dmatest: don't use set_freezable_with_signal()
[linux-2.6.git] / kernel / fork.c
blobd53316e88d9d0006c57caee43f4982aa170cf513
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
77 #include <trace/events/sched.h>
80 * Protected counters by write_lock_irq(&tasklist_lock)
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
85 int max_threads; /* tunable limit on nr_threads */
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
94 return lockdep_is_held(&tasklist_lock);
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
99 int nr_processes(void)
101 int cpu;
102 int total = 0;
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
107 return total;
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 gfp_t mask = GFP_KERNEL;
126 #endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129 return page ? page_address(page) : NULL;
132 static inline void free_thread_info(struct thread_info *ti)
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 #endif
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
156 static void account_kernel_stack(struct thread_info *ti, int account)
158 struct zone *zone = page_zone(virt_to_page(ti));
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 void free_task(struct task_struct *tsk)
165 prop_local_destroy_single(&tsk->dirties);
166 account_kernel_stack(tsk->stack, -1);
167 free_thread_info(tsk->stack);
168 rt_mutex_debug_task_free(tsk);
169 ftrace_graph_exit_task(tsk);
170 free_task_struct(tsk);
172 EXPORT_SYMBOL(free_task);
174 static inline void free_signal_struct(struct signal_struct *sig)
176 taskstats_tgid_free(sig);
177 sched_autogroup_exit(sig);
178 kmem_cache_free(signal_cachep, sig);
181 static inline void put_signal_struct(struct signal_struct *sig)
183 if (atomic_dec_and_test(&sig->sigcnt))
184 free_signal_struct(sig);
187 void __put_task_struct(struct task_struct *tsk)
189 WARN_ON(!tsk->exit_state);
190 WARN_ON(atomic_read(&tsk->usage));
191 WARN_ON(tsk == current);
193 exit_creds(tsk);
194 delayacct_tsk_free(tsk);
195 put_signal_struct(tsk->signal);
197 if (!profile_handoff_task(tsk))
198 free_task(tsk);
200 EXPORT_SYMBOL_GPL(__put_task_struct);
203 * macro override instead of weak attribute alias, to workaround
204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
210 void __init fork_init(unsigned long mempages)
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
215 #endif
216 /* create a slab on which task_structs can be allocated */
217 task_struct_cachep =
218 kmem_cache_create("task_struct", sizeof(struct task_struct),
219 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
222 /* do the arch specific task caches init */
223 arch_task_cache_init();
226 * The default maximum number of threads is set to a safe
227 * value: the thread structures can take up at most half
228 * of memory.
230 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233 * we need to allow at least 20 threads to boot a system
235 if (max_threads < 20)
236 max_threads = 20;
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 init_task.signal->rlim[RLIMIT_NPROC];
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 struct task_struct *src)
247 *dst = *src;
248 return 0;
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 struct task_struct *tsk;
254 struct thread_info *ti;
255 unsigned long *stackend;
256 int node = tsk_fork_get_node(orig);
257 int err;
259 prepare_to_copy(orig);
261 tsk = alloc_task_struct_node(node);
262 if (!tsk)
263 return NULL;
265 ti = alloc_thread_info_node(tsk, node);
266 if (!ti) {
267 free_task_struct(tsk);
268 return NULL;
271 err = arch_dup_task_struct(tsk, orig);
272 if (err)
273 goto out;
275 tsk->stack = ti;
277 err = prop_local_init_single(&tsk->dirties);
278 if (err)
279 goto out;
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289 #endif
292 * One for us, one for whoever does the "release_task()" (usually
293 * parent)
295 atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
301 account_kernel_stack(ti, 1);
303 return tsk;
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
323 * Not linked in yet - no deadlock potential:
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
405 * Link in the new vma and copy the page table entries.
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
422 if (retval)
423 goto out;
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428 out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433 fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435 fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
451 static inline void mm_free_pgd(struct mm_struct *mm)
453 pgd_free(mm, mm->pgd);
455 #else
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468 static int __init coredump_filter_setup(char *s)
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
476 __setup("coredump_filter=", coredump_filter_setup);
478 #include <linux/init_task.h>
480 static void mm_init_aio(struct mm_struct *mm)
482 #ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
490 atomic_set(&mm->mm_users, 1);
491 atomic_set(&mm->mm_count, 1);
492 init_rwsem(&mm->mmap_sem);
493 INIT_LIST_HEAD(&mm->mmlist);
494 mm->flags = (current->mm) ?
495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 mm->core_state = NULL;
497 mm->nr_ptes = 0;
498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 spin_lock_init(&mm->page_table_lock);
500 mm->free_area_cache = TASK_UNMAPPED_BASE;
501 mm->cached_hole_size = ~0UL;
502 mm_init_aio(mm);
503 mm_init_owner(mm, p);
505 if (likely(!mm_alloc_pgd(mm))) {
506 mm->def_flags = 0;
507 mmu_notifier_mm_init(mm);
508 return mm;
511 free_mm(mm);
512 return NULL;
516 * Allocate and initialize an mm_struct.
