Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / drivers / iommu / arm-smmu.c
blob1abfb5684ab7ebcb7c735e10c71625439490ca09
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 39-bit addressing
28 * - Context fault reporting
31 #define pr_fmt(fmt) "arm-smmu: " fmt
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
46 #include <linux/amba/bus.h>
48 #include <asm/pgalloc.h>
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS 8
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS 128
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS 128
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
63 /* Page table bits */
64 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
65 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
66 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
67 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
68 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
69 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
71 #if PAGE_SIZE == SZ_4K
72 #define ARM_SMMU_PTE_CONT_ENTRIES 16
73 #elif PAGE_SIZE == SZ_64K
74 #define ARM_SMMU_PTE_CONT_ENTRIES 32
75 #else
76 #define ARM_SMMU_PTE_CONT_ENTRIES 1
77 #endif
79 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
80 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
81 #define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
83 /* Stage-1 PTE */
84 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
85 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
86 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
87 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
89 /* Stage-2 PTE */
90 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
91 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
92 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
93 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
94 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
95 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
97 /* Configuration registers */
98 #define ARM_SMMU_GR0_sCR0 0x0
99 #define sCR0_CLIENTPD (1 << 0)
100 #define sCR0_GFRE (1 << 1)
101 #define sCR0_GFIE (1 << 2)
102 #define sCR0_GCFGFRE (1 << 4)
103 #define sCR0_GCFGFIE (1 << 5)
104 #define sCR0_USFCFG (1 << 10)
105 #define sCR0_VMIDPNE (1 << 11)
106 #define sCR0_PTM (1 << 12)
107 #define sCR0_FB (1 << 13)
108 #define sCR0_BSU_SHIFT 14
109 #define sCR0_BSU_MASK 0x3
111 /* Identification registers */
112 #define ARM_SMMU_GR0_ID0 0x20
113 #define ARM_SMMU_GR0_ID1 0x24
114 #define ARM_SMMU_GR0_ID2 0x28
115 #define ARM_SMMU_GR0_ID3 0x2c
116 #define ARM_SMMU_GR0_ID4 0x30
117 #define ARM_SMMU_GR0_ID5 0x34
118 #define ARM_SMMU_GR0_ID6 0x38
119 #define ARM_SMMU_GR0_ID7 0x3c
120 #define ARM_SMMU_GR0_sGFSR 0x48
121 #define ARM_SMMU_GR0_sGFSYNR0 0x50
122 #define ARM_SMMU_GR0_sGFSYNR1 0x54
123 #define ARM_SMMU_GR0_sGFSYNR2 0x58
124 #define ARM_SMMU_GR0_PIDR0 0xfe0
125 #define ARM_SMMU_GR0_PIDR1 0xfe4
126 #define ARM_SMMU_GR0_PIDR2 0xfe8
128 #define ID0_S1TS (1 << 30)
129 #define ID0_S2TS (1 << 29)
130 #define ID0_NTS (1 << 28)
131 #define ID0_SMS (1 << 27)
132 #define ID0_PTFS_SHIFT 24
133 #define ID0_PTFS_MASK 0x2
134 #define ID0_PTFS_V8_ONLY 0x2
135 #define ID0_CTTW (1 << 14)
136 #define ID0_NUMIRPT_SHIFT 16
137 #define ID0_NUMIRPT_MASK 0xff
138 #define ID0_NUMSMRG_SHIFT 0
139 #define ID0_NUMSMRG_MASK 0xff
141 #define ID1_PAGESIZE (1 << 31)
142 #define ID1_NUMPAGENDXB_SHIFT 28
143 #define ID1_NUMPAGENDXB_MASK 7
