cciss: add performant mode support for Stars/Sirius
[linux-2.6.git] / drivers / block / cciss.c
blob08a2e619dc36e714b9c5e3194d7c43c8e53cb9d6
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
78 #include "cciss.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
110 {0,}
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access},
121 {0x40800E11, "Smart Array 5i", &SA5B_access},
122 {0x40820E11, "Smart Array 532", &SA5B_access},
123 {0x40830E11, "Smart Array 5312", &SA5B_access},
124 {0x409A0E11, "Smart Array 641", &SA5_access},
125 {0x409B0E11, "Smart Array 642", &SA5_access},
126 {0x409C0E11, "Smart Array 6400", &SA5_access},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128 {0x40910E11, "Smart Array 6i", &SA5_access},
129 {0x3225103C, "Smart Array P600", &SA5_access},
130 {0x3235103C, "Smart Array P400i", &SA5_access},
131 {0x3211103C, "Smart Array E200i", &SA5_access},
132 {0x3212103C, "Smart Array E200", &SA5_access},
133 {0x3213103C, "Smart Array E200i", &SA5_access},
134 {0x3214103C, "Smart Array E200i", &SA5_access},
135 {0x3215103C, "Smart Array E200i", &SA5_access},
136 {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access},
140 {0x3234103C, "Smart Array P400", &SA5_access},
141 {0x323D103C, "Smart Array P700m", &SA5_access},
142 {0x3241103C, "Smart Array P212", &SA5_access},
143 {0x3243103C, "Smart Array P410", &SA5_access},
144 {0x3245103C, "Smart Array P410i", &SA5_access},
145 {0x3247103C, "Smart Array P411", &SA5_access},
146 {0x3249103C, "Smart Array P812", &SA5_access},
147 {0x324A103C, "Smart Array P712m", &SA5_access},
148 {0x324B103C, "Smart Array P711m", &SA5_access},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
158 #define MAX_CTLR 32
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t *hba[MAX_CTLR];
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
171 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
172 static int cciss_open(struct block_device *bdev, fmode_t mode);
173 static int cciss_release(struct gendisk *disk, fmode_t mode);
174 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
175 unsigned int cmd, unsigned long arg);
176 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
178 static int cciss_revalidate(struct gendisk *disk);
179 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
180 static int deregister_disk(ctlr_info_t *h, int drv_index,
181 int clear_all, int via_ioctl);
183 static void cciss_read_capacity(int ctlr, int logvol,
184 sector_t *total_size, unsigned int *block_size);
185 static void cciss_read_capacity_16(int ctlr, int logvol,
186 sector_t *total_size, unsigned int *block_size);
187 static void cciss_geometry_inquiry(int ctlr, int logvol,
188 sector_t total_size,
189 unsigned int block_size, InquiryData_struct *inq_buff,
190 drive_info_struct *drv);
191 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
192 __u32);
193 static void start_io(ctlr_info_t *h);
194 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
195 __u8 page_code, unsigned char scsi3addr[],
196 int cmd_type);
197 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
198 int attempt_retry);
199 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
209 /* performant mode helper functions */
210 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
211 int *bucket_map);
212 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214 #ifdef CONFIG_PROC_FS
215 static void cciss_procinit(int i);
216 #else
217 static void cciss_procinit(int i)
220 #endif /* CONFIG_PROC_FS */
222 #ifdef CONFIG_COMPAT
223 static int cciss_compat_ioctl(struct block_device *, fmode_t,
224 unsigned, unsigned long);
225 #endif
227 static const struct block_device_operations cciss_fops = {
228 .owner = THIS_MODULE,
229 .open = cciss_open,
230 .release = cciss_release,
231 .locked_ioctl = cciss_ioctl,
232 .getgeo = cciss_getgeo,
233 #ifdef CONFIG_COMPAT
234 .compat_ioctl = cciss_compat_ioctl,
235 #endif
236 .revalidate_disk = cciss_revalidate,
239 /* set_performant_mode: Modify the tag for cciss performant
240 * set bit 0 for pull model, bits 3-1 for block fetch
241 * register number
243 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245 if (likely(h->transMethod == CFGTBL_Trans_Performant))
246 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
250 * Enqueuing and dequeuing functions for cmdlists.
252 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
254 hlist_add_head(&c->list, list);
257 static inline void removeQ(CommandList_struct *c)
260 * After kexec/dump some commands might still
261 * be in flight, which the firmware will try
262 * to complete. Resetting the firmware doesn't work
263 * with old fw revisions, so we have to mark
264 * them off as 'stale' to prevent the driver from
265 * falling over.
267 if (WARN_ON(hlist_unhashed(&c->list))) {
268 c->cmd_type = CMD_MSG_STALE;
269 return;
272 hlist_del_init(&c->list);
275 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
276 CommandList_struct *c)
278 unsigned long flags;
279 set_performant_mode(h, c);
280 spin_lock_irqsave(&h->lock, flags);
281 addQ(&h->reqQ, c);
282 h->Qdepth++;
283 start_io(h);
284 spin_unlock_irqrestore(&h->lock, flags);
287 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
288 int nr_cmds)
290 int i;
292 if (!cmd_sg_list)
293 return;
294 for (i = 0; i < nr_cmds; i++) {
295 kfree(cmd_sg_list[i]);
296 cmd_sg_list[i] = NULL;
298 kfree(cmd_sg_list);
301 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
302 ctlr_info_t *h, int chainsize, int nr_cmds)
304 int j;
305 SGDescriptor_struct **cmd_sg_list;
307 if (chainsize <= 0)
308 return NULL;
310 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
311 if (!cmd_sg_list)
312 return NULL;
314 /* Build up chain blocks for each command */
315 for (j = 0; j < nr_cmds; j++) {
316 /* Need a block of chainsized s/g elements. */
317 cmd_sg_list[j] = kmalloc((chainsize *
318 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
319 if (!cmd_sg_list[j]) {
320 dev_err(&h->pdev->dev, "Cannot get memory "
321 "for s/g chains.\n");
322 goto clean;
325 return cmd_sg_list;
326 clean:
327 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
328 return NULL;
331 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
333 SGDescriptor_struct *chain_sg;
334 u64bit temp64;
336 if (c->Header.SGTotal <= h->max_cmd_sgentries)
337 return;
339 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
340 temp64.val32.lower = chain_sg->Addr.lower;
341 temp64.val32.upper = chain_sg->Addr.upper;
342 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
345 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
346 SGDescriptor_struct *chain_block, int len)
348 SGDescriptor_struct *chain_sg;
349 u64bit temp64;
351 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
352 chain_sg->Ext = CCISS_SG_CHAIN;
353 chain_sg->Len = len;
354 temp64.val = pci_map_single(h->pdev, chain_block, len,
355 PCI_DMA_TODEVICE);
356 chain_sg->Addr.lower = temp64.val32.lower;
357 chain_sg->Addr.upper = temp64.val32.upper;
360 #include "cciss_scsi.c" /* For SCSI tape support */
362 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
363 "UNKNOWN"
365 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
367 #ifdef CONFIG_PROC_FS
369 static inline u32 next_command(ctlr_info_t *h)
371 u32 a;
373 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
374 return h->access.command_completed(h);
376 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
377 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
378 (h->reply_pool_head)++;
379 h->commands_outstanding--;
380 } else {
381 a = FIFO_EMPTY;
383 /* Check for wraparound */
384 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
385 h->reply_pool_head = h->reply_pool;
386 h->reply_pool_wraparound ^= 1;
388 return a;
392 * Report information about this controller.
394 #define ENG_GIG 1000000000
395 #define ENG_GIG_FACTOR (ENG_GIG/512)
396 #define ENGAGE_SCSI "engage scsi"
398 static struct proc_dir_entry *proc_cciss;
400 static void cciss_seq_show_header(struct seq_file *seq)
402 ctlr_info_t *h = seq->private;
404 seq_printf(seq, "%s: HP %s Controller\n"
405 "Board ID: 0x%08lx\n"
406 "Firmware Version: %c%c%c%c\n"
407 "IRQ: %d\n"
408 "Logical drives: %d\n"
409 "Current Q depth: %d\n"
410 "Current # commands on controller: %d\n"
411 "Max Q depth since init: %d\n"
412 "Max # commands on controller since init: %d\n"
413 "Max SG entries since init: %d\n",
414 h->devname,
415 h->product_name,
416 (unsigned long)h->board_id,
417 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
418 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
419 h->num_luns,
420 h->Qdepth, h->commands_outstanding,
421 h->maxQsinceinit, h->max_outstanding, h->maxSG);
423 #ifdef CONFIG_CISS_SCSI_TAPE
424 cciss_seq_tape_report(seq, h->ctlr);
425 #endif /* CONFIG_CISS_SCSI_TAPE */
428 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
430 ctlr_info_t *h = seq->private;
431 unsigned ctlr = h->ctlr;
432 unsigned long flags;
434 /* prevent displaying bogus info during configuration
435 * or deconfiguration of a logical volume
437 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
438 if (h->busy_configuring) {
439 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
440 return ERR_PTR(-EBUSY);
442 h->busy_configuring = 1;
443 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
445 if (*pos == 0)
446 cciss_seq_show_header(seq);
448 return pos;
451 static int cciss_seq_show(struct seq_file *seq, void *v)
453 sector_t vol_sz, vol_sz_frac;
454 ctlr_info_t *h = seq->private;
455 unsigned ctlr = h->ctlr;
456 loff_t *pos = v;
457 drive_info_struct *drv = h->drv[*pos];
459 if (*pos > h->highest_lun)
460 return 0;
462 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
463 return 0;
465 if (drv->heads == 0)
466 return 0;
468 vol_sz = drv->nr_blocks;
469 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
470 vol_sz_frac *= 100;
471 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
473 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
474 drv->raid_level = RAID_UNKNOWN;
475 seq_printf(seq, "cciss/c%dd%d:"
476 "\t%4u.%02uGB\tRAID %s\n",
477 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
478 raid_label[drv->raid_level]);
479 return 0;
482 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
484 ctlr_info_t *h = seq->private;
486 if (*pos > h->highest_lun)
487 return NULL;
488 *pos += 1;
490 return pos;
493 static void cciss_seq_stop(struct seq_file *seq, void *v)
495 ctlr_info_t *h = seq->private;
497 /* Only reset h->busy_configuring if we succeeded in setting
498 * it during cciss_seq_start. */
499 if (v == ERR_PTR(-EBUSY))
500 return;
502 h->busy_configuring = 0;
505 static const struct seq_operations cciss_seq_ops = {
506 .start = cciss_seq_start,
507 .show = cciss_seq_show,
508 .next = cciss_seq_next,
509 .stop = cciss_seq_stop,
512 static int cciss_seq_open(struct inode *inode, struct file *file)
514 int ret = seq_open(file, &cciss_seq_ops);
515 struct seq_file *seq = file->private_data;
517 if (!ret)
518 seq->private = PDE(inode)->data;
520 return ret;
523 static ssize_t
524 cciss_proc_write(struct file *file, const char __user *buf,
525 size_t length, loff_t *ppos)
527 int err;
528 char *buffer;
530 #ifndef CONFIG_CISS_SCSI_TAPE
531 return -EINVAL;
532 #endif
534 if (!buf || length > PAGE_SIZE - 1)
535 return -EINVAL;
537 buffer = (char *)__get_free_page(GFP_KERNEL);
538 if (!buffer)
539 return -ENOMEM;
541 err = -EFAULT;
542 if (copy_from_user(buffer, buf, length))
543 goto out;
544 buffer[length] = '\0';
546 #ifdef CONFIG_CISS_SCSI_TAPE
547 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
548 struct seq_file *seq = file->private_data;
549 ctlr_info_t *h = seq->private;
551 err = cciss_engage_scsi(h->ctlr);
552 if (err == 0)
553 err = length;
554 } else
555 #endif /* CONFIG_CISS_SCSI_TAPE */
556 err = -EINVAL;
557 /* might be nice to have "disengage" too, but it's not
558 safely possible. (only 1 module use count, lock issues.) */
560 out:
561 free_page((unsigned long)buffer);
562 return err;
565 static const struct file_operations cciss_proc_fops = {
566 .owner = THIS_MODULE,
567 .open = cciss_seq_open,
568 .read = seq_read,
569 .llseek = seq_lseek,
570 .release = seq_release,
571 .write = cciss_proc_write,
574 static void __devinit cciss_procinit(int i)
576 struct proc_dir_entry *pde;
578 if (proc_cciss == NULL)
579 proc_cciss = proc_mkdir("driver/cciss", NULL);
580 if (!proc_cciss)
581 return;
582 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
583 S_IROTH, proc_cciss,
584 &cciss_proc_fops, hba[i]);
586 #endif /* CONFIG_PROC_FS */
588 #define MAX_PRODUCT_NAME_LEN 19
590 #define to_hba(n) container_of(n, struct ctlr_info, dev)
591 #define to_drv(n) container_of(n, drive_info_struct, dev)
593 static ssize_t host_store_rescan(struct device *dev,
594 struct device_attribute *attr,
595 const char *buf, size_t count)
597 struct ctlr_info *h = to_hba(dev);
599 add_to_scan_list(h);
600 wake_up_process(cciss_scan_thread);
601 wait_for_completion_interruptible(&h->scan_wait);
603 return count;
605 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
607 static ssize_t dev_show_unique_id(struct device *dev,
608 struct device_attribute *attr,
609 char *buf)
611 drive_info_struct *drv = to_drv(dev);
612 struct ctlr_info *h = to_hba(drv->dev.parent);
613 __u8 sn[16];
614 unsigned long flags;
615 int ret = 0;
617 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618 if (h->busy_configuring)
619 ret = -EBUSY;
620 else
621 memcpy(sn, drv->serial_no, sizeof(sn));
622 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
624 if (ret)
625 return ret;
626 else
627 return snprintf(buf, 16 * 2 + 2,
628 "%02X%02X%02X%02X%02X%02X%02X%02X"
629 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
630 sn[0], sn[1], sn[2], sn[3],
631 sn[4], sn[5], sn[6], sn[7],
632 sn[8], sn[9], sn[10], sn[11],
633 sn[12], sn[13], sn[14], sn[15]);
635 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
637 static ssize_t dev_show_vendor(struct device *dev,
638 struct device_attribute *attr,
639 char *buf)
641 drive_info_struct *drv = to_drv(dev);
642 struct ctlr_info *h = to_hba(drv->dev.parent);
643 char vendor[VENDOR_LEN + 1];
644 unsigned long flags;
645 int ret = 0;
647 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
648 if (h->busy_configuring)
649 ret = -EBUSY;
650 else
651 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
652 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
654 if (ret)
655 return ret;
656 else
657 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
659 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
661 static ssize_t dev_show_model(struct device *dev,
662 struct device_attribute *attr,
663 char *buf)
665 drive_info_struct *drv = to_drv(dev);
666 struct ctlr_info *h = to_hba(drv->dev.parent);
667 char model[MODEL_LEN + 1];
668 unsigned long flags;
669 int ret = 0;
671 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
672 if (h->busy_configuring)
673 ret = -EBUSY;
674 else
675 memcpy(model, drv->model, MODEL_LEN + 1);
676 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
678 if (ret)
679 return ret;
680 else
681 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
683 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
685 static ssize_t dev_show_rev(struct device *dev,
686 struct device_attribute *attr,
687 char *buf)
689 drive_info_struct *drv = to_drv(dev);
690 struct ctlr_info *h = to_hba(drv->dev.parent);
691 char rev[REV_LEN + 1];
692 unsigned long flags;
693 int ret = 0;
695 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
696 if (h->busy_configuring)
697 ret = -EBUSY;
698 else
699 memcpy(rev, drv->rev, REV_LEN + 1);
700 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
702 if (ret)
703 return ret;
704 else
705 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
707 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
709 static ssize_t cciss_show_lunid(struct device *dev,
710 struct device_attribute *attr, char *buf)
712 drive_info_struct *drv = to_drv(dev);
713 struct ctlr_info *h = to_hba(drv->dev.parent);
714 unsigned long flags;
715 unsigned char lunid[8];
717 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
718 if (h->busy_configuring) {
719 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
720 return -EBUSY;
722 if (!drv->heads) {
723 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
724 return -ENOTTY;
726 memcpy(lunid, drv->LunID, sizeof(lunid));
727 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
728 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
729 lunid[0], lunid[1], lunid[2], lunid[3],
730 lunid[4], lunid[5], lunid[6], lunid[7]);
732 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
734 static ssize_t cciss_show_raid_level(struct device *dev,
735 struct device_attribute *attr, char *buf)
737 drive_info_struct *drv = to_drv(dev);
738 struct ctlr_info *h = to_hba(drv->dev.parent);
739 int raid;
740 unsigned long flags;
742 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
743 if (h->busy_configuring) {
744 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
745 return -EBUSY;
747 raid = drv->raid_level;
748 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
749 if (raid < 0 || raid > RAID_UNKNOWN)
750 raid = RAID_UNKNOWN;
752 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
753 raid_label[raid]);
755 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
757 static ssize_t cciss_show_usage_count(struct device *dev,
758 struct device_attribute *attr, char *buf)
760 drive_info_struct *drv = to_drv(dev);
761 struct ctlr_info *h = to_hba(drv->dev.parent);
762 unsigned long flags;
763 int count;
765 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
766 if (h->busy_configuring) {
767 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
768 return -EBUSY;
770 count = drv->usage_count;
771 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
772 return snprintf(buf, 20, "%d\n", count);
774 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
776 static struct attribute *cciss_host_attrs[] = {
777 &dev_attr_rescan.attr,
778 NULL
781 static struct attribute_group cciss_host_attr_group = {
782 .attrs = cciss_host_attrs,
785 static const struct attribute_group *cciss_host_attr_groups[] = {
786 &cciss_host_attr_group,
787 NULL
790 static struct device_type cciss_host_type = {
791 .name = "cciss_host",
792 .groups = cciss_host_attr_groups,
793 .release = cciss_hba_release,
796 static struct attribute *cciss_dev_attrs[] = {
797 &dev_attr_unique_id.attr,
798 &dev_attr_model.attr,
799 &dev_attr_vendor.attr,
800 &dev_attr_rev.attr,
801 &dev_attr_lunid.attr,
802 &dev_attr_raid_level.attr,
803 &dev_attr_usage_count.attr,
804 NULL
807 static struct attribute_group cciss_dev_attr_group = {
808 .attrs = cciss_dev_attrs,
811 static const struct attribute_group *cciss_dev_attr_groups[] = {
812 &cciss_dev_attr_group,
813 NULL
816 static struct device_type cciss_dev_type = {
817 .name = "cciss_device",
818 .groups = cciss_dev_attr_groups,
819 .release = cciss_device_release,
822 static struct bus_type cciss_bus_type = {
823 .name = "cciss",
827 * cciss_hba_release is called when the reference count
828 * of h->dev goes to zero.