518 struct mm_struct *mm_alloc(void)
520 struct mm_struct *mm;
522 mm = allocate_mm();
523 if (!mm)
524 return NULL;
526 memset(mm, 0, sizeof(*mm));
527 mm_init_cpumask(mm);
528 return mm_init(mm, current);
532 * Called when the last reference to the mm
533 * is dropped: either by a lazy thread or by
534 * mmput. Free the page directory and the mm.
536 void __mmdrop(struct mm_struct *mm)
538 BUG_ON(mm == &init_mm);
539 mm_free_pgd(mm);
540 destroy_context(mm);
541 mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 free_mm(mm);
547 EXPORT_SYMBOL_GPL(__mmdrop);
550 * Decrement the use count and release all resources for an mm.
552 void mmput(struct mm_struct *mm)
554 might_sleep();
556 if (atomic_dec_and_test(&mm->mm_users)) {
557 exit_aio(mm);
558 ksm_exit(mm);
559 khugepaged_exit(mm); /* must run before exit_mmap */
560 exit_mmap(mm);
561 set_mm_exe_file(mm, NULL);
562 if (!list_empty(&mm->mmlist)) {
563 spin_lock(&mmlist_lock);
564 list_del(&mm->mmlist);
565 spin_unlock(&mmlist_lock);
567 put_swap_token(mm);
568 if (mm->binfmt)
569 module_put(mm->binfmt->module);
570 mmdrop(mm);
573 EXPORT_SYMBOL_GPL(mmput);
576 * We added or removed a vma mapping the executable. The vmas are only mapped
577 * during exec and are not mapped with the mmap system call.
578 * Callers must hold down_write() on the mm's mmap_sem for these
580 void added_exe_file_vma(struct mm_struct *mm)
582 mm->num_exe_file_vmas++;
585 void removed_exe_file_vma(struct mm_struct *mm)
587 mm->num_exe_file_vmas--;
588 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
589 fput(mm->exe_file);
590 mm->exe_file = NULL;
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
597 if (new_exe_file)
598 get_file(new_exe_file);
599 if (mm->exe_file)
600 fput(mm->exe_file);
601 mm->exe_file = new_exe_file;
602 mm->num_exe_file_vmas = 0;
605 struct file *get_mm_exe_file(struct mm_struct *mm)
607 struct file *exe_file;
609 /* We need mmap_sem to protect against races with removal of
610 * VM_EXECUTABLE vmas */
611 down_read(&mm->mmap_sem);
612 exe_file = mm->exe_file;
613 if (exe_file)
614 get_file(exe_file);
615 up_read(&mm->mmap_sem);
616 return exe_file;
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
621 /* It's safe to write the exe_file pointer without exe_file_lock because
622 * this is called during fork when the task is not yet in /proc */
623 newmm->exe_file = get_mm_exe_file(oldmm);
627 * get_task_mm - acquire a reference to the task's mm
629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
630 * this kernel workthread has transiently adopted a user mm with use_mm,
631 * to do its AIO) is not set and if so returns a reference to it, after
632 * bumping up the use count. User must release the mm via mmput()
633 * after use. Typically used by /proc and ptrace.
635 struct mm_struct *get_task_mm(struct task_struct *task)
637 struct mm_struct *mm;
639 task_lock(task);
640 mm = task->mm;
641 if (mm) {
642 if (task->flags & PF_KTHREAD)
643 mm = NULL;
644 else
645 atomic_inc(&mm->mm_users);
647 task_unlock(task);
648 return mm;
650 EXPORT_SYMBOL_GPL(get_task_mm);
652 /* Please note the differences between mmput and mm_release.
653 * mmput is called whenever we stop holding onto a mm_struct,
654 * error success whatever.
656 * mm_release is called after a mm_struct has been removed
657 * from the current process.
659 * This difference is important for error handling, when we
660 * only half set up a mm_struct for a new process and need to restore
661 * the old one. Because we mmput the new mm_struct before
662 * restoring the old one. . .
663 * Eric Biederman 10 January 1998
665 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
667 struct completion *vfork_done = tsk->vfork_done;
669 /* Get rid of any futexes when releasing the mm */
670 #ifdef CONFIG_FUTEX
671 if (unlikely(tsk->robust_list)) {
672 exit_robust_list(tsk);
673 tsk->robust_list = NULL;
675 #ifdef CONFIG_COMPAT
676 if (unlikely(tsk->compat_robust_list)) {
677 compat_exit_robust_list(tsk);
678 tsk->compat_robust_list = NULL;
680 #endif
681 if (unlikely(!list_empty(&tsk->pi_state_list)))
682 exit_pi_state_list(tsk);
683 #endif
685 /* Get rid of any cached register state */
686 deactivate_mm(tsk, mm);
688 /* notify parent sleeping on vfork() */
689 if (vfork_done) {
690 tsk->vfork_done = NULL;
691 complete(vfork_done);
695 * If we're exiting normally, clear a user-space tid field if
696 * requested. We leave this alone when dying by signal, to leave
697 * the value intact in a core dump, and to save the unnecessary
698 * trouble otherwise. Userland only wants this done for a sys_exit.