144 #define ID1_NUMS2CB_SHIFT 16
145 #define ID1_NUMS2CB_MASK 0xff
146 #define ID1_NUMCB_SHIFT 0
147 #define ID1_NUMCB_MASK 0xff
149 #define ID2_OAS_SHIFT 4
150 #define ID2_OAS_MASK 0xf
151 #define ID2_IAS_SHIFT 0
152 #define ID2_IAS_MASK 0xf
153 #define ID2_UBS_SHIFT 8
154 #define ID2_UBS_MASK 0xf
155 #define ID2_PTFS_4K (1 << 12)
156 #define ID2_PTFS_16K (1 << 13)
157 #define ID2_PTFS_64K (1 << 14)
159 #define PIDR2_ARCH_SHIFT 4
160 #define PIDR2_ARCH_MASK 0xf
162 /* Global TLB invalidation */
163 #define ARM_SMMU_GR0_STLBIALL 0x60
164 #define ARM_SMMU_GR0_TLBIVMID 0x64
165 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
166 #define ARM_SMMU_GR0_TLBIALLH 0x6c
167 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
168 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
169 #define sTLBGSTATUS_GSACTIVE (1 << 0)
170 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
172 /* Stream mapping registers */
173 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
174 #define SMR_VALID (1 << 31)
175 #define SMR_MASK_SHIFT 16
176 #define SMR_MASK_MASK 0x7fff
177 #define SMR_ID_SHIFT 0
178 #define SMR_ID_MASK 0x7fff
180 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
181 #define S2CR_CBNDX_SHIFT 0
182 #define S2CR_CBNDX_MASK 0xff
183 #define S2CR_TYPE_SHIFT 16
184 #define S2CR_TYPE_MASK 0x3
185 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
186 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
187 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT 0
192 #define CBAR_VMID_MASK 0xff
193 #define CBAR_S1_MEMATTR_SHIFT 12
194 #define CBAR_S1_MEMATTR_MASK 0xf
195 #define CBAR_S1_MEMATTR_WB 0xf
196 #define CBAR_TYPE_SHIFT 16
197 #define CBAR_TYPE_MASK 0x3
198 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
199 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
200 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
201 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
202 #define CBAR_IRPTNDX_SHIFT 24
203 #define CBAR_IRPTNDX_MASK 0xff
205 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
206 #define CBA2R_RW64_32BIT (0 << 0)
207 #define CBA2R_RW64_64BIT (1 << 0)
209 /* Translation context bank */
210 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
211 #define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
213 #define ARM_SMMU_CB_SCTLR 0x0
214 #define ARM_SMMU_CB_RESUME 0x8
215 #define ARM_SMMU_CB_TTBCR2 0x10
216 #define ARM_SMMU_CB_TTBR0_LO 0x20
217 #define ARM_SMMU_CB_TTBR0_HI 0x24
218 #define ARM_SMMU_CB_TTBCR 0x30
219 #define ARM_SMMU_CB_S1_MAIR0 0x38
220 #define ARM_SMMU_CB_FSR 0x58
221 #define ARM_SMMU_CB_FAR_LO 0x60
222 #define ARM_SMMU_CB_FAR_HI 0x64
223 #define ARM_SMMU_CB_FSYNR0 0x68
224 #define ARM_SMMU_CB_S1_TLBIASID 0x610
226 #define SCTLR_S1_ASIDPNE (1 << 12)
227 #define SCTLR_CFCFG (1 << 7)
228 #define SCTLR_CFIE (1 << 6)
229 #define SCTLR_CFRE (1 << 5)
230 #define SCTLR_E (1 << 4)
231 #define SCTLR_AFE (1 << 2)
232 #define SCTLR_TRE (1 << 1)
233 #define SCTLR_M (1 << 0)
234 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
236 #define RESUME_RETRY (0 << 0)
237 #define RESUME_TERMINATE (1 << 0)
239 #define TTBCR_EAE (1 << 31)
241 #define TTBCR_PASIZE_SHIFT 16
242 #define TTBCR_PASIZE_MASK 0x7
244 #define TTBCR_TG0_4K (0 << 14)
245 #define TTBCR_TG0_64K (1 << 14)
247 #define TTBCR_SH0_SHIFT 12
248 #define TTBCR_SH0_MASK 0x3
249 #define TTBCR_SH_NS 0
250 #define TTBCR_SH_OS 2
251 #define TTBCR_SH_IS 3
253 #define TTBCR_ORGN0_SHIFT 10