830 static void cciss_hba_release(struct device *dev)
833 * nothing to do, but need this to avoid a warning
834 * about not having a release handler from lib/kref.c.
839 * Initialize sysfs entry for each controller. This sets up and registers
840 * the 'cciss#' directory for each individual controller under
841 * /sys/bus/pci/devices/<dev>/.
843 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
845 device_initialize(&h->dev);
846 h->dev.type = &cciss_host_type;
847 h->dev.bus = &cciss_bus_type;
848 dev_set_name(&h->dev, "%s", h->devname);
849 h->dev.parent = &h->pdev->dev;
851 return device_add(&h->dev);
855 * Remove sysfs entries for an hba.
857 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
859 device_del(&h->dev);
860 put_device(&h->dev); /* final put. */
863 /* cciss_device_release is called when the reference count
864 * of h->drv[x]dev goes to zero.
866 static void cciss_device_release(struct device *dev)
868 drive_info_struct *drv = to_drv(dev);
869 kfree(drv);
873 * Initialize sysfs for each logical drive. This sets up and registers
874 * the 'c#d#' directory for each individual logical drive under
875 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
876 * /sys/block/cciss!c#d# to this entry.
878 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
879 int drv_index)
881 struct device *dev;
883 if (h->drv[drv_index]->device_initialized)
884 return 0;
886 dev = &h->drv[drv_index]->dev;
887 device_initialize(dev);
888 dev->type = &cciss_dev_type;
889 dev->bus = &cciss_bus_type;
890 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
891 dev->parent = &h->dev;
892 h->drv[drv_index]->device_initialized = 1;
893 return device_add(dev);
897 * Remove sysfs entries for a logical drive.
899 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
900 int ctlr_exiting)
902 struct device *dev = &h->drv[drv_index]->dev;
904 /* special case for c*d0, we only destroy it on controller exit */
905 if (drv_index == 0 && !ctlr_exiting)
906 return;
908 device_del(dev);
909 put_device(dev); /* the "final" put. */
910 h->drv[drv_index] = NULL;
914 * For operations that cannot sleep, a command block is allocated at init,
915 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
916 * which ones are free or in use. For operations that can wait for kmalloc
917 * to possible sleep, this routine can be called with get_from_pool set to 0.
918 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
920 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
922 CommandList_struct *c;
923 int i;
924 u64bit temp64;
925 dma_addr_t cmd_dma_handle, err_dma_handle;
927 if (!get_from_pool) {
928 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
929 sizeof(CommandList_struct), &cmd_dma_handle);
930 if (c == NULL)
931 return NULL;
932 memset(c, 0, sizeof(CommandList_struct));
934 c->cmdindex = -1;
936 c->err_info = (ErrorInfo_struct *)
937 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
938 &err_dma_handle);
940 if (c->err_info == NULL) {
941 pci_free_consistent(h->pdev,
942 sizeof(CommandList_struct), c, cmd_dma_handle);
943 return NULL;
945 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
946 } else { /* get it out of the controllers pool */
948 do {
949 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
950 if (i == h->nr_cmds)
951 return NULL;
952 } while (test_and_set_bit
953 (i & (BITS_PER_LONG - 1),
954 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
955 #ifdef CCISS_DEBUG
956 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
957 #endif
958 c = h->cmd_pool + i;
959 memset(c, 0, sizeof(CommandList_struct));
960 cmd_dma_handle = h->cmd_pool_dhandle
961 + i * sizeof(CommandList_struct);
962 c->err_info = h->errinfo_pool + i;
963 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
964 err_dma_handle = h->errinfo_pool_dhandle
965 + i * sizeof(ErrorInfo_struct);
966 h->nr_allocs++;
968 c->cmdindex = i;
971 INIT_HLIST_NODE(&c->list);
972 c->busaddr = (__u32) cmd_dma_handle;
973 temp64.val = (__u64) err_dma_handle;
974 c->ErrDesc.Addr.lower = temp64.val32.lower;
975 c->ErrDesc.Addr.upper = temp64.val32.upper;
976 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
978 c->ctlr = h->ctlr;
979 return c;
983 * Frees a command block that was previously allocated with cmd_alloc().
985 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
987 int i;
988 u64bit temp64;
990 if (!got_from_pool) {
991 temp64.val32.lower = c->ErrDesc.Addr.lower;
992 temp64.val32.upper = c->ErrDesc.Addr.upper;
993 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
994 c->err_info, (dma_addr_t) temp64.val);
995 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
996 c, (dma_addr_t) c->busaddr);
997 } else {
998 i = c - h->cmd_pool;
999 clear_bit(i & (BITS_PER_LONG - 1),
1000 h->cmd_pool_bits + (i / BITS_PER_LONG));
1001 h->nr_frees++;
1005 static inline ctlr_info_t *get_host(struct gendisk *disk)
1007 return disk->queue->queuedata;
1010 static inline drive_info_struct *get_drv(struct gendisk *disk)
1012 return disk->private_data;
1016 * Open. Make sure the device is really there.
1018 static int cciss_open(struct block_device *bdev, fmode_t mode)
1020 ctlr_info_t *host = get_host(bdev->bd_disk);
1021 drive_info_struct *drv = get_drv(bdev->bd_disk);
1023 #ifdef CCISS_DEBUG
1024 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
1025 #endif /* CCISS_DEBUG */
1027 if (drv->busy_configuring)
1028 return -EBUSY;
1030 * Root is allowed to open raw volume zero even if it's not configured
1031 * so array config can still work. Root is also allowed to open any
1032 * volume that has a LUN ID, so it can issue IOCTL to reread the
1033 * disk information. I don't think I really like this
1034 * but I'm already using way to many device nodes to claim another one
1035 * for "raw controller".
1037 if (drv->heads == 0) {
1038 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1039 /* if not node 0 make sure it is a partition = 0 */
1040 if (MINOR(bdev->bd_dev) & 0x0f) {
1041 return -ENXIO;
1042 /* if it is, make sure we have a LUN ID */
1043 } else if (memcmp(drv->LunID, CTLR_LUNID,
1044 sizeof(drv->LunID))) {
1045 return -ENXIO;
1048 if (!capable(CAP_SYS_ADMIN))
1049 return -EPERM;
1051 drv->usage_count++;
1052 host->usage_count++;
1053 return 0;
1057 * Close. Sync first.
1059 static int cciss_release(struct gendisk *disk, fmode_t mode)
1061 ctlr_info_t *host = get_host(disk);
1062 drive_info_struct *drv = get_drv(disk);
1064 #ifdef CCISS_DEBUG
1065 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1066 #endif /* CCISS_DEBUG */
1068 drv->usage_count--;
1069 host->usage_count--;
1070 return 0;
1073 #ifdef CONFIG_COMPAT
1075 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1076 unsigned cmd, unsigned long arg)
1078 int ret;
1079 lock_kernel();
1080 ret = cciss_ioctl(bdev, mode, cmd, arg);
1081 unlock_kernel();
1082 return ret;
1085 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1086 unsigned cmd, unsigned long arg);
1087 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1088 unsigned cmd, unsigned long arg);
1090 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1091 unsigned cmd, unsigned long arg)
1093 switch (cmd) {
1094 case CCISS_GETPCIINFO:
1095 case CCISS_GETINTINFO:
1096 case CCISS_SETINTINFO:
1097 case CCISS_GETNODENAME:
1098 case CCISS_SETNODENAME:
1099 case CCISS_GETHEARTBEAT:
1100 case CCISS_GETBUSTYPES:
1101 case CCISS_GETFIRMVER:
1102 case CCISS_GETDRIVVER:
1103 case CCISS_REVALIDVOLS:
1104 case CCISS_DEREGDISK:
1105 case CCISS_REGNEWDISK:
1106 case CCISS_REGNEWD:
1107 case CCISS_RESCANDISK:
1108 case CCISS_GETLUNINFO:
1109 return do_ioctl(bdev, mode, cmd, arg);
1111 case CCISS_PASSTHRU32:
1112 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1113 case CCISS_BIG_PASSTHRU32:
1114 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1116 default:
1117 return -ENOIOCTLCMD;
1121 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1122 unsigned cmd, unsigned long arg)
1124 IOCTL32_Command_struct __user *arg32 =
1125 (IOCTL32_Command_struct __user *) arg;
1126 IOCTL_Command_struct arg64;
1127 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1128 int err;
1129 u32 cp;
1131 err = 0;
1132 err |=
1133 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1134 sizeof(arg64.LUN_info));
1135 err |=
1136 copy_from_user(&arg64.Request, &arg32->Request,
1137 sizeof(arg64.Request));
1138 err |=
1139 copy_from_user(&arg64.error_info, &arg32->error_info,
1140 sizeof(arg64.error_info));
1141 err |= get_user(arg64.buf_size, &arg32->buf_size);
1142 err |= get_user(cp, &arg32->buf);
1143 arg64.buf = compat_ptr(cp);
1144 err |= copy_to_user(p, &arg64, sizeof(arg64));
1146 if (err)
1147 return -EFAULT;
1149 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1150 if (err)
1151 return err;
1152 err |=
1153 copy_in_user(&arg32->error_info, &p->error_info,
1154 sizeof(arg32->error_info));
1155 if (err)
1156 return -EFAULT;
1157 return err;
1160 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1161 unsigned cmd, unsigned long arg)
1163 BIG_IOCTL32_Command_struct __user *arg32 =
1164 (BIG_IOCTL32_Command_struct __user *) arg;
1165 BIG_IOCTL_Command_struct arg64;
1166 BIG_IOCTL_Command_struct __user *p =
1167 compat_alloc_user_space(sizeof(arg64));
1168 int err;
1169 u32 cp;
1171 err = 0;
1172 err |=
1173 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1174 sizeof(arg64.LUN_info));
1175 err |=
1176 copy_from_user(&arg64.Request, &arg32->Request,
1177 sizeof(arg64.Request));
1178 err |=
1179 copy_from_user(&arg64.error_info, &arg32->error_info,
1180 sizeof(arg64.error_info));
1181 err |= get_user(arg64.buf_size, &arg32->buf_size);
1182 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1183 err |= get_user(cp, &arg32->buf);
1184 arg64.buf = compat_ptr(cp);
1185 err |= copy_to_user(p, &arg64, sizeof(arg64));
1187 if (err)
1188 return -EFAULT;
1190 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1191 if (err)
1192 return err;
1193 err |=
1194 copy_in_user(&arg32->error_info, &p->error_info,
1195 sizeof(arg32->error_info));
1196 if (err)
1197 return -EFAULT;
1198 return err;
1200 #endif
1202 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1204 drive_info_struct *drv = get_drv(bdev->bd_disk);
1206 if (!drv->cylinders)
1207 return -ENXIO;
1209 geo->heads = drv->heads;
1210 geo->sectors = drv->sectors;
1211 geo->cylinders = drv->cylinders;
1212 return 0;
1215 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1217 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1218 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1219 (void)check_for_unit_attention(host, c);
1222 * ioctl
1224 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1225 unsigned int cmd, unsigned long arg)
1227 struct gendisk *disk = bdev->bd_disk;
1228 ctlr_info_t *host = get_host(disk);
1229 drive_info_struct *drv = get_drv(disk);
1230 int ctlr = host->ctlr;
1231 void __user *argp = (void __user *)arg;
1233 #ifdef CCISS_DEBUG
1234 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1235 #endif /* CCISS_DEBUG */
1237 switch (cmd) {
1238 case CCISS_GETPCIINFO:
1240 cciss_pci_info_struct pciinfo;
1242 if (!arg)
1243 return -EINVAL;
1244 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1245 pciinfo.bus = host->pdev->bus->number;
1246 pciinfo.dev_fn = host->pdev->devfn;
1247 pciinfo.board_id = host->board_id;
1248 if (copy_to_user
1249 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1250 return -EFAULT;
1251 return 0;
1253 case CCISS_GETINTINFO:
1255 cciss_coalint_struct intinfo;
1256 if (!arg)
1257 return -EINVAL;
1258 intinfo.delay =
1259 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1260 intinfo.count =
1261 readl(&host->cfgtable->HostWrite.CoalIntCount);
1262 if (copy_to_user
1263 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1264 return -EFAULT;
1265 return 0;
1267 case CCISS_SETINTINFO:
1269 cciss_coalint_struct intinfo;
1270 unsigned long flags;
1271 int i;
1273 if (!arg)
1274 return -EINVAL;
1275 if (!capable(CAP_SYS_ADMIN))
1276 return -EPERM;
1277 if (copy_from_user
1278 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1279 return -EFAULT;
1280 if ((intinfo.delay == 0) && (intinfo.count == 0))
1282 // printk("cciss_ioctl: delay and count cannot be 0\n");
1283 return -EINVAL;
1285 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1286 /* Update the field, and then ring the doorbell */
1287 writel(intinfo.delay,
1288 &(host->cfgtable->HostWrite.CoalIntDelay));
1289 writel(intinfo.count,
1290 &(host->cfgtable->HostWrite.CoalIntCount));
1291 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1293 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1294 if (!(readl(host->vaddr + SA5_DOORBELL)
1295 & CFGTBL_ChangeReq))
1296 break;
1297 /* delay and try again */
1298 udelay(1000);
1300 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1301 if (i >= MAX_IOCTL_CONFIG_WAIT)
1302 return -EAGAIN;
1303 return 0;
1305 case CCISS_GETNODENAME:
1307 NodeName_type NodeName;
1308 int i;
1310 if (!arg)
1311 return -EINVAL;
1312 for (i = 0; i < 16; i++)
1313 NodeName[i] =
1314 readb(&host->cfgtable->ServerName[i]);
1315 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1316 return -EFAULT;
1317 return 0;
1319 case CCISS_SETNODENAME:
1321 NodeName_type NodeName;
1322 unsigned long flags;
1323 int i;
1325 if (!arg)
1326 return -EINVAL;
1327 if (!capable(CAP_SYS_ADMIN))
1328 return -EPERM;
1330 if (copy_from_user
1331 (NodeName, argp, sizeof(NodeName_type)))
1332 return -EFAULT;
1334 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1336 /* Update the field, and then ring the doorbell */
1337 for (i = 0; i < 16; i++)
1338 writeb(NodeName[i],
1339 &host->cfgtable->ServerName[i]);
1341 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1343 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1344 if (!(readl(host->vaddr + SA5_DOORBELL)
1345 & CFGTBL_ChangeReq))
1346 break;
1347 /* delay and try again */
1348 udelay(1000);
1350 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1351 if (i >= MAX_IOCTL_CONFIG_WAIT)
1352 return -EAGAIN;
1353 return 0;
1356 case CCISS_GETHEARTBEAT:
1358 Heartbeat_type heartbeat;
1360 if (!arg)
1361 return -EINVAL;
1362 heartbeat = readl(&host->cfgtable->HeartBeat);
1363 if (copy_to_user
1364 (argp, &heartbeat, sizeof(Heartbeat_type)))
1365 return -EFAULT;
1366 return 0;
1368 case CCISS_GETBUSTYPES:
1370 BusTypes_type BusTypes;
1372 if (!arg)
1373 return -EINVAL;
1374 BusTypes = readl(&host->cfgtable->BusTypes);
1375 if (copy_to_user
1376 (argp, &BusTypes, sizeof(BusTypes_type)))
1377 return -EFAULT;
1378 return 0;
1380 case CCISS_GETFIRMVER:
1382 FirmwareVer_type firmware;
1384 if (!arg)
1385 return -EINVAL;
1386 memcpy(firmware, host->firm_ver, 4);
1388 if (copy_to_user
1389 (argp, firmware, sizeof(FirmwareVer_type)))
1390 return -EFAULT;
1391 return 0;
1393 case CCISS_GETDRIVVER:
1395 DriverVer_type DriverVer = DRIVER_VERSION;
1397 if (!arg)
1398 return -EINVAL;
1400 if (copy_to_user
1401 (argp, &DriverVer, sizeof(DriverVer_type)))
1402 return -EFAULT;
1403 return 0;
