ftrace: Clean up function probe methods
[linux-2.6.git] / arch / x86 / xen / mmu.c
blob01de35c772210120075300504189c22bd00c5899
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
52 #include <trace/events/xen.h>
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
86 DEFINE_SPINLOCK(xen_reservation_lock);
88 #ifdef CONFIG_X86_32
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
103 * Note about cr3 (pagetable base) values:
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130 return PFN_DOWN(maddr.maddr);
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 unsigned long address = (unsigned long)vaddr;
136 unsigned int level;
137 pte_t *pte;
138 unsigned offset;
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
147 /* otherwise we have to do a (slower) full page-table walk */
149 pte = lookup_address(address, &level);
150 BUG_ON(pte == NULL);
151 offset = address & ~PAGE_MASK;
152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156 void make_lowmem_page_readonly(void *vaddr)
158 pte_t *pte, ptev;
159 unsigned long address = (unsigned long)vaddr;
160 unsigned int level;
162 pte = lookup_address(address, &level);
163 if (pte == NULL)
164 return; /* vaddr missing */
166 ptev = pte_wrprotect(*pte);
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 BUG();
172 void make_lowmem_page_readwrite(void *vaddr)
174 pte_t *pte, ptev;
175 unsigned long address = (unsigned long)vaddr;
176 unsigned int level;
178 pte = lookup_address(address, &level);
179 if (pte == NULL)
180 return; /* vaddr missing */
182 ptev = pte_mkwrite(*pte);
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 BUG();
189 static bool xen_page_pinned(void *ptr)
191 struct page *page = virt_to_page(ptr);
193 return PagePinned(page);
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 struct multicall_space mcs;
199 struct mmu_update *u;
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203 mcs = xen_mc_entry(sizeof(*u));
204 u = mcs.args;
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
207 u->ptr = virt_to_machine(ptep).maddr;
208 u->val = pte_val_ma(pteval);
210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216 static void xen_extend_mmu_update(const struct mmu_update *update)
218 struct multicall_space mcs;
219 struct mmu_update *u;
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223 if (mcs.mc != NULL) {
224 mcs.mc->args[1]++;
225 } else {
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
230 u = mcs.args;
231 *u = *update;
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 struct multicall_space mcs;
237 struct mmuext_op *u;
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241 if (mcs.mc != NULL) {
242 mcs.mc->args[1]++;
243 } else {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
248 u = mcs.args;
249 *u = *op;
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254 struct mmu_update u;
256 preempt_disable();
258 xen_mc_batch();
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 u.val = pmd_val_ma(val);
263 xen_extend_mmu_update(&u);
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
267 preempt_enable();
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 trace_xen_mmu_set_pmd(ptr, val);
274 /* If page is not pinned, we can just update the entry
275 directly */
276 if (!xen_page_pinned(ptr)) {
277 *ptr = val;
278 return;
281 xen_set_pmd_hyper(ptr, val);
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 struct mmu_update u;
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 return false;
300 xen_mc_batch();
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
306 xen_mc_issue(PARAVIRT_LAZY_MMU);
308 return true;
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 if (!xen_batched_set_pte(ptep, pteval)) {
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
319 * instead.
321 struct mmu_update u;
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 pte_t *ptep, pte_t pteval)
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
345 /* Just return the pte as-is. We preserve the bits on commit */
346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 return *ptep;
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
353 struct mmu_update u;
355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 xen_mc_batch();
358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 u.val = pte_val_ma(pte);
360 xen_extend_mmu_update(&u);
362 xen_mc_issue(PARAVIRT_LAZY_MMU);
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 if (val & _PAGE_PRESENT) {
369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 unsigned long pfn = mfn_to_pfn(mfn);
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
375 else
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
379 return val;
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 if (val & _PAGE_PRESENT) {
385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 pteval_t flags = val & PTE_FLAGS_MASK;
387 unsigned long mfn;
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
391 else
392 mfn = pfn;
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 mfn = 0;
401 flags = 0;
402 } else {
404 * Paramount to do this test _after_ the
405 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
406 * IDENTITY_FRAME_BIT resolves to true.
408 mfn &= ~FOREIGN_FRAME_BIT;
409 if (mfn & IDENTITY_FRAME_BIT) {
410 mfn &= ~IDENTITY_FRAME_BIT;
411 flags |= _PAGE_IOMAP;
414 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
417 return val;
420 static pteval_t iomap_pte(pteval_t val)
422 if (val & _PAGE_PRESENT) {
423 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
424 pteval_t flags = val & PTE_FLAGS_MASK;
426 /* We assume the pte frame number is a MFN, so
427 just use it as-is. */
428 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
431 return val;
434 static pteval_t xen_pte_val(pte_t pte)
436 pteval_t pteval = pte.pte;
437 #if 0
438 /* If this is a WC pte, convert back from Xen WC to Linux WC */
439 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
440 WARN_ON(!pat_enabled);
441 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
443 #endif
444 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
445 return pteval;
447 return pte_mfn_to_pfn(pteval);
449 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
451 static pgdval_t xen_pgd_val(pgd_t pgd)
453 return pte_mfn_to_pfn(pgd.pgd);
455 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
459 * are reserved for now, to correspond to the Intel-reserved PAT
460 * types.
462 * We expect Linux's PAT set as follows:
464 * Idx PTE flags Linux Xen Default
465 * 0 WB WB WB
466 * 1 PWT WC WT WT
467 * 2 PCD UC- UC- UC-
468 * 3 PCD PWT UC UC UC
469 * 4 PAT WB WC WB
470 * 5 PAT PWT WC WP WT
471 * 6 PAT PCD UC- UC UC-
472 * 7 PAT PCD PWT UC UC UC
475 void xen_set_pat(u64 pat)
477 /* We expect Linux to use a PAT setting of
478 * UC UC- WC WB (ignoring the PAT flag) */
479 WARN_ON(pat != 0x0007010600070106ull);
482 static pte_t xen_make_pte(pteval_t pte)
484 phys_addr_t addr = (pte & PTE_PFN_MASK);
485 #if 0
486 /* If Linux is trying to set a WC pte, then map to the Xen WC.
487 * If _PAGE_PAT is set, then it probably means it is really
488 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
489 * things work out OK...
491 * (We should never see kernel mappings with _PAGE_PSE set,
492 * but we could see hugetlbfs mappings, I think.).
494 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
495 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
496 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
498 #endif
500 * Unprivileged domains are allowed to do IOMAPpings for
501 * PCI passthrough, but not map ISA space. The ISA
502 * mappings are just dummy local mappings to keep other
503 * parts of the kernel happy.