700 if (tsk->clear_child_tid) {
701 if (!(tsk->flags & PF_SIGNALED) &&
702 atomic_read(&mm->mm_users) > 1) {
704 * We don't check the error code - if userspace has
705 * not set up a proper pointer then tough luck.
707 put_user(0, tsk->clear_child_tid);
708 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
709 1, NULL, NULL, 0);
711 tsk->clear_child_tid = NULL;
716 * Allocate a new mm structure and copy contents from the
717 * mm structure of the passed in task structure.
719 struct mm_struct *dup_mm(struct task_struct *tsk)
721 struct mm_struct *mm, *oldmm = current->mm;
722 int err;
724 if (!oldmm)
725 return NULL;
727 mm = allocate_mm();
728 if (!mm)
729 goto fail_nomem;
731 memcpy(mm, oldmm, sizeof(*mm));
732 mm_init_cpumask(mm);
734 /* Initializing for Swap token stuff */
735 mm->token_priority = 0;
736 mm->last_interval = 0;
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 mm->pmd_huge_pte = NULL;
740 #endif
742 if (!mm_init(mm, tsk))
743 goto fail_nomem;
745 if (init_new_context(tsk, mm))
746 goto fail_nocontext;
748 dup_mm_exe_file(oldmm, mm);
750 err = dup_mmap(mm, oldmm);
751 if (err)
752 goto free_pt;
754 mm->hiwater_rss = get_mm_rss(mm);
755 mm->hiwater_vm = mm->total_vm;
757 if (mm->binfmt && !try_module_get(mm->binfmt->module))
758 goto free_pt;
760 return mm;
762 free_pt:
763 /* don't put binfmt in mmput, we haven't got module yet */
764 mm->binfmt = NULL;
765 mmput(mm);
767 fail_nomem:
768 return NULL;
770 fail_nocontext:
772 * If init_new_context() failed, we cannot use mmput() to free the mm
773 * because it calls destroy_context()
775 mm_free_pgd(mm);
776 free_mm(mm);
777 return NULL;
780 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
782 struct mm_struct *mm, *oldmm;
783 int retval;
785 tsk->min_flt = tsk->maj_flt = 0;
786 tsk->nvcsw = tsk->nivcsw = 0;
787 #ifdef CONFIG_DETECT_HUNG_TASK
788 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
789 #endif
791 tsk->mm = NULL;
792 tsk->active_mm = NULL;
795 * Are we cloning a kernel thread?
797 * We need to steal a active VM for that..
799 oldmm = current->mm;
800 if (!oldmm)
801 return 0;
803 if (clone_flags & CLONE_VM) {
804 atomic_inc(&oldmm->mm_users);
805 mm = oldmm;
806 goto good_mm;
809 retval = -ENOMEM;
810 mm = dup_mm(tsk);
811 if (!mm)
812 goto fail_nomem;
814 good_mm:
815 /* Initializing for Swap token stuff */
816 mm->token_priority = 0;
817 mm->last_interval = 0;
819 tsk->mm = mm;
820 tsk->active_mm = mm;
821 return 0;
823 fail_nomem:
824 return retval;
827 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
829 struct fs_struct *fs = current->fs;
830 if (clone_flags & CLONE_FS) {
831 /* tsk->fs is already what we want */
832 spin_lock(&fs->lock);
833 if (fs->in_exec) {
834 spin_unlock(&fs->lock);
835 return -EAGAIN;
837 fs->users++;
838 spin_unlock(&fs->lock);
839 return 0;
841 tsk->fs = copy_fs_struct(fs);
842 if (!tsk->fs)
843 return -ENOMEM;
844 return 0;
847 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
849 struct files_struct *oldf, *newf;
850 int error = 0;
853 * A background process may not have any files ...
855 oldf = current->files;
856 if (!oldf)
857 goto out;
859 if (clone_flags & CLONE_FILES) {
860 atomic_inc(&oldf->count);
861 goto out;
864 newf = dup_fd(oldf, &error);
865 if (!newf)
866 goto out;
868 tsk->files = newf;
869 error = 0;
870 out:
871 return error;
874 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
876 #ifdef CONFIG_BLOCK
877 struct io_context *ioc = current->io_context;
879 if (!ioc)
880 return 0;
882 * Share io context with parent, if CLONE_IO is set
884 if (clone_flags & CLONE_IO) {
885 tsk->io_context = ioc_task_link(ioc);
886 if (unlikely(!tsk->io_context))
887 return -ENOMEM;
888 } else if (ioprio_valid(ioc->ioprio)) {
889 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
890 if (unlikely(!tsk->io_context))
891 return -ENOMEM;
893 tsk->io_context->ioprio = ioc->ioprio;
895 #endif
896 return 0;
899 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
901 struct sighand_struct *sig;
903 if (clone_flags & CLONE_SIGHAND) {
904 atomic_inc(&current->sighand->count);
905 return 0;
907 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
908 rcu_assign_pointer(tsk->sighand, sig);
909 if (!sig)
910 return -ENOMEM;
911 atomic_set(&sig->count, 1);
912 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
913 return 0;
916 void __cleanup_sighand(struct sighand_struct *sighand)
918 if (atomic_dec_and_test(&sighand->count))
919 kmem_cache_free(sighand_cachep, sighand);
924 * Initialize POSIX timer handling for a thread group.
