if (!phy_post_delay)
3284 return 0;
3286 if (phy_post_delay > 20)
3287 msleep(phy_post_delay);
3288 else
3289 usleep_range(phy_post_delay * 1000,
3290 phy_post_delay * 1000 + 1000);
3292 return 0;
3294 #else /* CONFIG_OF */
3295 static int fec_reset_phy(struct platform_device *pdev)
3298 * In case of platform probe, the reset has been done
3299 * by machine code.
3301 return 0;
3303 #endif /* CONFIG_OF */
3305 static void
3306 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3308 struct device_node *np = pdev->dev.of_node;
3310 *num_tx = *num_rx = 1;
3312 if (!np || !of_device_is_available(np))
3313 return;
3315 /* parse the num of tx and rx queues */
3316 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3318 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3320 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3321 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3322 *num_tx);
3323 *num_tx = 1;
3324 return;
3327 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3328 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3329 *num_rx);
3330 *num_rx = 1;
3331 return;
3336 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3338 int irq_cnt = platform_irq_count(pdev);
3340 if (irq_cnt > FEC_IRQ_NUM)
3341 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3342 else if (irq_cnt == 2)
3343 irq_cnt = 1; /* last for pps */
3344 else if (irq_cnt <= 0)
3345 irq_cnt = 1; /* At least 1 irq is needed */
3346 return irq_cnt;
3349 static int
3350 fec_probe(struct platform_device *pdev)
3352 struct fec_enet_private *fep;
3353 struct fec_platform_data *pdata;
3354 struct net_device *ndev;
3355 int i, irq, ret = 0;
3356 struct resource *r;
3357 const struct of_device_id *of_id;
3358 static int dev_id;
3359 struct device_node *np = pdev->dev.of_node, *phy_node;
3360 int num_tx_qs;
3361 int num_rx_qs;
3362 char irq_name[8];
3363 int irq_cnt;
3365 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3367 /* Init network device */
3368 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3369 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3370 if (!ndev)
3371 return -ENOMEM;
3373 SET_NETDEV_DEV(ndev, &pdev->dev);
3375 /* setup board info structure */
3376 fep = netdev_priv(ndev);
3378 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3379 if (of_id)
3380 pdev->id_entry = of_id->data;
3381 fep->quirks = pdev->id_entry->driver_data;
3383 fep->netdev = ndev;
3384 fep->num_rx_queues = num_rx_qs;
3385 fep->num_tx_queues = num_tx_qs;
3387 #if !defined(CONFIG_M5272)
3388 /* default enable pause frame auto negotiation */
3389 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3390 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3391 #endif
3393 /* Select default pin state */
3394 pinctrl_pm_select_default_state(&pdev->dev);
3396 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3397 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3398 if (IS_ERR(fep->hwp)) {
3399 ret = PTR_ERR(fep->hwp);
3400 goto failed_ioremap;
3403 fep->pdev = pdev;
3404 fep->dev_id = dev_id++;
3406 platform_set_drvdata(pdev, ndev);
3408 if ((of_machine_is_compatible("fsl,imx6q") ||
3409 of_machine_is_compatible("fsl,imx6dl")) &&
3410 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3411 fep->quirks |= FEC_QUIRK_ERR006687;
3413 if (of_get_property(np, "fsl,magic-packet", NULL))
3414 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3416 phy_node = of_parse_phandle(np, "phy-handle", 0);
3417 if (!phy_node && of_phy_is_fixed_link(np)) {
3418 ret = of_phy_register_fixed_link(np);
3419 if (ret < 0) {
3420 dev_err(&pdev->dev,
3421 "broken fixed-link specification\n");
3422 goto failed_phy;
3424 phy_node = of_node_get(np);
3426 fep->phy_node = phy_node;
3428 ret = of_get_phy_mode(pdev->dev.of_node);
3429 if (ret < 0) {
3430 pdata = dev_get_platdata(&pdev->dev);
3431 if (pdata)
3432 fep->phy_interface = pdata->phy;
