tg3: Add SGMII phy support for 5719/5718 serdes
[linux-2.6.git] / kernel / signal.c
blob497330ec2ae948d707553824f7bb3b9b780d9065
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/signal.h>
39 #include <asm/param.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/siginfo.h>
43 #include <asm/cacheflush.h>
44 #include "audit.h" /* audit_signal_info() */
47 * SLAB caches for signal bits.
50 static struct kmem_cache *sigqueue_cachep;
52 int print_fatal_signals __read_mostly;
54 static void __user *sig_handler(struct task_struct *t, int sig)
56 return t->sighand->action[sig - 1].sa.sa_handler;
59 static int sig_handler_ignored(void __user *handler, int sig)
61 /* Is it explicitly or implicitly ignored? */
62 return handler == SIG_IGN ||
63 (handler == SIG_DFL && sig_kernel_ignore(sig));
66 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
68 void __user *handler;
70 handler = sig_handler(t, sig);
72 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
73 handler == SIG_DFL && !force)
74 return 1;
76 return sig_handler_ignored(handler, sig);
79 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 * Blocked signals are never ignored, since the
83 * signal handler may change by the time it is
84 * unblocked.
86 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
87 return 0;
89 if (!sig_task_ignored(t, sig, force))
90 return 0;
93 * Tracers may want to know about even ignored signals.
95 return !t->ptrace;
99 * Re-calculate pending state from the set of locally pending
100 * signals, globally pending signals, and blocked signals.
102 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
104 unsigned long ready;
105 long i;
107 switch (_NSIG_WORDS) {
108 default:
109 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
110 ready |= signal->sig[i] &~ blocked->sig[i];
111 break;
113 case 4: ready = signal->sig[3] &~ blocked->sig[3];
114 ready |= signal->sig[2] &~ blocked->sig[2];
115 ready |= signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
119 case 2: ready = signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
123 case 1: ready = signal->sig[0] &~ blocked->sig[0];
125 return ready != 0;
128 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
130 static int recalc_sigpending_tsk(struct task_struct *t)
132 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
133 PENDING(&t->pending, &t->blocked) ||
134 PENDING(&t->signal->shared_pending, &t->blocked)) {
135 set_tsk_thread_flag(t, TIF_SIGPENDING);
136 return 1;
139 * We must never clear the flag in another thread, or in current
140 * when it's possible the current syscall is returning -ERESTART*.
141 * So we don't clear it here, and only callers who know they should do.
143 return 0;
147 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
148 * This is superfluous when called on current, the wakeup is a harmless no-op.
150 void recalc_sigpending_and_wake(struct task_struct *t)
152 if (recalc_sigpending_tsk(t))
153 signal_wake_up(t, 0);
156 void recalc_sigpending(void)
158 if (!recalc_sigpending_tsk(current) && !freezing(current))
159 clear_thread_flag(TIF_SIGPENDING);
163 /* Given the mask, find the first available signal that should be serviced. */
165 #define SYNCHRONOUS_MASK \
166 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
167 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
169 int next_signal(struct sigpending *pending, sigset_t *mask)
171 unsigned long i, *s, *m, x;
172 int sig = 0;
174 s = pending->signal.sig;
175 m = mask->sig;
178 * Handle the first word specially: it contains the
179 * synchronous signals that need to be dequeued first.
181 x = *s &~ *m;
182 if (x) {
183 if (x & SYNCHRONOUS_MASK)
184 x &= SYNCHRONOUS_MASK;
185 sig = ffz(~x) + 1;
186 return sig;
189 switch (_NSIG_WORDS) {
190 default:
191 for (i = 1; i < _NSIG_WORDS; ++i) {
192 x = *++s &~ *++m;
193 if (!x)
194 continue;
195 sig = ffz(~x) + i*_NSIG_BPW + 1;
196 break;
198 break;
200 case 2:
201 x = s[1] &~ m[1];
202 if (!x)
203 break;
204 sig = ffz(~x) + _NSIG_BPW + 1;
205 break;
207 case 1:
208 /* Nothing to do */
209 break;
212 return sig;
215 static inline void print_dropped_signal(int sig)
217 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
219 if (!print_fatal_signals)
220 return;
222 if (!__ratelimit(&ratelimit_state))
223 return;
225 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
226 current->comm, current->pid, sig);
230 * task_set_jobctl_pending - set jobctl pending bits
231 * @task: target task
232 * @mask: pending bits to set
234 * Clear @mask from @task->jobctl. @mask must be subset of
235 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
236 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
237 * cleared. If @task is already being killed or exiting, this function
238 * becomes noop.
240 * CONTEXT:
241 * Must be called with @task->sighand->siglock held.
243 * RETURNS:
244 * %true if @mask is set, %false if made noop because @task was dying.
246 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
248 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
249 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
250 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
252 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
253 return false;
255 if (mask & JOBCTL_STOP_SIGMASK)
256 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
258 task->jobctl |= mask;
259 return true;
263 * task_clear_jobctl_trapping - clear jobctl trapping bit
264 * @task: target task
266 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
267 * Clear it and wake up the ptracer. Note that we don't need any further
268 * locking. @task->siglock guarantees that @task->parent points to the
269 * ptracer.
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
274 void task_clear_jobctl_trapping(struct task_struct *task)
276 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
277 task->jobctl &= ~JOBCTL_TRAPPING;
278 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
283 * task_clear_jobctl_pending - clear jobctl pending bits
284 * @task: target task
285 * @mask: pending bits to clear
287 * Clear @mask from @task->jobctl. @mask must be subset of
288 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
289 * STOP bits are cleared together.
291 * If clearing of @mask leaves no stop or trap pending, this function calls
292 * task_clear_jobctl_trapping().
294 * CONTEXT:
295 * Must be called with @task->sighand->siglock held.
297 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
299 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
301 if (mask & JOBCTL_STOP_PENDING)
302 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
304 task->jobctl &= ~mask;
306 if (!(task->jobctl & JOBCTL_PENDING_MASK))
307 task_clear_jobctl_trapping(task);
311 * task_participate_group_stop - participate in a group stop
312 * @task: task participating in a group stop
314 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
315 * Group stop states are cleared and the group stop count is consumed if
316 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
317 * stop, the appropriate %SIGNAL_* flags are set.
319 * CONTEXT:
320 * Must be called with @task->sighand->siglock held.
322 * RETURNS:
323 * %true if group stop completion should be notified to the parent, %false
324 * otherwise.
326 static bool task_participate_group_stop(struct task_struct *task)
328 struct signal_struct *sig = task->signal;
329 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
331 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
333 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
335 if (!consume)
336 return false;
338 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
339 sig->group_stop_count--;
342 * Tell the caller to notify completion iff we are entering into a
343 * fresh group stop. Read comment in do_signal_stop() for details.
345 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
346 sig->flags = SIGNAL_STOP_STOPPED;
347 return true;
349 return false;
353 * allocate a new signal queue record
354 * - this may be called without locks if and only if t == current, otherwise an
355 * appropriate lock must be held to stop the target task from exiting
357 static struct sigqueue *
358 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
360 struct sigqueue *q = NULL;
361 struct user_struct *user;
364 * Protect access to @t credentials. This can go away when all
365 * callers hold rcu read lock.
367 rcu_read_lock();
368 user = get_uid(__task_cred(t)->user);
369 atomic_inc(&user->sigpending);
370 rcu_read_unlock();
372 if (override_rlimit ||
373 atomic_read(&user->sigpending) <=
374 task_rlimit(t, RLIMIT_SIGPENDING)) {
375 q = kmem_cache_alloc(sigqueue_cachep, flags);
376 } else {
377 print_dropped_signal(sig);
380 if (unlikely(q == NULL)) {
381 atomic_dec(&user->sigpending);
382 free_uid(user);
383 } else {
384 INIT_LIST_HEAD(&q->list);
385 q->flags = 0;
386 q->user = user;
389 return q;
392 static void __sigqueue_free(struct sigqueue *q)
394 if (q->flags & SIGQUEUE_PREALLOC)
395 return;
396 atomic_dec(&q->user->sigpending);
397 free_uid(q->user);
398 kmem_cache_free(sigqueue_cachep, q);
401 void flush_sigqueue(struct sigpending *queue)
403 struct sigqueue *q;
405 sigemptyset(&queue->signal);
406 while (!list_empty(&queue->list)) {
407 q = list_entry(queue->list.next, struct sigqueue , list);
408 list_del_init(&q->list);
409 __sigqueue_free(q);
414 * Flush all pending signals for a task.
416 void __flush_signals(struct task_struct *t)
418 clear_tsk_thread_flag(t, TIF_SIGPENDING);
419 flush_sigqueue(&t->pending);
420 flush_sigqueue(&t->signal->shared_pending);
423 void flush_signals(struct task_struct *t)
425 unsigned long flags;
427 spin_lock_irqsave(&t->sighand->siglock, flags);
428 __flush_signals(t);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
432 static void __flush_itimer_signals(struct sigpending *pending)
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
437 signal = pending->signal;
438 sigemptyset(&retain);
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
452 sigorsets(&pending->signal, &signal, &retain);
455 void flush_itimer_signals(void)
457 struct task_struct *tsk = current;
458 unsigned long flags;
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
466 void ignore_signals(struct task_struct *t)
468 int i;
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
473 flush_signals(t);
477 * Flush all handlers for a task.
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
497 int unhandled_signal(struct task_struct *tsk, int sig)
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
509 * Notify the system that a driver wants to block all signals for this
510 * process, and wants to be notified if any signals at all were to be
511 * sent/acted upon. If the notifier routine returns non-zero, then the
512 * signal will be acted upon after all. If the notifier routine returns 0,
513 * then then signal will be blocked. Only one block per process is
514 * allowed. priv is a pointer to private data that the notifier routine
515 * can use to determine if the signal should be blocked or not.
517 void
518 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
520 unsigned long flags;
522 spin_lock_irqsave(&current->sighand->siglock, flags);
523 current->notifier_mask = mask;
524 current->notifier_data = priv;
525 current->notifier = notifier;
526 spin_unlock_irqrestore(&current->sighand->siglock, flags);
529 /* Notify the system that blocking has ended. */
531 void
532 unblock_all_signals(void)
534 unsigned long flags;
536 spin_lock_irqsave(&current->sighand->siglock, flags);
537 current->notifier = NULL;
538 current->notifier_data = NULL;
539 recalc_sigpending();
540 spin_unlock_irqrestore(&current->sighand->siglock, flags);
543 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
545 struct sigqueue *q, *first = NULL;
548 * Collect the siginfo appropriate to this signal. Check if
549 * there is another siginfo for the same signal.
551 list_for_each_entry(q, &list->list, list) {
552 if (q->info.si_signo == sig) {
553 if (first)
554 goto still_pending;
555 first = q;
559 sigdelset(&list->signal, sig);
561 if (first) {
562 still_pending:
563 list_del_init(&first->list);
564 copy_siginfo(info, &first->info);
565 __sigqueue_free(first);
566 } else {
568 * Ok, it wasn't in the queue. This must be
569 * a fast-pathed signal or we must have been
570 * out of queue space. So zero out the info.