926 static void posix_cpu_timers_init_group(struct signal_struct *sig)
928 unsigned long cpu_limit;
930 /* Thread group counters. */
931 thread_group_cputime_init(sig);
933 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
934 if (cpu_limit != RLIM_INFINITY) {
935 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
936 sig->cputimer.running = 1;
939 /* The timer lists. */
940 INIT_LIST_HEAD(&sig->cpu_timers[0]);
941 INIT_LIST_HEAD(&sig->cpu_timers[1]);
942 INIT_LIST_HEAD(&sig->cpu_timers[2]);
945 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
947 struct signal_struct *sig;
949 if (clone_flags & CLONE_THREAD)
950 return 0;
952 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
953 tsk->signal = sig;
954 if (!sig)
955 return -ENOMEM;
957 sig->nr_threads = 1;
958 atomic_set(&sig->live, 1);
959 atomic_set(&sig->sigcnt, 1);
960 init_waitqueue_head(&sig->wait_chldexit);
961 if (clone_flags & CLONE_NEWPID)
962 sig->flags |= SIGNAL_UNKILLABLE;
963 sig->curr_target = tsk;
964 init_sigpending(&sig->shared_pending);
965 INIT_LIST_HEAD(&sig->posix_timers);
967 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
968 sig->real_timer.function = it_real_fn;
970 task_lock(current->group_leader);
971 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
972 task_unlock(current->group_leader);
974 posix_cpu_timers_init_group(sig);
976 tty_audit_fork(sig);
977 sched_autogroup_fork(sig);
979 #ifdef CONFIG_CGROUPS
980 init_rwsem(&sig->threadgroup_fork_lock);
981 #endif
983 sig->oom_adj = current->signal->oom_adj;
984 sig->oom_score_adj = current->signal->oom_score_adj;
985 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
987 mutex_init(&sig->cred_guard_mutex);
989 return 0;
992 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
994 unsigned long new_flags = p->flags;
996 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
997 new_flags |= PF_FORKNOEXEC;
998 new_flags |= PF_STARTING;
999 p->flags = new_flags;
1002 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1004 current->clear_child_tid = tidptr;
1006 return task_pid_vnr(current);
1009 static void rt_mutex_init_task(struct task_struct *p)
1011 raw_spin_lock_init(&p->pi_lock);
1012 #ifdef CONFIG_RT_MUTEXES
1013 plist_head_init(&p->pi_waiters);
1014 p->pi_blocked_on = NULL;
1015 #endif
1018 #ifdef CONFIG_MM_OWNER
1019 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1021 mm->owner = p;
1023 #endif /* CONFIG_MM_OWNER */
1026 * Initialize POSIX timer handling for a single task.
1028 static void posix_cpu_timers_init(struct task_struct *tsk)
1030 tsk->cputime_expires.prof_exp = cputime_zero;
1031 tsk->cputime_expires.virt_exp = cputime_zero;
1032 tsk->cputime_expires.sched_exp = 0;
1033 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1034 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1035 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1039 * This creates a new process as a copy of the old one,
1040 * but does not actually start it yet.
1042 * It copies the registers, and all the appropriate
1043 * parts of the process environment (as per the clone
1044 * flags). The actual kick-off is left to the caller.
1046 static struct task_struct *copy_process(unsigned long clone_flags,
1047 unsigned long stack_start,
1048 struct pt_regs *regs,
1049 unsigned long stack_size,
1050 int __user *child_tidptr,
1051 struct pid *pid,
1052 int trace)
1054 int retval;
1055 struct task_struct *p;
1056 int cgroup_callbacks_done = 0;
1058 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1059 return ERR_PTR(-EINVAL);
1062 * Thread groups must share signals as well, and detached threads
1063 * can only be started up within the thread group.
1065 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1066 return ERR_PTR(-EINVAL);
1069 * Shared signal handlers imply shared VM. By way of the above,
1070 * thread groups also imply shared VM. Blocking this case allows
1071 * for various simplifications in other code.
1073 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1074 return ERR_PTR(-EINVAL);
1077 * Siblings of global init remain as zombies on exit since they are
1078 * not reaped by their parent (swapper). To solve this and to avoid
1079 * multi-rooted process trees, prevent global and container-inits
1080 * from creating siblings.
1082 if ((clone_flags & CLONE_PARENT) &&
1083 current->signal->flags & SIGNAL_UNKILLABLE)
1084 return ERR_PTR(-EINVAL);
1086 retval = security_task_create(clone_flags);
1087 if (retval)
1088 goto fork_out;
1090 retval = -ENOMEM;
1091 p = dup_task_struct(current);
1092 if (!p)
1093 goto fork_out;
1095 ftrace_graph_init_task(p);
1097 rt_mutex_init_task(p);
1099 #ifdef CONFIG_PROVE_LOCKING
1100 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1101 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1102 #endif
1103 retval = -EAGAIN;
1104 if (atomic_read(&p->real_cred->user->processes) >=
1105 task_rlimit(p, RLIMIT_NPROC)) {
1106 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1107 p->real_cred->user != INIT_USER)
1108 goto bad_fork_free;
1110 current->flags &= ~PF_NPROC_EXCEEDED;
1112 retval = copy_creds(p, clone_flags);
1113 if (retval < 0)
1114 goto bad_fork_free;
1117 * If multiple threads are within copy_process(), then this check
1118 * triggers too late. This doesn't hurt, the check is only there
1119 * to stop root fork bombs.