1406 case CCISS_DEREGDISK:
1407 case CCISS_REGNEWD:
1408 case CCISS_REVALIDVOLS:
1409 return rebuild_lun_table(host, 0, 1);
1411 case CCISS_GETLUNINFO:{
1412 LogvolInfo_struct luninfo;
1414 memcpy(&luninfo.LunID, drv->LunID,
1415 sizeof(luninfo.LunID));
1416 luninfo.num_opens = drv->usage_count;
1417 luninfo.num_parts = 0;
1418 if (copy_to_user(argp, &luninfo,
1419 sizeof(LogvolInfo_struct)))
1420 return -EFAULT;
1421 return 0;
1423 case CCISS_PASSTHRU:
1425 IOCTL_Command_struct iocommand;
1426 CommandList_struct *c;
1427 char *buff = NULL;
1428 u64bit temp64;
1429 DECLARE_COMPLETION_ONSTACK(wait);
1431 if (!arg)
1432 return -EINVAL;
1434 if (!capable(CAP_SYS_RAWIO))
1435 return -EPERM;
1437 if (copy_from_user
1438 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1439 return -EFAULT;
1440 if ((iocommand.buf_size < 1) &&
1441 (iocommand.Request.Type.Direction != XFER_NONE)) {
1442 return -EINVAL;
1444 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1445 /* Check kmalloc limits */
1446 if (iocommand.buf_size > 128000)
1447 return -EINVAL;
1448 #endif
1449 if (iocommand.buf_size > 0) {
1450 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1451 if (buff == NULL)
1452 return -EFAULT;
1454 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1455 /* Copy the data into the buffer we created */
1456 if (copy_from_user
1457 (buff, iocommand.buf, iocommand.buf_size)) {
1458 kfree(buff);
1459 return -EFAULT;
1461 } else {
1462 memset(buff, 0, iocommand.buf_size);
1464 if ((c = cmd_alloc(host, 0)) == NULL) {
1465 kfree(buff);
1466 return -ENOMEM;
1468 /* Fill in the command type */
1469 c->cmd_type = CMD_IOCTL_PEND;
1470 /* Fill in Command Header */
1471 c->Header.ReplyQueue = 0; /* unused in simple mode */
1472 if (iocommand.buf_size > 0) /* buffer to fill */
1474 c->Header.SGList = 1;
1475 c->Header.SGTotal = 1;
1476 } else /* no buffers to fill */
1478 c->Header.SGList = 0;
1479 c->Header.SGTotal = 0;
1481 c->Header.LUN = iocommand.LUN_info;
1482 /* use the kernel address the cmd block for tag */
1483 c->Header.Tag.lower = c->busaddr;
1485 /* Fill in Request block */
1486 c->Request = iocommand.Request;
1488 /* Fill in the scatter gather information */
1489 if (iocommand.buf_size > 0) {
1490 temp64.val = pci_map_single(host->pdev, buff,
1491 iocommand.buf_size,
1492 PCI_DMA_BIDIRECTIONAL);
1493 c->SG[0].Addr.lower = temp64.val32.lower;
1494 c->SG[0].Addr.upper = temp64.val32.upper;
1495 c->SG[0].Len = iocommand.buf_size;
1496 c->SG[0].Ext = 0; /* we are not chaining */
1498 c->waiting = &wait;
1500 enqueue_cmd_and_start_io(host, c);
1501 wait_for_completion(&wait);
1503 /* unlock the buffers from DMA */
1504 temp64.val32.lower = c->SG[0].Addr.lower;
1505 temp64.val32.upper = c->SG[0].Addr.upper;
1506 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1507 iocommand.buf_size,
1508 PCI_DMA_BIDIRECTIONAL);
1510 check_ioctl_unit_attention(host, c);
1512 /* Copy the error information out */
1513 iocommand.error_info = *(c->err_info);
1514 if (copy_to_user
1515 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1516 kfree(buff);
1517 cmd_free(host, c, 0);
1518 return -EFAULT;
1521 if (iocommand.Request.Type.Direction == XFER_READ) {
1522 /* Copy the data out of the buffer we created */
1523 if (copy_to_user
1524 (iocommand.buf, buff, iocommand.buf_size)) {
1525 kfree(buff);
1526 cmd_free(host, c, 0);
1527 return -EFAULT;
1530 kfree(buff);
1531 cmd_free(host, c, 0);
1532 return 0;
1534 case CCISS_BIG_PASSTHRU:{
1535 BIG_IOCTL_Command_struct *ioc;
1536 CommandList_struct *c;
1537 unsigned char **buff = NULL;
1538 int *buff_size = NULL;
1539 u64bit temp64;
1540 BYTE sg_used = 0;
1541 int status = 0;
1542 int i;
1543 DECLARE_COMPLETION_ONSTACK(wait);
1544 __u32 left;
1545 __u32 sz;
1546 BYTE __user *data_ptr;
1548 if (!arg)
1549 return -EINVAL;
1550 if (!capable(CAP_SYS_RAWIO))
1551 return -EPERM;
1552 ioc = (BIG_IOCTL_Command_struct *)
1553 kmalloc(sizeof(*ioc), GFP_KERNEL);
1554 if (!ioc) {
1555 status = -ENOMEM;
1556 goto cleanup1;
1558 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1559 status = -EFAULT;
1560 goto cleanup1;
1562 if ((ioc->buf_size < 1) &&
1563 (ioc->Request.Type.Direction != XFER_NONE)) {
1564 status = -EINVAL;
1565 goto cleanup1;
1567 /* Check kmalloc limits using all SGs */
1568 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1569 status = -EINVAL;
1570 goto cleanup1;
1572 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1573 status = -EINVAL;
1574 goto cleanup1;
1576 buff =
1577 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1578 if (!buff) {
1579 status = -ENOMEM;
1580 goto cleanup1;
1582 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1583 GFP_KERNEL);
1584 if (!buff_size) {
1585 status = -ENOMEM;
1586 goto cleanup1;
1588 left = ioc->buf_size;
1589 data_ptr = ioc->buf;
1590 while (left) {
1591 sz = (left >
1592 ioc->malloc_size) ? ioc->
1593 malloc_size : left;
1594 buff_size[sg_used] = sz;
1595 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1596 if (buff[sg_used] == NULL) {
1597 status = -ENOMEM;
1598 goto cleanup1;
1600 if (ioc->Request.Type.Direction == XFER_WRITE) {
1601 if (copy_from_user
1602 (buff[sg_used], data_ptr, sz)) {
1603 status = -EFAULT;
1604 goto cleanup1;
1606 } else {
1607 memset(buff[sg_used], 0, sz);
1609 left -= sz;
1610 data_ptr += sz;
1611 sg_used++;
1613 if ((c = cmd_alloc(host, 0)) == NULL) {
1614 status = -ENOMEM;
1615 goto cleanup1;
1617 c->cmd_type = CMD_IOCTL_PEND;
1618 c->Header.ReplyQueue = 0;
1620 if (ioc->buf_size > 0) {
1621 c->Header.SGList = sg_used;
1622 c->Header.SGTotal = sg_used;
1623 } else {
1624 c->Header.SGList = 0;
1625 c->Header.SGTotal = 0;
1627 c->Header.LUN = ioc->LUN_info;
1628 c->Header.Tag.lower = c->busaddr;
1630 c->Request = ioc->Request;
1631 if (ioc->buf_size > 0) {
1632 for (i = 0; i < sg_used; i++) {
1633 temp64.val =
1634 pci_map_single(host->pdev, buff[i],
1635 buff_size[i],
1636 PCI_DMA_BIDIRECTIONAL);
1637 c->SG[i].Addr.lower =
1638 temp64.val32.lower;
1639 c->SG[i].Addr.upper =
1640 temp64.val32.upper;
1641 c->SG[i].Len = buff_size[i];
1642 c->SG[i].Ext = 0; /* we are not chaining */
1645 c->waiting = &wait;
1646 enqueue_cmd_and_start_io(host, c);
1647 wait_for_completion(&wait);
1648 /* unlock the buffers from DMA */
1649 for (i = 0; i < sg_used; i++) {
1650 temp64.val32.lower = c->SG[i].Addr.lower;
1651 temp64.val32.upper = c->SG[i].Addr.upper;
1652 pci_unmap_single(host->pdev,
1653 (dma_addr_t) temp64.val, buff_size[i],
1654 PCI_DMA_BIDIRECTIONAL);
1656 check_ioctl_unit_attention(host, c);
1657 /* Copy the error information out */
1658 ioc->error_info = *(c->err_info);
1659 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1660 cmd_free(host, c, 0);
1661 status = -EFAULT;
1662 goto cleanup1;
1664 if (ioc->Request.Type.Direction == XFER_READ) {
1665 /* Copy the data out of the buffer we created */
1666 BYTE __user *ptr = ioc->buf;
1667 for (i = 0; i < sg_used; i++) {
1668 if (copy_to_user
1669 (ptr, buff[i], buff_size[i])) {
1670 cmd_free(host, c, 0);
1671 status = -EFAULT;
1672 goto cleanup1;
1674 ptr += buff_size[i];
1677 cmd_free(host, c, 0);
1678 status = 0;
1679 cleanup1:
1680 if (buff) {
1681 for (i = 0; i < sg_used; i++)
1682 kfree(buff[i]);
1683 kfree(buff);
1685 kfree(buff_size);
1686 kfree(ioc);
1687 return status;
1690 /* scsi_cmd_ioctl handles these, below, though some are not */
1691 /* very meaningful for cciss. SG_IO is the main one people want. */
1693 case SG_GET_VERSION_NUM:
1694 case SG_SET_TIMEOUT:
1695 case SG_GET_TIMEOUT:
1696 case SG_GET_RESERVED_SIZE:
1697 case SG_SET_RESERVED_SIZE:
1698 case SG_EMULATED_HOST:
1699 case SG_IO:
1700 case SCSI_IOCTL_SEND_COMMAND:
1701 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1703 /* scsi_cmd_ioctl would normally handle these, below, but */
1704 /* they aren't a good fit for cciss, as CD-ROMs are */
1705 /* not supported, and we don't have any bus/target/lun */
1706 /* which we present to the kernel. */
1708 case CDROM_SEND_PACKET:
1709 case CDROMCLOSETRAY:
1710 case CDROMEJECT:
1711 case SCSI_IOCTL_GET_IDLUN:
1712 case SCSI_IOCTL_GET_BUS_NUMBER:
1713 default:
1714 return -ENOTTY;
1718 static void cciss_check_queues(ctlr_info_t *h)
1720 int start_queue = h->next_to_run;
1721 int i;
1723 /* check to see if we have maxed out the number of commands that can
1724 * be placed on the queue. If so then exit. We do this check here
1725 * in case the interrupt we serviced was from an ioctl and did not
1726 * free any new commands.
1728 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1729 return;
1731 /* We have room on the queue for more commands. Now we need to queue
1732 * them up. We will also keep track of the next queue to run so
1733 * that every queue gets a chance to be started first.
1735 for (i = 0; i < h->highest_lun + 1; i++) {
1736 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1737 /* make sure the disk has been added and the drive is real
1738 * because this can be called from the middle of init_one.
1740 if (!h->drv[curr_queue])
1741 continue;
1742 if (!(h->drv[curr_queue]->queue) ||
1743 !(h->drv[curr_queue]->heads))
1744 continue;
1745 blk_start_queue(h->gendisk[curr_queue]->queue);
1747 /* check to see if we have maxed out the number of commands
1748 * that can be placed on the queue.
1750 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1751 if (curr_queue == start_queue) {
1752 h->next_to_run =
1753 (start_queue + 1) % (h->highest_lun + 1);
1754 break;
1755 } else {
1756 h->next_to_run = curr_queue;
1757 break;
1763 static void cciss_softirq_done(struct request *rq)
1765 CommandList_struct *cmd = rq->completion_data;
1766 ctlr_info_t *h = hba[cmd->ctlr];
1767 SGDescriptor_struct *curr_sg = cmd->SG;
1768 u64bit temp64;
1769 unsigned long flags;
1770 int i, ddir;
1771 int sg_index = 0;
1773 if (cmd->Request.Type.Direction == XFER_READ)
1774 ddir = PCI_DMA_FROMDEVICE;
1775 else
1776 ddir = PCI_DMA_TODEVICE;
1778 /* command did not need to be retried */
1779 /* unmap the DMA mapping for all the scatter gather elements */
1780 for (i = 0; i < cmd->Header.SGList; i++) {
1781 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1782 cciss_unmap_sg_chain_block(h, cmd);
1783 /* Point to the next block */
1784 curr_sg = h->cmd_sg_list[cmd->cmdindex];
1785 sg_index = 0;
1787 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1788 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1789 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1790 ddir);
1791 ++sg_index;
1794 #ifdef CCISS_DEBUG
1795 printk("Done with %p\n", rq);
1796 #endif /* CCISS_DEBUG */
1798 /* set the residual count for pc requests */
1799 if (blk_pc_request(rq))
1800 rq->resid_len = cmd->err_info->ResidualCnt;
1802 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1804 spin_lock_irqsave(&h->lock, flags);
1805 cmd_free(h, cmd, 1);
1806 cciss_check_queues(h);
1807 spin_unlock_irqrestore(&h->lock, flags);
1810 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1811 unsigned char scsi3addr[], uint32_t log_unit)
1813 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1814 sizeof(h->drv[log_unit]->LunID));
1817 /* This function gets the SCSI vendor, model, and revision of a logical drive
1818 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1819 * they cannot be read.
1821 static void cciss_get_device_descr(int ctlr, int logvol,
1822 char *vendor, char *model, char *rev)
1824 int rc;
1825 InquiryData_struct *inq_buf;
1826 unsigned char scsi3addr[8];
1828 *vendor = '\0';
1829 *model = '\0';
1830 *rev = '\0';
1832 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1833 if (!inq_buf)
1834 return;
1836 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1837 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1838 scsi3addr, TYPE_CMD);
1839 if (rc == IO_OK) {
1840 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1841 vendor[VENDOR_LEN] = '\0';
1842 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1843 model[MODEL_LEN] = '\0';
1844 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1845 rev[REV_LEN] = '\0';
1848 kfree(inq_buf);
1849 return;
1852 /* This function gets the serial number of a logical drive via
1853 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1854 * number cannot be had, for whatever reason, 16 bytes of 0xff
1855 * are returned instead.
1857 static void cciss_get_serial_no(int ctlr, int logvol,
1858 unsigned char *serial_no, int buflen)
1860 #define PAGE_83_INQ_BYTES 64
1861 int rc;
1862 unsigned char *buf;
1863 unsigned char scsi3addr[8];
1865 if (buflen > 16)
1866 buflen = 16;
1867 memset(serial_no, 0xff, buflen);
1868 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1869 if (!buf)
1870 return;
1871 memset(serial_no, 0, buflen);
1872 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1873 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1874 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1875 if (rc == IO_OK)
1876 memcpy(serial_no, &buf[8], buflen);
1877 kfree(buf);
1878 return;
1882 * cciss_add_disk sets up the block device queue for a logical drive
1884 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1885 int drv_index)
1887 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1888 if (!disk->queue)
1889 goto init_queue_failure;
1890 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1891 disk->major = h->major;
1892 disk->first_minor = drv_index << NWD_SHIFT;
1893 disk->fops = &cciss_fops;
1894 if (cciss_create_ld_sysfs_entry(h, drv_index))
1895 goto cleanup_queue;
1896 disk->private_data = h->drv[drv_index];
1897 disk->driverfs_dev = &h->drv[drv_index]->dev;
1899 /* Set up queue information */
1900 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1902 /* This is a hardware imposed limit. */
1903 blk_queue_max_segments(disk->queue, h->maxsgentries);
1905 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1907 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1909 disk->queue->queuedata = h;
1911 blk_queue_logical_block_size(disk->queue,
1912 h->drv[drv_index]->block_size);
1914 /* Make sure all queue data is written out before */
1915 /* setting h->drv[drv_index]->queue, as setting this */
1916 /* allows the interrupt handler to start the queue */
1917 wmb();
1918 h->drv[drv_index]->queue = disk->queue;
1919 add_disk(disk);
1920 return 0;
1922 cleanup_queue:
1923 blk_cleanup_queue(disk->queue);
1924 disk->queue = NULL;
1925 init_queue_failure:
1926 return -1;
1929 /* This function will check the usage_count of the drive to be updated/added.
1930 * If the usage_count is zero and it is a heretofore unknown drive, or,
1931 * the drive's capacity, geometry, or serial number has changed,
1932 * then the drive information will be updated and the disk will be
1933 * re-registered with the kernel. If these conditions don't hold,
1934 * then it will be left alone for the next reboot. The exception to this
1935 * is disk 0 which will always be left registered with the kernel since it
1936 * is also the controller node. Any changes to disk 0 will show up on
1937 * the next reboot.