254 #define TTBCR_IRGN0_SHIFT 8
255 #define TTBCR_RGN_MASK 0x3
256 #define TTBCR_RGN_NC 0
257 #define TTBCR_RGN_WBWA 1
258 #define TTBCR_RGN_WT 2
259 #define TTBCR_RGN_WB 3
261 #define TTBCR_SL0_SHIFT 6
262 #define TTBCR_SL0_MASK 0x3
263 #define TTBCR_SL0_LVL_2 0
264 #define TTBCR_SL0_LVL_1 1
266 #define TTBCR_T1SZ_SHIFT 16
267 #define TTBCR_T0SZ_SHIFT 0
268 #define TTBCR_SZ_MASK 0xf
270 #define TTBCR2_SEP_SHIFT 15
271 #define TTBCR2_SEP_MASK 0x7
273 #define TTBCR2_PASIZE_SHIFT 0
274 #define TTBCR2_PASIZE_MASK 0x7
276 /* Common definitions for PASize and SEP fields */
277 #define TTBCR2_ADDR_32 0
278 #define TTBCR2_ADDR_36 1
279 #define TTBCR2_ADDR_40 2
280 #define TTBCR2_ADDR_42 3
281 #define TTBCR2_ADDR_44 4
282 #define TTBCR2_ADDR_48 5
284 #define TTBRn_HI_ASID_SHIFT 16
286 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
287 #define MAIR_ATTR_MASK 0xff
288 #define MAIR_ATTR_DEVICE 0x04
289 #define MAIR_ATTR_NC 0x44
290 #define MAIR_ATTR_WBRWA 0xff
291 #define MAIR_ATTR_IDX_NC 0
292 #define MAIR_ATTR_IDX_CACHE 1
293 #define MAIR_ATTR_IDX_DEV 2
295 #define FSR_MULTI (1 << 31)
296 #define FSR_SS (1 << 30)
297 #define FSR_UUT (1 << 8)
298 #define FSR_ASF (1 << 7)
299 #define FSR_TLBLKF (1 << 6)
300 #define FSR_TLBMCF (1 << 5)
301 #define FSR_EF (1 << 4)
302 #define FSR_PF (1 << 3)
303 #define FSR_AFF (1 << 2)
304 #define FSR_TF (1 << 1)
306 #define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
307 FSR_TLBLKF)
308 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
309 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
311 #define FSYNR0_WNR (1 << 4)
313 struct arm_smmu_smr {
314 u8 idx;
315 u16 mask;
316 u16 id;
319 struct arm_smmu_master {
320 struct device_node *of_node;
323 * The following is specific to the master's position in the
324 * SMMU chain.
326 struct rb_node node;
327 int num_streamids;
328 u16 streamids[MAX_MASTER_STREAMIDS];
331 * We only need to allocate these on the root SMMU, as we
332 * configure unmatched streams to bypass translation.
334 struct arm_smmu_smr *smrs;
337 struct arm_smmu_device {
338 struct device *dev;
339 struct device_node *parent_of_node;
341 void __iomem *base;
342 unsigned long size;
343 unsigned long pagesize;
345 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
346 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
347 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
348 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
349 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
350 u32 features;
351 int version;
353 u32 num_context_banks;
354 u32 num_s2_context_banks;
355 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
356 atomic_t irptndx;
358 u32 num_mapping_groups;
359 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
361 unsigned long input_size;
362 unsigned long s1_output_size;
363 unsigned long s2_output_size;
365 u32 num_global_irqs;
366 u32 num_context_irqs;
367 unsigned int *irqs;
369 struct list_head list;
370 struct rb_root masters;
373 struct arm_smmu_cfg {
374 struct arm_smmu_device *smmu;
375 u8 cbndx;
376 u8 irptndx;
377 u32 cbar;
378 pgd_t *pgd;
380 #define INVALID_IRPTNDX 0xff
382 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
383 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
385 struct arm_smmu_domain {
387 * A domain can span across multiple, chained SMMUs and requires
388 * all devices within the domain to follow the same translation
389 * path.