1121 retval = -EAGAIN;
1122 if (nr_threads >= max_threads)
1123 goto bad_fork_cleanup_count;
1125 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1126 goto bad_fork_cleanup_count;
1128 p->did_exec = 0;
1129 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1130 copy_flags(clone_flags, p);
1131 INIT_LIST_HEAD(&p->children);
1132 INIT_LIST_HEAD(&p->sibling);
1133 rcu_copy_process(p);
1134 p->vfork_done = NULL;
1135 spin_lock_init(&p->alloc_lock);
1137 init_sigpending(&p->pending);
1139 p->utime = cputime_zero;
1140 p->stime = cputime_zero;
1141 p->gtime = cputime_zero;
1142 p->utimescaled = cputime_zero;
1143 p->stimescaled = cputime_zero;
1144 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1145 p->prev_utime = cputime_zero;
1146 p->prev_stime = cputime_zero;
1147 #endif
1148 #if defined(SPLIT_RSS_COUNTING)
1149 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1150 #endif
1152 p->default_timer_slack_ns = current->timer_slack_ns;
1154 task_io_accounting_init(&p->ioac);
1155 acct_clear_integrals(p);
1157 posix_cpu_timers_init(p);
1159 do_posix_clock_monotonic_gettime(&p->start_time);
1160 p->real_start_time = p->start_time;
1161 monotonic_to_bootbased(&p->real_start_time);
1162 p->io_context = NULL;
1163 p->audit_context = NULL;
1164 if (clone_flags & CLONE_THREAD)
1165 threadgroup_fork_read_lock(current);
1166 cgroup_fork(p);
1167 #ifdef CONFIG_NUMA
1168 p->mempolicy = mpol_dup(p->mempolicy);
1169 if (IS_ERR(p->mempolicy)) {
1170 retval = PTR_ERR(p->mempolicy);
1171 p->mempolicy = NULL;
1172 goto bad_fork_cleanup_cgroup;
1174 mpol_fix_fork_child_flag(p);
1175 #endif
1176 #ifdef CONFIG_CPUSETS
1177 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1178 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1179 #endif
1180 #ifdef CONFIG_TRACE_IRQFLAGS
1181 p->irq_events = 0;
1182 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1183 p->hardirqs_enabled = 1;
1184 #else
1185 p->hardirqs_enabled = 0;
1186 #endif
1187 p->hardirq_enable_ip = 0;
1188 p->hardirq_enable_event = 0;
1189 p->hardirq_disable_ip = _THIS_IP_;
1190 p->hardirq_disable_event = 0;
1191 p->softirqs_enabled = 1;
1192 p->softirq_enable_ip = _THIS_IP_;
1193 p->softirq_enable_event = 0;
1194 p->softirq_disable_ip = 0;
1195 p->softirq_disable_event = 0;
1196 p->hardirq_context = 0;
1197 p->softirq_context = 0;
1198 #endif
1199 #ifdef CONFIG_LOCKDEP
1200 p->lockdep_depth = 0; /* no locks held yet */
1201 p->curr_chain_key = 0;
1202 p->lockdep_recursion = 0;
1203 #endif
1205 #ifdef CONFIG_DEBUG_MUTEXES
1206 p->blocked_on = NULL; /* not blocked yet */
1207 #endif
1208 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1209 p->memcg_batch.do_batch = 0;
1210 p->memcg_batch.memcg = NULL;
1211 #endif
1213 /* Perform scheduler related setup. Assign this task to a CPU. */
1214 sched_fork(p);
1216 retval = perf_event_init_task(p);
1217 if (retval)
1218 goto bad_fork_cleanup_policy;
1219 retval = audit_alloc(p);
1220 if (retval)
1221 goto bad_fork_cleanup_policy;
1222 /* copy all the process information */
1223 retval = copy_semundo(clone_flags, p);
1224 if (retval)
1225 goto bad_fork_cleanup_audit;
1226 retval = copy_files(clone_flags, p);
1227 if (retval)
1228 goto bad_fork_cleanup_semundo;
1229 retval = copy_fs(clone_flags, p);
1230 if (retval)
1231 goto bad_fork_cleanup_files;
1232 retval = copy_sighand(clone_flags, p);
1233 if (retval)
1234 goto bad_fork_cleanup_fs;
1235 retval = copy_signal(clone_flags, p);
1236 if (retval)
1237 goto bad_fork_cleanup_sighand;
1238 retval = copy_mm(clone_flags, p);
1239 if (retval)
1240 goto bad_fork_cleanup_signal;
1241 retval = copy_namespaces(clone_flags, p);
1242 if (retval)
1243 goto bad_fork_cleanup_mm;
1244 retval = copy_io(clone_flags, p);
1245 if (retval)
1246 goto bad_fork_cleanup_namespaces;
1247 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1248 if (retval)
1249 goto bad_fork_cleanup_io;
1251 if (pid != &init_struct_pid) {
1252 retval = -ENOMEM;
1253 pid = alloc_pid(p->nsproxy->pid_ns);
1254 if (!pid)
1255 goto bad_fork_cleanup_io;
1258 p->pid = pid_nr(pid);
1259 p->tgid = p->pid;
1260 if (clone_flags & CLONE_THREAD)
1261 p->tgid = current->tgid;
1263 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1265 * Clear TID on mm_release()?