1939 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1940 int via_ioctl)
1942 ctlr_info_t *h = hba[ctlr];
1943 struct gendisk *disk;
1944 InquiryData_struct *inq_buff = NULL;
1945 unsigned int block_size;
1946 sector_t total_size;
1947 unsigned long flags = 0;
1948 int ret = 0;
1949 drive_info_struct *drvinfo;
1951 /* Get information about the disk and modify the driver structure */
1952 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1953 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1954 if (inq_buff == NULL || drvinfo == NULL)
1955 goto mem_msg;
1957 /* testing to see if 16-byte CDBs are already being used */
1958 if (h->cciss_read == CCISS_READ_16) {
1959 cciss_read_capacity_16(h->ctlr, drv_index,
1960 &total_size, &block_size);
1962 } else {
1963 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1964 /* if read_capacity returns all F's this volume is >2TB */
1965 /* in size so we switch to 16-byte CDB's for all */
1966 /* read/write ops */
1967 if (total_size == 0xFFFFFFFFULL) {
1968 cciss_read_capacity_16(ctlr, drv_index,
1969 &total_size, &block_size);
1970 h->cciss_read = CCISS_READ_16;
1971 h->cciss_write = CCISS_WRITE_16;
1972 } else {
1973 h->cciss_read = CCISS_READ_10;
1974 h->cciss_write = CCISS_WRITE_10;
1978 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1979 inq_buff, drvinfo);
1980 drvinfo->block_size = block_size;
1981 drvinfo->nr_blocks = total_size + 1;
1983 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1984 drvinfo->model, drvinfo->rev);
1985 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1986 sizeof(drvinfo->serial_no));
1987 /* Save the lunid in case we deregister the disk, below. */
1988 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1989 sizeof(drvinfo->LunID));
1991 /* Is it the same disk we already know, and nothing's changed? */
1992 if (h->drv[drv_index]->raid_level != -1 &&
1993 ((memcmp(drvinfo->serial_no,
1994 h->drv[drv_index]->serial_no, 16) == 0) &&
1995 drvinfo->block_size == h->drv[drv_index]->block_size &&
1996 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1997 drvinfo->heads == h->drv[drv_index]->heads &&
1998 drvinfo->sectors == h->drv[drv_index]->sectors &&
1999 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2000 /* The disk is unchanged, nothing to update */
2001 goto freeret;
2003 /* If we get here it's not the same disk, or something's changed,
2004 * so we need to * deregister it, and re-register it, if it's not
2005 * in use.
2006 * If the disk already exists then deregister it before proceeding
2007 * (unless it's the first disk (for the controller node).
2009 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2010 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
2011 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2012 h->drv[drv_index]->busy_configuring = 1;
2013 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2015 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2016 * which keeps the interrupt handler from starting
2017 * the queue.
2019 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2022 /* If the disk is in use return */
2023 if (ret)
2024 goto freeret;
2026 /* Save the new information from cciss_geometry_inquiry
2027 * and serial number inquiry. If the disk was deregistered
2028 * above, then h->drv[drv_index] will be NULL.
2030 if (h->drv[drv_index] == NULL) {
2031 drvinfo->device_initialized = 0;
2032 h->drv[drv_index] = drvinfo;
2033 drvinfo = NULL; /* so it won't be freed below. */
2034 } else {
2035 /* special case for cxd0 */
2036 h->drv[drv_index]->block_size = drvinfo->block_size;
2037 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2038 h->drv[drv_index]->heads = drvinfo->heads;
2039 h->drv[drv_index]->sectors = drvinfo->sectors;
2040 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2041 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2042 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2043 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2044 VENDOR_LEN + 1);
2045 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2046 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2049 ++h->num_luns;
2050 disk = h->gendisk[drv_index];
2051 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2053 /* If it's not disk 0 (drv_index != 0)
2054 * or if it was disk 0, but there was previously
2055 * no actual corresponding configured logical drive
2056 * (raid_leve == -1) then we want to update the
2057 * logical drive's information.
2059 if (drv_index || first_time) {
2060 if (cciss_add_disk(h, disk, drv_index) != 0) {
2061 cciss_free_gendisk(h, drv_index);
2062 cciss_free_drive_info(h, drv_index);
2063 printk(KERN_WARNING "cciss:%d could not update "
2064 "disk %d\n", h->ctlr, drv_index);
2065 --h->num_luns;
2069 freeret:
2070 kfree(inq_buff);
2071 kfree(drvinfo);
2072 return;
2073 mem_msg:
2074 printk(KERN_ERR "cciss: out of memory\n");
2075 goto freeret;
2078 /* This function will find the first index of the controllers drive array
2079 * that has a null drv pointer and allocate the drive info struct and
2080 * will return that index This is where new drives will be added.
2081 * If the index to be returned is greater than the highest_lun index for
2082 * the controller then highest_lun is set * to this new index.
2083 * If there are no available indexes or if tha allocation fails, then -1
2084 * is returned. * "controller_node" is used to know if this is a real
2085 * logical drive, or just the controller node, which determines if this
2086 * counts towards highest_lun.
2088 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2090 int i;
2091 drive_info_struct *drv;
2093 /* Search for an empty slot for our drive info */
2094 for (i = 0; i < CISS_MAX_LUN; i++) {
2096 /* if not cxd0 case, and it's occupied, skip it. */
2097 if (h->drv[i] && i != 0)
2098 continue;
2100 * If it's cxd0 case, and drv is alloc'ed already, and a
2101 * disk is configured there, skip it.
2103 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2104 continue;
2107 * We've found an empty slot. Update highest_lun
2108 * provided this isn't just the fake cxd0 controller node.
2110 if (i > h->highest_lun && !controller_node)
2111 h->highest_lun = i;
2113 /* If adding a real disk at cxd0, and it's already alloc'ed */
2114 if (i == 0 && h->drv[i] != NULL)
2115 return i;
2118 * Found an empty slot, not already alloc'ed. Allocate it.
2119 * Mark it with raid_level == -1, so we know it's new later on.
2121 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2122 if (!drv)
2123 return -1;
2124 drv->raid_level = -1; /* so we know it's new */
2125 h->drv[i] = drv;
2126 return i;
2128 return -1;
2131 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2133 kfree(h->drv[drv_index]);
2134 h->drv[drv_index] = NULL;
2137 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2139 put_disk(h->gendisk[drv_index]);
2140 h->gendisk[drv_index] = NULL;
2143 /* cciss_add_gendisk finds a free hba[]->drv structure
2144 * and allocates a gendisk if needed, and sets the lunid
2145 * in the drvinfo structure. It returns the index into
2146 * the ->drv[] array, or -1 if none are free.
2147 * is_controller_node indicates whether highest_lun should
2148 * count this disk, or if it's only being added to provide
2149 * a means to talk to the controller in case no logical
2150 * drives have yet been configured.
2152 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2153 int controller_node)
2155 int drv_index;
2157 drv_index = cciss_alloc_drive_info(h, controller_node);
2158 if (drv_index == -1)
2159 return -1;
2161 /*Check if the gendisk needs to be allocated */
2162 if (!h->gendisk[drv_index]) {
2163 h->gendisk[drv_index] =
2164 alloc_disk(1 << NWD_SHIFT);
2165 if (!h->gendisk[drv_index]) {
2166 printk(KERN_ERR "cciss%d: could not "
2167 "allocate a new disk %d\n",
2168 h->ctlr, drv_index);
2169 goto err_free_drive_info;
2172 memcpy(h->drv[drv_index]->LunID, lunid,
2173 sizeof(h->drv[drv_index]->LunID));
2174 if (cciss_create_ld_sysfs_entry(h, drv_index))
2175 goto err_free_disk;
2176 /* Don't need to mark this busy because nobody */
2177 /* else knows about this disk yet to contend */
2178 /* for access to it. */
2179 h->drv[drv_index]->busy_configuring = 0;
2180 wmb();
2181 return drv_index;
2183 err_free_disk:
2184 cciss_free_gendisk(h, drv_index);
2185 err_free_drive_info:
2186 cciss_free_drive_info(h, drv_index);
2187 return -1;
2190 /* This is for the special case of a controller which
2191 * has no logical drives. In this case, we still need
2192 * to register a disk so the controller can be accessed
2193 * by the Array Config Utility.
2195 static void cciss_add_controller_node(ctlr_info_t *h)
2197 struct gendisk *disk;
2198 int drv_index;
2200 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2201 return;
2203 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2204 if (drv_index == -1)
2205 goto error;
2206 h->drv[drv_index]->block_size = 512;
2207 h->drv[drv_index]->nr_blocks = 0;
2208 h->drv[drv_index]->heads = 0;
2209 h->drv[drv_index]->sectors = 0;
2210 h->drv[drv_index]->cylinders = 0;
2211 h->drv[drv_index]->raid_level = -1;
2212 memset(h->drv[drv_index]->serial_no, 0, 16);
2213 disk = h->gendisk[drv_index];
2214 if (cciss_add_disk(h, disk, drv_index) == 0)
2215 return;
2216 cciss_free_gendisk(h, drv_index);
2217 cciss_free_drive_info(h, drv_index);
2218 error:
2219 printk(KERN_WARNING "cciss%d: could not "
2220 "add disk 0.\n", h->ctlr);
2221 return;
2224 /* This function will add and remove logical drives from the Logical
2225 * drive array of the controller and maintain persistency of ordering
2226 * so that mount points are preserved until the next reboot. This allows
2227 * for the removal of logical drives in the middle of the drive array
2228 * without a re-ordering of those drives.
2229 * INPUT
2230 * h = The controller to perform the operations on
2232 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2233 int via_ioctl)
2235 int ctlr = h->ctlr;
2236 int num_luns;
2237 ReportLunData_struct *ld_buff = NULL;
2238 int return_code;
2239 int listlength = 0;
2240 int i;
2241 int drv_found;
2242 int drv_index = 0;
2243 unsigned char lunid[8] = CTLR_LUNID;
2244 unsigned long flags;
2246 if (!capable(CAP_SYS_RAWIO))
2247 return -EPERM;
2249 /* Set busy_configuring flag for this operation */
2250 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2251 if (h->busy_configuring) {
2252 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2253 return -EBUSY;
2255 h->busy_configuring = 1;
2256 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2258 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2259 if (ld_buff == NULL)
2260 goto mem_msg;
2262 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2263 sizeof(ReportLunData_struct),
2264 0, CTLR_LUNID, TYPE_CMD);
2266 if (return_code == IO_OK)
2267 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2268 else { /* reading number of logical volumes failed */
2269 printk(KERN_WARNING "cciss: report logical volume"
2270 " command failed\n");
2271 listlength = 0;
2272 goto freeret;
2275 num_luns = listlength / 8; /* 8 bytes per entry */
2276 if (num_luns > CISS_MAX_LUN) {
2277 num_luns = CISS_MAX_LUN;
2278 printk(KERN_WARNING "cciss: more luns configured"
2279 " on controller than can be handled by"
2280 " this driver.\n");
2283 if (num_luns == 0)
2284 cciss_add_controller_node(h);
2286 /* Compare controller drive array to driver's drive array
2287 * to see if any drives are missing on the controller due
2288 * to action of Array Config Utility (user deletes drive)
2289 * and deregister logical drives which have disappeared.
2291 for (i = 0; i <= h->highest_lun; i++) {
2292 int j;
2293 drv_found = 0;
2295 /* skip holes in the array from already deleted drives */
2296 if (h->drv[i] == NULL)
2297 continue;
2299 for (j = 0; j < num_luns; j++) {
2300 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2301 if (memcmp(h->drv[i]->LunID, lunid,
2302 sizeof(lunid)) == 0) {
2303 drv_found = 1;
2304 break;
2307 if (!drv_found) {
2308 /* Deregister it from the OS, it's gone. */
2309 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2310 h->drv[i]->busy_configuring = 1;
2311 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2312 return_code = deregister_disk(h, i, 1, via_ioctl);
2313 if (h->drv[i] != NULL)
2314 h->drv[i]->busy_configuring = 0;
2318 /* Compare controller drive array to driver's drive array.
2319 * Check for updates in the drive information and any new drives
2320 * on the controller due to ACU adding logical drives, or changing
2321 * a logical drive's size, etc. Reregister any new/changed drives
2323 for (i = 0; i < num_luns; i++) {
2324 int j;
2326 drv_found = 0;
2328 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2329 /* Find if the LUN is already in the drive array
2330 * of the driver. If so then update its info
2331 * if not in use. If it does not exist then find
2332 * the first free index and add it.
2334 for (j = 0; j <= h->highest_lun; j++) {
2335 if (h->drv[j] != NULL &&
2336 memcmp(h->drv[j]->LunID, lunid,
2337 sizeof(h->drv[j]->LunID)) == 0) {
2338 drv_index = j;
2339 drv_found = 1;
2340 break;
2344 /* check if the drive was found already in the array */
2345 if (!drv_found) {
2346 drv_index = cciss_add_gendisk(h, lunid, 0);
2347 if (drv_index == -1)
2348 goto freeret;
2350 cciss_update_drive_info(ctlr, drv_index, first_time,
2351 via_ioctl);
2352 } /* end for */
2354 freeret:
2355 kfree(ld_buff);
2356 h->busy_configuring = 0;
2357 /* We return -1 here to tell the ACU that we have registered/updated
2358 * all of the drives that we can and to keep it from calling us
2359 * additional times.
2361 return -1;
2362 mem_msg:
2363 printk(KERN_ERR "cciss: out of memory\n");
2364 h->busy_configuring = 0;
2365 goto freeret;
2368 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2370 /* zero out the disk size info */
2371 drive_info->nr_blocks = 0;
2372 drive_info->block_size = 0;
2373 drive_info->heads = 0;
2374 drive_info->sectors = 0;
2375 drive_info->cylinders = 0;
2376 drive_info->raid_level = -1;
2377 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2378 memset(drive_info->model, 0, sizeof(drive_info->model));
2379 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2380 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2382 * don't clear the LUNID though, we need to remember which
2383 * one this one is.
2387 /* This function will deregister the disk and it's queue from the
2388 * kernel. It must be called with the controller lock held and the
2389 * drv structures busy_configuring flag set. It's parameters are:
2391 * disk = This is the disk to be deregistered
2392 * drv = This is the drive_info_struct associated with the disk to be
2393 * deregistered. It contains information about the disk used
2394 * by the driver.
2395 * clear_all = This flag determines whether or not the disk information
2396 * is going to be completely cleared out and the highest_lun
2397 * reset. Sometimes we want to clear out information about
2398 * the disk in preparation for re-adding it. In this case
2399 * the highest_lun should be left unchanged and the LunID
2400 * should not be cleared.
2401 * via_ioctl
2402 * This indicates whether we've reached this path via ioctl.
2403 * This affects the maximum usage count allowed for c0d0 to be messed with.
2404 * If this path is reached via ioctl(), then the max_usage_count will
2405 * be 1, as the process calling ioctl() has got to have the device open.
2406 * If we get here via sysfs, then the max usage count will be zero.
2408 static int deregister_disk(ctlr_info_t *h, int drv_index,
2409 int clear_all, int via_ioctl)
2411 int i;
2412 struct gendisk *disk;
2413 drive_info_struct *drv;
2414 int recalculate_highest_lun;
2416 if (!capable(CAP_SYS_RAWIO))
2417 return -EPERM;
2419 drv = h->drv[drv_index];
2420 disk = h->gendisk[drv_index];
2422 /* make sure logical volume is NOT is use */
2423 if (clear_all || (h->gendisk[0] == disk)) {
2424 if (drv->usage_count > via_ioctl)
2425 return -EBUSY;
2426 } else if (drv->usage_count > 0)
2427 return -EBUSY;
2429 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2431 /* invalidate the devices and deregister the disk. If it is disk
2432 * zero do not deregister it but just zero out it's values. This
2433 * allows us to delete disk zero but keep the controller registered.
2435 if (h->gendisk[0] != disk) {
2436 struct request_queue *q = disk->queue;
2437 if (disk->flags & GENHD_FL_UP) {
2438 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2439 del_gendisk(disk);
2441 if (q)
2442 blk_cleanup_queue(q);
2443 /* If clear_all is set then we are deleting the logical
2444 * drive, not just refreshing its info. For drives
2445 * other than disk 0 we will call put_disk. We do not
2446 * do this for disk 0 as we need it to be able to
2447 * configure the controller.
2449 if (clear_all){
2450 /* This isn't pretty, but we need to find the
2451 * disk in our array and NULL our the pointer.
2452 * This is so that we will call alloc_disk if
2453 * this index is used again later.
2455 for (i=0; i < CISS_MAX_LUN; i++){
2456 if (h->gendisk[i] == disk) {
2457 h->gendisk[i] = NULL;
2458 break;
2461 put_disk(disk);
2463 } else {
2464 set_capacity(disk, 0);
2465 cciss_clear_drive_info(drv);
2468 --h->num_luns;
2470 /* if it was the last disk, find the new hightest lun */
2471 if (clear_all && recalculate_highest_lun) {
2472 int newhighest = -1;
2473 for (i = 0; i <= h->highest_lun; i++) {
2474 /* if the disk has size > 0, it is available */
2475 if (h->drv[i] && h->drv[i]->heads)
2476 newhighest = i;
2478 h->highest_lun = newhighest;
2480 return 0;
2483 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2484 size_t size, __u8 page_code, unsigned char *scsi3addr,
2485 int cmd_type)
2487 ctlr_info_t *h = hba[ctlr];
2488 u64bit buff_dma_handle;
2489 int status = IO_OK;
2491 c->cmd_type = CMD_IOCTL_PEND;
2492 c->Header.ReplyQueue = 0;
2493 if (buff != NULL) {
2494 c->Header.SGList = 1;
2495 c->Header.SGTotal = 1;
2496 } else {
2497 c->Header.SGList = 0;
2498 c->Header.SGTotal = 0;
2500 c->Header.Tag.lower = c->busaddr;
2501 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2503 c->Request.Type.Type = cmd_type;
2504 if (cmd_type == TYPE_CMD) {
2505 switch (cmd) {
2506 case CISS_INQUIRY:
2507 /* are we trying to read a vital product page */
2508 if (page_code != 0) {
2509 c->Request.CDB[1] = 0x01;
2510 c->Request.CDB[2] = page_code;
2512 c->Request.CDBLen = 6;
2513 c->Request.Type.Attribute = ATTR_SIMPLE;
2514 c->Request.Type.Direction = XFER_READ;
2515 c->Request.Timeout = 0;
2516 c->Request.CDB[0] = CISS_INQUIRY;
2517 c->Request.CDB[4] = size & 0xFF;
2518 break;
2519 case CISS_REPORT_LOG:
2520 case CISS_REPORT_PHYS:
2521 /* Talking to controller so It's a physical command
2522 mode = 00 target = 0. Nothing to write.