572 info->si_signo = sig;
573 info->si_errno = 0;
574 info->si_code = SI_USER;
575 info->si_pid = 0;
576 info->si_uid = 0;
580 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
581 siginfo_t *info)
583 int sig = next_signal(pending, mask);
585 if (sig) {
586 if (current->notifier) {
587 if (sigismember(current->notifier_mask, sig)) {
588 if (!(current->notifier)(current->notifier_data)) {
589 clear_thread_flag(TIF_SIGPENDING);
590 return 0;
595 collect_signal(sig, pending, info);
598 return sig;
602 * Dequeue a signal and return the element to the caller, which is
603 * expected to free it.
605 * All callers have to hold the siglock.
607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
609 int signr;
611 /* We only dequeue private signals from ourselves, we don't let
612 * signalfd steal them
614 signr = __dequeue_signal(&tsk->pending, mask, info);
615 if (!signr) {
616 signr = __dequeue_signal(&tsk->signal->shared_pending,
617 mask, info);
619 * itimer signal ?
621 * itimers are process shared and we restart periodic
622 * itimers in the signal delivery path to prevent DoS
623 * attacks in the high resolution timer case. This is
624 * compliant with the old way of self-restarting
625 * itimers, as the SIGALRM is a legacy signal and only
626 * queued once. Changing the restart behaviour to
627 * restart the timer in the signal dequeue path is
628 * reducing the timer noise on heavy loaded !highres
629 * systems too.
631 if (unlikely(signr == SIGALRM)) {
632 struct hrtimer *tmr = &tsk->signal->real_timer;
634 if (!hrtimer_is_queued(tmr) &&
635 tsk->signal->it_real_incr.tv64 != 0) {
636 hrtimer_forward(tmr, tmr->base->get_time(),
637 tsk->signal->it_real_incr);
638 hrtimer_restart(tmr);
643 recalc_sigpending();
644 if (!signr)
645 return 0;
647 if (unlikely(sig_kernel_stop(signr))) {
649 * Set a marker that we have dequeued a stop signal. Our
650 * caller might release the siglock and then the pending
651 * stop signal it is about to process is no longer in the
652 * pending bitmasks, but must still be cleared by a SIGCONT
653 * (and overruled by a SIGKILL). So those cases clear this
654 * shared flag after we've set it. Note that this flag may
655 * remain set after the signal we return is ignored or
656 * handled. That doesn't matter because its only purpose
657 * is to alert stop-signal processing code when another
658 * processor has come along and cleared the flag.
660 current->jobctl |= JOBCTL_STOP_DEQUEUED;
662 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
664 * Release the siglock to ensure proper locking order
665 * of timer locks outside of siglocks. Note, we leave
666 * irqs disabled here, since the posix-timers code is
667 * about to disable them again anyway.
669 spin_unlock(&tsk->sighand->siglock);
670 do_schedule_next_timer(info);
671 spin_lock(&tsk->sighand->siglock);
673 return signr;
677 * Tell a process that it has a new active signal..
679 * NOTE! we rely on the previous spin_lock to
680 * lock interrupts for us! We can only be called with
681 * "siglock" held, and the local interrupt must
682 * have been disabled when that got acquired!
684 * No need to set need_resched since signal event passing
685 * goes through ->blocked
687 void signal_wake_up_state(struct task_struct *t, unsigned int state)
689 set_tsk_thread_flag(t, TIF_SIGPENDING);
691 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
692 * case. We don't check t->state here because there is a race with it
693 * executing another processor and just now entering stopped state.
694 * By using wake_up_state, we ensure the process will wake up and
695 * handle its death signal.
697 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
698 kick_process(t);
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
705 * All callers must be holding the siglock.
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
712 struct sigqueue *q, *n;
713 sigset_t m;
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
726 return 1;
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
732 * All callers must be holding the siglock.
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
736 struct sigqueue *q, *n;
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
749 return 1;
752 static inline int is_si_special(const struct siginfo *info)
754 return info <= SEND_SIG_FORCED;
757 static inline bool si_fromuser(const struct siginfo *info)
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
764 * called with RCU read lock from check_kill_permission()
766 static int kill_ok_by_cred(struct task_struct *t)
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
780 return 0;
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
790 struct pid *sid;
791 int error;
793 if (!valid_signal(sig))
794 return -EINVAL;
796 if (!si_fromuser(info))
797 return 0;
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
819 return security_task_kill(t, info, sig, 0);
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
839 static void ptrace_trap_notify(struct task_struct *t)
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
865 * The process is in the middle of dying, nothing to do.
867 } else if (sig_kernel_stop(sig)) {
869 * This is a stop signal. Remove SIGCONT from all queues.
871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 t = p;
873 do {
874 rm_from_queue(sigmask(SIGCONT), &t->pending);
875 } while_each_thread(p, t);
876 } else if (sig == SIGCONT) {
877 unsigned int why;
879 * Remove all stop signals from all queues, wake all threads.
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 t = p;
883 do {
884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 if (likely(!(t->ptrace & PT_SEIZED)))
887 wake_up_state(t, __TASK_STOPPED);
888 else
889 ptrace_trap_notify(t);
890 } while_each_thread(p, t);
893 * Notify the parent with CLD_CONTINUED if we were stopped.
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
900 why = 0;
901 if (signal->flags & SIGNAL_STOP_STOPPED)
902 why |= SIGNAL_CLD_CONTINUED;
903 else if (signal->group_stop_count)
904 why |= SIGNAL_CLD_STOPPED;
906 if (why) {
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
912 signal->flags = why | SIGNAL_STOP_CONTINUED;
913 signal->group_stop_count = 0;
914 signal->group_exit_code = 0;
918 return !sig_ignored(p, sig, force);
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
929 static inline int wants_signal(int sig, struct task_struct *p)
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (task_is_stopped_or_traced(p))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
942 static void complete_signal(int sig, struct task_struct *p, int group)
944 struct signal_struct *signal = p->signal;
945 struct task_struct *t;
948 * Now find a thread we can wake up to take the signal off the queue.
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
953 if (wants_signal(sig, p))
954 t = p;
955 else if (!group || thread_group_empty(p))
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
960 return;
961 else {
963 * Otherwise try to find a suitable thread.
965 t = signal->curr_target;
966 while (!wants_signal(sig, t)) {
967 t = next_thread(t);
968 if (t == signal->curr_target)
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
974 return;
976 signal->curr_target = t;
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
983 if (sig_fatal(p, sig) &&
984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 !sigismember(&t->real_blocked, sig) &&
986 (sig == SIGKILL || !t->ptrace)) {
988 * This signal will be fatal to the whole group.
990 if (!sig_kernel_coredump(sig)) {
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
997 signal->flags = SIGNAL_GROUP_EXIT;
998 signal->group_exit_code = sig;
999 signal->group_stop_count = 0;
1000 t = p;
1001 do {
1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 } while_each_thread(p, t);
1006 return;
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1014 signal_wake_up(t, sig == SIGKILL);
1015 return;
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1026 if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 return;
1029 if (SI_FROMKERNEL(info))
1030 return;
1032 rcu_read_lock();
1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 make_kuid(current_user_ns(), info->si_uid));
1035 rcu_read_unlock();
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1040 return;
1042 #endif
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 int group, int from_ancestor_ns)
1047 struct sigpending *pending;
1048 struct sigqueue *q;
1049 int override_rlimit;
1050 int ret = 0, result;
1052 assert_spin_locked(&t->sighand->siglock);
1054 result = TRACE_SIGNAL_IGNORED;
1055 if (!prepare_signal(sig, t,
1056 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 goto ret;
1059 pending = group ? &t->signal->shared_pending : &t->pending;
1061 * Short-circuit ignored signals and support queuing
1062 * exactly one non-rt signal, so that we can get more
1063 * detailed information about the cause of the signal.
1065 result = TRACE_SIGNAL_ALREADY_PENDING;
1066 if (legacy_queue(pending, sig))
1067 goto ret;
1069 result = TRACE_SIGNAL_DELIVERED;
1071 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 * or SIGKILL.
1074 if (info == SEND_SIG_FORCED)
1075 goto out_set;
1078 * Real-time signals must be queued if sent by sigqueue, or
1079 * some other real-time mechanism. It is implementation
1080 * defined whether kill() does so. We attempt to do so, on
1081 * the principle of least surprise, but since kill is not
1082 * allowed to fail with EAGAIN when low on memory we just
1083 * make sure at least one signal gets delivered and don't
1084 * pass on the info struct.
1086 if (sig < SIGRTMIN)
1087 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 else
1089 override_rlimit = 0;
1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 override_rlimit);
1093 if (q) {
1094 list_add_tail(&q->list, &pending->list);
1095 switch ((unsigned long) info) {
1096 case (unsigned long) SEND_SIG_NOINFO:
1097 q->info.si_signo = sig;
1098 q->info.si_errno = 0;
1099 q->info.si_code = SI_USER;
1100 q->info.si_pid = task_tgid_nr_ns(current,
1101 task_active_pid_ns(t));
1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 q->info.si_signo = sig;
1106 q->info.si_errno = 0;
1107 q->info.si_code = SI_KERNEL;
1108 q->info.si_pid = 0;
1109 q->info.si_uid = 0;
1110 break;
1111 default:
1112 copy_siginfo(&q->info, info);
1113 if (from_ancestor_ns)
1114 q->info.si_pid = 0;
1115 break;
1118 userns_fixup_signal_uid(&q->info, t);
1120 } else if (!is_si_special(info)) {
1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1123 * Queue overflow, abort. We may abort if the
1124 * signal was rt and sent by user using something
1125 * other than kill().
1127 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 ret = -EAGAIN;
1129 goto ret;
1130 } else {
1132 * This is a silent loss of information. We still
1133 * send the signal, but the *info bits are lost.
1135 result = TRACE_SIGNAL_LOSE_INFO;
1139 out_set:
1140 signalfd_notify(t, sig);
1141 sigaddset(&pending->signal, sig);
1142 complete_signal(sig, t, group);
1143 ret:
1144 trace_signal_generate(sig, info, t, group, result);
1145 return ret;
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 int group)
1151 int from_ancestor_ns = 0;
1153 #ifdef CONFIG_PID_NS
1154 from_ancestor_ns = si_fromuser(info) &&
1155 !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1158 return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 static void print_fatal_signal(int signr)
1163 struct pt_regs *regs = signal_pt_regs();
1164 printk(KERN_INFO "%s/%d: potentially unexpected fatal signal %d.\n",
1165 current->comm, task_pid_nr(current), signr);
1167 #if defined(__i386__) && !defined(__arch_um__)
1168 printk(KERN_INFO "code at %08lx: ", regs->ip);
1170 int i;
1171 for (i = 0; i < 16; i++) {
1172 unsigned char insn;
1174 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1175 break;
1176 printk(KERN_CONT "%02x ", insn);
1179 printk(KERN_CONT "\n");
1180 #endif
1181 preempt_disable();
1182 show_regs(regs);
1183 preempt_enable();
1186 static int __init setup_print_fatal_signals(char *str)
1188 get_option (&str, &print_fatal_signals);
1190 return 1;
1193 __setup("print-fatal-signals=", setup_print_fatal_signals);
1196 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1198 return send_signal(sig, info, p, 1);
1201 static int
1202 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1204 return send_signal(sig, info, t, 0);
1207 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1208 bool group)
1210 unsigned long flags;
1211 int ret = -ESRCH;
1213 if (lock_task_sighand(p, &flags)) {
1214 ret = send_signal(sig, info, p, group);
1215 unlock_task_sighand(p, &flags);
1218 return ret;
1222 * Force a signal that the process can't ignore: if necessary
1223 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1225 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1226 * since we do not want to have a signal handler that was blocked
1227 * be invoked when user space had explicitly blocked it.