505 if (unlikely(pte & _PAGE_IOMAP) &&
506 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
507 pte = iomap_pte(pte);
508 } else {
509 pte &= ~_PAGE_IOMAP;
510 pte = pte_pfn_to_mfn(pte);
513 return native_make_pte(pte);
515 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
517 static pgd_t xen_make_pgd(pgdval_t pgd)
519 pgd = pte_pfn_to_mfn(pgd);
520 return native_make_pgd(pgd);
522 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
524 static pmdval_t xen_pmd_val(pmd_t pmd)
526 return pte_mfn_to_pfn(pmd.pmd);
528 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
530 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
532 struct mmu_update u;
534 preempt_disable();
536 xen_mc_batch();
538 /* ptr may be ioremapped for 64-bit pagetable setup */
539 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
540 u.val = pud_val_ma(val);
541 xen_extend_mmu_update(&u);
543 xen_mc_issue(PARAVIRT_LAZY_MMU);
545 preempt_enable();
548 static void xen_set_pud(pud_t *ptr, pud_t val)
550 trace_xen_mmu_set_pud(ptr, val);
552 /* If page is not pinned, we can just update the entry
553 directly */
554 if (!xen_page_pinned(ptr)) {
555 *ptr = val;
556 return;
559 xen_set_pud_hyper(ptr, val);
562 #ifdef CONFIG_X86_PAE
563 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
565 trace_xen_mmu_set_pte_atomic(ptep, pte);
566 set_64bit((u64 *)ptep, native_pte_val(pte));
569 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
571 trace_xen_mmu_pte_clear(mm, addr, ptep);
572 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
573 native_pte_clear(mm, addr, ptep);
576 static void xen_pmd_clear(pmd_t *pmdp)
578 trace_xen_mmu_pmd_clear(pmdp);
579 set_pmd(pmdp, __pmd(0));
581 #endif /* CONFIG_X86_PAE */
583 static pmd_t xen_make_pmd(pmdval_t pmd)
585 pmd = pte_pfn_to_mfn(pmd);
586 return native_make_pmd(pmd);
588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
590 #if PAGETABLE_LEVELS == 4
591 static pudval_t xen_pud_val(pud_t pud)
593 return pte_mfn_to_pfn(pud.pud);
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
597 static pud_t xen_make_pud(pudval_t pud)
599 pud = pte_pfn_to_mfn(pud);
601 return native_make_pud(pud);
603 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
605 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
607 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
608 unsigned offset = pgd - pgd_page;
609 pgd_t *user_ptr = NULL;
611 if (offset < pgd_index(USER_LIMIT)) {
612 struct page *page = virt_to_page(pgd_page);
613 user_ptr = (pgd_t *)page->private;
614 if (user_ptr)
615 user_ptr += offset;
618 return user_ptr;
621 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
623 struct mmu_update u;
625 u.ptr = virt_to_machine(ptr).maddr;
626 u.val = pgd_val_ma(val);
627 xen_extend_mmu_update(&u);
631 * Raw hypercall-based set_pgd, intended for in early boot before
632 * there's a page structure. This implies:
633 * 1. The only existing pagetable is the kernel's
634 * 2. It is always pinned
635 * 3. It has no user pagetable attached to it
637 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
639 preempt_disable();
641 xen_mc_batch();
643 __xen_set_pgd_hyper(ptr, val);
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
647 preempt_enable();
650 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
652 pgd_t *user_ptr = xen_get_user_pgd(ptr);
654 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
656 /* If page is not pinned, we can just update the entry
657 directly */
658 if (!xen_page_pinned(ptr)) {
659 *ptr = val;
660 if (user_ptr) {
661 WARN_ON(xen_page_pinned(user_ptr));
662 *user_ptr = val;
664 return;
667 /* If it's pinned, then we can at least batch the kernel and
668 user updates together. */
669 xen_mc_batch();
671 __xen_set_pgd_hyper(ptr, val);
672 if (user_ptr)
673 __xen_set_pgd_hyper(user_ptr, val);
675 xen_mc_issue(PARAVIRT_LAZY_MMU);
677 #endif /* PAGETABLE_LEVELS == 4 */
680 * (Yet another) pagetable walker. This one is intended for pinning a
681 * pagetable. This means that it walks a pagetable and calls the
682 * callback function on each page it finds making up the page table,
683 * at every level. It walks the entire pagetable, but it only bothers
684 * pinning pte pages which are below limit. In the normal case this
685 * will be STACK_TOP_MAX, but at boot we need to pin up to
686 * FIXADDR_TOP.
688 * For 32-bit the important bit is that we don't pin beyond there,
689 * because then we start getting into Xen's ptes.
691 * For 64-bit, we must skip the Xen hole in the middle of the address
692 * space, just after the big x86-64 virtual hole.
694 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
695 int (*func)(struct mm_struct *mm, struct page *,
696 enum pt_level),
697 unsigned long limit)
699 int flush = 0;
700 unsigned hole_low, hole_high;
701 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
702 unsigned pgdidx, pudidx, pmdidx;
704 /* The limit is the last byte to be touched */
705 limit--;
706 BUG_ON(limit >= FIXADDR_TOP);
708 if (xen_feature(XENFEAT_auto_translated_physmap))
709 return 0;
712 * 64-bit has a great big hole in the middle of the address
713 * space, which contains the Xen mappings. On 32-bit these
714 * will end up making a zero-sized hole and so is a no-op.
716 hole_low = pgd_index(USER_LIMIT);
717 hole_high = pgd_index(PAGE_OFFSET);
719 pgdidx_limit = pgd_index(limit);
720 #if PTRS_PER_PUD > 1
721 pudidx_limit = pud_index(limit);
722 #else
723 pudidx_limit = 0;
724 #endif
725 #if PTRS_PER_PMD > 1
726 pmdidx_limit = pmd_index(limit);
727 #else
728 pmdidx_limit = 0;
729 #endif
731 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
732 pud_t *pud;
734 if (pgdidx >= hole_low && pgdidx < hole_high)
735 continue;
737 if (!pgd_val(pgd[pgdidx]))
738 continue;
740 pud = pud_offset(&pgd[pgdidx], 0);
742 if (PTRS_PER_PUD > 1) /* not folded */
743 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
745 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
746 pmd_t *pmd;
748 if (pgdidx == pgdidx_limit &&
749 pudidx > pudidx_limit)
750 goto out;
752 if (pud_none(pud[pudidx]))
753 continue;
755 pmd = pmd_offset(&pud[pudidx], 0);
757 if (PTRS_PER_PMD > 1) /* not folded */
758 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
760 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
761 struct page *pte;
763 if (pgdidx == pgdidx_limit &&
764 pudidx == pudidx_limit &&
765 pmdidx > pmdidx_limit)
766 goto out;
768 if (pmd_none(pmd[pmdidx]))
769 continue;
771 pte = pmd_page(pmd[pmdidx]);
772 flush |= (*func)(mm, pte, PT_PTE);
777 out:
778 /* Do the top level last, so that the callbacks can use it as
779 a cue to do final things like tlb flushes. */
780 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
782 return flush;
785 static int xen_pgd_walk(struct mm_struct *mm,
786 int (*func)(struct mm_struct *mm, struct page *,
787 enum pt_level),
788 unsigned long limit)
790 return __xen_pgd_walk(mm, mm->pgd, func, limit);
793 /* If we're using split pte locks, then take the page's lock and
794 return a pointer to it. Otherwise return NULL. */
795 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
797 spinlock_t *ptl = NULL;
799 #if USE_SPLIT_PTLOCKS
800 ptl = __pte_lockptr(page);
801 spin_lock_nest_lock(ptl, &mm->page_table_lock);
802 #endif
804 return ptl;
807 static void xen_pte_unlock(void *v)
809 spinlock_t *ptl = v;
810 spin_unlock(ptl);
813 static void xen_do_pin(unsigned level, unsigned long pfn)
815 struct mmuext_op op;
817 op.cmd = level;
818 op.arg1.mfn = pfn_to_mfn(pfn);
820 xen_extend_mmuext_op(&op);
823 static int xen_pin_page(struct mm_struct *mm, struct page *page,
824 enum pt_level level)
826 unsigned pgfl = TestSetPagePinned(page);
827 int flush;
829 if (pgfl)
830 flush = 0; /* already pinned */
831 else if (PageHighMem(page))
832 /* kmaps need flushing if we found an unpinned
833 highpage */
834 flush = 1;
835 else {
836 void *pt = lowmem_page_address(page);
837 unsigned long pfn = page_to_pfn(page);
838 struct multicall_space mcs = __xen_mc_entry(0);
839 spinlock_t *ptl;
841 flush = 0;
844 * We need to hold the pagetable lock between the time
845 * we make the pagetable RO and when we actually pin
846 * it. If we don't, then other users may come in and
847 * attempt to update the pagetable by writing it,
848 * which will fail because the memory is RO but not
849 * pinned, so Xen won't do the trap'n'emulate.