2524 c->Request.CDBLen = 12;
2525 c->Request.Type.Attribute = ATTR_SIMPLE;
2526 c->Request.Type.Direction = XFER_READ;
2527 c->Request.Timeout = 0;
2528 c->Request.CDB[0] = cmd;
2529 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2530 c->Request.CDB[7] = (size >> 16) & 0xFF;
2531 c->Request.CDB[8] = (size >> 8) & 0xFF;
2532 c->Request.CDB[9] = size & 0xFF;
2533 break;
2535 case CCISS_READ_CAPACITY:
2536 c->Request.CDBLen = 10;
2537 c->Request.Type.Attribute = ATTR_SIMPLE;
2538 c->Request.Type.Direction = XFER_READ;
2539 c->Request.Timeout = 0;
2540 c->Request.CDB[0] = cmd;
2541 break;
2542 case CCISS_READ_CAPACITY_16:
2543 c->Request.CDBLen = 16;
2544 c->Request.Type.Attribute = ATTR_SIMPLE;
2545 c->Request.Type.Direction = XFER_READ;
2546 c->Request.Timeout = 0;
2547 c->Request.CDB[0] = cmd;
2548 c->Request.CDB[1] = 0x10;
2549 c->Request.CDB[10] = (size >> 24) & 0xFF;
2550 c->Request.CDB[11] = (size >> 16) & 0xFF;
2551 c->Request.CDB[12] = (size >> 8) & 0xFF;
2552 c->Request.CDB[13] = size & 0xFF;
2553 c->Request.Timeout = 0;
2554 c->Request.CDB[0] = cmd;
2555 break;
2556 case CCISS_CACHE_FLUSH:
2557 c->Request.CDBLen = 12;
2558 c->Request.Type.Attribute = ATTR_SIMPLE;
2559 c->Request.Type.Direction = XFER_WRITE;
2560 c->Request.Timeout = 0;
2561 c->Request.CDB[0] = BMIC_WRITE;
2562 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2563 break;
2564 case TEST_UNIT_READY:
2565 c->Request.CDBLen = 6;
2566 c->Request.Type.Attribute = ATTR_SIMPLE;
2567 c->Request.Type.Direction = XFER_NONE;
2568 c->Request.Timeout = 0;
2569 break;
2570 default:
2571 printk(KERN_WARNING
2572 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2573 return IO_ERROR;
2575 } else if (cmd_type == TYPE_MSG) {
2576 switch (cmd) {
2577 case 0: /* ABORT message */
2578 c->Request.CDBLen = 12;
2579 c->Request.Type.Attribute = ATTR_SIMPLE;
2580 c->Request.Type.Direction = XFER_WRITE;
2581 c->Request.Timeout = 0;
2582 c->Request.CDB[0] = cmd; /* abort */
2583 c->Request.CDB[1] = 0; /* abort a command */
2584 /* buff contains the tag of the command to abort */
2585 memcpy(&c->Request.CDB[4], buff, 8);
2586 break;
2587 case 1: /* RESET message */
2588 c->Request.CDBLen = 16;
2589 c->Request.Type.Attribute = ATTR_SIMPLE;
2590 c->Request.Type.Direction = XFER_NONE;
2591 c->Request.Timeout = 0;
2592 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2593 c->Request.CDB[0] = cmd; /* reset */
2594 c->Request.CDB[1] = 0x03; /* reset a target */
2595 break;
2596 case 3: /* No-Op message */
2597 c->Request.CDBLen = 1;
2598 c->Request.Type.Attribute = ATTR_SIMPLE;
2599 c->Request.Type.Direction = XFER_WRITE;
2600 c->Request.Timeout = 0;
2601 c->Request.CDB[0] = cmd;
2602 break;
2603 default:
2604 printk(KERN_WARNING
2605 "cciss%d: unknown message type %d\n", ctlr, cmd);
2606 return IO_ERROR;
2608 } else {
2609 printk(KERN_WARNING
2610 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2611 return IO_ERROR;
2613 /* Fill in the scatter gather information */
2614 if (size > 0) {
2615 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2616 buff, size,
2617 PCI_DMA_BIDIRECTIONAL);
2618 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2619 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2620 c->SG[0].Len = size;
2621 c->SG[0].Ext = 0; /* we are not chaining */
2623 return status;
2626 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2628 switch (c->err_info->ScsiStatus) {
2629 case SAM_STAT_GOOD:
2630 return IO_OK;
2631 case SAM_STAT_CHECK_CONDITION:
2632 switch (0xf & c->err_info->SenseInfo[2]) {
2633 case 0: return IO_OK; /* no sense */
2634 case 1: return IO_OK; /* recovered error */
2635 default:
2636 if (check_for_unit_attention(h, c))
2637 return IO_NEEDS_RETRY;
2638 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2639 "check condition, sense key = 0x%02x\n",
2640 h->ctlr, c->Request.CDB[0],
2641 c->err_info->SenseInfo[2]);
2643 break;
2644 default:
2645 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2646 "scsi status = 0x%02x\n", h->ctlr,
2647 c->Request.CDB[0], c->err_info->ScsiStatus);
2648 break;
2650 return IO_ERROR;
2653 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2655 int return_status = IO_OK;
2657 if (c->err_info->CommandStatus == CMD_SUCCESS)
2658 return IO_OK;
2660 switch (c->err_info->CommandStatus) {
2661 case CMD_TARGET_STATUS:
2662 return_status = check_target_status(h, c);
2663 break;
2664 case CMD_DATA_UNDERRUN:
2665 case CMD_DATA_OVERRUN:
2666 /* expected for inquiry and report lun commands */
2667 break;
2668 case CMD_INVALID:
2669 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2670 "reported invalid\n", c->Request.CDB[0]);
2671 return_status = IO_ERROR;
2672 break;
2673 case CMD_PROTOCOL_ERR:
2674 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2675 "protocol error \n", c->Request.CDB[0]);
2676 return_status = IO_ERROR;
2677 break;
2678 case CMD_HARDWARE_ERR:
2679 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2680 " hardware error\n", c->Request.CDB[0]);
2681 return_status = IO_ERROR;
2682 break;
2683 case CMD_CONNECTION_LOST:
2684 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2685 "connection lost\n", c->Request.CDB[0]);
2686 return_status = IO_ERROR;
2687 break;
2688 case CMD_ABORTED:
2689 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2690 "aborted\n", c->Request.CDB[0]);
2691 return_status = IO_ERROR;
2692 break;
2693 case CMD_ABORT_FAILED:
2694 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2695 "abort failed\n", c->Request.CDB[0]);
2696 return_status = IO_ERROR;
2697 break;
2698 case CMD_UNSOLICITED_ABORT:
2699 printk(KERN_WARNING
2700 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2701 c->Request.CDB[0]);
2702 return_status = IO_NEEDS_RETRY;
2703 break;
2704 default:
2705 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2706 "unknown status %x\n", c->Request.CDB[0],
2707 c->err_info->CommandStatus);
2708 return_status = IO_ERROR;
2710 return return_status;
2713 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2714 int attempt_retry)
2716 DECLARE_COMPLETION_ONSTACK(wait);
2717 u64bit buff_dma_handle;
2718 int return_status = IO_OK;
2720 resend_cmd2:
2721 c->waiting = &wait;
2722 enqueue_cmd_and_start_io(h, c);
2724 wait_for_completion(&wait);
2726 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2727 goto command_done;
2729 return_status = process_sendcmd_error(h, c);
2731 if (return_status == IO_NEEDS_RETRY &&
2732 c->retry_count < MAX_CMD_RETRIES) {
2733 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2734 c->Request.CDB[0]);
2735 c->retry_count++;
2736 /* erase the old error information */
2737 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2738 return_status = IO_OK;
2739 INIT_COMPLETION(wait);
2740 goto resend_cmd2;
2743 command_done:
2744 /* unlock the buffers from DMA */
2745 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2746 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2747 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2748 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2749 return return_status;
2752 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2753 __u8 page_code, unsigned char scsi3addr[],
2754 int cmd_type)
2756 ctlr_info_t *h = hba[ctlr];
2757 CommandList_struct *c;
2758 int return_status;
2760 c = cmd_alloc(h, 0);
2761 if (!c)
2762 return -ENOMEM;
2763 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2764 scsi3addr, cmd_type);
2765 if (return_status == IO_OK)
2766 return_status = sendcmd_withirq_core(h, c, 1);
2768 cmd_free(h, c, 0);
2769 return return_status;
2772 static void cciss_geometry_inquiry(int ctlr, int logvol,
2773 sector_t total_size,
2774 unsigned int block_size,
2775 InquiryData_struct *inq_buff,
2776 drive_info_struct *drv)
2778 int return_code;
2779 unsigned long t;
2780 unsigned char scsi3addr[8];
2782 memset(inq_buff, 0, sizeof(InquiryData_struct));
2783 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2784 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2785 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2786 if (return_code == IO_OK) {
2787 if (inq_buff->data_byte[8] == 0xFF) {
2788 printk(KERN_WARNING
2789 "cciss: reading geometry failed, volume "
2790 "does not support reading geometry\n");
2791 drv->heads = 255;
2792 drv->sectors = 32; /* Sectors per track */
2793 drv->cylinders = total_size + 1;
2794 drv->raid_level = RAID_UNKNOWN;
2795 } else {
2796 drv->heads = inq_buff->data_byte[6];
2797 drv->sectors = inq_buff->data_byte[7];
2798 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2799 drv->cylinders += inq_buff->data_byte[5];
2800 drv->raid_level = inq_buff->data_byte[8];
2802 drv->block_size = block_size;
2803 drv->nr_blocks = total_size + 1;
2804 t = drv->heads * drv->sectors;
2805 if (t > 1) {
2806 sector_t real_size = total_size + 1;
2807 unsigned long rem = sector_div(real_size, t);
2808 if (rem)
2809 real_size++;
2810 drv->cylinders = real_size;
2812 } else { /* Get geometry failed */
2813 printk(KERN_WARNING "cciss: reading geometry failed\n");
2817 static void
2818 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2819 unsigned int *block_size)
2821 ReadCapdata_struct *buf;
2822 int return_code;
2823 unsigned char scsi3addr[8];
2825 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2826 if (!buf) {
2827 printk(KERN_WARNING "cciss: out of memory\n");
2828 return;
2831 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2832 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2833 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2834 if (return_code == IO_OK) {
2835 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2836 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2837 } else { /* read capacity command failed */
2838 printk(KERN_WARNING "cciss: read capacity failed\n");
2839 *total_size = 0;
2840 *block_size = BLOCK_SIZE;
2842 kfree(buf);
2845 static void cciss_read_capacity_16(int ctlr, int logvol,
2846 sector_t *total_size, unsigned int *block_size)
2848 ReadCapdata_struct_16 *buf;
2849 int return_code;
2850 unsigned char scsi3addr[8];
2852 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2853 if (!buf) {
2854 printk(KERN_WARNING "cciss: out of memory\n");
2855 return;
2858 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2859 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2860 ctlr, buf, sizeof(ReadCapdata_struct_16),
2861 0, scsi3addr, TYPE_CMD);
2862 if (return_code == IO_OK) {
2863 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2864 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2865 } else { /* read capacity command failed */
2866 printk(KERN_WARNING "cciss: read capacity failed\n");
2867 *total_size = 0;
2868 *block_size = BLOCK_SIZE;
2870 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2871 (unsigned long long)*total_size+1, *block_size);
2872 kfree(buf);
2875 static int cciss_revalidate(struct gendisk *disk)
2877 ctlr_info_t *h = get_host(disk);
2878 drive_info_struct *drv = get_drv(disk);
2879 int logvol;
2880 int FOUND = 0;
2881 unsigned int block_size;
2882 sector_t total_size;
2883 InquiryData_struct *inq_buff = NULL;
2885 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2886 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2887 sizeof(drv->LunID)) == 0) {
2888 FOUND = 1;
2889 break;
2893 if (!FOUND)
2894 return 1;
2896 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2897 if (inq_buff == NULL) {
2898 printk(KERN_WARNING "cciss: out of memory\n");
2899 return 1;
2901 if (h->cciss_read == CCISS_READ_10) {
2902 cciss_read_capacity(h->ctlr, logvol,
2903 &total_size, &block_size);
2904 } else {
2905 cciss_read_capacity_16(h->ctlr, logvol,
2906 &total_size, &block_size);
2908 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2909 inq_buff, drv);
2911 blk_queue_logical_block_size(drv->queue, drv->block_size);
2912 set_capacity(disk, drv->nr_blocks);
2914 kfree(inq_buff);
2915 return 0;
2919 * Map (physical) PCI mem into (virtual) kernel space
2921 static void __iomem *remap_pci_mem(ulong base, ulong size)
2923 ulong page_base = ((ulong) base) & PAGE_MASK;
2924 ulong page_offs = ((ulong) base) - page_base;
2925 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2927 return page_remapped ? (page_remapped + page_offs) : NULL;
2931 * Takes jobs of the Q and sends them to the hardware, then puts it on
2932 * the Q to wait for completion.
2934 static void start_io(ctlr_info_t *h)
2936 CommandList_struct *c;
2938 while (!hlist_empty(&h->reqQ)) {
2939 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2940 /* can't do anything if fifo is full */
2941 if ((h->access.fifo_full(h))) {
2942 printk(KERN_WARNING "cciss: fifo full\n");
2943 break;
2946 /* Get the first entry from the Request Q */
2947 removeQ(c);
2948 h->Qdepth--;
2950 /* Tell the controller execute command */
2951 h->access.submit_command(h, c);
2953 /* Put job onto the completed Q */
2954 addQ(&h->cmpQ, c);
2958 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2959 /* Zeros out the error record and then resends the command back */
2960 /* to the controller */
2961 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2963 /* erase the old error information */
2964 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2966 /* add it to software queue and then send it to the controller */
2967 addQ(&h->reqQ, c);
2968 h->Qdepth++;
2969 if (h->Qdepth > h->maxQsinceinit)
2970 h->maxQsinceinit = h->Qdepth;
2972 start_io(h);
2975 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2976 unsigned int msg_byte, unsigned int host_byte,
2977 unsigned int driver_byte)
2979 /* inverse of macros in scsi.h */
2980 return (scsi_status_byte & 0xff) |
2981 ((msg_byte & 0xff) << 8) |
2982 ((host_byte & 0xff) << 16) |
2983 ((driver_byte & 0xff) << 24);
2986 static inline int evaluate_target_status(ctlr_info_t *h,
2987 CommandList_struct *cmd, int *retry_cmd)
2989 unsigned char sense_key;
2990 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2991 int error_value;
2993 *retry_cmd = 0;
2994 /* If we get in here, it means we got "target status", that is, scsi status */
2995 status_byte = cmd->err_info->ScsiStatus;
2996 driver_byte = DRIVER_OK;
2997 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2999 if (blk_pc_request(cmd->rq))
3000 host_byte = DID_PASSTHROUGH;
3001 else
3002 host_byte = DID_OK;
3004 error_value = make_status_bytes(status_byte, msg_byte,
3005 host_byte, driver_byte);
3007 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3008 if (!blk_pc_request(cmd->rq))
3009 printk(KERN_WARNING "cciss: cmd %p "
3010 "has SCSI Status 0x%x\n",
3011 cmd, cmd->err_info->ScsiStatus);
3012 return error_value;
3015 /* check the sense key */
3016 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3017 /* no status or recovered error */
3018 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3019 error_value = 0;
3021 if (check_for_unit_attention(h, cmd)) {
3022 *retry_cmd = !blk_pc_request(cmd->rq);
3023 return 0;
3026 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3027 if (error_value != 0)
3028 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3029 " sense key = 0x%x\n", cmd, sense_key);
3030 return error_value;
3033 /* SG_IO or similar, copy sense data back */
3034 if (cmd->rq->sense) {
3035 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3036 cmd->rq->sense_len = cmd->err_info->SenseLen;
3037 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3038 cmd->rq->sense_len);
3039 } else
3040 cmd->rq->sense_len = 0;
3042 return error_value;
3045 /* checks the status of the job and calls complete buffers to mark all
3046 * buffers for the completed job. Note that this function does not need
3047 * to hold the hba/queue lock.