1229 * We don't want to have recursive SIGSEGV's etc, for example,
1230 * that is why we also clear SIGNAL_UNKILLABLE.
1233 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1235 unsigned long int flags;
1236 int ret, blocked, ignored;
1237 struct k_sigaction *action;
1239 spin_lock_irqsave(&t->sighand->siglock, flags);
1240 action = &t->sighand->action[sig-1];
1241 ignored = action->sa.sa_handler == SIG_IGN;
1242 blocked = sigismember(&t->blocked, sig);
1243 if (blocked || ignored) {
1244 action->sa.sa_handler = SIG_DFL;
1245 if (blocked) {
1246 sigdelset(&t->blocked, sig);
1247 recalc_sigpending_and_wake(t);
1250 if (action->sa.sa_handler == SIG_DFL)
1251 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1252 ret = specific_send_sig_info(sig, info, t);
1253 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255 return ret;
1259 * Nuke all other threads in the group.
1261 int zap_other_threads(struct task_struct *p)
1263 struct task_struct *t = p;
1264 int count = 0;
1266 p->signal->group_stop_count = 0;
1268 while_each_thread(p, t) {
1269 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1270 count++;
1272 /* Don't bother with already dead threads */
1273 if (t->exit_state)
1274 continue;
1275 sigaddset(&t->pending.signal, SIGKILL);
1276 signal_wake_up(t, 1);
1279 return count;
1282 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1283 unsigned long *flags)
1285 struct sighand_struct *sighand;
1287 for (;;) {
1288 local_irq_save(*flags);
1289 rcu_read_lock();
1290 sighand = rcu_dereference(tsk->sighand);
1291 if (unlikely(sighand == NULL)) {
1292 rcu_read_unlock();
1293 local_irq_restore(*flags);
1294 break;
1297 spin_lock(&sighand->siglock);
1298 if (likely(sighand == tsk->sighand)) {
1299 rcu_read_unlock();
1300 break;
1302 spin_unlock(&sighand->siglock);
1303 rcu_read_unlock();
1304 local_irq_restore(*flags);
1307 return sighand;
1311 * send signal info to all the members of a group
1313 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1315 int ret;
1317 rcu_read_lock();
1318 ret = check_kill_permission(sig, info, p);
1319 rcu_read_unlock();
1321 if (!ret && sig)
1322 ret = do_send_sig_info(sig, info, p, true);
1324 return ret;
1328 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1329 * control characters do (^C, ^Z etc)
1330 * - the caller must hold at least a readlock on tasklist_lock
1332 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1334 struct task_struct *p = NULL;
1335 int retval, success;
1337 success = 0;
1338 retval = -ESRCH;
1339 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1340 int err = group_send_sig_info(sig, info, p);
1341 success |= !err;
1342 retval = err;
1343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1344 return success ? 0 : retval;
1347 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1349 int error = -ESRCH;
1350 struct task_struct *p;
1352 rcu_read_lock();
1353 retry:
1354 p = pid_task(pid, PIDTYPE_PID);
1355 if (p) {
1356 error = group_send_sig_info(sig, info, p);
1357 if (unlikely(error == -ESRCH))
1359 * The task was unhashed in between, try again.
1360 * If it is dead, pid_task() will return NULL,
1361 * if we race with de_thread() it will find the
1362 * new leader.
1364 goto retry;
1366 rcu_read_unlock();
1368 return error;
1371 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1373 int error;
1374 rcu_read_lock();
1375 error = kill_pid_info(sig, info, find_vpid(pid));
1376 rcu_read_unlock();
1377 return error;
1380 static int kill_as_cred_perm(const struct cred *cred,
1381 struct task_struct *target)
1383 const struct cred *pcred = __task_cred(target);
1384 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1385 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1386 return 0;
1387 return 1;
1390 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1391 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1392 const struct cred *cred, u32 secid)
1394 int ret = -EINVAL;
1395 struct task_struct *p;
1396 unsigned long flags;
1398 if (!valid_signal(sig))
1399 return ret;
1401 rcu_read_lock();
1402 p = pid_task(pid, PIDTYPE_PID);
1403 if (!p) {
1404 ret = -ESRCH;
1405 goto out_unlock;
1407 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1408 ret = -EPERM;
1409 goto out_unlock;
1411 ret = security_task_kill(p, info, sig, secid);
1412 if (ret)
1413 goto out_unlock;
1415 if (sig) {
1416 if (lock_task_sighand(p, &flags)) {
1417 ret = __send_signal(sig, info, p, 1, 0);
1418 unlock_task_sighand(p, &flags);
1419 } else
1420 ret = -ESRCH;
1422 out_unlock:
1423 rcu_read_unlock();
1424 return ret;
1426 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1429 * kill_something_info() interprets pid in interesting ways just like kill(2).
1431 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1432 * is probably wrong. Should make it like BSD or SYSV.
1435 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 int ret;
1439 if (pid > 0) {
1440 rcu_read_lock();
1441 ret = kill_pid_info(sig, info, find_vpid(pid));
1442 rcu_read_unlock();
1443 return ret;
1446 read_lock(&tasklist_lock);
1447 if (pid != -1) {
1448 ret = __kill_pgrp_info(sig, info,
1449 pid ? find_vpid(-pid) : task_pgrp(current));
1450 } else {
1451 int retval = 0, count = 0;
1452 struct task_struct * p;
1454 for_each_process(p) {
1455 if (task_pid_vnr(p) > 1 &&
1456 !same_thread_group(p, current)) {
1457 int err = group_send_sig_info(sig, info, p);
1458 ++count;
1459 if (err != -EPERM)
1460 retval = err;
1463 ret = count ? retval : -ESRCH;
1465 read_unlock(&tasklist_lock);
1467 return ret;
1471 * These are for backward compatibility with the rest of the kernel source.
1474 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1477 * Make sure legacy kernel users don't send in bad values
1478 * (normal paths check this in check_kill_permission).
1480 if (!valid_signal(sig))
1481 return -EINVAL;
1483 return do_send_sig_info(sig, info, p, false);
1486 #define __si_special(priv) \
1487 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1490 send_sig(int sig, struct task_struct *p, int priv)
1492 return send_sig_info(sig, __si_special(priv), p);
1495 void
1496 force_sig(int sig, struct task_struct *p)
1498 force_sig_info(sig, SEND_SIG_PRIV, p);
1502 * When things go south during signal handling, we
1503 * will force a SIGSEGV. And if the signal that caused
1504 * the problem was already a SIGSEGV, we'll want to
1505 * make sure we don't even try to deliver the signal..
1508 force_sigsegv(int sig, struct task_struct *p)
1510 if (sig == SIGSEGV) {
1511 unsigned long flags;
1512 spin_lock_irqsave(&p->sighand->siglock, flags);
1513 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1514 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 force_sig(SIGSEGV, p);
1517 return 0;
1520 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 int ret;
1524 read_lock(&tasklist_lock);
1525 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1526 read_unlock(&tasklist_lock);
1528 return ret;
1530 EXPORT_SYMBOL(kill_pgrp);
1532 int kill_pid(struct pid *pid, int sig, int priv)
1534 return kill_pid_info(sig, __si_special(priv), pid);
1536 EXPORT_SYMBOL(kill_pid);
1539 * These functions support sending signals using preallocated sigqueue
1540 * structures. This is needed "because realtime applications cannot
1541 * afford to lose notifications of asynchronous events, like timer
1542 * expirations or I/O completions". In the case of POSIX Timers
1543 * we allocate the sigqueue structure from the timer_create. If this
1544 * allocation fails we are able to report the failure to the application
1545 * with an EAGAIN error.
1547 struct sigqueue *sigqueue_alloc(void)
1549 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551 if (q)
1552 q->flags |= SIGQUEUE_PREALLOC;
1554 return q;
1557 void sigqueue_free(struct sigqueue *q)
1559 unsigned long flags;
1560 spinlock_t *lock = &current->sighand->siglock;
1562 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 * We must hold ->siglock while testing q->list
1565 * to serialize with collect_signal() or with
1566 * __exit_signal()->flush_sigqueue().
1568 spin_lock_irqsave(lock, flags);
1569 q->flags &= ~SIGQUEUE_PREALLOC;
1571 * If it is queued it will be freed when dequeued,
1572 * like the "regular" sigqueue.
1574 if (!list_empty(&q->list))
1575 q = NULL;
1576 spin_unlock_irqrestore(lock, flags);
1578 if (q)
1579 __sigqueue_free(q);
1582 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 int sig = q->info.si_signo;
1585 struct sigpending *pending;
1586 unsigned long flags;
1587 int ret, result;
1589 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591 ret = -1;
1592 if (!likely(lock_task_sighand(t, &flags)))
1593 goto ret;
1595 ret = 1; /* the signal is ignored */
1596 result = TRACE_SIGNAL_IGNORED;
1597 if (!prepare_signal(sig, t, false))
1598 goto out;
1600 ret = 0;
1601 if (unlikely(!list_empty(&q->list))) {
1603 * If an SI_TIMER entry is already queue just increment
1604 * the overrun count.
1606 BUG_ON(q->info.si_code != SI_TIMER);
1607 q->info.si_overrun++;
1608 result = TRACE_SIGNAL_ALREADY_PENDING;
1609 goto out;
1611 q->info.si_overrun = 0;
1613 signalfd_notify(t, sig);
1614 pending = group ? &t->signal->shared_pending : &t->pending;
1615 list_add_tail(&q->list, &pending->list);
1616 sigaddset(&pending->signal, sig);
1617 complete_signal(sig, t, group);
1618 result = TRACE_SIGNAL_DELIVERED;
1619 out:
1620 trace_signal_generate(sig, &q->info, t, group, result);
1621 unlock_task_sighand(t, &flags);
1622 ret:
1623 return ret;
1627 * Let a parent know about the death of a child.
1628 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1630 * Returns true if our parent ignored us and so we've switched to
1631 * self-reaping.
1633 bool do_notify_parent(struct task_struct *tsk, int sig)
1635 struct siginfo info;
1636 unsigned long flags;
1637 struct sighand_struct *psig;
1638 bool autoreap = false;
1639 cputime_t utime, stime;
1641 BUG_ON(sig == -1);
1643 /* do_notify_parent_cldstop should have been called instead. */
1644 BUG_ON(task_is_stopped_or_traced(tsk));
1646 BUG_ON(!tsk->ptrace &&
1647 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1649 if (sig != SIGCHLD) {
1651 * This is only possible if parent == real_parent.
1652 * Check if it has changed security domain.