1267 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1268 #ifdef CONFIG_BLOCK
1269 p->plug = NULL;
1270 #endif
1271 #ifdef CONFIG_FUTEX
1272 p->robust_list = NULL;
1273 #ifdef CONFIG_COMPAT
1274 p->compat_robust_list = NULL;
1275 #endif
1276 INIT_LIST_HEAD(&p->pi_state_list);
1277 p->pi_state_cache = NULL;
1278 #endif
1280 * sigaltstack should be cleared when sharing the same VM
1282 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1283 p->sas_ss_sp = p->sas_ss_size = 0;
1286 * Syscall tracing and stepping should be turned off in the
1287 * child regardless of CLONE_PTRACE.
1289 user_disable_single_step(p);
1290 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1291 #ifdef TIF_SYSCALL_EMU
1292 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1293 #endif
1294 clear_all_latency_tracing(p);
1296 /* ok, now we should be set up.. */
1297 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1298 p->pdeath_signal = 0;
1299 p->exit_state = 0;
1301 p->nr_dirtied = 0;
1302 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1305 * Ok, make it visible to the rest of the system.
1306 * We dont wake it up yet.
1308 p->group_leader = p;
1309 INIT_LIST_HEAD(&p->thread_group);
1311 /* Now that the task is set up, run cgroup callbacks if
1312 * necessary. We need to run them before the task is visible
1313 * on the tasklist. */
1314 cgroup_fork_callbacks(p);
1315 cgroup_callbacks_done = 1;
1317 /* Need tasklist lock for parent etc handling! */
1318 write_lock_irq(&tasklist_lock);
1320 /* CLONE_PARENT re-uses the old parent */
1321 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1322 p->real_parent = current->real_parent;
1323 p->parent_exec_id = current->parent_exec_id;
1324 } else {
1325 p->real_parent = current;
1326 p->parent_exec_id = current->self_exec_id;
1329 spin_lock(&current->sighand->siglock);
1332 * Process group and session signals need to be delivered to just the
1333 * parent before the fork or both the parent and the child after the
1334 * fork. Restart if a signal comes in before we add the new process to
1335 * it's process group.
1336 * A fatal signal pending means that current will exit, so the new
1337 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339 recalc_sigpending();
1340 if (signal_pending(current)) {
1341 spin_unlock(&current->sighand->siglock);
1342 write_unlock_irq(&tasklist_lock);
1343 retval = -ERESTARTNOINTR;
1344 goto bad_fork_free_pid;
1347 if (clone_flags & CLONE_THREAD) {
1348 current->signal->nr_threads++;
1349 atomic_inc(&current->signal->live);
1350 atomic_inc(&current->signal->sigcnt);
1351 p->group_leader = current->group_leader;
1352 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1355 if (likely(p->pid)) {
1356 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358 if (thread_group_leader(p)) {
1359 if (is_child_reaper(pid))
1360 p->nsproxy->pid_ns->child_reaper = p;
1362 p->signal->leader_pid = pid;
1363 p->signal->tty = tty_kref_get(current->signal->tty);
1364 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1365 attach_pid(p, PIDTYPE_SID, task_session(current));
1366 list_add_tail(&p->sibling, &p->real_parent->children);
1367 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1368 __this_cpu_inc(process_counts);
1370 attach_pid(p, PIDTYPE_PID, pid);
1371 nr_threads++;
1374 total_forks++;
1375 spin_unlock(&current->sighand->siglock);
1376 write_unlock_irq(&tasklist_lock);
1377 proc_fork_connector(p);
1378 cgroup_post_fork(p);
1379 if (clone_flags & CLONE_THREAD)
1380 threadgroup_fork_read_unlock(current);
1381 perf_event_fork(p);
1382 return p;
1384 bad_fork_free_pid:
1385 if (pid != &init_struct_pid)
1386 free_pid(pid);
1387 bad_fork_cleanup_io:
1388 if (p->io_context)
1389 exit_io_context(p);
1390 bad_fork_cleanup_namespaces:
1391 exit_task_namespaces(p);
1392 bad_fork_cleanup_mm:
1393 if (p->mm)
1394 mmput(p->mm);
1395 bad_fork_cleanup_signal:
1396 if (!(clone_flags & CLONE_THREAD))
1397 free_signal_struct(p->signal);
1398 bad_fork_cleanup_sighand:
1399 __cleanup_sighand(p->sighand);
1400 bad_fork_cleanup_fs:
1401 exit_fs(p); /* blocking */
1402 bad_fork_cleanup_files:
1403 exit_files(p); /* blocking */
1404 bad_fork_cleanup_semundo:
1405 exit_sem(p);
1406 bad_fork_cleanup_audit:
1407 audit_free(p);
1408 bad_fork_cleanup_policy:
1409 perf_event_free_task(p);
1410 #ifdef CONFIG_NUMA
1411 mpol_put(p->mempolicy);
1412 bad_fork_cleanup_cgroup:
1413 #endif
1414 if (clone_flags & CLONE_THREAD)
1415 threadgroup_fork_read_unlock(current);
1416 cgroup_exit(p, cgroup_callbacks_done);
1417 delayacct_tsk_free(p);
1418 module_put(task_thread_info(p)->exec_domain->module);
1419 bad_fork_cleanup_count:
1420 atomic_dec(&p->cred->user->processes);