3049 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3050 int timeout)
3052 int retry_cmd = 0;
3053 struct request *rq = cmd->rq;
3055 rq->errors = 0;
3057 if (timeout)
3058 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3060 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3061 goto after_error_processing;
3063 switch (cmd->err_info->CommandStatus) {
3064 case CMD_TARGET_STATUS:
3065 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3066 break;
3067 case CMD_DATA_UNDERRUN:
3068 if (blk_fs_request(cmd->rq)) {
3069 printk(KERN_WARNING "cciss: cmd %p has"
3070 " completed with data underrun "
3071 "reported\n", cmd);
3072 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3074 break;
3075 case CMD_DATA_OVERRUN:
3076 if (blk_fs_request(cmd->rq))
3077 printk(KERN_WARNING "cciss: cmd %p has"
3078 " completed with data overrun "
3079 "reported\n", cmd);
3080 break;
3081 case CMD_INVALID:
3082 printk(KERN_WARNING "cciss: cmd %p is "
3083 "reported invalid\n", cmd);
3084 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3085 cmd->err_info->CommandStatus, DRIVER_OK,
3086 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3087 break;
3088 case CMD_PROTOCOL_ERR:
3089 printk(KERN_WARNING "cciss: cmd %p has "
3090 "protocol error \n", cmd);
3091 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3092 cmd->err_info->CommandStatus, DRIVER_OK,
3093 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3094 break;
3095 case CMD_HARDWARE_ERR:
3096 printk(KERN_WARNING "cciss: cmd %p had "
3097 " hardware error\n", cmd);
3098 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3099 cmd->err_info->CommandStatus, DRIVER_OK,
3100 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3101 break;
3102 case CMD_CONNECTION_LOST:
3103 printk(KERN_WARNING "cciss: cmd %p had "
3104 "connection lost\n", cmd);
3105 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3106 cmd->err_info->CommandStatus, DRIVER_OK,
3107 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3108 break;
3109 case CMD_ABORTED:
3110 printk(KERN_WARNING "cciss: cmd %p was "
3111 "aborted\n", cmd);
3112 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3113 cmd->err_info->CommandStatus, DRIVER_OK,
3114 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3115 break;
3116 case CMD_ABORT_FAILED:
3117 printk(KERN_WARNING "cciss: cmd %p reports "
3118 "abort failed\n", cmd);
3119 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3120 cmd->err_info->CommandStatus, DRIVER_OK,
3121 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3122 break;
3123 case CMD_UNSOLICITED_ABORT:
3124 printk(KERN_WARNING "cciss%d: unsolicited "
3125 "abort %p\n", h->ctlr, cmd);
3126 if (cmd->retry_count < MAX_CMD_RETRIES) {
3127 retry_cmd = 1;
3128 printk(KERN_WARNING
3129 "cciss%d: retrying %p\n", h->ctlr, cmd);
3130 cmd->retry_count++;
3131 } else
3132 printk(KERN_WARNING
3133 "cciss%d: %p retried too "
3134 "many times\n", h->ctlr, cmd);
3135 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3136 cmd->err_info->CommandStatus, DRIVER_OK,
3137 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3138 break;
3139 case CMD_TIMEOUT:
3140 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3141 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3142 cmd->err_info->CommandStatus, DRIVER_OK,
3143 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3144 break;
3145 default:
3146 printk(KERN_WARNING "cciss: cmd %p returned "
3147 "unknown status %x\n", cmd,
3148 cmd->err_info->CommandStatus);
3149 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3150 cmd->err_info->CommandStatus, DRIVER_OK,
3151 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3154 after_error_processing:
3156 /* We need to return this command */
3157 if (retry_cmd) {
3158 resend_cciss_cmd(h, cmd);
3159 return;
3161 cmd->rq->completion_data = cmd;
3162 blk_complete_request(cmd->rq);
3165 static inline u32 cciss_tag_contains_index(u32 tag)
3167 #define DIRECT_LOOKUP_BIT 0x10
3168 return tag & DIRECT_LOOKUP_BIT;
3171 static inline u32 cciss_tag_to_index(u32 tag)
3173 #define DIRECT_LOOKUP_SHIFT 5
3174 return tag >> DIRECT_LOOKUP_SHIFT;
3177 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3179 #define CCISS_ERROR_BITS 0x03
3180 return tag & ~CCISS_ERROR_BITS;
3183 static inline void cciss_mark_tag_indexed(u32 *tag)
3185 *tag |= DIRECT_LOOKUP_BIT;
3188 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3190 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3194 * Get a request and submit it to the controller.
3196 static void do_cciss_request(struct request_queue *q)
3198 ctlr_info_t *h = q->queuedata;
3199 CommandList_struct *c;
3200 sector_t start_blk;
3201 int seg;
3202 struct request *creq;
3203 u64bit temp64;
3204 struct scatterlist *tmp_sg;
3205 SGDescriptor_struct *curr_sg;
3206 drive_info_struct *drv;
3207 int i, dir;
3208 int sg_index = 0;
3209 int chained = 0;
3211 /* We call start_io here in case there is a command waiting on the
3212 * queue that has not been sent.
3214 if (blk_queue_plugged(q))
3215 goto startio;
3217 queue:
3218 creq = blk_peek_request(q);
3219 if (!creq)
3220 goto startio;
3222 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3224 if ((c = cmd_alloc(h, 1)) == NULL)
3225 goto full;
3227 blk_start_request(creq);
3229 tmp_sg = h->scatter_list[c->cmdindex];
3230 spin_unlock_irq(q->queue_lock);
3232 c->cmd_type = CMD_RWREQ;
3233 c->rq = creq;
3235 /* fill in the request */
3236 drv = creq->rq_disk->private_data;
3237 c->Header.ReplyQueue = 0; /* unused in simple mode */
3238 /* got command from pool, so use the command block index instead */
3239 /* for direct lookups. */
3240 /* The first 2 bits are reserved for controller error reporting. */
3241 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3242 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3243 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3244 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3245 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3246 c->Request.Type.Attribute = ATTR_SIMPLE;
3247 c->Request.Type.Direction =
3248 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3249 c->Request.Timeout = 0; /* Don't time out */
3250 c->Request.CDB[0] =
3251 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3252 start_blk = blk_rq_pos(creq);
3253 #ifdef CCISS_DEBUG
3254 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3255 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3256 #endif /* CCISS_DEBUG */
3258 sg_init_table(tmp_sg, h->maxsgentries);
3259 seg = blk_rq_map_sg(q, creq, tmp_sg);
3261 /* get the DMA records for the setup */
3262 if (c->Request.Type.Direction == XFER_READ)
3263 dir = PCI_DMA_FROMDEVICE;
3264 else
3265 dir = PCI_DMA_TODEVICE;
3267 curr_sg = c->SG;
3268 sg_index = 0;
3269 chained = 0;
3271 for (i = 0; i < seg; i++) {
3272 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3273 !chained && ((seg - i) > 1)) {
3274 /* Point to next chain block. */
3275 curr_sg = h->cmd_sg_list[c->cmdindex];
3276 sg_index = 0;
3277 chained = 1;
3279 curr_sg[sg_index].Len = tmp_sg[i].length;
3280 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3281 tmp_sg[i].offset,
3282 tmp_sg[i].length, dir);
3283 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3284 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3285 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3286 ++sg_index;
3288 if (chained)
3289 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3290 (seg - (h->max_cmd_sgentries - 1)) *
3291 sizeof(SGDescriptor_struct));
3293 /* track how many SG entries we are using */
3294 if (seg > h->maxSG)
3295 h->maxSG = seg;
3297 #ifdef CCISS_DEBUG
3298 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3299 "chained[%d]\n",
3300 blk_rq_sectors(creq), seg, chained);
3301 #endif /* CCISS_DEBUG */
3303 c->Header.SGTotal = seg + chained;
3304 if (seg <= h->max_cmd_sgentries)
3305 c->Header.SGList = c->Header.SGTotal;
3306 else
3307 c->Header.SGList = h->max_cmd_sgentries;
3308 set_performant_mode(h, c);
3310 if (likely(blk_fs_request(creq))) {
3311 if(h->cciss_read == CCISS_READ_10) {
3312 c->Request.CDB[1] = 0;
3313 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3314 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3315 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3316 c->Request.CDB[5] = start_blk & 0xff;
3317 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3318 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3319 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3320 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3321 } else {
3322 u32 upper32 = upper_32_bits(start_blk);
3324 c->Request.CDBLen = 16;
3325 c->Request.CDB[1]= 0;
3326 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3327 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3328 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3329 c->Request.CDB[5]= upper32 & 0xff;
3330 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3331 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3332 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3333 c->Request.CDB[9]= start_blk & 0xff;
3334 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3335 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3336 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3337 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3338 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3340 } else if (blk_pc_request(creq)) {
3341 c->Request.CDBLen = creq->cmd_len;
3342 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3343 } else {
3344 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3345 BUG();
3348 spin_lock_irq(q->queue_lock);
3350 addQ(&h->reqQ, c);
3351 h->Qdepth++;
3352 if (h->Qdepth > h->maxQsinceinit)
3353 h->maxQsinceinit = h->Qdepth;
3355 goto queue;
3356 full:
3357 blk_stop_queue(q);
3358 startio:
3359 /* We will already have the driver lock here so not need
3360 * to lock it.
3362 start_io(h);
3365 static inline unsigned long get_next_completion(ctlr_info_t *h)
3367 return h->access.command_completed(h);
3370 static inline int interrupt_pending(ctlr_info_t *h)
3372 return h->access.intr_pending(h);
3375 static inline long interrupt_not_for_us(ctlr_info_t *h)
3377 return !(h->msi_vector || h->msix_vector) &&
3378 ((h->access.intr_pending(h) == 0) ||
3379 (h->interrupts_enabled == 0));
3382 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3383 u32 raw_tag)
3385 if (unlikely(tag_index >= h->nr_cmds)) {
3386 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3387 return 1;
3389 return 0;
3392 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3393 u32 raw_tag)
3395 removeQ(c);
3396 if (likely(c->cmd_type == CMD_RWREQ))
3397 complete_command(h, c, 0);
3398 else if (c->cmd_type == CMD_IOCTL_PEND)
3399 complete(c->waiting);
3400 #ifdef CONFIG_CISS_SCSI_TAPE
3401 else if (c->cmd_type == CMD_SCSI)
3402 complete_scsi_command(c, 0, raw_tag);
3403 #endif
3406 /* process completion of an indexed ("direct lookup") command */
3407 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3409 u32 tag_index;
3410 CommandList_struct *c;
3412 tag_index = cciss_tag_to_index(raw_tag);
3413 if (bad_tag(h, tag_index, raw_tag))
3414 return next_command(h);
3415 c = h->cmd_pool + tag_index;
3416 finish_cmd(h, c, raw_tag);
3417 return next_command(h);
3420 /* process completion of a non-indexed command */
3421 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3423 u32 tag;
3424 CommandList_struct *c = NULL;
3425 struct hlist_node *tmp;
3426 __u32 busaddr_masked, tag_masked;
3428 tag = cciss_tag_discard_error_bits(raw_tag);
3429 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3430 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3431 tag_masked = cciss_tag_discard_error_bits(tag);
3432 if (busaddr_masked == tag_masked) {
3433 finish_cmd(h, c, raw_tag);
3434 return next_command(h);
3437 bad_tag(h, h->nr_cmds + 1, raw_tag);
3438 return next_command(h);
3441 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3443 ctlr_info_t *h = dev_id;
3444 unsigned long flags;
3445 u32 raw_tag;
3447 if (interrupt_not_for_us(h))
3448 return IRQ_NONE;
3450 * If there are completed commands in the completion queue,
3451 * we had better do something about it.
3453 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3454 while (interrupt_pending(h)) {
3455 raw_tag = get_next_completion(h);
3456 while (raw_tag != FIFO_EMPTY) {
3457 if (cciss_tag_contains_index(raw_tag))
3458 raw_tag = process_indexed_cmd(h, raw_tag);
3459 else
3460 raw_tag = process_nonindexed_cmd(h, raw_tag);
3464 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3465 return IRQ_HANDLED;
3468 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3469 * check the interrupt pending register because it is not set.
3471 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3473 ctlr_info_t *h = dev_id;
3474 unsigned long flags;
3475 u32 raw_tag;
3477 if (interrupt_not_for_us(h))
3478 return IRQ_NONE;
3480 * If there are completed commands in the completion queue,
3481 * we had better do something about it.
3483 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3484 raw_tag = get_next_completion(h);
3485 while (raw_tag != FIFO_EMPTY) {
3486 if (cciss_tag_contains_index(raw_tag))
3487 raw_tag = process_indexed_cmd(h, raw_tag);
3488 else
3489 raw_tag = process_nonindexed_cmd(h, raw_tag);
3492 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3493 return IRQ_HANDLED;
3497 * add_to_scan_list() - add controller to rescan queue
3498 * @h: Pointer to the controller.
3500 * Adds the controller to the rescan queue if not already on the queue.
3502 * returns 1 if added to the queue, 0 if skipped (could be on the
3503 * queue already, or the controller could be initializing or shutting
3504 * down).
3506 static int add_to_scan_list(struct ctlr_info *h)
3508 struct ctlr_info *test_h;
3509 int found = 0;
3510 int ret = 0;
3512 if (h->busy_initializing)
3513 return 0;
3515 if (!mutex_trylock(&h->busy_shutting_down))
3516 return 0;
3518 mutex_lock(&scan_mutex);
3519 list_for_each_entry(test_h, &scan_q, scan_list) {
3520 if (test_h == h) {
3521 found = 1;
3522 break;
3525 if (!found && !h->busy_scanning) {
3526 INIT_COMPLETION(h->scan_wait);
3527 list_add_tail(&h->scan_list, &scan_q);
3528 ret = 1;
3530 mutex_unlock(&scan_mutex);
3531 mutex_unlock(&h->busy_shutting_down);
3533 return ret;
3537 * remove_from_scan_list() - remove controller from rescan queue
3538 * @h: Pointer to the controller.
3540 * Removes the controller from the rescan queue if present. Blocks if
3541 * the controller is currently conducting a rescan. The controller
3542 * can be in one of three states:
3543 * 1. Doesn't need a scan
3544 * 2. On the scan list, but not scanning yet (we remove it)
3545 * 3. Busy scanning (and not on the list). In this case we want to wait for
3546 * the scan to complete to make sure the scanning thread for this
3547 * controller is completely idle.
3549 static void remove_from_scan_list(struct ctlr_info *h)
3551 struct ctlr_info *test_h, *tmp_h;
3553 mutex_lock(&scan_mutex);
3554 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3555 if (test_h == h) { /* state 2. */
3556 list_del(&h->scan_list);
3557 complete_all(&h->scan_wait);
3558 mutex_unlock(&scan_mutex);
3559 return;
3562 if (h->busy_scanning) { /* state 3. */
3563 mutex_unlock(&scan_mutex);
3564 wait_for_completion(&h->scan_wait);
3565 } else { /* state 1, nothing to do. */
3566 mutex_unlock(&scan_mutex);
3571 * scan_thread() - kernel thread used to rescan controllers
3572 * @data: Ignored.
3574 * A kernel thread used scan for drive topology changes on
3575 * controllers. The thread processes only one controller at a time
3576 * using a queue. Controllers are added to the queue using
3577 * add_to_scan_list() and removed from the queue either after done
3578 * processing or using remove_from_scan_list().
3580 * returns 0.
3582 static int scan_thread(void *data)
3584 struct ctlr_info *h;
3586 while (1) {
3587 set_current_state(TASK_INTERRUPTIBLE);
3588 schedule();
3589 if (kthread_should_stop())
3590 break;
3592 while (1) {
3593 mutex_lock(&scan_mutex);
3594 if (list_empty(&scan_q)) {
3595 mutex_unlock(&scan_mutex);
3596 break;
3599 h = list_entry(scan_q.next,
3600 struct ctlr_info,
3601 scan_list);
3602 list_del(&h->scan_list);
3603 h->busy_scanning = 1;
3604 mutex_unlock(&scan_mutex);
3606 rebuild_lun_table(h, 0, 0);
3607 complete_all(&h->scan_wait);
3608 mutex_lock(&scan_mutex);
3609 h->busy_scanning = 0;
3610 mutex_unlock(&scan_mutex);
3614 return 0;
3617 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3619 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3620 return 0;
3622 switch (c->err_info->SenseInfo[12]) {
3623 case STATE_CHANGED:
3624 printk(KERN_WARNING "cciss%d: a state change "
3625 "detected, command retried\n", h->ctlr);
3626 return 1;
3627 break;
3628 case LUN_FAILED:
3629 printk(KERN_WARNING "cciss%d: LUN failure "
3630 "detected, action required\n", h->ctlr);
3631 return 1;
3632 break;
3633 case REPORT_LUNS_CHANGED:
3634 printk(KERN_WARNING "cciss%d: report LUN data "
3635 "changed\n", h->ctlr);
3637 * Here, we could call add_to_scan_list and wake up the scan thread,
3638 * except that it's quite likely that we will get more than one
3639 * REPORT_LUNS_CHANGED condition in quick succession, which means
3640 * that those which occur after the first one will likely happen
3641 * *during* the scan_thread's rescan. And the rescan code is not
3642 * robust enough to restart in the middle, undoing what it has already
3643 * done, and it's not clear that it's even possible to do this, since
3644 * part of what it does is notify the block layer, which starts
3645 * doing it's own i/o to read partition tables and so on, and the
3646 * driver doesn't have visibility to know what might need undoing.
3647 * In any event, if possible, it is horribly complicated to get right
3648 * so we just don't do it for now.