1654 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1655 sig = SIGCHLD;
1658 info.si_signo = sig;
1659 info.si_errno = 0;
1661 * We are under tasklist_lock here so our parent is tied to
1662 * us and cannot change.
1664 * task_active_pid_ns will always return the same pid namespace
1665 * until a task passes through release_task.
1667 * write_lock() currently calls preempt_disable() which is the
1668 * same as rcu_read_lock(), but according to Oleg, this is not
1669 * correct to rely on this
1671 rcu_read_lock();
1672 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1673 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1674 task_uid(tsk));
1675 rcu_read_unlock();
1677 task_cputime(tsk, &utime, &stime);
1678 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1679 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1681 info.si_status = tsk->exit_code & 0x7f;
1682 if (tsk->exit_code & 0x80)
1683 info.si_code = CLD_DUMPED;
1684 else if (tsk->exit_code & 0x7f)
1685 info.si_code = CLD_KILLED;
1686 else {
1687 info.si_code = CLD_EXITED;
1688 info.si_status = tsk->exit_code >> 8;
1691 psig = tsk->parent->sighand;
1692 spin_lock_irqsave(&psig->siglock, flags);
1693 if (!tsk->ptrace && sig == SIGCHLD &&
1694 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1695 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1697 * We are exiting and our parent doesn't care. POSIX.1
1698 * defines special semantics for setting SIGCHLD to SIG_IGN
1699 * or setting the SA_NOCLDWAIT flag: we should be reaped
1700 * automatically and not left for our parent's wait4 call.
1701 * Rather than having the parent do it as a magic kind of
1702 * signal handler, we just set this to tell do_exit that we
1703 * can be cleaned up without becoming a zombie. Note that
1704 * we still call __wake_up_parent in this case, because a
1705 * blocked sys_wait4 might now return -ECHILD.
1707 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1708 * is implementation-defined: we do (if you don't want
1709 * it, just use SIG_IGN instead).
1711 autoreap = true;
1712 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1713 sig = 0;
1715 if (valid_signal(sig) && sig)
1716 __group_send_sig_info(sig, &info, tsk->parent);
1717 __wake_up_parent(tsk, tsk->parent);
1718 spin_unlock_irqrestore(&psig->siglock, flags);
1720 return autoreap;
1724 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1725 * @tsk: task reporting the state change
1726 * @for_ptracer: the notification is for ptracer
1727 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1729 * Notify @tsk's parent that the stopped/continued state has changed. If
1730 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1731 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1733 * CONTEXT:
1734 * Must be called with tasklist_lock at least read locked.
1736 static void do_notify_parent_cldstop(struct task_struct *tsk,
1737 bool for_ptracer, int why)
1739 struct siginfo info;
1740 unsigned long flags;
1741 struct task_struct *parent;
1742 struct sighand_struct *sighand;
1743 cputime_t utime, stime;
1745 if (for_ptracer) {
1746 parent = tsk->parent;
1747 } else {
1748 tsk = tsk->group_leader;
1749 parent = tsk->real_parent;
1752 info.si_signo = SIGCHLD;
1753 info.si_errno = 0;
1755 * see comment in do_notify_parent() about the following 4 lines
1757 rcu_read_lock();
1758 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1759 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1760 rcu_read_unlock();
1762 task_cputime(tsk, &utime, &stime);
1763 info.si_utime = cputime_to_clock_t(utime);
1764 info.si_stime = cputime_to_clock_t(stime);
1766 info.si_code = why;
1767 switch (why) {
1768 case CLD_CONTINUED:
1769 info.si_status = SIGCONT;
1770 break;
1771 case CLD_STOPPED:
1772 info.si_status = tsk->signal->group_exit_code & 0x7f;
1773 break;
1774 case CLD_TRAPPED:
1775 info.si_status = tsk->exit_code & 0x7f;
1776 break;
1777 default:
1778 BUG();
1781 sighand = parent->sighand;
1782 spin_lock_irqsave(&sighand->siglock, flags);
1783 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1784 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1785 __group_send_sig_info(SIGCHLD, &info, parent);
1787 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1789 __wake_up_parent(tsk, parent);
1790 spin_unlock_irqrestore(&sighand->siglock, flags);
1793 static inline int may_ptrace_stop(void)
1795 if (!likely(current->ptrace))
1796 return 0;
1798 * Are we in the middle of do_coredump?
1799 * If so and our tracer is also part of the coredump stopping
1800 * is a deadlock situation, and pointless because our tracer
1801 * is dead so don't allow us to stop.
1802 * If SIGKILL was already sent before the caller unlocked
1803 * ->siglock we must see ->core_state != NULL. Otherwise it
1804 * is safe to enter schedule().
1806 * This is almost outdated, a task with the pending SIGKILL can't
1807 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1808 * after SIGKILL was already dequeued.
1810 if (unlikely(current->mm->core_state) &&
1811 unlikely(current->mm == current->parent->mm))
1812 return 0;
1814 return 1;
1818 * Return non-zero if there is a SIGKILL that should be waking us up.
1819 * Called with the siglock held.
1821 static int sigkill_pending(struct task_struct *tsk)
1823 return sigismember(&tsk->pending.signal, SIGKILL) ||
1824 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828 * This must be called with current->sighand->siglock held.
1830 * This should be the path for all ptrace stops.
1831 * We always set current->last_siginfo while stopped here.
1832 * That makes it a way to test a stopped process for
1833 * being ptrace-stopped vs being job-control-stopped.
1835 * If we actually decide not to stop at all because the tracer
1836 * is gone, we keep current->exit_code unless clear_code.
1838 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1839 __releases(&current->sighand->siglock)
1840 __acquires(&current->sighand->siglock)
1842 bool gstop_done = false;
1844 if (arch_ptrace_stop_needed(exit_code, info)) {
1846 * The arch code has something special to do before a
1847 * ptrace stop. This is allowed to block, e.g. for faults
1848 * on user stack pages. We can't keep the siglock while
1849 * calling arch_ptrace_stop, so we must release it now.
1850 * To preserve proper semantics, we must do this before
1851 * any signal bookkeeping like checking group_stop_count.
1852 * Meanwhile, a SIGKILL could come in before we retake the
1853 * siglock. That must prevent us from sleeping in TASK_TRACED.
1854 * So after regaining the lock, we must check for SIGKILL.
1856 spin_unlock_irq(&current->sighand->siglock);
1857 arch_ptrace_stop(exit_code, info);
1858 spin_lock_irq(&current->sighand->siglock);
1859 if (sigkill_pending(current))
1860 return;
1864 * We're committing to trapping. TRACED should be visible before
1865 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1866 * Also, transition to TRACED and updates to ->jobctl should be
1867 * atomic with respect to siglock and should be done after the arch
1868 * hook as siglock is released and regrabbed across it.
1870 set_current_state(TASK_TRACED);
1872 current->last_siginfo = info;
1873 current->exit_code = exit_code;
1876 * If @why is CLD_STOPPED, we're trapping to participate in a group
1877 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1878 * across siglock relocks since INTERRUPT was scheduled, PENDING
1879 * could be clear now. We act as if SIGCONT is received after
1880 * TASK_TRACED is entered - ignore it.
1882 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1883 gstop_done = task_participate_group_stop(current);
1885 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1886 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1887 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1888 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1890 /* entering a trap, clear TRAPPING */
1891 task_clear_jobctl_trapping(current);
1893 spin_unlock_irq(&current->sighand->siglock);
1894 read_lock(&tasklist_lock);
1895 if (may_ptrace_stop()) {
1897 * Notify parents of the stop.
1899 * While ptraced, there are two parents - the ptracer and
1900 * the real_parent of the group_leader. The ptracer should
1901 * know about every stop while the real parent is only
1902 * interested in the completion of group stop. The states
1903 * for the two don't interact with each other. Notify
1904 * separately unless they're gonna be duplicates.
1906 do_notify_parent_cldstop(current, true, why);
1907 if (gstop_done && ptrace_reparented(current))
1908 do_notify_parent_cldstop(current, false, why);
1911 * Don't want to allow preemption here, because
1912 * sys_ptrace() needs this task to be inactive.
1914 * XXX: implement read_unlock_no_resched().
1916 preempt_disable();
1917 read_unlock(&tasklist_lock);
1918 preempt_enable_no_resched();
1919 freezable_schedule();
1920 } else {
1922 * By the time we got the lock, our tracer went away.
1923 * Don't drop the lock yet, another tracer may come.
1925 * If @gstop_done, the ptracer went away between group stop
1926 * completion and here. During detach, it would have set
1927 * JOBCTL_STOP_PENDING on us and we'll re-enter
1928 * TASK_STOPPED in do_signal_stop() on return, so notifying
1929 * the real parent of the group stop completion is enough.
1931 if (gstop_done)
1932 do_notify_parent_cldstop(current, false, why);
1934 /* tasklist protects us from ptrace_freeze_traced() */
1935 __set_current_state(TASK_RUNNING);
1936 if (clear_code)
1937 current->exit_code = 0;
1938 read_unlock(&tasklist_lock);
1942 * We are back. Now reacquire the siglock before touching
1943 * last_siginfo, so that we are sure to have synchronized with
1944 * any signal-sending on another CPU that wants to examine it.
1946 spin_lock_irq(&current->sighand->siglock);
1947 current->last_siginfo = NULL;
1949 /* LISTENING can be set only during STOP traps, clear it */
1950 current->jobctl &= ~JOBCTL_LISTENING;
1953 * Queued signals ignored us while we were stopped for tracing.
1954 * So check for any that we should take before resuming user mode.
1955 * This sets TIF_SIGPENDING, but never clears it.
1957 recalc_sigpending_tsk(current);
1960 static void ptrace_do_notify(int signr, int exit_code, int why)
1962 siginfo_t info;
1964 memset(&info, 0, sizeof info);
1965 info.si_signo = signr;
1966 info.si_code = exit_code;
1967 info.si_pid = task_pid_vnr(current);
1968 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1970 /* Let the debugger run. */
1971 ptrace_stop(exit_code, why, 1, &info);
1974 void ptrace_notify(int exit_code)
1976 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1977 if (unlikely(current->task_works))
1978 task_work_run();
1980 spin_lock_irq(&current->sighand->siglock);
1981 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1982 spin_unlock_irq(&current->sighand->siglock);
1986 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1987 * @signr: signr causing group stop if initiating
1989 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1990 * and participate in it. If already set, participate in the existing
1991 * group stop. If participated in a group stop (and thus slept), %true is
1992 * returned with siglock released.
1994 * If ptraced, this function doesn't handle stop itself. Instead,
1995 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1996 * untouched. The caller must ensure that INTERRUPT trap handling takes
1997 * places afterwards.
1999 * CONTEXT:
2000 * Must be called with @current->sighand->siglock held, which is released
2001 * on %true return.
2003 * RETURNS:
2004 * %false if group stop is already cancelled or ptrace trap is scheduled.
2005 * %true if participated in group stop.