3433 else
3434 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3435 } else {
3436 fep->phy_interface = ret;
3439 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3440 if (IS_ERR(fep->clk_ipg)) {
3441 ret = PTR_ERR(fep->clk_ipg);
3442 goto failed_clk;
3445 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3446 if (IS_ERR(fep->clk_ahb)) {
3447 ret = PTR_ERR(fep->clk_ahb);
3448 goto failed_clk;
3451 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3453 /* enet_out is optional, depends on board */
3454 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3455 if (IS_ERR(fep->clk_enet_out))
3456 fep->clk_enet_out = NULL;
3458 fep->ptp_clk_on = false;
3459 mutex_init(&fep->ptp_clk_mutex);
3461 /* clk_ref is optional, depends on board */
3462 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3463 if (IS_ERR(fep->clk_ref))
3464 fep->clk_ref = NULL;
3466 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3467 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3468 if (IS_ERR(fep->clk_ptp)) {
3469 fep->clk_ptp = NULL;
3470 fep->bufdesc_ex = false;
3473 ret = fec_enet_clk_enable(ndev, true);
3474 if (ret)
3475 goto failed_clk;
3477 ret = clk_prepare_enable(fep->clk_ipg);
3478 if (ret)
3479 goto failed_clk_ipg;
3481 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3482 if (!IS_ERR(fep->reg_phy)) {
3483 ret = regulator_enable(fep->reg_phy);
3484 if (ret) {
3485 dev_err(&pdev->dev,
3486 "Failed to enable phy regulator: %d\n", ret);
3487 clk_disable_unprepare(fep->clk_ipg);
3488 goto failed_regulator;
3490 } else {
3491 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3492 ret = -EPROBE_DEFER;
3493 goto failed_regulator;
3495 fep->reg_phy = NULL;
3498 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3499 pm_runtime_use_autosuspend(&pdev->dev);
3500 pm_runtime_get_noresume(&pdev->dev);
3501 pm_runtime_set_active(&pdev->dev);
3502 pm_runtime_enable(&pdev->dev);
3504 ret = fec_reset_phy(pdev);
3505 if (ret)
3506 goto failed_reset;
3508 irq_cnt = fec_enet_get_irq_cnt(pdev);
3509 if (fep->bufdesc_ex)
3510 fec_ptp_init(pdev, irq_cnt);
3512 ret = fec_enet_init(ndev);
3513 if (ret)
3514 goto failed_init;
3516 for (i = 0; i < irq_cnt; i++) {
3517 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3518 irq = platform_get_irq_byname(pdev, irq_name);
3519 if (irq < 0)
3520 irq = platform_get_irq(pdev, i);
3521 if (irq < 0) {
3522 ret = irq;
3523 goto failed_irq;
3525 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3526 0, pdev->name, ndev);
3527 if (ret)
3528 goto failed_irq;
3530 fep->irq[i] = irq;
3533 init_completion(&fep->mdio_done);
3534 ret = fec_enet_mii_init(pdev);
3535 if (ret)
3536 goto failed_mii_init;
3538 /* Carrier starts down, phylib will bring it up */
3539 netif_carrier_off(ndev);
3540 fec_enet_clk_enable(ndev, false);
3541 pinctrl_pm_select_sleep_state(&pdev->dev);
3543 ret = register_netdev(ndev);
3544 if (ret)
3545 goto failed_register;
3547 device_init_wakeup(&ndev->dev, fep->wol_flag &
3548 FEC_WOL_HAS_MAGIC_PACKET);
3550 if (fep->bufdesc_ex && fep->ptp_clock)
3551 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3553 fep->rx_copybreak = COPYBREAK_DEFAULT;
3554 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3556 pm_runtime_mark_last_busy(&pdev->dev);
3557 pm_runtime_put_autosuspend(&pdev->dev);
3559 return 0;
3561 failed_register:
3562 fec_enet_mii_remove(fep);
3563 failed_mii_init:
3564 failed_irq:
3565 failed_init:
3566 fec_ptp_stop(pdev);
3567 if (fep->reg_phy)
3568 regulator_disable(fep->reg_phy);
3569 failed_reset:
3570 pm_runtime_put(&pdev->dev);
3571 pm_runtime_disable(&pdev->dev);
3572 failed_regulator:
3573 failed_clk_ipg:
3574 fec_enet_clk_enable(ndev, false);
3575 failed_clk:
3576 if (of_phy_is_fixed_link(np))
3577 of_phy_deregister_fixed_link(np);
3578 of_node_put(phy_node);
3579 failed_phy:
3580 dev_id--;
3581 failed_ioremap:
3582 free_netdev(ndev);