3650 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3652 return 1;
3653 break;
3654 case POWER_OR_RESET:
3655 printk(KERN_WARNING "cciss%d: a power on "
3656 "or device reset detected\n", h->ctlr);
3657 return 1;
3658 break;
3659 case UNIT_ATTENTION_CLEARED:
3660 printk(KERN_WARNING "cciss%d: unit attention "
3661 "cleared by another initiator\n", h->ctlr);
3662 return 1;
3663 break;
3664 default:
3665 printk(KERN_WARNING "cciss%d: unknown "
3666 "unit attention detected\n", h->ctlr);
3667 return 1;
3672 * We cannot read the structure directly, for portability we must use
3673 * the io functions.
3674 * This is for debug only.
3676 #ifdef CCISS_DEBUG
3677 static void print_cfg_table(CfgTable_struct *tb)
3679 int i;
3680 char temp_name[17];
3682 printk("Controller Configuration information\n");
3683 printk("------------------------------------\n");
3684 for (i = 0; i < 4; i++)
3685 temp_name[i] = readb(&(tb->Signature[i]));
3686 temp_name[4] = '\0';
3687 printk(" Signature = %s\n", temp_name);
3688 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3689 printk(" Transport methods supported = 0x%x\n",
3690 readl(&(tb->TransportSupport)));
3691 printk(" Transport methods active = 0x%x\n",
3692 readl(&(tb->TransportActive)));
3693 printk(" Requested transport Method = 0x%x\n",
3694 readl(&(tb->HostWrite.TransportRequest)));
3695 printk(" Coalesce Interrupt Delay = 0x%x\n",
3696 readl(&(tb->HostWrite.CoalIntDelay)));
3697 printk(" Coalesce Interrupt Count = 0x%x\n",
3698 readl(&(tb->HostWrite.CoalIntCount)));
3699 printk(" Max outstanding commands = 0x%d\n",
3700 readl(&(tb->CmdsOutMax)));
3701 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3702 for (i = 0; i < 16; i++)
3703 temp_name[i] = readb(&(tb->ServerName[i]));
3704 temp_name[16] = '\0';
3705 printk(" Server Name = %s\n", temp_name);
3706 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3708 #endif /* CCISS_DEBUG */
3710 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3712 int i, offset, mem_type, bar_type;
3713 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3714 return 0;
3715 offset = 0;
3716 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3717 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3718 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3719 offset += 4;
3720 else {
3721 mem_type = pci_resource_flags(pdev, i) &
3722 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3723 switch (mem_type) {
3724 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3725 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3726 offset += 4; /* 32 bit */
3727 break;
3728 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3729 offset += 8;
3730 break;
3731 default: /* reserved in PCI 2.2 */
3732 printk(KERN_WARNING
3733 "Base address is invalid\n");
3734 return -1;
3735 break;
3738 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3739 return i + 1;
3741 return -1;
3744 /* Fill in bucket_map[], given nsgs (the max number of
3745 * scatter gather elements supported) and bucket[],
3746 * which is an array of 8 integers. The bucket[] array
3747 * contains 8 different DMA transfer sizes (in 16
3748 * byte increments) which the controller uses to fetch
3749 * commands. This function fills in bucket_map[], which
3750 * maps a given number of scatter gather elements to one of
3751 * the 8 DMA transfer sizes. The point of it is to allow the
3752 * controller to only do as much DMA as needed to fetch the
3753 * command, with the DMA transfer size encoded in the lower
3754 * bits of the command address.
3756 static void calc_bucket_map(int bucket[], int num_buckets,
3757 int nsgs, int *bucket_map)
3759 int i, j, b, size;
3761 /* even a command with 0 SGs requires 4 blocks */
3762 #define MINIMUM_TRANSFER_BLOCKS 4
3763 #define NUM_BUCKETS 8
3764 /* Note, bucket_map must have nsgs+1 entries. */
3765 for (i = 0; i <= nsgs; i++) {
3766 /* Compute size of a command with i SG entries */
3767 size = i + MINIMUM_TRANSFER_BLOCKS;
3768 b = num_buckets; /* Assume the biggest bucket */
3769 /* Find the bucket that is just big enough */
3770 for (j = 0; j < 8; j++) {
3771 if (bucket[j] >= size) {
3772 b = j;
3773 break;
3776 /* for a command with i SG entries, use bucket b. */
3777 bucket_map[i] = b;
3781 static void
3782 cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3784 int l = 0;
3785 __u32 trans_support;
3786 __u32 trans_offset;
3788 * 5 = 1 s/g entry or 4k
3789 * 6 = 2 s/g entry or 8k
3790 * 8 = 4 s/g entry or 16k
3791 * 10 = 6 s/g entry or 24k
3793 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3794 unsigned long register_value;
3796 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3798 /* Attempt to put controller into performant mode if supported */
3799 /* Does board support performant mode? */
3800 trans_support = readl(&(h->cfgtable->TransportSupport));
3801 if (!(trans_support & PERFORMANT_MODE))
3802 return;
3804 printk(KERN_WARNING "cciss%d: Placing controller into "
3805 "performant mode\n", h->ctlr);
3806 /* Performant mode demands commands on a 32 byte boundary
3807 * pci_alloc_consistent aligns on page boundarys already.
3808 * Just need to check if divisible by 32
3810 if ((sizeof(CommandList_struct) % 32) != 0) {
3811 printk(KERN_WARNING "%s %d %s\n",
3812 "cciss info: command size[",
3813 (int)sizeof(CommandList_struct),
3814 "] not divisible by 32, no performant mode..\n");
3815 return;
3818 /* Performant mode ring buffer and supporting data structures */
3819 h->reply_pool = (__u64 *)pci_alloc_consistent(
3820 h->pdev, h->max_commands * sizeof(__u64),
3821 &(h->reply_pool_dhandle));
3823 /* Need a block fetch table for performant mode */
3824 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3825 sizeof(__u32)), GFP_KERNEL);
3827 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3828 goto clean_up;
3830 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3832 /* Controller spec: zero out this buffer. */
3833 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3834 h->reply_pool_head = h->reply_pool;
3836 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3837 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3838 h->blockFetchTable);
3839 writel(bft[0], &h->transtable->BlockFetch0);
3840 writel(bft[1], &h->transtable->BlockFetch1);
3841 writel(bft[2], &h->transtable->BlockFetch2);
3842 writel(bft[3], &h->transtable->BlockFetch3);
3843 writel(bft[4], &h->transtable->BlockFetch4);
3844 writel(bft[5], &h->transtable->BlockFetch5);
3845 writel(bft[6], &h->transtable->BlockFetch6);
3846 writel(bft[7], &h->transtable->BlockFetch7);
3848 /* size of controller ring buffer */
3849 writel(h->max_commands, &h->transtable->RepQSize);
3850 writel(1, &h->transtable->RepQCount);
3851 writel(0, &h->transtable->RepQCtrAddrLow32);
3852 writel(0, &h->transtable->RepQCtrAddrHigh32);
3853 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3854 writel(0, &h->transtable->RepQAddr0High32);
3855 writel(CFGTBL_Trans_Performant,
3856 &(h->cfgtable->HostWrite.TransportRequest));
3858 h->transMethod = CFGTBL_Trans_Performant;
3859 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3860 /* under certain very rare conditions, this can take awhile.
3861 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3862 * as we enter this code.) */
3863 for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3864 register_value = readl(h->vaddr + SA5_DOORBELL);
3865 if (!(register_value & CFGTBL_ChangeReq))
3866 break;
3867 /* delay and try again */
3868 set_current_state(TASK_INTERRUPTIBLE);
3869 schedule_timeout(10);
3871 register_value = readl(&(h->cfgtable->TransportActive));
3872 if (!(register_value & CFGTBL_Trans_Performant)) {
3873 printk(KERN_WARNING "cciss: unable to get board into"
3874 " performant mode\n");
3875 return;
3878 /* Change the access methods to the performant access methods */
3879 h->access = SA5_performant_access;
3881 return;
3882 clean_up:
3883 kfree(h->blockFetchTable);
3884 if (h->reply_pool)
3885 pci_free_consistent(h->pdev,
3886 h->max_commands * sizeof(__u64),
3887 h->reply_pool,
3888 h->reply_pool_dhandle);
3889 return;
3891 } /* cciss_put_controller_into_performant_mode */
3893 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3894 * controllers that are capable. If not, we use IO-APIC mode.
3897 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3898 struct pci_dev *pdev, __u32 board_id)
3900 #ifdef CONFIG_PCI_MSI
3901 int err;
3902 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3903 {0, 2}, {0, 3}
3906 /* Some boards advertise MSI but don't really support it */
3907 if ((board_id == 0x40700E11) ||
3908 (board_id == 0x40800E11) ||
3909 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3910 goto default_int_mode;
3912 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3913 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3914 if (!err) {
3915 c->intr[0] = cciss_msix_entries[0].vector;
3916 c->intr[1] = cciss_msix_entries[1].vector;
3917 c->intr[2] = cciss_msix_entries[2].vector;
3918 c->intr[3] = cciss_msix_entries[3].vector;
3919 c->msix_vector = 1;
3920 return;
3922 if (err > 0) {
3923 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3924 "available\n", err);
3925 goto default_int_mode;
3926 } else {
3927 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3928 err);
3929 goto default_int_mode;
3932 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3933 if (!pci_enable_msi(pdev)) {
3934 c->msi_vector = 1;
3935 } else {
3936 printk(KERN_WARNING "cciss: MSI init failed\n");
3939 default_int_mode:
3940 #endif /* CONFIG_PCI_MSI */
3941 /* if we get here we're going to use the default interrupt mode */
3942 c->intr[PERF_MODE_INT] = pdev->irq;
3943 return;
3946 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3948 ushort subsystem_vendor_id, subsystem_device_id, command;
3949 __u32 board_id, scratchpad = 0;
3950 __u64 cfg_offset;
3951 __u32 cfg_base_addr;
3952 __u64 cfg_base_addr_index;
3953 int i, prod_index, err;
3954 __u32 trans_offset;
3956 subsystem_vendor_id = pdev->subsystem_vendor;
3957 subsystem_device_id = pdev->subsystem_device;
3958 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3959 subsystem_vendor_id);
3961 for (i = 0; i < ARRAY_SIZE(products); i++) {
3962 /* Stand aside for hpsa driver on request */
3963 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3964 return -ENODEV;
3965 if (board_id == products[i].board_id)
3966 break;
3968 prod_index = i;
3969 if (prod_index == ARRAY_SIZE(products)) {
3970 dev_warn(&pdev->dev,
3971 "unrecognized board ID: 0x%08lx, ignoring.\n",
3972 (unsigned long) board_id);
3973 return -ENODEV;
3976 /* check to see if controller has been disabled */
3977 /* BEFORE trying to enable it */
3978 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3979 if (!(command & 0x02)) {
3980 printk(KERN_WARNING
3981 "cciss: controller appears to be disabled\n");
3982 return -ENODEV;
3985 err = pci_enable_device(pdev);
3986 if (err) {
3987 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3988 return err;
3991 err = pci_request_regions(pdev, "cciss");
3992 if (err) {
3993 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3994 "aborting\n");
3995 return err;
3998 #ifdef CCISS_DEBUG
3999 printk("command = %x\n", command);
4000 printk("irq = %x\n", pdev->irq);
4001 printk("board_id = %x\n", board_id);
4002 #endif /* CCISS_DEBUG */
4004 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4005 * else we use the IO-APIC interrupt assigned to us by system ROM.
4007 cciss_interrupt_mode(c, pdev, board_id);
4009 /* find the memory BAR */
4010 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4011 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
4012 break;
4014 if (i == DEVICE_COUNT_RESOURCE) {
4015 printk(KERN_WARNING "cciss: No memory BAR found\n");
4016 err = -ENODEV;
4017 goto err_out_free_res;
4020 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
4021 * already removed
4024 #ifdef CCISS_DEBUG
4025 printk("address 0 = %lx\n", c->paddr);
4026 #endif /* CCISS_DEBUG */
4027 c->vaddr = remap_pci_mem(c->paddr, 0x250);
4029 /* Wait for the board to become ready. (PCI hotplug needs this.)
4030 * We poll for up to 120 secs, once per 100ms. */
4031 for (i = 0; i < 1200; i++) {
4032 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
4033 if (scratchpad == CCISS_FIRMWARE_READY)
4034 break;
4035 set_current_state(TASK_INTERRUPTIBLE);
4036 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
4038 if (scratchpad != CCISS_FIRMWARE_READY) {
4039 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
4040 err = -ENODEV;
4041 goto err_out_free_res;
4044 /* get the address index number */
4045 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
4046 cfg_base_addr &= (__u32) 0x0000ffff;
4047 #ifdef CCISS_DEBUG
4048 printk("cfg base address = %x\n", cfg_base_addr);
4049 #endif /* CCISS_DEBUG */
4050 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
4051 #ifdef CCISS_DEBUG
4052 printk("cfg base address index = %llx\n",
4053 (unsigned long long)cfg_base_addr_index);
4054 #endif /* CCISS_DEBUG */
4055 if (cfg_base_addr_index == -1) {
4056 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
4057 err = -ENODEV;
4058 goto err_out_free_res;
4061 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
4062 #ifdef CCISS_DEBUG
4063 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
4064 #endif /* CCISS_DEBUG */
4065 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
4066 cfg_base_addr_index) +
4067 cfg_offset, sizeof(CfgTable_struct));
4068 /* Find performant mode table. */
4069 trans_offset = readl(&(c->cfgtable->TransMethodOffset));
4070 c->transtable = remap_pci_mem(pci_resource_start(pdev,
4071 cfg_base_addr_index) + cfg_offset+trans_offset,
4072 sizeof(*c->transtable));
4073 c->board_id = board_id;
4075 #ifdef CCISS_DEBUG
4076 print_cfg_table(c->cfgtable);
4077 #endif /* CCISS_DEBUG */
4079 /* Some controllers support Zero Memory Raid (ZMR).
4080 * When configured in ZMR mode the number of supported
4081 * commands drops to 64. So instead of just setting an
4082 * arbitrary value we make the driver a little smarter.
4083 * We read the config table to tell us how many commands
4084 * are supported on the controller then subtract 4 to
4085 * leave a little room for ioctl calls.
4087 c->max_commands = readl(&(c->cfgtable->MaxPerformantModeCommands));
4088 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
4091 * Limit native command to 32 s/g elements to save dma'able memory.
4092 * Howvever spec says if 0, use 31
4095 c->max_cmd_sgentries = 31;
4096 if (c->maxsgentries > 512) {
4097 c->max_cmd_sgentries = 32;
4098 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
4099 c->maxsgentries -= 1; /* account for chain pointer */
4100 } else {
4101 c->maxsgentries = 31; /* Default to traditional value */
4102 c->chainsize = 0; /* traditional */
4105 c->product_name = products[prod_index].product_name;
4106 c->access = *(products[prod_index].access);
4107 c->nr_cmds = c->max_commands - 4;
4108 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
4109 (readb(&c->cfgtable->Signature[1]) != 'I') ||
4110 (readb(&c->cfgtable->Signature[2]) != 'S') ||
4111 (readb(&c->cfgtable->Signature[3]) != 'S')) {
4112 printk("Does not appear to be a valid CISS config table\n");
4113 err = -ENODEV;
4114 goto err_out_free_res;
4116 #ifdef CONFIG_X86
4118 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4119 __u32 prefetch;
4120 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
4121 prefetch |= 0x100;
4122 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
4124 #endif
4126 /* Disabling DMA prefetch and refetch for the P600.
4127 * An ASIC bug may result in accesses to invalid memory addresses.
4128 * We've disabled prefetch for some time now. Testing with XEN
4129 * kernels revealed a bug in the refetch if dom0 resides on a P600.
4131 if(board_id == 0x3225103C) {
4132 __u32 dma_prefetch;
4133 __u32 dma_refetch;
4134 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
4135 dma_prefetch |= 0x8000;
4136 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
4137 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
4138 dma_refetch |= 0x1;
4139 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
4142 #ifdef CCISS_DEBUG
4143 printk(KERN_WARNING "Trying to put board into Performant mode\n");
4144 #endif /* CCISS_DEBUG */
4145 return 0;
4147 err_out_free_res:
4149 * Deliberately omit pci_disable_device(): it does something nasty to
4150 * Smart Array controllers that pci_enable_device does not undo
4152 pci_release_regions(pdev);
4153 cciss_put_controller_into_performant_mode(c);
4154 return err;
4157 /* Function to find the first free pointer into our hba[] array
4158 * Returns -1 if no free entries are left.