2007 static bool do_signal_stop(int signr)
2008 __releases(&current->sighand->siglock)
2010 struct signal_struct *sig = current->signal;
2012 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2013 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2014 struct task_struct *t;
2016 /* signr will be recorded in task->jobctl for retries */
2017 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2019 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2020 unlikely(signal_group_exit(sig)))
2021 return false;
2023 * There is no group stop already in progress. We must
2024 * initiate one now.
2026 * While ptraced, a task may be resumed while group stop is
2027 * still in effect and then receive a stop signal and
2028 * initiate another group stop. This deviates from the
2029 * usual behavior as two consecutive stop signals can't
2030 * cause two group stops when !ptraced. That is why we
2031 * also check !task_is_stopped(t) below.
2033 * The condition can be distinguished by testing whether
2034 * SIGNAL_STOP_STOPPED is already set. Don't generate
2035 * group_exit_code in such case.
2037 * This is not necessary for SIGNAL_STOP_CONTINUED because
2038 * an intervening stop signal is required to cause two
2039 * continued events regardless of ptrace.
2041 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2042 sig->group_exit_code = signr;
2044 sig->group_stop_count = 0;
2046 if (task_set_jobctl_pending(current, signr | gstop))
2047 sig->group_stop_count++;
2049 for (t = next_thread(current); t != current;
2050 t = next_thread(t)) {
2052 * Setting state to TASK_STOPPED for a group
2053 * stop is always done with the siglock held,
2054 * so this check has no races.
2056 if (!task_is_stopped(t) &&
2057 task_set_jobctl_pending(t, signr | gstop)) {
2058 sig->group_stop_count++;
2059 if (likely(!(t->ptrace & PT_SEIZED)))
2060 signal_wake_up(t, 0);
2061 else
2062 ptrace_trap_notify(t);
2067 if (likely(!current->ptrace)) {
2068 int notify = 0;
2071 * If there are no other threads in the group, or if there
2072 * is a group stop in progress and we are the last to stop,
2073 * report to the parent.
2075 if (task_participate_group_stop(current))
2076 notify = CLD_STOPPED;
2078 __set_current_state(TASK_STOPPED);
2079 spin_unlock_irq(&current->sighand->siglock);
2082 * Notify the parent of the group stop completion. Because
2083 * we're not holding either the siglock or tasklist_lock
2084 * here, ptracer may attach inbetween; however, this is for
2085 * group stop and should always be delivered to the real
2086 * parent of the group leader. The new ptracer will get
2087 * its notification when this task transitions into
2088 * TASK_TRACED.
2090 if (notify) {
2091 read_lock(&tasklist_lock);
2092 do_notify_parent_cldstop(current, false, notify);
2093 read_unlock(&tasklist_lock);
2096 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2097 freezable_schedule();
2098 return true;
2099 } else {
2101 * While ptraced, group stop is handled by STOP trap.
2102 * Schedule it and let the caller deal with it.
2104 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2105 return false;
2110 * do_jobctl_trap - take care of ptrace jobctl traps
2112 * When PT_SEIZED, it's used for both group stop and explicit
2113 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2114 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2115 * the stop signal; otherwise, %SIGTRAP.
2117 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2118 * number as exit_code and no siginfo.
2120 * CONTEXT:
2121 * Must be called with @current->sighand->siglock held, which may be
2122 * released and re-acquired before returning with intervening sleep.
2124 static void do_jobctl_trap(void)
2126 struct signal_struct *signal = current->signal;
2127 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2129 if (current->ptrace & PT_SEIZED) {
2130 if (!signal->group_stop_count &&
2131 !(signal->flags & SIGNAL_STOP_STOPPED))
2132 signr = SIGTRAP;
2133 WARN_ON_ONCE(!signr);
2134 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2135 CLD_STOPPED);
2136 } else {
2137 WARN_ON_ONCE(!signr);
2138 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2139 current->exit_code = 0;
2143 static int ptrace_signal(int signr, siginfo_t *info)
2145 ptrace_signal_deliver();
2147 * We do not check sig_kernel_stop(signr) but set this marker
2148 * unconditionally because we do not know whether debugger will
2149 * change signr. This flag has no meaning unless we are going
2150 * to stop after return from ptrace_stop(). In this case it will
2151 * be checked in do_signal_stop(), we should only stop if it was
2152 * not cleared by SIGCONT while we were sleeping. See also the
2153 * comment in dequeue_signal().
2155 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2156 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2158 /* We're back. Did the debugger cancel the sig? */
2159 signr = current->exit_code;
2160 if (signr == 0)
2161 return signr;
2163 current->exit_code = 0;
2166 * Update the siginfo structure if the signal has
2167 * changed. If the debugger wanted something
2168 * specific in the siginfo structure then it should
2169 * have updated *info via PTRACE_SETSIGINFO.
2171 if (signr != info->si_signo) {
2172 info->si_signo = signr;
2173 info->si_errno = 0;
2174 info->si_code = SI_USER;
2175 rcu_read_lock();
2176 info->si_pid = task_pid_vnr(current->parent);
2177 info->si_uid = from_kuid_munged(current_user_ns(),
2178 task_uid(current->parent));
2179 rcu_read_unlock();
2182 /* If the (new) signal is now blocked, requeue it. */
2183 if (sigismember(&current->blocked, signr)) {
2184 specific_send_sig_info(signr, info, current);
2185 signr = 0;
2188 return signr;
2191 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2192 struct pt_regs *regs, void *cookie)
2194 struct sighand_struct *sighand = current->sighand;
2195 struct signal_struct *signal = current->signal;
2196 int signr;
2198 if (unlikely(current->task_works))
2199 task_work_run();
2201 if (unlikely(uprobe_deny_signal()))
2202 return 0;
2205 * Do this once, we can't return to user-mode if freezing() == T.
2206 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2207 * thus do not need another check after return.
2209 try_to_freeze();
2211 relock:
2212 spin_lock_irq(&sighand->siglock);
2214 * Every stopped thread goes here after wakeup. Check to see if
2215 * we should notify the parent, prepare_signal(SIGCONT) encodes
2216 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2218 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2219 int why;
2221 if (signal->flags & SIGNAL_CLD_CONTINUED)
2222 why = CLD_CONTINUED;
2223 else
2224 why = CLD_STOPPED;
2226 signal->flags &= ~SIGNAL_CLD_MASK;
2228 spin_unlock_irq(&sighand->siglock);
2231 * Notify the parent that we're continuing. This event is
2232 * always per-process and doesn't make whole lot of sense
2233 * for ptracers, who shouldn't consume the state via
2234 * wait(2) either, but, for backward compatibility, notify
2235 * the ptracer of the group leader too unless it's gonna be
2236 * a duplicate.
2238 read_lock(&tasklist_lock);
2239 do_notify_parent_cldstop(current, false, why);
2241 if (ptrace_reparented(current->group_leader))
2242 do_notify_parent_cldstop(current->group_leader,
2243 true, why);
2244 read_unlock(&tasklist_lock);
2246 goto relock;
2249 for (;;) {
2250 struct k_sigaction *ka;
2252 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2253 do_signal_stop(0))
2254 goto relock;
2256 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2257 do_jobctl_trap();
2258 spin_unlock_irq(&sighand->siglock);
2259 goto relock;
2262 signr = dequeue_signal(current, &current->blocked, info);
2264 if (!signr)
2265 break; /* will return 0 */
2267 if (unlikely(current->ptrace) && signr != SIGKILL) {
2268 signr = ptrace_signal(signr, info);
2269 if (!signr)
2270 continue;
2273 ka = &sighand->action[signr-1];
2275 /* Trace actually delivered signals. */
2276 trace_signal_deliver(signr, info, ka);
2278 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2279 continue;
2280 if (ka->sa.sa_handler != SIG_DFL) {
2281 /* Run the handler. */
2282 *return_ka = *ka;
2284 if (ka->sa.sa_flags & SA_ONESHOT)
2285 ka->sa.sa_handler = SIG_DFL;
2287 break; /* will return non-zero "signr" value */
2291 * Now we are doing the default action for this signal.
2293 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2294 continue;
2297 * Global init gets no signals it doesn't want.
2298 * Container-init gets no signals it doesn't want from same
2299 * container.
2301 * Note that if global/container-init sees a sig_kernel_only()
2302 * signal here, the signal must have been generated internally
2303 * or must have come from an ancestor namespace. In either
2304 * case, the signal cannot be dropped.
2306 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2307 !sig_kernel_only(signr))
2308 continue;
2310 if (sig_kernel_stop(signr)) {
2312 * The default action is to stop all threads in
2313 * the thread group. The job control signals
2314 * do nothing in an orphaned pgrp, but SIGSTOP
2315 * always works. Note that siglock needs to be
2316 * dropped during the call to is_orphaned_pgrp()
2317 * because of lock ordering with tasklist_lock.
2318 * This allows an intervening SIGCONT to be posted.
2319 * We need to check for that and bail out if necessary.
2321 if (signr != SIGSTOP) {
2322 spin_unlock_irq(&sighand->siglock);
2324 /* signals can be posted during this window */
2326 if (is_current_pgrp_orphaned())
2327 goto relock;
2329 spin_lock_irq(&sighand->siglock);
2332 if (likely(do_signal_stop(info->si_signo))) {
2333 /* It released the siglock. */
2334 goto relock;
2338 * We didn't actually stop, due to a race
2339 * with SIGCONT or something like that.
2341 continue;
2344 spin_unlock_irq(&sighand->siglock);
2347 * Anything else is fatal, maybe with a core dump.
2349 current->flags |= PF_SIGNALED;
2351 if (sig_kernel_coredump(signr)) {
2352 if (print_fatal_signals)
2353 print_fatal_signal(info->si_signo);
2354 proc_coredump_connector(current);
2356 * If it was able to dump core, this kills all
2357 * other threads in the group and synchronizes with
2358 * their demise. If we lost the race with another
2359 * thread getting here, it set group_exit_code
2360 * first and our do_group_exit call below will use
2361 * that value and ignore the one we pass it.
2363 do_coredump(info);
2367 * Death signals, no core dump.
2369 do_group_exit(info->si_signo);
2370 /* NOTREACHED */
2372 spin_unlock_irq(&sighand->siglock);
2373 return signr;
2377 * signal_delivered -
2378 * @sig: number of signal being delivered
2379 * @info: siginfo_t of signal being delivered
2380 * @ka: sigaction setting that chose the handler
2381 * @regs: user register state
2382 * @stepping: nonzero if debugger single-step or block-step in use
2384 * This function should be called when a signal has succesfully been
2385 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2386 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2387 * is set in @ka->sa.sa_flags. Tracing is notified.
2389 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2390 struct pt_regs *regs, int stepping)
2392 sigset_t blocked;
2394 /* A signal was successfully delivered, and the
2395 saved sigmask was stored on the signal frame,
2396 and will be restored by sigreturn. So we can
2397 simply clear the restore sigmask flag. */
2398 clear_restore_sigmask();
2400 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2401 if (!(ka->sa.sa_flags & SA_NODEFER))
2402 sigaddset(&blocked, sig);
2403 set_current_blocked(&blocked);
2404 tracehook_signal_handler(sig, info, ka, regs, stepping);
2407 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2409 if (failed)
2410 force_sigsegv(ksig->sig, current);
2411 else
2412 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2413 signal_pt_regs(), stepping);
2417 * It could be that complete_signal() picked us to notify about the
2418 * group-wide signal. Other threads should be notified now to take
2419 * the shared signals in @which since we will not.