391 struct arm_smmu_device *leaf_smmu;
392 struct arm_smmu_cfg root_cfg;
393 phys_addr_t output_mask;
395 spinlock_t lock;
398 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
399 static LIST_HEAD(arm_smmu_devices);
401 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
402 struct device_node *dev_node)
404 struct rb_node *node = smmu->masters.rb_node;
406 while (node) {
407 struct arm_smmu_master *master;
408 master = container_of(node, struct arm_smmu_master, node);
410 if (dev_node < master->of_node)
411 node = node->rb_left;
412 else if (dev_node > master->of_node)
413 node = node->rb_right;
414 else
415 return master;
418 return NULL;
421 static int insert_smmu_master(struct arm_smmu_device *smmu,
422 struct arm_smmu_master *master)
424 struct rb_node **new, *parent;
426 new = &smmu->masters.rb_node;
427 parent = NULL;
428 while (*new) {
429 struct arm_smmu_master *this;
430 this = container_of(*new, struct arm_smmu_master, node);
432 parent = *new;
433 if (master->of_node < this->of_node)
434 new = &((*new)->rb_left);
435 else if (master->of_node > this->of_node)
436 new = &((*new)->rb_right);
437 else
438 return -EEXIST;
441 rb_link_node(&master->node, parent, new);
442 rb_insert_color(&master->node, &smmu->masters);
443 return 0;
446 static int register_smmu_master(struct arm_smmu_device *smmu,
447 struct device *dev,
448 struct of_phandle_args *masterspec)
450 int i;
451 struct arm_smmu_master *master;
453 master = find_smmu_master(smmu, masterspec->np);
454 if (master) {
455 dev_err(dev,
456 "rejecting multiple registrations for master device %s\n",
457 masterspec->np->name);
458 return -EBUSY;
461 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
462 dev_err(dev,
463 "reached maximum number (%d) of stream IDs for master device %s\n",
464 MAX_MASTER_STREAMIDS, masterspec->np->name);
465 return -ENOSPC;
468 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
469 if (!master)
470 return -ENOMEM;
472 master->of_node = masterspec->np;
473 master->num_streamids = masterspec->args_count;
475 for (i = 0; i < master->num_streamids; ++i)
476 master->streamids[i] = masterspec->args[i];
478 return insert_smmu_master(smmu, master);
481 static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
483 struct arm_smmu_device *parent;
485 if (!smmu->parent_of_node)
486 return NULL;
488 spin_lock(&arm_smmu_devices_lock);
489 list_for_each_entry(parent, &arm_smmu_devices, list)
490 if (parent->dev->of_node == smmu->parent_of_node)
491 goto out_unlock;
493 parent = NULL;
494 dev_warn(smmu->dev,
495 "Failed to find SMMU parent despite parent in DT\n");
496 out_unlock:
497 spin_unlock(&arm_smmu_devices_lock);
498 return parent;
501 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
503 int idx;
505 do {
506 idx = find_next_zero_bit(map, end, start);
507 if (idx == end)
508 return -ENOSPC;
509 } while (test_and_set_bit(idx, map));
511 return idx;
514 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
516 clear_bit(idx, map);
519 /* Wait for any pending TLB invalidations to complete */
520 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
522 int count = 0;
523 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
525 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
526 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
527 & sTLBGSTATUS_GSACTIVE) {
528 cpu_relax();
529 if (++count == TLB_LOOP_TIMEOUT) {
530 dev_err_ratelimited(smmu->dev,
531 "TLB sync timed out -- SMMU may be deadlocked\n");
532 return;
534 udelay(1);
538 static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
540 struct arm_smmu_device *smmu = cfg->smmu;
541 void __iomem *base = ARM_SMMU_GR0(smmu);
542 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
544 if (stage1) {
545 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
546 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
547 base + ARM_SMMU_CB_S1_TLBIASID);
548 } else {
549 base = ARM_SMMU_GR0(smmu);
550 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
551 base + ARM_SMMU_GR0_TLBIVMID);
554 arm_smmu_tlb_sync(smmu);
557 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
559 int flags, ret;
560 u32 fsr, far, fsynr, resume;
561 unsigned long iova;
562 struct iommu_domain *domain = dev;
563 struct arm_smmu_domain *smmu_domain = domain->priv;
564 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
565 struct arm_smmu_device *smmu = root_cfg->smmu;
566 void __iomem *cb_base;
568 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
569 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
571 if (!(fsr & FSR_FAULT))
572 return IRQ_NONE;
574 if (fsr & FSR_IGN)
575 dev_err_ratelimited(smmu->dev,
576 "Unexpected context fault (fsr 0x%u)\n",
577 fsr);
579 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
580 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
582 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
583 iova = far;
584 #ifdef CONFIG_64BIT
585 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
586 iova |= ((unsigned long)far << 32);
587 #endif
589 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
590 ret = IRQ_HANDLED;
591 resume = RESUME_RETRY;
592 } else {
593 dev_err_ratelimited(smmu->dev,
594 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
595 iova, fsynr, root_cfg->cbndx);
596 ret = IRQ_NONE;
597 resume = RESUME_TERMINATE;
600 /* Clear the faulting FSR */
601 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