851 * If we're using split pte locks, we can't hold the
852 * entire pagetable's worth of locks during the
853 * traverse, because we may wrap the preempt count (8
854 * bits). The solution is to mark RO and pin each PTE
855 * page while holding the lock. This means the number
856 * of locks we end up holding is never more than a
857 * batch size (~32 entries, at present).
859 * If we're not using split pte locks, we needn't pin
860 * the PTE pages independently, because we're
861 * protected by the overall pagetable lock.
863 ptl = NULL;
864 if (level == PT_PTE)
865 ptl = xen_pte_lock(page, mm);
867 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 pfn_pte(pfn, PAGE_KERNEL_RO),
869 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
871 if (ptl) {
872 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
874 /* Queue a deferred unlock for when this batch
875 is completed. */
876 xen_mc_callback(xen_pte_unlock, ptl);
880 return flush;
883 /* This is called just after a mm has been created, but it has not
884 been used yet. We need to make sure that its pagetable is all
885 read-only, and can be pinned. */
886 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
888 trace_xen_mmu_pgd_pin(mm, pgd);
890 xen_mc_batch();
892 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893 /* re-enable interrupts for flushing */
894 xen_mc_issue(0);
896 kmap_flush_unused();
898 xen_mc_batch();
901 #ifdef CONFIG_X86_64
903 pgd_t *user_pgd = xen_get_user_pgd(pgd);
905 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
907 if (user_pgd) {
908 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
909 xen_do_pin(MMUEXT_PIN_L4_TABLE,
910 PFN_DOWN(__pa(user_pgd)));
913 #else /* CONFIG_X86_32 */
914 #ifdef CONFIG_X86_PAE
915 /* Need to make sure unshared kernel PMD is pinnable */
916 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917 PT_PMD);
918 #endif
919 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920 #endif /* CONFIG_X86_64 */
921 xen_mc_issue(0);
924 static void xen_pgd_pin(struct mm_struct *mm)
926 __xen_pgd_pin(mm, mm->pgd);
930 * On save, we need to pin all pagetables to make sure they get their
931 * mfns turned into pfns. Search the list for any unpinned pgds and pin
932 * them (unpinned pgds are not currently in use, probably because the
933 * process is under construction or destruction).
935 * Expected to be called in stop_machine() ("equivalent to taking
936 * every spinlock in the system"), so the locking doesn't really
937 * matter all that much.
939 void xen_mm_pin_all(void)
941 struct page *page;
943 spin_lock(&pgd_lock);
945 list_for_each_entry(page, &pgd_list, lru) {
946 if (!PagePinned(page)) {
947 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 SetPageSavePinned(page);
952 spin_unlock(&pgd_lock);
956 * The init_mm pagetable is really pinned as soon as its created, but
957 * that's before we have page structures to store the bits. So do all
958 * the book-keeping now.
960 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961 enum pt_level level)
963 SetPagePinned(page);
964 return 0;
967 static void __init xen_mark_init_mm_pinned(void)
969 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
972 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
973 enum pt_level level)
975 unsigned pgfl = TestClearPagePinned(page);
977 if (pgfl && !PageHighMem(page)) {
978 void *pt = lowmem_page_address(page);
979 unsigned long pfn = page_to_pfn(page);
980 spinlock_t *ptl = NULL;
981 struct multicall_space mcs;
984 * Do the converse to pin_page. If we're using split
985 * pte locks, we must be holding the lock for while
986 * the pte page is unpinned but still RO to prevent
987 * concurrent updates from seeing it in this
988 * partially-pinned state.
990 if (level == PT_PTE) {
991 ptl = xen_pte_lock(page, mm);
993 if (ptl)
994 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
997 mcs = __xen_mc_entry(0);
999 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 pfn_pte(pfn, PAGE_KERNEL),
1001 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1003 if (ptl) {
1004 /* unlock when batch completed */
1005 xen_mc_callback(xen_pte_unlock, ptl);
1009 return 0; /* never need to flush on unpin */
1012 /* Release a pagetables pages back as normal RW */
1013 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1015 trace_xen_mmu_pgd_unpin(mm, pgd);
1017 xen_mc_batch();
1019 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1021 #ifdef CONFIG_X86_64
1023 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1025 if (user_pgd) {
1026 xen_do_pin(MMUEXT_UNPIN_TABLE,
1027 PFN_DOWN(__pa(user_pgd)));
1028 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1031 #endif
1033 #ifdef CONFIG_X86_PAE
1034 /* Need to make sure unshared kernel PMD is unpinned */
1035 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036 PT_PMD);
1037 #endif
1039 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1041 xen_mc_issue(0);
1044 static void xen_pgd_unpin(struct mm_struct *mm)
1046 __xen_pgd_unpin(mm, mm->pgd);
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1053 void xen_mm_unpin_all(void)
1055 struct page *page;
1057 spin_lock(&pgd_lock);
1059 list_for_each_entry(page, &pgd_list, lru) {
1060 if (PageSavePinned(page)) {
1061 BUG_ON(!PagePinned(page));
1062 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 ClearPageSavePinned(page);
1067 spin_unlock(&pgd_lock);
1070 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1072 spin_lock(&next->page_table_lock);
1073 xen_pgd_pin(next);
1074 spin_unlock(&next->page_table_lock);
1077 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1079 spin_lock(&mm->page_table_lock);
1080 xen_pgd_pin(mm);
1081 spin_unlock(&mm->page_table_lock);
1085 #ifdef CONFIG_SMP
1086 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1087 we need to repoint it somewhere else before we can unpin it. */
1088 static void drop_other_mm_ref(void *info)
1090 struct mm_struct *mm = info;
1091 struct mm_struct *active_mm;
1093 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1095 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096 leave_mm(smp_processor_id());
1098 /* If this cpu still has a stale cr3 reference, then make sure
1099 it has been flushed. */
1100 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101 load_cr3(swapper_pg_dir);
1104 static void xen_drop_mm_ref(struct mm_struct *mm)
1106 cpumask_var_t mask;
1107 unsigned cpu;
1109 if (current->active_mm == mm) {
1110 if (current->mm == mm)
1111 load_cr3(swapper_pg_dir);
1112 else
1113 leave_mm(smp_processor_id());
1116 /* Get the "official" set of cpus referring to our pagetable. */
1117 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118 for_each_online_cpu(cpu) {
1119 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121 continue;
1122 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1124 return;
1126 cpumask_copy(mask, mm_cpumask(mm));
1128 /* It's possible that a vcpu may have a stale reference to our
1129 cr3, because its in lazy mode, and it hasn't yet flushed
1130 its set of pending hypercalls yet. In this case, we can
1131 look at its actual current cr3 value, and force it to flush
1132 if needed. */
1133 for_each_online_cpu(cpu) {
1134 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135 cpumask_set_cpu(cpu, mask);
1138 if (!cpumask_empty(mask))
1139 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140 free_cpumask_var(mask);