2421 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2423 sigset_t retarget;
2424 struct task_struct *t;
2426 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2427 if (sigisemptyset(&retarget))
2428 return;
2430 t = tsk;
2431 while_each_thread(tsk, t) {
2432 if (t->flags & PF_EXITING)
2433 continue;
2435 if (!has_pending_signals(&retarget, &t->blocked))
2436 continue;
2437 /* Remove the signals this thread can handle. */
2438 sigandsets(&retarget, &retarget, &t->blocked);
2440 if (!signal_pending(t))
2441 signal_wake_up(t, 0);
2443 if (sigisemptyset(&retarget))
2444 break;
2448 void exit_signals(struct task_struct *tsk)
2450 int group_stop = 0;
2451 sigset_t unblocked;
2454 * @tsk is about to have PF_EXITING set - lock out users which
2455 * expect stable threadgroup.
2457 threadgroup_change_begin(tsk);
2459 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2460 tsk->flags |= PF_EXITING;
2461 threadgroup_change_end(tsk);
2462 return;
2465 spin_lock_irq(&tsk->sighand->siglock);
2467 * From now this task is not visible for group-wide signals,
2468 * see wants_signal(), do_signal_stop().
2470 tsk->flags |= PF_EXITING;
2472 threadgroup_change_end(tsk);
2474 if (!signal_pending(tsk))
2475 goto out;
2477 unblocked = tsk->blocked;
2478 signotset(&unblocked);
2479 retarget_shared_pending(tsk, &unblocked);
2481 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2482 task_participate_group_stop(tsk))
2483 group_stop = CLD_STOPPED;
2484 out:
2485 spin_unlock_irq(&tsk->sighand->siglock);
2488 * If group stop has completed, deliver the notification. This
2489 * should always go to the real parent of the group leader.
2491 if (unlikely(group_stop)) {
2492 read_lock(&tasklist_lock);
2493 do_notify_parent_cldstop(tsk, false, group_stop);
2494 read_unlock(&tasklist_lock);
2498 EXPORT_SYMBOL(recalc_sigpending);
2499 EXPORT_SYMBOL_GPL(dequeue_signal);
2500 EXPORT_SYMBOL(flush_signals);
2501 EXPORT_SYMBOL(force_sig);
2502 EXPORT_SYMBOL(send_sig);
2503 EXPORT_SYMBOL(send_sig_info);
2504 EXPORT_SYMBOL(sigprocmask);
2505 EXPORT_SYMBOL(block_all_signals);
2506 EXPORT_SYMBOL(unblock_all_signals);
2510 * System call entry points.
2514 * sys_restart_syscall - restart a system call
2516 SYSCALL_DEFINE0(restart_syscall)
2518 struct restart_block *restart = &current_thread_info()->restart_block;
2519 return restart->fn(restart);
2522 long do_no_restart_syscall(struct restart_block *param)
2524 return -EINTR;
2527 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2529 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2530 sigset_t newblocked;
2531 /* A set of now blocked but previously unblocked signals. */
2532 sigandnsets(&newblocked, newset, &current->blocked);
2533 retarget_shared_pending(tsk, &newblocked);
2535 tsk->blocked = *newset;
2536 recalc_sigpending();
2540 * set_current_blocked - change current->blocked mask
2541 * @newset: new mask
2543 * It is wrong to change ->blocked directly, this helper should be used
2544 * to ensure the process can't miss a shared signal we are going to block.
2546 void set_current_blocked(sigset_t *newset)
2548 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2549 __set_current_blocked(newset);
2552 void __set_current_blocked(const sigset_t *newset)
2554 struct task_struct *tsk = current;
2556 spin_lock_irq(&tsk->sighand->siglock);
2557 __set_task_blocked(tsk, newset);
2558 spin_unlock_irq(&tsk->sighand->siglock);
2562 * This is also useful for kernel threads that want to temporarily
2563 * (or permanently) block certain signals.
2565 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2566 * interface happily blocks "unblockable" signals like SIGKILL
2567 * and friends.
2569 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2571 struct task_struct *tsk = current;
2572 sigset_t newset;
2574 /* Lockless, only current can change ->blocked, never from irq */
2575 if (oldset)
2576 *oldset = tsk->blocked;
2578 switch (how) {
2579 case SIG_BLOCK:
2580 sigorsets(&newset, &tsk->blocked, set);
2581 break;
2582 case SIG_UNBLOCK:
2583 sigandnsets(&newset, &tsk->blocked, set);
2584 break;
2585 case SIG_SETMASK:
2586 newset = *set;
2587 break;
2588 default:
2589 return -EINVAL;
2592 __set_current_blocked(&newset);
2593 return 0;
2597 * sys_rt_sigprocmask - change the list of currently blocked signals
2598 * @how: whether to add, remove, or set signals
2599 * @nset: stores pending signals
2600 * @oset: previous value of signal mask if non-null
2601 * @sigsetsize: size of sigset_t type
2603 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2604 sigset_t __user *, oset, size_t, sigsetsize)
2606 sigset_t old_set, new_set;
2607 int error;
2609 /* XXX: Don't preclude handling different sized sigset_t's. */
2610 if (sigsetsize != sizeof(sigset_t))
2611 return -EINVAL;
2613 old_set = current->blocked;
2615 if (nset) {
2616 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2617 return -EFAULT;
2618 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620 error = sigprocmask(how, &new_set, NULL);
2621 if (error)
2622 return error;
2625 if (oset) {
2626 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2627 return -EFAULT;
2630 return 0;
2633 #ifdef CONFIG_COMPAT
2634 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2635 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2637 #ifdef __BIG_ENDIAN
2638 sigset_t old_set = current->blocked;
2640 /* XXX: Don't preclude handling different sized sigset_t's. */
2641 if (sigsetsize != sizeof(sigset_t))
2642 return -EINVAL;
2644 if (nset) {
2645 compat_sigset_t new32;
2646 sigset_t new_set;
2647 int error;
2648 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2649 return -EFAULT;
2651 sigset_from_compat(&new_set, &new32);
2652 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2654 error = sigprocmask(how, &new_set, NULL);
2655 if (error)
2656 return error;
2658 if (oset) {
2659 compat_sigset_t old32;
2660 sigset_to_compat(&old32, &old_set);
2661 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2662 return -EFAULT;
2664 return 0;
2665 #else
2666 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2667 (sigset_t __user *)oset, sigsetsize);
2668 #endif
2670 #endif
2672 static int do_sigpending(void *set, unsigned long sigsetsize)
2674 if (sigsetsize > sizeof(sigset_t))
2675 return -EINVAL;
2677 spin_lock_irq(&current->sighand->siglock);
2678 sigorsets(set, &current->pending.signal,
2679 &current->signal->shared_pending.signal);
2680 spin_unlock_irq(&current->sighand->siglock);
2682 /* Outside the lock because only this thread touches it. */
2683 sigandsets(set, &current->blocked, set);
2684 return 0;
2688 * sys_rt_sigpending - examine a pending signal that has been raised
2689 * while blocked
2690 * @uset: stores pending signals
2691 * @sigsetsize: size of sigset_t type or larger
2693 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2695 sigset_t set;
2696 int err = do_sigpending(&set, sigsetsize);
2697 if (!err && copy_to_user(uset, &set, sigsetsize))
2698 err = -EFAULT;
2699 return err;
2702 #ifdef CONFIG_COMPAT
2703 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2704 compat_size_t, sigsetsize)
2706 #ifdef __BIG_ENDIAN
2707 sigset_t set;
2708 int err = do_sigpending(&set, sigsetsize);
2709 if (!err) {
2710 compat_sigset_t set32;
2711 sigset_to_compat(&set32, &set);
2712 /* we can get here only if sigsetsize <= sizeof(set) */
2713 if (copy_to_user(uset, &set32, sigsetsize))
2714 err = -EFAULT;
2716 return err;
2717 #else
2718 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2719 #endif
2721 #endif
2723 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2725 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2727 int err;
2729 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2730 return -EFAULT;
2731 if (from->si_code < 0)
2732 return __copy_to_user(to, from, sizeof(siginfo_t))
2733 ? -EFAULT : 0;
2735 * If you change siginfo_t structure, please be sure
2736 * this code is fixed accordingly.
2737 * Please remember to update the signalfd_copyinfo() function
2738 * inside fs/signalfd.c too, in case siginfo_t changes.
2739 * It should never copy any pad contained in the structure
2740 * to avoid security leaks, but must copy the generic
2741 * 3 ints plus the relevant union member.
2743 err = __put_user(from->si_signo, &to->si_signo);
2744 err |= __put_user(from->si_errno, &to->si_errno);
2745 err |= __put_user((short)from->si_code, &to->si_code);
2746 switch (from->si_code & __SI_MASK) {
2747 case __SI_KILL:
2748 err |= __put_user(from->si_pid, &to->si_pid);
2749 err |= __put_user(from->si_uid, &to->si_uid);
2750 break;
2751 case __SI_TIMER:
2752 err |= __put_user(from->si_tid, &to->si_tid);
2753 err |= __put_user(from->si_overrun, &to->si_overrun);
2754 err |= __put_user(from->si_ptr, &to->si_ptr);
2755 break;
2756 case __SI_POLL:
2757 err |= __put_user(from->si_band, &to->si_band);
2758 err |= __put_user(from->si_fd, &to->si_fd);
2759 break;
2760 case __SI_FAULT:
2761 err |= __put_user(from->si_addr, &to->si_addr);
2762 #ifdef __ARCH_SI_TRAPNO
2763 err |= __put_user(from->si_trapno, &to->si_trapno);
2764 #endif
2765 #ifdef BUS_MCEERR_AO
2767 * Other callers might not initialize the si_lsb field,
2768 * so check explicitly for the right codes here.
2770 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2771 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2772 #endif
2773 break;
2774 case __SI_CHLD:
2775 err |= __put_user(from->si_pid, &to->si_pid);
2776 err |= __put_user(from->si_uid, &to->si_uid);
2777 err |= __put_user(from->si_status, &to->si_status);
2778 err |= __put_user(from->si_utime, &to->si_utime);
2779 err |= __put_user(from->si_stime, &to->si_stime);
2780 break;
2781 case __SI_RT: /* This is not generated by the kernel as of now. */
2782 case __SI_MESGQ: /* But this is */
2783 err |= __put_user(from->si_pid, &to->si_pid);
2784 err |= __put_user(from->si_uid, &to->si_uid);
2785 err |= __put_user(from->si_ptr, &to->si_ptr);
2786 break;
2787 #ifdef __ARCH_SIGSYS
2788 case __SI_SYS:
2789 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2790 err |= __put_user(from->si_syscall, &to->si_syscall);
2791 err |= __put_user(from->si_arch, &to->si_arch);
2792 break;
2793 #endif
2794 default: /* this is just in case for now ... */
2795 err |= __put_user(from->si_pid, &to->si_pid);
2796 err |= __put_user(from->si_uid, &to->si_uid);
2797 break;
2799 return err;
2802 #endif
2805 * do_sigtimedwait - wait for queued signals specified in @which
2806 * @which: queued signals to wait for
2807 * @info: if non-null, the signal's siginfo is returned here
2808 * @ts: upper bound on process time suspension
2810 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2811 const struct timespec *ts)
2813 struct task_struct *tsk = current;
2814 long timeout = MAX_SCHEDULE_TIMEOUT;
2815 sigset_t mask = *which;
2816 int sig;
2818 if (ts) {
2819 if (!timespec_valid(ts))
2820 return -EINVAL;
2821 timeout = timespec_to_jiffies(ts);
2823 * We can be close to the next tick, add another one
2824 * to ensure we will wait at least the time asked for.