603 /* Retry or terminate any stalled transactions */
604 if (fsr & FSR_SS)
605 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
607 return ret;
610 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
612 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
613 struct arm_smmu_device *smmu = dev;
614 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
616 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
617 if (!gfsr)
618 return IRQ_NONE;
620 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
621 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
622 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
624 dev_err_ratelimited(smmu->dev,
625 "Unexpected global fault, this could be serious\n");
626 dev_err_ratelimited(smmu->dev,
627 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
628 gfsr, gfsynr0, gfsynr1, gfsynr2);
630 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
631 return IRQ_HANDLED;
634 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
636 u32 reg;
637 bool stage1;
638 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
639 struct arm_smmu_device *smmu = root_cfg->smmu;
640 void __iomem *cb_base, *gr0_base, *gr1_base;
642 gr0_base = ARM_SMMU_GR0(smmu);
643 gr1_base = ARM_SMMU_GR1(smmu);
644 stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
645 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
647 /* CBAR */
648 reg = root_cfg->cbar;
649 if (smmu->version == 1)
650 reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
652 /* Use the weakest memory type, so it is overridden by the pte */
653 if (stage1)
654 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
655 else
656 reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
657 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
659 if (smmu->version > 1) {
660 /* CBA2R */
661 #ifdef CONFIG_64BIT
662 reg = CBA2R_RW64_64BIT;
663 #else
664 reg = CBA2R_RW64_32BIT;
665 #endif
666 writel_relaxed(reg,
667 gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
669 /* TTBCR2 */
670 switch (smmu->input_size) {
671 case 32:
672 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
673 break;
674 case 36:
675 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
676 break;
677 case 39:
678 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
679 break;
680 case 42:
681 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
682 break;
683 case 44:
684 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
685 break;
686 case 48:
687 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
688 break;
691 switch (smmu->s1_output_size) {
692 case 32:
693 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
694 break;
695 case 36:
696 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
697 break;
698 case 39:
699 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
700 break;
701 case 42:
702 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
703 break;
704 case 44:
705 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
706 break;
707 case 48:
708 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
709 break;
712 if (stage1)
713 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
716 /* TTBR0 */
717 reg = __pa(root_cfg->pgd);
718 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
719 reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
720 if (stage1)
721 reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
722 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
725 * TTBCR
726 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
728 if (smmu->version > 1) {
729 if (PAGE_SIZE == SZ_4K)
730 reg = TTBCR_TG0_4K;
731 else
732 reg = TTBCR_TG0_64K;
734 if (!stage1) {
735 switch (smmu->s2_output_size) {
736 case 32:
737 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
738 break;
739 case 36:
740 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
741 break;
742 case 40:
743 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
744 break;
745 case 42:
746 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
747 break;
748 case 44:
749 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
750 break;
751 case 48:
752 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
753 break;
755 } else {
756 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
758 } else {
759 reg = 0;
762 reg |= TTBCR_EAE |
763 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
764 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
765 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
766 (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
767 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
769 /* MAIR0 (stage-1 only) */
770 if (stage1) {
771 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
772 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
773 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
774 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
777 /* SCTLR */
778 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
779 if (stage1)
780 reg |= SCTLR_S1_ASIDPNE;
781 #ifdef __BIG_ENDIAN
782 reg |= SCTLR_E;
783 #endif
784 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
787 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
788 struct device *dev)
790 int irq, ret, start;
791 struct arm_smmu_domain *smmu_domain = domain->priv;
792 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
793 struct arm_smmu_device *smmu, *parent;
796 * Walk the SMMU chain to find the root device for this chain.