1142 #else
1143 static void xen_drop_mm_ref(struct mm_struct *mm)
1145 if (current->active_mm == mm)
1146 load_cr3(swapper_pg_dir);
1148 #endif
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it. This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing. This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1164 static void xen_exit_mmap(struct mm_struct *mm)
1166 get_cpu(); /* make sure we don't move around */
1167 xen_drop_mm_ref(mm);
1168 put_cpu();
1170 spin_lock(&mm->page_table_lock);
1172 /* pgd may not be pinned in the error exit path of execve */
1173 if (xen_page_pinned(mm->pgd))
1174 xen_pgd_unpin(mm);
1176 spin_unlock(&mm->page_table_lock);
1179 static void xen_post_allocator_init(void);
1181 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1183 /* reserve the range used */
1184 native_pagetable_reserve(start, end);
1186 /* set as RW the rest */
1187 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188 PFN_PHYS(pgt_buf_top));
1189 while (end < PFN_PHYS(pgt_buf_top)) {
1190 make_lowmem_page_readwrite(__va(end));
1191 end += PAGE_SIZE;
1195 #ifdef CONFIG_X86_64
1196 static void __init xen_cleanhighmap(unsigned long vaddr,
1197 unsigned long vaddr_end)
1199 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1200 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1202 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1203 * We include the PMD passed in on _both_ boundaries. */
1204 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1205 pmd++, vaddr += PMD_SIZE) {
1206 if (pmd_none(*pmd))
1207 continue;
1208 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1209 set_pmd(pmd, __pmd(0));
1211 /* In case we did something silly, we should crash in this function
1212 * instead of somewhere later and be confusing. */
1213 xen_mc_flush();
1215 #endif
1216 static void __init xen_pagetable_init(void)
1218 #ifdef CONFIG_X86_64
1219 unsigned long size;
1220 unsigned long addr;
1221 #endif
1222 paging_init();
1223 xen_setup_shared_info();
1224 #ifdef CONFIG_X86_64
1225 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1226 unsigned long new_mfn_list;
1228 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1230 /* On 32-bit, we get zero so this never gets executed. */
1231 new_mfn_list = xen_revector_p2m_tree();
1232 if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1233 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 memset((void *)xen_start_info->mfn_list, 0xff, size);
1236 /* We should be in __ka space. */
1237 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1238 addr = xen_start_info->mfn_list;
1239 /* We roundup to the PMD, which means that if anybody at this stage is
1240 * using the __ka address of xen_start_info or xen_start_info->shared_info
1241 * they are in going to crash. Fortunatly we have already revectored
1242 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1243 size = roundup(size, PMD_SIZE);
1244 xen_cleanhighmap(addr, addr + size);
1246 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1247 memblock_free(__pa(xen_start_info->mfn_list), size);
1248 /* And revector! Bye bye old array */
1249 xen_start_info->mfn_list = new_mfn_list;
1250 } else
1251 goto skip;
1253 /* At this stage, cleanup_highmap has already cleaned __ka space
1254 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 * tables - do note that they are accessible at this stage via __va.
1257 * For good measure we also round up to the PMD - which means that if
1258 * anybody is using __ka address to the initial boot-stack - and try
1259 * to use it - they are going to crash. The xen_start_info has been
1260 * taken care of already in xen_setup_kernel_pagetable. */
1261 addr = xen_start_info->pt_base;
1262 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1264 xen_cleanhighmap(addr, addr + size);
1265 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1266 #ifdef DEBUG
1267 /* This is superflous and is not neccessary, but you know what
1268 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1269 * anything at this stage. */
1270 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1271 #endif
1272 skip:
1273 #endif
1274 xen_post_allocator_init();
1276 static void xen_write_cr2(unsigned long cr2)
1278 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1281 static unsigned long xen_read_cr2(void)
1283 return this_cpu_read(xen_vcpu)->arch.cr2;
1286 unsigned long xen_read_cr2_direct(void)
1288 return this_cpu_read(xen_vcpu_info.arch.cr2);
1291 void xen_flush_tlb_all(void)
1293 struct mmuext_op *op;
1294 struct multicall_space mcs;
1296 trace_xen_mmu_flush_tlb_all(0);
1298 preempt_disable();
1300 mcs = xen_mc_entry(sizeof(*op));
1302 op = mcs.args;
1303 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1304 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1306 xen_mc_issue(PARAVIRT_LAZY_MMU);
1308 preempt_enable();
1310 static void xen_flush_tlb(void)
1312 struct mmuext_op *op;
1313 struct multicall_space mcs;
1315 trace_xen_mmu_flush_tlb(0);
1317 preempt_disable();
1319 mcs = xen_mc_entry(sizeof(*op));
1321 op = mcs.args;
1322 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1323 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1325 xen_mc_issue(PARAVIRT_LAZY_MMU);
1327 preempt_enable();
1330 static void xen_flush_tlb_single(unsigned long addr)
1332 struct mmuext_op *op;
1333 struct multicall_space mcs;
1335 trace_xen_mmu_flush_tlb_single(addr);
1337 preempt_disable();
1339 mcs = xen_mc_entry(sizeof(*op));
1340 op = mcs.args;
1341 op->cmd = MMUEXT_INVLPG_LOCAL;
1342 op->arg1.linear_addr = addr & PAGE_MASK;
1343 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1345 xen_mc_issue(PARAVIRT_LAZY_MMU);
1347 preempt_enable();
1350 static void xen_flush_tlb_others(const struct cpumask *cpus,
1351 struct mm_struct *mm, unsigned long start,
1352 unsigned long end)
1354 struct {
1355 struct mmuext_op op;
1356 #ifdef CONFIG_SMP
1357 DECLARE_BITMAP(mask, num_processors);
1358 #else
1359 DECLARE_BITMAP(mask, NR_CPUS);
1360 #endif
1361 } *args;
1362 struct multicall_space mcs;
1364 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1366 if (cpumask_empty(cpus))
1367 return; /* nothing to do */
1369 mcs = xen_mc_entry(sizeof(*args));
1370 args = mcs.args;
1371 args->op.arg2.vcpumask = to_cpumask(args->mask);
1373 /* Remove us, and any offline CPUS. */
1374 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1375 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1377 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1378 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1379 args->op.cmd = MMUEXT_INVLPG_MULTI;
1380 args->op.arg1.linear_addr = start;
1383 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1385 xen_mc_issue(PARAVIRT_LAZY_MMU);
1388 static unsigned long xen_read_cr3(void)
1390 return this_cpu_read(xen_cr3);
1393 static void set_current_cr3(void *v)
1395 this_cpu_write(xen_current_cr3, (unsigned long)v);
1398 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1400 struct mmuext_op op;
1401 unsigned long mfn;
1403 trace_xen_mmu_write_cr3(kernel, cr3);
1405 if (cr3)
1406 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1407 else
1408 mfn = 0;
1410 WARN_ON(mfn == 0 && kernel);
1412 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1413 op.arg1.mfn = mfn;
1415 xen_extend_mmuext_op(&op);
1417 if (kernel) {
1418 this_cpu_write(xen_cr3, cr3);
1420 /* Update xen_current_cr3 once the batch has actually