4160 static int alloc_cciss_hba(void)
4162 int i;
4164 for (i = 0; i < MAX_CTLR; i++) {
4165 if (!hba[i]) {
4166 ctlr_info_t *p;
4168 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4169 if (!p)
4170 goto Enomem;
4171 hba[i] = p;
4172 return i;
4175 printk(KERN_WARNING "cciss: This driver supports a maximum"
4176 " of %d controllers.\n", MAX_CTLR);
4177 return -1;
4178 Enomem:
4179 printk(KERN_ERR "cciss: out of memory.\n");
4180 return -1;
4183 static void free_hba(int n)
4185 ctlr_info_t *h = hba[n];
4186 int i;
4188 hba[n] = NULL;
4189 for (i = 0; i < h->highest_lun + 1; i++)
4190 if (h->gendisk[i] != NULL)
4191 put_disk(h->gendisk[i]);
4192 kfree(h);
4195 /* Send a message CDB to the firmware. */
4196 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4198 typedef struct {
4199 CommandListHeader_struct CommandHeader;
4200 RequestBlock_struct Request;
4201 ErrDescriptor_struct ErrorDescriptor;
4202 } Command;
4203 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4204 Command *cmd;
4205 dma_addr_t paddr64;
4206 uint32_t paddr32, tag;
4207 void __iomem *vaddr;
4208 int i, err;
4210 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4211 if (vaddr == NULL)
4212 return -ENOMEM;
4214 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4215 CCISS commands, so they must be allocated from the lower 4GiB of
4216 memory. */
4217 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4218 if (err) {
4219 iounmap(vaddr);
4220 return -ENOMEM;
4223 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4224 if (cmd == NULL) {
4225 iounmap(vaddr);
4226 return -ENOMEM;
4229 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4230 although there's no guarantee, we assume that the address is at
4231 least 4-byte aligned (most likely, it's page-aligned). */
4232 paddr32 = paddr64;
4234 cmd->CommandHeader.ReplyQueue = 0;
4235 cmd->CommandHeader.SGList = 0;
4236 cmd->CommandHeader.SGTotal = 0;
4237 cmd->CommandHeader.Tag.lower = paddr32;
4238 cmd->CommandHeader.Tag.upper = 0;
4239 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4241 cmd->Request.CDBLen = 16;
4242 cmd->Request.Type.Type = TYPE_MSG;
4243 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4244 cmd->Request.Type.Direction = XFER_NONE;
4245 cmd->Request.Timeout = 0; /* Don't time out */
4246 cmd->Request.CDB[0] = opcode;
4247 cmd->Request.CDB[1] = type;
4248 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4250 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4251 cmd->ErrorDescriptor.Addr.upper = 0;
4252 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4254 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4256 for (i = 0; i < 10; i++) {
4257 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4258 if ((tag & ~3) == paddr32)
4259 break;
4260 schedule_timeout_uninterruptible(HZ);
4263 iounmap(vaddr);
4265 /* we leak the DMA buffer here ... no choice since the controller could
4266 still complete the command. */
4267 if (i == 10) {
4268 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4269 opcode, type);
4270 return -ETIMEDOUT;
4273 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4275 if (tag & 2) {
4276 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4277 opcode, type);
4278 return -EIO;
4281 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4282 opcode, type);
4283 return 0;
4286 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4287 #define cciss_noop(p) cciss_message(p, 3, 0)
4289 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4291 /* the #defines are stolen from drivers/pci/msi.h. */
4292 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4293 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4295 int pos;
4296 u16 control = 0;
4298 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4299 if (pos) {
4300 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4301 if (control & PCI_MSI_FLAGS_ENABLE) {
4302 printk(KERN_INFO "cciss: resetting MSI\n");
4303 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4307 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4308 if (pos) {
4309 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4310 if (control & PCI_MSIX_FLAGS_ENABLE) {
4311 printk(KERN_INFO "cciss: resetting MSI-X\n");
4312 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4316 return 0;
4319 /* This does a hard reset of the controller using PCI power management
4320 * states. */
4321 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4323 u16 pmcsr, saved_config_space[32];
4324 int i, pos;
4326 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4328 /* This is very nearly the same thing as
4330 pci_save_state(pci_dev);
4331 pci_set_power_state(pci_dev, PCI_D3hot);
4332 pci_set_power_state(pci_dev, PCI_D0);
4333 pci_restore_state(pci_dev);
4335 but we can't use these nice canned kernel routines on
4336 kexec, because they also check the MSI/MSI-X state in PCI
4337 configuration space and do the wrong thing when it is
4338 set/cleared. Also, the pci_save/restore_state functions
4339 violate the ordering requirements for restoring the
4340 configuration space from the CCISS document (see the
4341 comment below). So we roll our own .... */
4343 for (i = 0; i < 32; i++)
4344 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4346 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4347 if (pos == 0) {
4348 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4349 return -ENODEV;
4352 /* Quoting from the Open CISS Specification: "The Power
4353 * Management Control/Status Register (CSR) controls the power
4354 * state of the device. The normal operating state is D0,
4355 * CSR=00h. The software off state is D3, CSR=03h. To reset
4356 * the controller, place the interface device in D3 then to
4357 * D0, this causes a secondary PCI reset which will reset the
4358 * controller." */
4360 /* enter the D3hot power management state */
4361 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4362 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4363 pmcsr |= PCI_D3hot;
4364 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4366 schedule_timeout_uninterruptible(HZ >> 1);
4368 /* enter the D0 power management state */
4369 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4370 pmcsr |= PCI_D0;
4371 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4373 schedule_timeout_uninterruptible(HZ >> 1);
4375 /* Restore the PCI configuration space. The Open CISS
4376 * Specification says, "Restore the PCI Configuration
4377 * Registers, offsets 00h through 60h. It is important to
4378 * restore the command register, 16-bits at offset 04h,
4379 * last. Do not restore the configuration status register,
4380 * 16-bits at offset 06h." Note that the offset is 2*i. */
4381 for (i = 0; i < 32; i++) {
4382 if (i == 2 || i == 3)
4383 continue;
4384 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4386 wmb();
4387 pci_write_config_word(pdev, 4, saved_config_space[2]);
4389 return 0;
4393 * This is it. Find all the controllers and register them. I really hate
4394 * stealing all these major device numbers.
4395 * returns the number of block devices registered.
4397 static int __devinit cciss_init_one(struct pci_dev *pdev,
4398 const struct pci_device_id *ent)
4400 int i;
4401 int j = 0;
4402 int k = 0;
4403 int rc;
4404 int dac, return_code;
4405 InquiryData_struct *inq_buff;
4407 if (reset_devices) {
4408 /* Reset the controller with a PCI power-cycle */
4409 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4410 return -ENODEV;
4412 /* Now try to get the controller to respond to a no-op. Some
4413 devices (notably the HP Smart Array 5i Controller) need
4414 up to 30 seconds to respond. */
4415 for (i=0; i<30; i++) {
4416 if (cciss_noop(pdev) == 0)
4417 break;
4419 schedule_timeout_uninterruptible(HZ);
4421 if (i == 30) {
4422 printk(KERN_ERR "cciss: controller seems dead\n");
4423 return -EBUSY;
4427 i = alloc_cciss_hba();
4428 if (i < 0)
4429 return -1;
4430 hba[i]->busy_initializing = 1;
4431 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4432 INIT_HLIST_HEAD(&hba[i]->reqQ);
4433 mutex_init(&hba[i]->busy_shutting_down);
4435 if (cciss_pci_init(hba[i], pdev) != 0)
4436 goto clean_no_release_regions;
4438 sprintf(hba[i]->devname, "cciss%d", i);
4439 hba[i]->ctlr = i;
4440 hba[i]->pdev = pdev;
4442 init_completion(&hba[i]->scan_wait);
4444 if (cciss_create_hba_sysfs_entry(hba[i]))
4445 goto clean0;
4447 /* configure PCI DMA stuff */
4448 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4449 dac = 1;
4450 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4451 dac = 0;
4452 else {
4453 printk(KERN_ERR "cciss: no suitable DMA available\n");
4454 goto clean1;
4458 * register with the major number, or get a dynamic major number
4459 * by passing 0 as argument. This is done for greater than
4460 * 8 controller support.
4462 if (i < MAX_CTLR_ORIG)
4463 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4464 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4465 if (rc == -EBUSY || rc == -EINVAL) {
4466 printk(KERN_ERR
4467 "cciss: Unable to get major number %d for %s "
4468 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4469 goto clean1;
4470 } else {
4471 if (i >= MAX_CTLR_ORIG)
4472 hba[i]->major = rc;
4475 /* make sure the board interrupts are off */
4476 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4477 if (hba[i]->msi_vector || hba[i]->msix_vector) {
4478 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT],
4479 do_cciss_msix_intr,
4480 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4481 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4482 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4483 goto clean2;
4485 } else {
4486 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intx,
4487 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4488 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4489 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4490 goto clean2;
4494 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4495 hba[i]->devname, pdev->device, pci_name(pdev),
4496 hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
4498 hba[i]->cmd_pool_bits =
4499 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4500 * sizeof(unsigned long), GFP_KERNEL);
4501 hba[i]->cmd_pool = (CommandList_struct *)
4502 pci_alloc_consistent(hba[i]->pdev,
4503 hba[i]->nr_cmds * sizeof(CommandList_struct),
4504 &(hba[i]->cmd_pool_dhandle));
4505 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4506 pci_alloc_consistent(hba[i]->pdev,
4507 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4508 &(hba[i]->errinfo_pool_dhandle));
4509 if ((hba[i]->cmd_pool_bits == NULL)
4510 || (hba[i]->cmd_pool == NULL)
4511 || (hba[i]->errinfo_pool == NULL)) {
4512 printk(KERN_ERR "cciss: out of memory");
4513 goto clean4;
4516 /* Need space for temp scatter list */
4517 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4518 sizeof(struct scatterlist *),
4519 GFP_KERNEL);
4520 for (k = 0; k < hba[i]->nr_cmds; k++) {
4521 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4522 hba[i]->maxsgentries,
4523 GFP_KERNEL);
4524 if (hba[i]->scatter_list[k] == NULL) {
4525 printk(KERN_ERR "cciss%d: could not allocate "
4526 "s/g lists\n", i);
4527 goto clean4;
4530 hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4531 hba[i]->chainsize, hba[i]->nr_cmds);
4532 if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4533 goto clean4;
4535 spin_lock_init(&hba[i]->lock);
4537 /* Initialize the pdev driver private data.
4538 have it point to hba[i]. */
4539 pci_set_drvdata(pdev, hba[i]);
4540 /* command and error info recs zeroed out before
4541 they are used */
4542 memset(hba[i]->cmd_pool_bits, 0,
4543 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4544 * sizeof(unsigned long));
4546 hba[i]->num_luns = 0;
4547 hba[i]->highest_lun = -1;
4548 for (j = 0; j < CISS_MAX_LUN; j++) {
4549 hba[i]->drv[j] = NULL;
4550 hba[i]->gendisk[j] = NULL;
4553 cciss_scsi_setup(i);
4555 /* Turn the interrupts on so we can service requests */
4556 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4558 /* Get the firmware version */
4559 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4560 if (inq_buff == NULL) {
4561 printk(KERN_ERR "cciss: out of memory\n");
4562 goto clean4;
4565 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4566 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4567 if (return_code == IO_OK) {
4568 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4569 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4570 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4571 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4572 } else { /* send command failed */
4573 printk(KERN_WARNING "cciss: unable to determine firmware"
4574 " version of controller\n");
4576 kfree(inq_buff);
4578 cciss_procinit(i);
4580 hba[i]->cciss_max_sectors = 8192;
4582 rebuild_lun_table(hba[i], 1, 0);
4583 hba[i]->busy_initializing = 0;
4584 return 1;
4586 clean4:
4587 kfree(hba[i]->cmd_pool_bits);
4588 /* Free up sg elements */
4589 for (k = 0; k < hba[i]->nr_cmds; k++)
4590 kfree(hba[i]->scatter_list[k]);
4591 kfree(hba[i]->scatter_list);
4592 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4593 if (hba[i]->cmd_pool)
4594 pci_free_consistent(hba[i]->pdev,
4595 hba[i]->nr_cmds * sizeof(CommandList_struct),
4596 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4597 if (hba[i]->errinfo_pool)
4598 pci_free_consistent(hba[i]->pdev,
4599 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4600 hba[i]->errinfo_pool,
4601 hba[i]->errinfo_pool_dhandle);
4602 free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
4603 clean2:
4604 unregister_blkdev(hba[i]->major, hba[i]->devname);
4605 clean1:
4606 cciss_destroy_hba_sysfs_entry(hba[i]);
4607 clean0:
4608 pci_release_regions(pdev);
4609 clean_no_release_regions:
4610 hba[i]->busy_initializing = 0;
4613 * Deliberately omit pci_disable_device(): it does something nasty to
4614 * Smart Array controllers that pci_enable_device does not undo
4616 pci_set_drvdata(pdev, NULL);
4617 free_hba(i);
4618 return -1;
4621 static void cciss_shutdown(struct pci_dev *pdev)
4623 ctlr_info_t *h;
4624 char *flush_buf;
4625 int return_code;
4627 h = pci_get_drvdata(pdev);
4628 flush_buf = kzalloc(4, GFP_KERNEL);
4629 if (!flush_buf) {
4630 printk(KERN_WARNING
4631 "cciss:%d cache not flushed, out of memory.\n",
4632 h->ctlr);
4633 return;
4635 /* write all data in the battery backed cache to disk */
4636 memset(flush_buf, 0, 4);
4637 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4638 4, 0, CTLR_LUNID, TYPE_CMD);
4639 kfree(flush_buf);
4640 if (return_code != IO_OK)
4641 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4642 h->ctlr);
4643 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4644 free_irq(h->intr[PERF_MODE_INT], h);
4647 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4649 ctlr_info_t *tmp_ptr;
4650 int i, j;
4652 if (pci_get_drvdata(pdev) == NULL) {
4653 printk(KERN_ERR "cciss: Unable to remove device \n");
4654 return;
4657 tmp_ptr = pci_get_drvdata(pdev);
4658 i = tmp_ptr->ctlr;
4659 if (hba[i] == NULL) {
4660 printk(KERN_ERR "cciss: device appears to "
4661 "already be removed \n");
4662 return;
4665 mutex_lock(&hba[i]->busy_shutting_down);
4667 remove_from_scan_list(hba[i]);
4668 remove_proc_entry(hba[i]->devname, proc_cciss);
4669 unregister_blkdev(hba[i]->major, hba[i]->devname);
4671 /* remove it from the disk list */
4672 for (j = 0; j < CISS_MAX_LUN; j++) {
4673 struct gendisk *disk = hba[i]->gendisk[j];
4674 if (disk) {
4675 struct request_queue *q = disk->queue;
4677 if (disk->flags & GENHD_FL_UP) {
4678 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4679 del_gendisk(disk);
4681 if (q)
4682 blk_cleanup_queue(q);
4686 #ifdef CONFIG_CISS_SCSI_TAPE
4687 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4688 #endif
4690 cciss_shutdown(pdev);
4692 #ifdef CONFIG_PCI_MSI
4693 if (hba[i]->msix_vector)
4694 pci_disable_msix(hba[i]->pdev);
4695 else if (hba[i]->msi_vector)
4696 pci_disable_msi(hba[i]->pdev);
4697 #endif /* CONFIG_PCI_MSI */
4699 iounmap(hba[i]->vaddr);
4701 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4702 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4703 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4704 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4705 kfree(hba[i]->cmd_pool_bits);
4706 /* Free up sg elements */
4707 for (j = 0; j < hba[i]->nr_cmds; j++)
4708 kfree(hba[i]->scatter_list[j]);
4709 kfree(hba[i]->scatter_list);
4710 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4712 * Deliberately omit pci_disable_device(): it does something nasty to
4713 * Smart Array controllers that pci_enable_device does not undo
4715 pci_release_regions(pdev);
4716 pci_set_drvdata(pdev, NULL);
4717 cciss_destroy_hba_sysfs_entry(hba[i]);
4718 mutex_unlock(&hba[i]->busy_shutting_down);
4719 free_hba(i);
4722 static struct pci_driver cciss_pci_driver = {
4723 .name = "cciss",
4724 .probe = cciss_init_one,
4725 .remove = __devexit_p(cciss_remove_one),
4726 .id_table = cciss_pci_device_id, /* id_table */
4727 .shutdown = cciss_shutdown,
4731 * This is it. Register the PCI driver information for the cards we control
4732 * the OS will call our registered routines when it finds one of our cards.
4734 static int __init cciss_init(void)
4736 int err;
4739 * The hardware requires that commands are aligned on a 64-bit
4740 * boundary. Given that we use pci_alloc_consistent() to allocate an
4741 * array of them, the size must be a multiple of 8 bytes.
4743 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4744 printk(KERN_INFO DRIVER_NAME "\n");
4746 err = bus_register(&cciss_bus_type);
4747 if (err)
4748 return err;
4750 /* Start the scan thread */
4751 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4752 if (IS_ERR(cciss_scan_thread)) {
4753 err = PTR_ERR(cciss_scan_thread);
4754 goto err_bus_unregister;
4757 /* Register for our PCI devices */
4758 err = pci_register_driver(&cciss_pci_driver);
4759 if (err)
4760 goto err_thread_stop;
4762 return err;
4764 err_thread_stop:
4765 kthread_stop(cciss_scan_thread);
4766 err_bus_unregister:
4767 bus_unregister(&cciss_bus_type);
4769 return err;
4772 static void __exit cciss_cleanup(void)
4774 int i;
4776 pci_unregister_driver(&cciss_pci_driver);
4777 /* double check that all controller entrys have been removed */
4778 for (i = 0; i < MAX_CTLR; i++) {
4779 if (hba[i] != NULL) {
4780 printk(KERN_WARNING "cciss: had to remove"
4781 " controller %d\n", i);
4782 cciss_remove_one(hba[i]->pdev);
4785 kthread_stop(cciss_scan_thread);
4786 remove_proc_entry("driver/cciss", NULL);
4787 bus_unregister(&cciss_bus_type);
4790 module_init(cciss_init);
4791 module_exit(cciss_cleanup);