1421 exit_creds(p);
1422 bad_fork_free:
1423 free_task(p);
1424 fork_out:
1425 return ERR_PTR(retval);
1428 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1430 memset(regs, 0, sizeof(struct pt_regs));
1431 return regs;
1434 static inline void init_idle_pids(struct pid_link *links)
1436 enum pid_type type;
1438 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1439 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1440 links[type].pid = &init_struct_pid;
1444 struct task_struct * __cpuinit fork_idle(int cpu)
1446 struct task_struct *task;
1447 struct pt_regs regs;
1449 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1450 &init_struct_pid, 0);
1451 if (!IS_ERR(task)) {
1452 init_idle_pids(task->pids);
1453 init_idle(task, cpu);
1456 return task;
1460 * Ok, this is the main fork-routine.
1462 * It copies the process, and if successful kick-starts
1463 * it and waits for it to finish using the VM if required.
1465 long do_fork(unsigned long clone_flags,
1466 unsigned long stack_start,
1467 struct pt_regs *regs,
1468 unsigned long stack_size,
1469 int __user *parent_tidptr,
1470 int __user *child_tidptr)
1472 struct task_struct *p;
1473 int trace = 0;
1474 long nr;
1477 * Do some preliminary argument and permissions checking before we
1478 * actually start allocating stuff
1480 if (clone_flags & CLONE_NEWUSER) {
1481 if (clone_flags & CLONE_THREAD)
1482 return -EINVAL;
1483 /* hopefully this check will go away when userns support is
1484 * complete
1486 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1487 !capable(CAP_SETGID))
1488 return -EPERM;
1492 * Determine whether and which event to report to ptracer. When
1493 * called from kernel_thread or CLONE_UNTRACED is explicitly
1494 * requested, no event is reported; otherwise, report if the event
1495 * for the type of forking is enabled.
1497 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1498 if (clone_flags & CLONE_VFORK)
1499 trace = PTRACE_EVENT_VFORK;
1500 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1501 trace = PTRACE_EVENT_CLONE;
1502 else
1503 trace = PTRACE_EVENT_FORK;
1505 if (likely(!ptrace_event_enabled(current, trace)))
1506 trace = 0;
1509 p = copy_process(clone_flags, stack_start, regs, stack_size,
1510 child_tidptr, NULL, trace);
1512 * Do this prior waking up the new thread - the thread pointer
1513 * might get invalid after that point, if the thread exits quickly.
1515 if (!IS_ERR(p)) {
1516 struct completion vfork;
1518 trace_sched_process_fork(current, p);
1520 nr = task_pid_vnr(p);
1522 if (clone_flags & CLONE_PARENT_SETTID)
1523 put_user(nr, parent_tidptr);
1525 if (clone_flags & CLONE_VFORK) {
1526 p->vfork_done = &vfork;
1527 init_completion(&vfork);
1530 audit_finish_fork(p);
1533 * We set PF_STARTING at creation in case tracing wants to
1534 * use this to distinguish a fully live task from one that
1535 * hasn't finished SIGSTOP raising yet. Now we clear it
1536 * and set the child going.
1538 p->flags &= ~PF_STARTING;
1540 wake_up_new_task(p);
1542 /* forking complete and child started to run, tell ptracer */
1543 if (unlikely(trace))
1544 ptrace_event(trace, nr);
1546 if (clone_flags & CLONE_VFORK) {
1547 freezer_do_not_count();
1548 wait_for_completion(&vfork);
1549 freezer_count();
1550 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1552 } else {
1553 nr = PTR_ERR(p);
1555 return nr;
1558 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1559 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1560 #endif
1562 static void sighand_ctor(void *data)
1564 struct sighand_struct *sighand = data;
1566 spin_lock_init(&sighand->siglock);
1567 init_waitqueue_head(&sighand->signalfd_wqh);
1570 void __init proc_caches_init(void)
1572 sighand_cachep = kmem_cache_create("sighand_cache",
1573 sizeof(struct sighand_struct), 0,
1574 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1575 SLAB_NOTRACK, sighand_ctor);
1576 signal_cachep = kmem_cache_create("signal_cache",
1577 sizeof(struct signal_struct), 0,
1578 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1579 files_cachep = kmem_cache_create("files_cache",
1580 sizeof(struct files_struct), 0,
1581 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1582 fs_cachep = kmem_cache_create("fs_cache",
1583 sizeof(struct fs_struct), 0,
1584 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1586 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1587 * whole struct cpumask for the OFFSTACK case. We could change
1588 * this to *only* allocate as much of it as required by the
1589 * maximum number of CPU's we can ever have. The cpumask_allocation
1590 * is at the end of the structure, exactly for that reason.