1421 been submitted. */
1422 xen_mc_callback(set_current_cr3, (void *)cr3);
1426 static void xen_write_cr3(unsigned long cr3)
1428 BUG_ON(preemptible());
1430 xen_mc_batch(); /* disables interrupts */
1432 /* Update while interrupts are disabled, so its atomic with
1433 respect to ipis */
1434 this_cpu_write(xen_cr3, cr3);
1436 __xen_write_cr3(true, cr3);
1438 #ifdef CONFIG_X86_64
1440 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1441 if (user_pgd)
1442 __xen_write_cr3(false, __pa(user_pgd));
1443 else
1444 __xen_write_cr3(false, 0);
1446 #endif
1448 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1451 static int xen_pgd_alloc(struct mm_struct *mm)
1453 pgd_t *pgd = mm->pgd;
1454 int ret = 0;
1456 BUG_ON(PagePinned(virt_to_page(pgd)));
1458 #ifdef CONFIG_X86_64
1460 struct page *page = virt_to_page(pgd);
1461 pgd_t *user_pgd;
1463 BUG_ON(page->private != 0);
1465 ret = -ENOMEM;
1467 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1468 page->private = (unsigned long)user_pgd;
1470 if (user_pgd != NULL) {
1471 user_pgd[pgd_index(VSYSCALL_START)] =
1472 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1473 ret = 0;
1476 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1478 #endif
1480 return ret;
1483 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1485 #ifdef CONFIG_X86_64
1486 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1488 if (user_pgd)
1489 free_page((unsigned long)user_pgd);
1490 #endif
1493 #ifdef CONFIG_X86_32
1494 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1496 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1497 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1498 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1499 pte_val_ma(pte));
1501 return pte;
1503 #else /* CONFIG_X86_64 */
1504 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1506 unsigned long pfn = pte_pfn(pte);
1509 * If the new pfn is within the range of the newly allocated
1510 * kernel pagetable, and it isn't being mapped into an
1511 * early_ioremap fixmap slot as a freshly allocated page, make sure
1512 * it is RO.
1514 if (((!is_early_ioremap_ptep(ptep) &&
1515 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1516 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1517 pte = pte_wrprotect(pte);
1519 return pte;
1521 #endif /* CONFIG_X86_64 */
1524 * Init-time set_pte while constructing initial pagetables, which
1525 * doesn't allow RO page table pages to be remapped RW.
1527 * If there is no MFN for this PFN then this page is initially
1528 * ballooned out so clear the PTE (as in decrease_reservation() in
1529 * drivers/xen/balloon.c).
1531 * Many of these PTE updates are done on unpinned and writable pages
1532 * and doing a hypercall for these is unnecessary and expensive. At
1533 * this point it is not possible to tell if a page is pinned or not,
1534 * so always write the PTE directly and rely on Xen trapping and
1535 * emulating any updates as necessary.
1537 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1539 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1540 pte = mask_rw_pte(ptep, pte);
1541 else
1542 pte = __pte_ma(0);
1544 native_set_pte(ptep, pte);
1547 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1549 struct mmuext_op op;
1550 op.cmd = cmd;
1551 op.arg1.mfn = pfn_to_mfn(pfn);
1552 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1553 BUG();
1556 /* Early in boot, while setting up the initial pagetable, assume
1557 everything is pinned. */
1558 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1560 #ifdef CONFIG_FLATMEM
1561 BUG_ON(mem_map); /* should only be used early */
1562 #endif
1563 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1564 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1567 /* Used for pmd and pud */
1568 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1570 #ifdef CONFIG_FLATMEM
1571 BUG_ON(mem_map); /* should only be used early */
1572 #endif
1573 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1576 /* Early release_pte assumes that all pts are pinned, since there's
1577 only init_mm and anything attached to that is pinned. */
1578 static void __init xen_release_pte_init(unsigned long pfn)
1580 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1581 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1584 static void __init xen_release_pmd_init(unsigned long pfn)
1586 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1589 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1591 struct multicall_space mcs;
1592 struct mmuext_op *op;
1594 mcs = __xen_mc_entry(sizeof(*op));
1595 op = mcs.args;
1596 op->cmd = cmd;
1597 op->arg1.mfn = pfn_to_mfn(pfn);
1599 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1602 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1604 struct multicall_space mcs;
1605 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1607 mcs = __xen_mc_entry(0);
1608 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1609 pfn_pte(pfn, prot), 0);
1612 /* This needs to make sure the new pte page is pinned iff its being
1613 attached to a pinned pagetable. */
1614 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1615 unsigned level)
1617 bool pinned = PagePinned(virt_to_page(mm->pgd));
1619 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1621 if (pinned) {
1622 struct page *page = pfn_to_page(pfn);
1624 SetPagePinned(page);
1626 if (!PageHighMem(page)) {
1627 xen_mc_batch();
1629 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1631 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1632 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1634 xen_mc_issue(PARAVIRT_LAZY_MMU);
1635 } else {
1636 /* make sure there are no stray mappings of
1637 this page */
1638 kmap_flush_unused();
1643 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1645 xen_alloc_ptpage(mm, pfn, PT_PTE);
1648 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1650 xen_alloc_ptpage(mm, pfn, PT_PMD);
1653 /* This should never happen until we're OK to use struct page */
1654 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1656 struct page *page = pfn_to_page(pfn);
1657 bool pinned = PagePinned(page);
1659 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1661 if (pinned) {
1662 if (!PageHighMem(page)) {
1663 xen_mc_batch();
1665 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1666 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1668 __set_pfn_prot(pfn, PAGE_KERNEL);
1670 xen_mc_issue(PARAVIRT_LAZY_MMU);
1672 ClearPagePinned(page);
1676 static void xen_release_pte(unsigned long pfn)
1678 xen_release_ptpage(pfn, PT_PTE);
1681 static void xen_release_pmd(unsigned long pfn)
1683 xen_release_ptpage(pfn, PT_PMD);
1686 #if PAGETABLE_LEVELS == 4
1687 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1689 xen_alloc_ptpage(mm, pfn, PT_PUD);
1692 static void xen_release_pud(unsigned long pfn)
1694 xen_release_ptpage(pfn, PT_PUD);
1696 #endif
1698 void __init xen_reserve_top(void)
1700 #ifdef CONFIG_X86_32
1701 unsigned long top = HYPERVISOR_VIRT_START;
1702 struct xen_platform_parameters pp;
1704 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1705 top = pp.virt_start;
1707 reserve_top_address(-top);
1708 #endif /* CONFIG_X86_32 */
1712 * Like __va(), but returns address in the kernel mapping (which is
1713 * all we have until the physical memory mapping has been set up.