3584 return ret;
3587 static int
3588 fec_drv_remove(struct platform_device *pdev)
3590 struct net_device *ndev = platform_get_drvdata(pdev);
3591 struct fec_enet_private *fep = netdev_priv(ndev);
3592 struct device_node *np = pdev->dev.of_node;
3594 cancel_work_sync(&fep->tx_timeout_work);
3595 fec_ptp_stop(pdev);
3596 unregister_netdev(ndev);
3597 fec_enet_mii_remove(fep);
3598 if (fep->reg_phy)
3599 regulator_disable(fep->reg_phy);
3600 pm_runtime_put(&pdev->dev);
3601 pm_runtime_disable(&pdev->dev);
3602 if (of_phy_is_fixed_link(np))
3603 of_phy_deregister_fixed_link(np);
3604 of_node_put(fep->phy_node);
3605 free_netdev(ndev);
3607 return 0;
3610 static int __maybe_unused fec_suspend(struct device *dev)
3612 struct net_device *ndev = dev_get_drvdata(dev);
3613 struct fec_enet_private *fep = netdev_priv(ndev);
3615 rtnl_lock();
3616 if (netif_running(ndev)) {
3617 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3618 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3619 phy_stop(ndev->phydev);
3620 napi_disable(&fep->napi);
3621 netif_tx_lock_bh(ndev);
3622 netif_device_detach(ndev);
3623 netif_tx_unlock_bh(ndev);
3624 fec_stop(ndev);
3625 fec_enet_clk_enable(ndev, false);
3626 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3627 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3629 rtnl_unlock();
3631 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3632 regulator_disable(fep->reg_phy);
3634 /* SOC supply clock to phy, when clock is disabled, phy link down
3635 * SOC control phy regulator, when regulator is disabled, phy link down
3637 if (fep->clk_enet_out || fep->reg_phy)
3638 fep->link = 0;
3640 return 0;
3643 static int __maybe_unused fec_resume(struct device *dev)
3645 struct net_device *ndev = dev_get_drvdata(dev);
3646 struct fec_enet_private *fep = netdev_priv(ndev);
3647 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3648 int ret;
3649 int val;
3651 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3652 ret = regulator_enable(fep->reg_phy);
3653 if (ret)
3654 return ret;
3657 rtnl_lock();
3658 if (netif_running(ndev)) {
3659 ret = fec_enet_clk_enable(ndev, true);
3660 if (ret) {
3661 rtnl_unlock();
3662 goto failed_clk;
3664 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3665 if (pdata && pdata->sleep_mode_enable)
3666 pdata->sleep_mode_enable(false);
3667 val = readl(fep->hwp + FEC_ECNTRL);
3668 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3669 writel(val, fep->hwp + FEC_ECNTRL);
3670 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3671 } else {
3672 pinctrl_pm_select_default_state(&fep->pdev->dev);
3674 fec_restart(ndev);
3675 netif_tx_lock_bh(ndev);
3676 netif_device_attach(ndev);
3677 netif_tx_unlock_bh(ndev);
3678 napi_enable(&fep->napi);
3679 phy_start(ndev->phydev);
3681 rtnl_unlock();
3683 return 0;
3685 failed_clk:
3686 if (fep->reg_phy)
3687 regulator_disable(fep->reg_phy);
3688 return ret;
3691 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3693 struct net_device *ndev = dev_get_drvdata(dev);
3694 struct fec_enet_private *fep = netdev_priv(ndev);
3696 clk_disable_unprepare(fep->clk_ipg);
3698 return 0;
3701 static int __maybe_unused fec_runtime_resume(struct device *dev)
3703 struct net_device *ndev = dev_get_drvdata(dev);
3704 struct fec_enet_private *fep = netdev_priv(ndev);
3706 return clk_prepare_enable(fep->clk_ipg);
3709 static const struct dev_pm_ops fec_pm_ops = {
3710 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3711 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3714 static struct platform_driver fec_driver = {
3715 .driver = {
3716 .name = DRIVER_NAME,
3717 .pm = &fec_pm_ops,
3718 .of_match_table = fec_dt_ids,
3720 .id_table = fec_devtype,
3721 .probe = fec_probe,
3722 .remove = fec_drv_remove,
3725 module_platform_driver(fec_driver);
3727 MODULE_ALIAS("platform:"DRIVER_NAME);
3728 MODULE_LICENSE("GPL");