2826 if (ts->tv_sec || ts->tv_nsec)
2827 timeout++;
2831 * Invert the set of allowed signals to get those we want to block.
2833 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2834 signotset(&mask);
2836 spin_lock_irq(&tsk->sighand->siglock);
2837 sig = dequeue_signal(tsk, &mask, info);
2838 if (!sig && timeout) {
2840 * None ready, temporarily unblock those we're interested
2841 * while we are sleeping in so that we'll be awakened when
2842 * they arrive. Unblocking is always fine, we can avoid
2843 * set_current_blocked().
2845 tsk->real_blocked = tsk->blocked;
2846 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2847 recalc_sigpending();
2848 spin_unlock_irq(&tsk->sighand->siglock);
2850 timeout = schedule_timeout_interruptible(timeout);
2852 spin_lock_irq(&tsk->sighand->siglock);
2853 __set_task_blocked(tsk, &tsk->real_blocked);
2854 siginitset(&tsk->real_blocked, 0);
2855 sig = dequeue_signal(tsk, &mask, info);
2857 spin_unlock_irq(&tsk->sighand->siglock);
2859 if (sig)
2860 return sig;
2861 return timeout ? -EINTR : -EAGAIN;
2865 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2866 * in @uthese
2867 * @uthese: queued signals to wait for
2868 * @uinfo: if non-null, the signal's siginfo is returned here
2869 * @uts: upper bound on process time suspension
2870 * @sigsetsize: size of sigset_t type
2872 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2873 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2874 size_t, sigsetsize)
2876 sigset_t these;
2877 struct timespec ts;
2878 siginfo_t info;
2879 int ret;
2881 /* XXX: Don't preclude handling different sized sigset_t's. */
2882 if (sigsetsize != sizeof(sigset_t))
2883 return -EINVAL;
2885 if (copy_from_user(&these, uthese, sizeof(these)))
2886 return -EFAULT;
2888 if (uts) {
2889 if (copy_from_user(&ts, uts, sizeof(ts)))
2890 return -EFAULT;
2893 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2895 if (ret > 0 && uinfo) {
2896 if (copy_siginfo_to_user(uinfo, &info))
2897 ret = -EFAULT;
2900 return ret;
2904 * sys_kill - send a signal to a process
2905 * @pid: the PID of the process
2906 * @sig: signal to be sent
2908 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2910 struct siginfo info;
2912 info.si_signo = sig;
2913 info.si_errno = 0;
2914 info.si_code = SI_USER;
2915 info.si_pid = task_tgid_vnr(current);
2916 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2918 return kill_something_info(sig, &info, pid);
2921 static int
2922 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2924 struct task_struct *p;
2925 int error = -ESRCH;
2927 rcu_read_lock();
2928 p = find_task_by_vpid(pid);
2929 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2930 error = check_kill_permission(sig, info, p);
2932 * The null signal is a permissions and process existence
2933 * probe. No signal is actually delivered.
2935 if (!error && sig) {
2936 error = do_send_sig_info(sig, info, p, false);
2938 * If lock_task_sighand() failed we pretend the task
2939 * dies after receiving the signal. The window is tiny,
2940 * and the signal is private anyway.
2942 if (unlikely(error == -ESRCH))
2943 error = 0;
2946 rcu_read_unlock();
2948 return error;
2951 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2953 struct siginfo info;
2955 info.si_signo = sig;
2956 info.si_errno = 0;
2957 info.si_code = SI_TKILL;
2958 info.si_pid = task_tgid_vnr(current);
2959 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2961 return do_send_specific(tgid, pid, sig, &info);
2965 * sys_tgkill - send signal to one specific thread
2966 * @tgid: the thread group ID of the thread
2967 * @pid: the PID of the thread
2968 * @sig: signal to be sent
2970 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2971 * exists but it's not belonging to the target process anymore. This
2972 * method solves the problem of threads exiting and PIDs getting reused.
2974 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2976 /* This is only valid for single tasks */
2977 if (pid <= 0 || tgid <= 0)
2978 return -EINVAL;
2980 return do_tkill(tgid, pid, sig);
2984 * sys_tkill - send signal to one specific task
2985 * @pid: the PID of the task
2986 * @sig: signal to be sent
2988 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2990 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2992 /* This is only valid for single tasks */
2993 if (pid <= 0)
2994 return -EINVAL;
2996 return do_tkill(0, pid, sig);
2999 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3001 /* Not even root can pretend to send signals from the kernel.
3002 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3004 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005 (task_pid_vnr(current) != pid)) {
3006 /* We used to allow any < 0 si_code */
3007 WARN_ON_ONCE(info->si_code < 0);
3008 return -EPERM;
3010 info->si_signo = sig;
3012 /* POSIX.1b doesn't mention process groups. */
3013 return kill_proc_info(sig, info, pid);
3017 * sys_rt_sigqueueinfo - send signal information to a signal
3018 * @pid: the PID of the thread
3019 * @sig: signal to be sent
3020 * @uinfo: signal info to be sent
3022 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3023 siginfo_t __user *, uinfo)
3025 siginfo_t info;
3026 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3027 return -EFAULT;
3028 return do_rt_sigqueueinfo(pid, sig, &info);
3031 #ifdef CONFIG_COMPAT
3032 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3033 compat_pid_t, pid,
3034 int, sig,
3035 struct compat_siginfo __user *, uinfo)
3037 siginfo_t info;
3038 int ret = copy_siginfo_from_user32(&info, uinfo);
3039 if (unlikely(ret))
3040 return ret;
3041 return do_rt_sigqueueinfo(pid, sig, &info);
3043 #endif
3045 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3047 /* This is only valid for single tasks */
3048 if (pid <= 0 || tgid <= 0)
3049 return -EINVAL;
3051 /* Not even root can pretend to send signals from the kernel.
3052 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3054 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3055 (task_pid_vnr(current) != pid)) {
3056 /* We used to allow any < 0 si_code */
3057 WARN_ON_ONCE(info->si_code < 0);
3058 return -EPERM;
3060 info->si_signo = sig;
3062 return do_send_specific(tgid, pid, sig, info);
3065 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3066 siginfo_t __user *, uinfo)
3068 siginfo_t info;
3070 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3071 return -EFAULT;
3073 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3076 #ifdef CONFIG_COMPAT
3077 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3078 compat_pid_t, tgid,
3079 compat_pid_t, pid,
3080 int, sig,
3081 struct compat_siginfo __user *, uinfo)
3083 siginfo_t info;
3085 if (copy_siginfo_from_user32(&info, uinfo))
3086 return -EFAULT;
3087 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3089 #endif
3091 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3093 struct task_struct *t = current;
3094 struct k_sigaction *k;
3095 sigset_t mask;
3097 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3098 return -EINVAL;
3100 k = &t->sighand->action[sig-1];
3102 spin_lock_irq(&current->sighand->siglock);
3103 if (oact)
3104 *oact = *k;
3106 if (act) {
3107 sigdelsetmask(&act->sa.sa_mask,
3108 sigmask(SIGKILL) | sigmask(SIGSTOP));
3109 *k = *act;
3111 * POSIX 3.3.1.3:
3112 * "Setting a signal action to SIG_IGN for a signal that is
3113 * pending shall cause the pending signal to be discarded,
3114 * whether or not it is blocked."
3116 * "Setting a signal action to SIG_DFL for a signal that is
3117 * pending and whose default action is to ignore the signal
3118 * (for example, SIGCHLD), shall cause the pending signal to
3119 * be discarded, whether or not it is blocked"
3121 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3122 sigemptyset(&mask);
3123 sigaddset(&mask, sig);
3124 rm_from_queue_full(&mask, &t->signal->shared_pending);
3125 do {
3126 rm_from_queue_full(&mask, &t->pending);
3127 t = next_thread(t);
3128 } while (t != current);
3132 spin_unlock_irq(&current->sighand->siglock);
3133 return 0;
3136 static int
3137 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3139 stack_t oss;
3140 int error;
3142 oss.ss_sp = (void __user *) current->sas_ss_sp;
3143 oss.ss_size = current->sas_ss_size;
3144 oss.ss_flags = sas_ss_flags(sp);
3146 if (uss) {
3147 void __user *ss_sp;
3148 size_t ss_size;
3149 int ss_flags;
3151 error = -EFAULT;
3152 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3153 goto out;
3154 error = __get_user(ss_sp, &uss->ss_sp) |
3155 __get_user(ss_flags, &uss->ss_flags) |
3156 __get_user(ss_size, &uss->ss_size);
3157 if (error)
3158 goto out;
3160 error = -EPERM;
3161 if (on_sig_stack(sp))
3162 goto out;
3164 error = -EINVAL;
3166 * Note - this code used to test ss_flags incorrectly:
3167 * old code may have been written using ss_flags==0
3168 * to mean ss_flags==SS_ONSTACK (as this was the only
3169 * way that worked) - this fix preserves that older
3170 * mechanism.
3172 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3173 goto out;
3175 if (ss_flags == SS_DISABLE) {
3176 ss_size = 0;
3177 ss_sp = NULL;
3178 } else {
3179 error = -ENOMEM;
3180 if (ss_size < MINSIGSTKSZ)
3181 goto out;
3184 current->sas_ss_sp = (unsigned long) ss_sp;
3185 current->sas_ss_size = ss_size;
3188 error = 0;
3189 if (uoss) {
3190 error = -EFAULT;
3191 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3192 goto out;
3193 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3194 __put_user(oss.ss_size, &uoss->ss_size) |
3195 __put_user(oss.ss_flags, &uoss->ss_flags);
3198 out:
3199 return error;
3201 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3203 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3206 int restore_altstack(const stack_t __user *uss)
3208 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3209 /* squash all but EFAULT for now */
3210 return err == -EFAULT ? err : 0;
3213 int __save_altstack(stack_t __user *uss, unsigned long sp)
3215 struct task_struct *t = current;
3216 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3217 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3218 __put_user(t->sas_ss_size, &uss->ss_size);
3221 #ifdef CONFIG_COMPAT
3222 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3223 const compat_stack_t __user *, uss_ptr,
3224 compat_stack_t __user *, uoss_ptr)
3226 stack_t uss, uoss;
3227 int ret;
3228 mm_segment_t seg;
3230 if (uss_ptr) {
3231 compat_stack_t uss32;
3233 memset(&uss, 0, sizeof(stack_t));
3234 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3235 return -EFAULT;
3236 uss.ss_sp = compat_ptr(uss32.ss_sp);
3237 uss.ss_flags = uss32.ss_flags;
3238 uss.ss_size = uss32.ss_size;
3240 seg = get_fs();
3241 set_fs(KERNEL_DS);
3242 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3243 (stack_t __force __user *) &uoss,
3244 compat_user_stack_pointer());
3245 set_fs(seg);
3246 if (ret >= 0 && uoss_ptr) {
3247 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3248 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3249 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3250 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3251 ret = -EFAULT;
3253 return ret;
3256 int compat_restore_altstack(const compat_stack_t __user *uss)
3258 int err = compat_sys_sigaltstack(uss, NULL);
3259 /* squash all but -EFAULT for now */
3260 return err == -EFAULT ? err : 0;
3263 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3265 struct task_struct *t = current;
3266 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3267 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3268 __put_user(t->sas_ss_size, &uss->ss_size);
3270 #endif
3272 #ifdef __ARCH_WANT_SYS_SIGPENDING
3275 * sys_sigpending - examine pending signals
3276 * @set: where mask of pending signal is returned
3278 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3280 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3283 #endif
3285 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3287 * sys_sigprocmask - examine and change blocked signals
3288 * @how: whether to add, remove, or set signals
3289 * @nset: signals to add or remove (if non-null)
3290 * @oset: previous value of signal mask if non-null
3292 * Some platforms have their own version with special arguments;
3293 * others support only sys_rt_sigprocmask.