1715 static void *__ka(phys_addr_t paddr)
1717 #ifdef CONFIG_X86_64
1718 return (void *)(paddr + __START_KERNEL_map);
1719 #else
1720 return __va(paddr);
1721 #endif
1724 /* Convert a machine address to physical address */
1725 static unsigned long m2p(phys_addr_t maddr)
1727 phys_addr_t paddr;
1729 maddr &= PTE_PFN_MASK;
1730 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1732 return paddr;
1735 /* Convert a machine address to kernel virtual */
1736 static void *m2v(phys_addr_t maddr)
1738 return __ka(m2p(maddr));
1741 /* Set the page permissions on an identity-mapped pages */
1742 static void set_page_prot(void *addr, pgprot_t prot)
1744 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1745 pte_t pte = pfn_pte(pfn, prot);
1747 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1748 BUG();
1750 #ifdef CONFIG_X86_32
1751 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1753 unsigned pmdidx, pteidx;
1754 unsigned ident_pte;
1755 unsigned long pfn;
1757 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1758 PAGE_SIZE);
1760 ident_pte = 0;
1761 pfn = 0;
1762 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1763 pte_t *pte_page;
1765 /* Reuse or allocate a page of ptes */
1766 if (pmd_present(pmd[pmdidx]))
1767 pte_page = m2v(pmd[pmdidx].pmd);
1768 else {
1769 /* Check for free pte pages */
1770 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1771 break;
1773 pte_page = &level1_ident_pgt[ident_pte];
1774 ident_pte += PTRS_PER_PTE;
1776 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1779 /* Install mappings */
1780 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1781 pte_t pte;
1783 #ifdef CONFIG_X86_32
1784 if (pfn > max_pfn_mapped)
1785 max_pfn_mapped = pfn;
1786 #endif
1788 if (!pte_none(pte_page[pteidx]))
1789 continue;
1791 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1792 pte_page[pteidx] = pte;
1796 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1797 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1799 set_page_prot(pmd, PAGE_KERNEL_RO);
1801 #endif
1802 void __init xen_setup_machphys_mapping(void)
1804 struct xen_machphys_mapping mapping;
1806 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1807 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1808 machine_to_phys_nr = mapping.max_mfn + 1;
1809 } else {
1810 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1812 #ifdef CONFIG_X86_32
1813 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1814 < machine_to_phys_mapping);
1815 #endif
1818 #ifdef CONFIG_X86_64
1819 static void convert_pfn_mfn(void *v)
1821 pte_t *pte = v;
1822 int i;
1824 /* All levels are converted the same way, so just treat them
1825 as ptes. */
1826 for (i = 0; i < PTRS_PER_PTE; i++)
1827 pte[i] = xen_make_pte(pte[i].pte);
1829 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1830 unsigned long addr)
1832 if (*pt_base == PFN_DOWN(__pa(addr))) {
1833 set_page_prot((void *)addr, PAGE_KERNEL);
1834 clear_page((void *)addr);
1835 (*pt_base)++;
1837 if (*pt_end == PFN_DOWN(__pa(addr))) {
1838 set_page_prot((void *)addr, PAGE_KERNEL);
1839 clear_page((void *)addr);
1840 (*pt_end)--;
1844 * Set up the initial kernel pagetable.
1846 * We can construct this by grafting the Xen provided pagetable into
1847 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1848 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1849 * means that only the kernel has a physical mapping to start with -
1850 * but that's enough to get __va working. We need to fill in the rest
1851 * of the physical mapping once some sort of allocator has been set
1852 * up.
1854 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1856 pud_t *l3;
1857 pmd_t *l2;
1858 unsigned long addr[3];
1859 unsigned long pt_base, pt_end;
1860 unsigned i;
1862 /* max_pfn_mapped is the last pfn mapped in the initial memory
1863 * mappings. Considering that on Xen after the kernel mappings we
1864 * have the mappings of some pages that don't exist in pfn space, we
1865 * set max_pfn_mapped to the last real pfn mapped. */
1866 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1868 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1869 pt_end = pt_base + xen_start_info->nr_pt_frames;
1871 /* Zap identity mapping */
1872 init_level4_pgt[0] = __pgd(0);
1874 /* Pre-constructed entries are in pfn, so convert to mfn */
1875 /* L4[272] -> level3_ident_pgt
1876 * L4[511] -> level3_kernel_pgt */
1877 convert_pfn_mfn(init_level4_pgt);
1879 /* L3_i[0] -> level2_ident_pgt */
1880 convert_pfn_mfn(level3_ident_pgt);
1881 /* L3_k[510] -> level2_kernel_pgt
1882 * L3_i[511] -> level2_fixmap_pgt */
1883 convert_pfn_mfn(level3_kernel_pgt);
1885 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1886 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1887 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1889 addr[0] = (unsigned long)pgd;
1890 addr[1] = (unsigned long)l3;
1891 addr[2] = (unsigned long)l2;
1892 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1893 * Both L4[272][0] and L4[511][511] have entries that point to the same
1894 * L2 (PMD) tables. Meaning that if you modify it in __va space
1895 * it will be also modified in the __ka space! (But if you just
1896 * modify the PMD table to point to other PTE's or none, then you
1897 * are OK - which is what cleanup_highmap does) */
1898 copy_page(level2_ident_pgt, l2);
1899 /* Graft it onto L4[511][511] */
1900 copy_page(level2_kernel_pgt, l2);
1902 /* Get [511][510] and graft that in level2_fixmap_pgt */
1903 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1904 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1905 copy_page(level2_fixmap_pgt, l2);
1906 /* Note that we don't do anything with level1_fixmap_pgt which
1907 * we don't need. */
1909 /* Make pagetable pieces RO */
1910 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1911 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1912 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1913 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1914 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1915 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1916 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1918 /* Pin down new L4 */
1919 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1920 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1922 /* Unpin Xen-provided one */
1923 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1926 * At this stage there can be no user pgd, and no page
1927 * structure to attach it to, so make sure we just set kernel
1928 * pgd.
1930 xen_mc_batch();
1931 __xen_write_cr3(true, __pa(init_level4_pgt));
1932 xen_mc_issue(PARAVIRT_LAZY_CPU);
1934 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1935 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1936 * the initial domain. For guests using the toolstack, they are in:
1937 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1938 * rip out the [L4] (pgd), but for guests we shave off three pages.
1940 for (i = 0; i < ARRAY_SIZE(addr); i++)
1941 check_pt_base(&pt_base, &pt_end, addr[i]);
1943 /* Our (by three pages) smaller Xen pagetable that we are using */
1944 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1945 /* Revector the xen_start_info */
1946 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1948 #else /* !CONFIG_X86_64 */
1949 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1950 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1952 static void __init xen_write_cr3_init(unsigned long cr3)
1954 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1956 BUG_ON(read_cr3() != __pa(initial_page_table));
1957 BUG_ON(cr3 != __pa(swapper_pg_dir));
1960 * We are switching to swapper_pg_dir for the first time (from
1961 * initial_page_table) and therefore need to mark that page
1962 * read-only and then pin it.
1964 * Xen disallows sharing of kernel PMDs for PAE
1965 * guests. Therefore we must copy the kernel PMD from
1966 * initial_page_table into a new kernel PMD to be used in
1967 * swapper_pg_dir.