1592 mm_cachep = kmem_cache_create("mm_struct",
1593 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1594 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1595 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1596 mmap_init();
1597 nsproxy_cache_init();
1601 * Check constraints on flags passed to the unshare system call.
1603 static int check_unshare_flags(unsigned long unshare_flags)
1605 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1606 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1607 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1608 return -EINVAL;
1610 * Not implemented, but pretend it works if there is nothing to
1611 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1612 * needs to unshare vm.
1614 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1615 /* FIXME: get_task_mm() increments ->mm_users */
1616 if (atomic_read(&current->mm->mm_users) > 1)
1617 return -EINVAL;
1620 return 0;
1624 * Unshare the filesystem structure if it is being shared
1626 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1628 struct fs_struct *fs = current->fs;
1630 if (!(unshare_flags & CLONE_FS) || !fs)
1631 return 0;
1633 /* don't need lock here; in the worst case we'll do useless copy */
1634 if (fs->users == 1)
1635 return 0;
1637 *new_fsp = copy_fs_struct(fs);
1638 if (!*new_fsp)
1639 return -ENOMEM;
1641 return 0;
1645 * Unshare file descriptor table if it is being shared
1647 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1649 struct files_struct *fd = current->files;
1650 int error = 0;
1652 if ((unshare_flags & CLONE_FILES) &&
1653 (fd && atomic_read(&fd->count) > 1)) {
1654 *new_fdp = dup_fd(fd, &error);
1655 if (!*new_fdp)
1656 return error;
1659 return 0;
1663 * unshare allows a process to 'unshare' part of the process
1664 * context which was originally shared using clone. copy_*
1665 * functions used by do_fork() cannot be used here directly
1666 * because they modify an inactive task_struct that is being
1667 * constructed. Here we are modifying the current, active,
1668 * task_struct.
1670 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1672 struct fs_struct *fs, *new_fs = NULL;
1673 struct files_struct *fd, *new_fd = NULL;
1674 struct nsproxy *new_nsproxy = NULL;
1675 int do_sysvsem = 0;
1676 int err;
1678 err = check_unshare_flags(unshare_flags);
1679 if (err)
1680 goto bad_unshare_out;
1683 * If unsharing namespace, must also unshare filesystem information.
1685 if (unshare_flags & CLONE_NEWNS)
1686 unshare_flags |= CLONE_FS;
1688 * CLONE_NEWIPC must also detach from the undolist: after switching
1689 * to a new ipc namespace, the semaphore arrays from the old
1690 * namespace are unreachable.
1692 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1693 do_sysvsem = 1;
1694 err = unshare_fs(unshare_flags, &new_fs);
1695 if (err)
1696 goto bad_unshare_out;
1697 err = unshare_fd(unshare_flags, &new_fd);
1698 if (err)
1699 goto bad_unshare_cleanup_fs;
1700 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1701 if (err)
1702 goto bad_unshare_cleanup_fd;
1704 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1705 if (do_sysvsem) {
1707 * CLONE_SYSVSEM is equivalent to sys_exit().
1709 exit_sem(current);
1712 if (new_nsproxy) {
1713 switch_task_namespaces(current, new_nsproxy);
1714 new_nsproxy = NULL;
1717 task_lock(current);
1719 if (new_fs) {
1720 fs = current->fs;
1721 spin_lock(&fs->lock);
1722 current->fs = new_fs;
1723 if (--fs->users)
1724 new_fs = NULL;
1725 else
1726 new_fs = fs;
1727 spin_unlock(&fs->lock);
1730 if (new_fd) {
1731 fd = current->files;
1732 current->files = new_fd;
1733 new_fd = fd;
1736 task_unlock(current);
1739 if (new_nsproxy)
1740 put_nsproxy(new_nsproxy);
1742 bad_unshare_cleanup_fd:
1743 if (new_fd)
1744 put_files_struct(new_fd);
1746 bad_unshare_cleanup_fs:
1747 if (new_fs)
1748 free_fs_struct(new_fs);
1750 bad_unshare_out:
1751 return err;
1755 * Helper to unshare the files of the current task.
1756 * We don't want to expose copy_files internals to
1757 * the exec layer of the kernel.
1760 int unshare_files(struct files_struct **displaced)
1762 struct task_struct *task = current;
1763 struct files_struct *copy = NULL;
1764 int error;
1766 error = unshare_fd(CLONE_FILES, &copy);
1767 if (error || !copy) {
1768 *displaced = NULL;
1769 return error;
1771 *displaced = task->files;
1772 task_lock(task);
1773 task->files = copy;
1774 task_unlock(task);
1775 return 0;