3296 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3297 old_sigset_t __user *, oset)
3299 old_sigset_t old_set, new_set;
3300 sigset_t new_blocked;
3302 old_set = current->blocked.sig[0];
3304 if (nset) {
3305 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3306 return -EFAULT;
3308 new_blocked = current->blocked;
3310 switch (how) {
3311 case SIG_BLOCK:
3312 sigaddsetmask(&new_blocked, new_set);
3313 break;
3314 case SIG_UNBLOCK:
3315 sigdelsetmask(&new_blocked, new_set);
3316 break;
3317 case SIG_SETMASK:
3318 new_blocked.sig[0] = new_set;
3319 break;
3320 default:
3321 return -EINVAL;
3324 set_current_blocked(&new_blocked);
3327 if (oset) {
3328 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3329 return -EFAULT;
3332 return 0;
3334 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3336 #ifndef CONFIG_ODD_RT_SIGACTION
3338 * sys_rt_sigaction - alter an action taken by a process
3339 * @sig: signal to be sent
3340 * @act: new sigaction
3341 * @oact: used to save the previous sigaction
3342 * @sigsetsize: size of sigset_t type
3344 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3345 const struct sigaction __user *, act,
3346 struct sigaction __user *, oact,
3347 size_t, sigsetsize)
3349 struct k_sigaction new_sa, old_sa;
3350 int ret = -EINVAL;
3352 /* XXX: Don't preclude handling different sized sigset_t's. */
3353 if (sigsetsize != sizeof(sigset_t))
3354 goto out;
3356 if (act) {
3357 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3358 return -EFAULT;
3361 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3363 if (!ret && oact) {
3364 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3365 return -EFAULT;
3367 out:
3368 return ret;
3370 #ifdef CONFIG_COMPAT
3371 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3372 const struct compat_sigaction __user *, act,
3373 struct compat_sigaction __user *, oact,
3374 compat_size_t, sigsetsize)
3376 struct k_sigaction new_ka, old_ka;
3377 compat_sigset_t mask;
3378 #ifdef __ARCH_HAS_SA_RESTORER
3379 compat_uptr_t restorer;
3380 #endif
3381 int ret;
3383 /* XXX: Don't preclude handling different sized sigset_t's. */
3384 if (sigsetsize != sizeof(compat_sigset_t))
3385 return -EINVAL;
3387 if (act) {
3388 compat_uptr_t handler;
3389 ret = get_user(handler, &act->sa_handler);
3390 new_ka.sa.sa_handler = compat_ptr(handler);
3391 #ifdef __ARCH_HAS_SA_RESTORER
3392 ret |= get_user(restorer, &act->sa_restorer);
3393 new_ka.sa.sa_restorer = compat_ptr(restorer);
3394 #endif
3395 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3396 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3397 if (ret)
3398 return -EFAULT;
3399 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3403 if (!ret && oact) {
3404 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3405 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3406 &oact->sa_handler);
3407 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3408 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3409 #ifdef __ARCH_HAS_SA_RESTORER
3410 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3411 &oact->sa_restorer);
3412 #endif
3414 return ret;
3416 #endif
3417 #endif /* !CONFIG_ODD_RT_SIGACTION */
3419 #ifdef CONFIG_OLD_SIGACTION
3420 SYSCALL_DEFINE3(sigaction, int, sig,
3421 const struct old_sigaction __user *, act,
3422 struct old_sigaction __user *, oact)
3424 struct k_sigaction new_ka, old_ka;
3425 int ret;
3427 if (act) {
3428 old_sigset_t mask;
3429 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3430 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3431 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3432 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3433 __get_user(mask, &act->sa_mask))
3434 return -EFAULT;
3435 #ifdef __ARCH_HAS_KA_RESTORER
3436 new_ka.ka_restorer = NULL;
3437 #endif
3438 siginitset(&new_ka.sa.sa_mask, mask);
3441 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3443 if (!ret && oact) {
3444 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3445 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3446 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3447 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449 return -EFAULT;
3452 return ret;
3454 #endif
3455 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3456 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3457 const struct compat_old_sigaction __user *, act,
3458 struct compat_old_sigaction __user *, oact)
3460 struct k_sigaction new_ka, old_ka;
3461 int ret;
3462 compat_old_sigset_t mask;
3463 compat_uptr_t handler, restorer;
3465 if (act) {
3466 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3467 __get_user(handler, &act->sa_handler) ||
3468 __get_user(restorer, &act->sa_restorer) ||
3469 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3470 __get_user(mask, &act->sa_mask))
3471 return -EFAULT;
3473 #ifdef __ARCH_HAS_KA_RESTORER
3474 new_ka.ka_restorer = NULL;
3475 #endif
3476 new_ka.sa.sa_handler = compat_ptr(handler);
3477 new_ka.sa.sa_restorer = compat_ptr(restorer);
3478 siginitset(&new_ka.sa.sa_mask, mask);
3481 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3483 if (!ret && oact) {
3484 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3485 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3486 &oact->sa_handler) ||
3487 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3488 &oact->sa_restorer) ||
3489 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3490 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3491 return -EFAULT;
3493 return ret;
3495 #endif
3497 #ifdef __ARCH_WANT_SYS_SGETMASK
3500 * For backwards compatibility. Functionality superseded by sigprocmask.
3502 SYSCALL_DEFINE0(sgetmask)
3504 /* SMP safe */
3505 return current->blocked.sig[0];
3508 SYSCALL_DEFINE1(ssetmask, int, newmask)
3510 int old = current->blocked.sig[0];
3511 sigset_t newset;
3513 siginitset(&newset, newmask);
3514 set_current_blocked(&newset);
3516 return old;
3518 #endif /* __ARCH_WANT_SGETMASK */
3520 #ifdef __ARCH_WANT_SYS_SIGNAL
3522 * For backwards compatibility. Functionality superseded by sigaction.
3524 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3526 struct k_sigaction new_sa, old_sa;
3527 int ret;
3529 new_sa.sa.sa_handler = handler;
3530 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3531 sigemptyset(&new_sa.sa.sa_mask);
3533 ret = do_sigaction(sig, &new_sa, &old_sa);
3535 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3537 #endif /* __ARCH_WANT_SYS_SIGNAL */
3539 #ifdef __ARCH_WANT_SYS_PAUSE
3541 SYSCALL_DEFINE0(pause)
3543 while (!signal_pending(current)) {
3544 current->state = TASK_INTERRUPTIBLE;
3545 schedule();
3547 return -ERESTARTNOHAND;
3550 #endif
3552 int sigsuspend(sigset_t *set)
3554 current->saved_sigmask = current->blocked;
3555 set_current_blocked(set);
3557 current->state = TASK_INTERRUPTIBLE;
3558 schedule();
3559 set_restore_sigmask();
3560 return -ERESTARTNOHAND;
3564 * sys_rt_sigsuspend - replace the signal mask for a value with the
3565 * @unewset value until a signal is received
3566 * @unewset: new signal mask value
3567 * @sigsetsize: size of sigset_t type
3569 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3571 sigset_t newset;
3573 /* XXX: Don't preclude handling different sized sigset_t's. */
3574 if (sigsetsize != sizeof(sigset_t))
3575 return -EINVAL;
3577 if (copy_from_user(&newset, unewset, sizeof(newset)))
3578 return -EFAULT;
3579 return sigsuspend(&newset);
3582 #ifdef CONFIG_COMPAT
3583 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3585 #ifdef __BIG_ENDIAN
3586 sigset_t newset;
3587 compat_sigset_t newset32;
3589 /* XXX: Don't preclude handling different sized sigset_t's. */
3590 if (sigsetsize != sizeof(sigset_t))
3591 return -EINVAL;
3593 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3594 return -EFAULT;
3595 sigset_from_compat(&newset, &newset32);
3596 return sigsuspend(&newset);
3597 #else
3598 /* on little-endian bitmaps don't care about granularity */
3599 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3600 #endif
3602 #endif
3604 #ifdef CONFIG_OLD_SIGSUSPEND
3605 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3607 sigset_t blocked;
3608 siginitset(&blocked, mask);
3609 return sigsuspend(&blocked);
3611 #endif
3612 #ifdef CONFIG_OLD_SIGSUSPEND3
3613 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3615 sigset_t blocked;
3616 siginitset(&blocked, mask);
3617 return sigsuspend(&blocked);
3619 #endif
3621 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3623 return NULL;
3626 void __init signals_init(void)
3628 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631 #ifdef CONFIG_KGDB_KDB
3632 #include <linux/kdb.h>
3634 * kdb_send_sig_info - Allows kdb to send signals without exposing
3635 * signal internals. This function checks if the required locks are
3636 * available before calling the main signal code, to avoid kdb
3637 * deadlocks.
3639 void
3640 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3642 static struct task_struct *kdb_prev_t;
3643 int sig, new_t;
3644 if (!spin_trylock(&t->sighand->siglock)) {
3645 kdb_printf("Can't do kill command now.\n"
3646 "The sigmask lock is held somewhere else in "
3647 "kernel, try again later\n");
3648 return;
3650 spin_unlock(&t->sighand->siglock);
3651 new_t = kdb_prev_t != t;
3652 kdb_prev_t = t;
3653 if (t->state != TASK_RUNNING && new_t) {
3654 kdb_printf("Process is not RUNNING, sending a signal from "
3655 "kdb risks deadlock\n"
3656 "on the run queue locks. "
3657 "The signal has _not_ been sent.\n"
3658 "Reissue the kill command if you want to risk "
3659 "the deadlock.\n");
3660 return;
3662 sig = info->si_signo;
3663 if (send_sig_info(sig, info, t))
3664 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3665 sig, t->pid);
3666 else
3667 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3669 #endif /* CONFIG_KGDB_KDB */