1969 swapper_kernel_pmd =
1970 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1971 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1972 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1973 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1974 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1976 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1977 xen_write_cr3(cr3);
1978 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1980 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1981 PFN_DOWN(__pa(initial_page_table)));
1982 set_page_prot(initial_page_table, PAGE_KERNEL);
1983 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1985 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1988 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1990 pmd_t *kernel_pmd;
1992 initial_kernel_pmd =
1993 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1995 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1996 xen_start_info->nr_pt_frames * PAGE_SIZE +
1997 512*1024);
1999 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2000 copy_page(initial_kernel_pmd, kernel_pmd);
2002 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2004 copy_page(initial_page_table, pgd);
2005 initial_page_table[KERNEL_PGD_BOUNDARY] =
2006 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2008 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2009 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2010 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2012 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2014 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2015 PFN_DOWN(__pa(initial_page_table)));
2016 xen_write_cr3(__pa(initial_page_table));
2018 memblock_reserve(__pa(xen_start_info->pt_base),
2019 xen_start_info->nr_pt_frames * PAGE_SIZE);
2021 #endif /* CONFIG_X86_64 */
2023 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2025 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2027 pte_t pte;
2029 phys >>= PAGE_SHIFT;
2031 switch (idx) {
2032 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2033 #ifdef CONFIG_X86_F00F_BUG
2034 case FIX_F00F_IDT:
2035 #endif
2036 #ifdef CONFIG_X86_32
2037 case FIX_WP_TEST:
2038 case FIX_VDSO:
2039 # ifdef CONFIG_HIGHMEM
2040 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2041 # endif
2042 #else
2043 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2044 case VVAR_PAGE:
2045 #endif
2046 case FIX_TEXT_POKE0:
2047 case FIX_TEXT_POKE1:
2048 /* All local page mappings */
2049 pte = pfn_pte(phys, prot);
2050 break;
2052 #ifdef CONFIG_X86_LOCAL_APIC
2053 case FIX_APIC_BASE: /* maps dummy local APIC */
2054 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2055 break;
2056 #endif
2058 #ifdef CONFIG_X86_IO_APIC
2059 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2061 * We just don't map the IO APIC - all access is via
2062 * hypercalls. Keep the address in the pte for reference.
2064 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2065 break;
2066 #endif
2068 case FIX_PARAVIRT_BOOTMAP:
2069 /* This is an MFN, but it isn't an IO mapping from the
2070 IO domain */
2071 pte = mfn_pte(phys, prot);
2072 break;
2074 default:
2075 /* By default, set_fixmap is used for hardware mappings */
2076 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2077 break;
2080 __native_set_fixmap(idx, pte);
2082 #ifdef CONFIG_X86_64
2083 /* Replicate changes to map the vsyscall page into the user
2084 pagetable vsyscall mapping. */
2085 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2086 idx == VVAR_PAGE) {
2087 unsigned long vaddr = __fix_to_virt(idx);
2088 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2090 #endif
2093 static void __init xen_post_allocator_init(void)
2095 pv_mmu_ops.set_pte = xen_set_pte;
2096 pv_mmu_ops.set_pmd = xen_set_pmd;
2097 pv_mmu_ops.set_pud = xen_set_pud;
2098 #if PAGETABLE_LEVELS == 4
2099 pv_mmu_ops.set_pgd = xen_set_pgd;
2100 #endif
2102 /* This will work as long as patching hasn't happened yet
2103 (which it hasn't) */
2104 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2105 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2106 pv_mmu_ops.release_pte = xen_release_pte;
2107 pv_mmu_ops.release_pmd = xen_release_pmd;
2108 #if PAGETABLE_LEVELS == 4
2109 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2110 pv_mmu_ops.release_pud = xen_release_pud;
2111 #endif
2113 #ifdef CONFIG_X86_64
2114 SetPagePinned(virt_to_page(level3_user_vsyscall));
2115 #endif
2116 xen_mark_init_mm_pinned();
2119 static void xen_leave_lazy_mmu(void)
2121 preempt_disable();
2122 xen_mc_flush();
2123 paravirt_leave_lazy_mmu();
2124 preempt_enable();
2127 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2128 .read_cr2 = xen_read_cr2,
2129 .write_cr2 = xen_write_cr2,
2131 .read_cr3 = xen_read_cr3,
2132 #ifdef CONFIG_X86_32
2133 .write_cr3 = xen_write_cr3_init,
2134 #else
2135 .write_cr3 = xen_write_cr3,
2136 #endif
2138 .flush_tlb_user = xen_flush_tlb,
2139 .flush_tlb_kernel = xen_flush_tlb,
2140 .flush_tlb_single = xen_flush_tlb_single,
2141 .flush_tlb_others = xen_flush_tlb_others,
2143 .pte_update = paravirt_nop,
2144 .pte_update_defer = paravirt_nop,
2146 .pgd_alloc = xen_pgd_alloc,
2147 .pgd_free = xen_pgd_free,
2149 .alloc_pte = xen_alloc_pte_init,
2150 .release_pte = xen_release_pte_init,
2151 .alloc_pmd = xen_alloc_pmd_init,
2152 .release_pmd = xen_release_pmd_init,
2154 .set_pte = xen_set_pte_init,
2155 .set_pte_at = xen_set_pte_at,
2156 .set_pmd = xen_set_pmd_hyper,
2158 .ptep_modify_prot_start = __ptep_modify_prot_start,
2159 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2161 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2162 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2164 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2165 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2167 #ifdef CONFIG_X86_PAE
2168 .set_pte_atomic = xen_set_pte_atomic,
2169 .pte_clear = xen_pte_clear,
2170 .pmd_clear = xen_pmd_clear,
2171 #endif /* CONFIG_X86_PAE */
2172 .set_pud = xen_set_pud_hyper,
2174 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2175 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2177 #if PAGETABLE_LEVELS == 4
2178 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2179 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2180 .set_pgd = xen_set_pgd_hyper,
2182 .alloc_pud = xen_alloc_pmd_init,
2183 .release_pud = xen_release_pmd_init,
2184 #endif /* PAGETABLE_LEVELS == 4 */
2186 .activate_mm = xen_activate_mm,
2187 .dup_mmap = xen_dup_mmap,
2188 .exit_mmap = xen_exit_mmap,
2190 .lazy_mode = {
2191 .enter = paravirt_enter_lazy_mmu,
2192 .leave = xen_leave_lazy_mmu,
2195 .set_fixmap = xen_set_fixmap,
2198 void __init xen_init_mmu_ops(void)
2200 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2201 x86_init.paging.pagetable_init = xen_pagetable_init;
2202 pv_mmu_ops = xen_mmu_ops;
2204 memset(dummy_mapping, 0xff, PAGE_SIZE);
2207 /* Protected by xen_reservation_lock. */
2208 #define MAX_CONTIG_ORDER 9 /* 2MB */
2209 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2211 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2212 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2213 unsigned long *in_frames,
2214 unsigned long *out_frames)
2216 int i;
2217 struct multicall_space mcs;
2219 xen_mc_batch();
2220 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2221 mcs = __xen_mc_entry(0);
2223 if (in_frames)
2224 in_frames[i] = virt_to_mfn(vaddr);
2226 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2227 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2229 if (out_frames)
2230 out_frames[i] = virt_to_pfn(vaddr);
2232 xen_mc_issue(0);
2236 * Update the pfn-to-mfn mappings for a virtual address range, either to
2237 * point to an array of mfns, or contiguously from a single starting
2238 * mfn.
2240 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2241 unsigned long *mfns,
2242 unsigned long first_mfn)
2244 unsigned i, limit;
2245 unsigned long mfn;
2247 xen_mc_batch();
2249 limit = 1u << order;
2250 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2251 struct multicall_space mcs;
2252 unsigned flags;
2254 mcs = __xen_mc_entry(0);
2255 if (mfns)
2256 mfn = mfns[i];
2257 else
2258 mfn = first_mfn + i;
2260 if (i < (limit - 1))
2261 flags = 0;
2262 else {
2263 if (order == 0)
2264 flags = UVMF_INVLPG | UVMF_ALL;
2265 else
2266 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2269 MULTI_update_va_mapping(mcs.mc, vaddr,
2270 mfn_pte(mfn, PAGE_KERNEL), flags);
2272 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2275 xen_mc_issue(0);
2279 * Perform the hypercall to exchange a region of our pfns to point to
2280 * memory with the required contiguous alignment. Takes the pfns as
2281 * input, and populates mfns as output.
2283 * Returns a success code indicating whether the hypervisor was able to
2284 * satisfy the request or not.
2286 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2287 unsigned long *pfns_in,
2288 unsigned long extents_out,
2289 unsigned int order_out,
2290 unsigned long *mfns_out,
2291 unsigned int address_bits)
2293 long rc;
2294 int success;
2296 struct xen_memory_exchange exchange = {
2297 .in = {
2298 .nr_extents = extents_in,
2299 .extent_order = order_in,
2300 .extent_start = pfns_in,
2301 .domid = DOMID_SELF
2303 .out = {
2304 .nr_extents = extents_out,
2305 .extent_order = order_out,
2306 .extent_start = mfns_out,
2307 .address_bits = address_bits,
2308 .domid = DOMID_SELF
2312 BUG_ON(extents_in << order_in != extents_out << order_out);
2314 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2315 success = (exchange.nr_exchanged == extents_in);
2317 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2318 BUG_ON(success && (rc != 0));
2320 return success;
2323 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2324 unsigned int address_bits)
2326 unsigned long *in_frames = discontig_frames, out_frame;
2327 unsigned long flags;
2328 int success;
2331 * Currently an auto-translated guest will not perform I/O, nor will
2332 * it require PAE page directories below 4GB. Therefore any calls to
2333 * this function are redundant and can be ignored.
2336 if (xen_feature(XENFEAT_auto_translated_physmap))
2337 return 0;
2339 if (unlikely(order > MAX_CONTIG_ORDER))
2340 return -ENOMEM;
2342 memset((void *) vstart, 0, PAGE_SIZE << order);
2344 spin_lock_irqsave(&xen_reservation_lock, flags);
2346 /* 1. Zap current PTEs, remembering MFNs. */
2347 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2349 /* 2. Get a new contiguous memory extent. */
2350 out_frame = virt_to_pfn(vstart);
2351 success = xen_exchange_memory(1UL << order, 0, in_frames,
2352 1, order, &out_frame,
2353 address_bits);
2355 /* 3. Map the new extent in place of old pages. */
2356 if (success)
2357 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2358 else
2359 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2361 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2363 return success ? 0 : -ENOMEM;
2365 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2367 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2369 unsigned long *out_frames = discontig_frames, in_frame;
2370 unsigned long flags;
2371 int success;
2373 if (xen_feature(XENFEAT_auto_translated_physmap))
2374 return;
2376 if (unlikely(order > MAX_CONTIG_ORDER))
2377 return;
2379 memset((void *) vstart, 0, PAGE_SIZE << order);
2381 spin_lock_irqsave(&xen_reservation_lock, flags);
2383 /* 1. Find start MFN of contiguous extent. */
2384 in_frame = virt_to_mfn(vstart);
2386 /* 2. Zap current PTEs. */
2387 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2389 /* 3. Do the exchange for non-contiguous MFNs. */
2390 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2391 0, out_frames, 0);
2393 /* 4. Map new pages in place of old pages. */
2394 if (success)
2395 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2396 else
2397 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2399 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2401 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2403 #ifdef CONFIG_XEN_PVHVM
2404 #ifdef CONFIG_PROC_VMCORE
2406 * This function is used in two contexts:
2407 * - the kdump kernel has to check whether a pfn of the crashed kernel
2408 * was a ballooned page. vmcore is using this function to decide
2409 * whether to access a pfn of the crashed kernel.
2410 * - the kexec kernel has to check whether a pfn was ballooned by the
2411 * previous kernel. If the pfn is ballooned, handle it properly.
2412 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2413 * handle the pfn special in this case.
2415 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2417 struct xen_hvm_get_mem_type a = {
2418 .domid = DOMID_SELF,
2419 .pfn = pfn,
2421 int ram;
2423 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2424 return -ENXIO;
2426 switch (a.mem_type) {
2427 case HVMMEM_mmio_dm:
2428 ram = 0;
2429 break;
2430 case HVMMEM_ram_rw:
2431 case HVMMEM_ram_ro:
2432 default:
2433 ram = 1;
2434 break;
2437 return ram;
2439 #endif
2441 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2443 struct xen_hvm_pagetable_dying a;
2444 int rc;
2446 a.domid = DOMID_SELF;
2447 a.gpa = __pa(mm->pgd);
2448 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2449 WARN_ON_ONCE(rc < 0);
2452 static int is_pagetable_dying_supported(void)
2454 struct xen_hvm_pagetable_dying a;
2455 int rc = 0;
2457 a.domid = DOMID_SELF;
2458 a.gpa = 0x00;
2459 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2460 if (rc < 0) {
2461 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2462 return 0;
2464 return 1;
2467 void __init xen_hvm_init_mmu_ops(void)
2469 if (is_pagetable_dying_supported())
2470 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2471 #ifdef CONFIG_PROC_VMCORE
2472 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2473 #endif
2475 #endif
2477 #define REMAP_BATCH_SIZE 16
2479 struct remap_data {
2480 unsigned long mfn;
2481 pgprot_t prot;
2482 struct mmu_update *mmu_update;
2485 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2486 unsigned long addr, void *data)
2488 struct remap_data *rmd = data;
2489 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2491 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2492 rmd->mmu_update->val = pte_val_ma(pte);
2493 rmd->mmu_update++;
2495 return 0;
2498 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2499 unsigned long addr,
2500 xen_pfn_t mfn, int nr,
2501 pgprot_t prot, unsigned domid,
2502 struct page **pages)
2505 struct remap_data rmd;
2506 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2507 int batch;
2508 unsigned long range;
2509 int err = 0;
2511 if (xen_feature(XENFEAT_auto_translated_physmap))
2512 return -EINVAL;
2514 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2516 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2518 rmd.mfn = mfn;
2519 rmd.prot = prot;
2521 while (nr) {
2522 batch = min(REMAP_BATCH_SIZE, nr);
2523 range = (unsigned long)batch << PAGE_SHIFT;
2525 rmd.mmu_update = mmu_update;
2526 err = apply_to_page_range(vma->vm_mm, addr, range,
2527 remap_area_mfn_pte_fn, &rmd);
2528 if (err)
2529 goto out;
2531 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2532 if (err < 0)
2533 goto out;
2535 nr -= batch;
2536 addr += range;
2539 err = 0;
2540 out:
2542 xen_flush_tlb_all();
2544 return err;
2546 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2548 /* Returns: 0 success */
2549 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2550 int numpgs, struct page **pages)
2552 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2553 return 0;
2555 return -EINVAL;
2557 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);