797 * We assume that no masters have translations which terminate
798 * early, and therefore check that the root SMMU does indeed have
799 * a StreamID for the master in question.
801 parent = dev->archdata.iommu;
802 smmu_domain->output_mask = -1;
803 do {
804 smmu = parent;
805 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
806 } while ((parent = find_parent_smmu(smmu)));
808 if (!find_smmu_master(smmu, dev->of_node)) {
809 dev_err(dev, "unable to find root SMMU for device\n");
810 return -ENODEV;
813 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
815 * We will likely want to change this if/when KVM gets
816 * involved.
818 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
819 start = smmu->num_s2_context_banks;
820 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
821 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
822 start = 0;
823 } else {
824 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
825 start = smmu->num_s2_context_banks;
828 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
829 smmu->num_context_banks);
830 if (IS_ERR_VALUE(ret))
831 return ret;
833 root_cfg->cbndx = ret;
834 if (smmu->version == 1) {
835 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
836 root_cfg->irptndx %= smmu->num_context_irqs;
837 } else {
838 root_cfg->irptndx = root_cfg->cbndx;
841 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
842 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
843 "arm-smmu-context-fault", domain);
844 if (IS_ERR_VALUE(ret)) {
845 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
846 root_cfg->irptndx, irq);
847 root_cfg->irptndx = INVALID_IRPTNDX;
848 goto out_free_context;
851 root_cfg->smmu = smmu;
852 arm_smmu_init_context_bank(smmu_domain);
853 return ret;
855 out_free_context:
856 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
857 return ret;
860 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
862 struct arm_smmu_domain *smmu_domain = domain->priv;
863 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
864 struct arm_smmu_device *smmu = root_cfg->smmu;
865 void __iomem *cb_base;
866 int irq;
868 if (!smmu)
869 return;
871 /* Disable the context bank and nuke the TLB before freeing it. */
872 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
873 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
874 arm_smmu_tlb_inv_context(root_cfg);
876 if (root_cfg->irptndx != INVALID_IRPTNDX) {
877 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
878 free_irq(irq, domain);
881 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
884 static int arm_smmu_domain_init(struct iommu_domain *domain)
886 struct arm_smmu_domain *smmu_domain;
887 pgd_t *pgd;
890 * Allocate the domain and initialise some of its data structures.
891 * We can't really do anything meaningful until we've added a
892 * master.
894 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
895 if (!smmu_domain)
896 return -ENOMEM;
898 pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
899 if (!pgd)
900 goto out_free_domain;
901 smmu_domain->root_cfg.pgd = pgd;
903 spin_lock_init(&smmu_domain->lock);
904 domain->priv = smmu_domain;
905 return 0;
907 out_free_domain:
908 kfree(smmu_domain);
909 return -ENOMEM;
912 static void arm_smmu_free_ptes(pmd_t *pmd)
914 pgtable_t table = pmd_pgtable(*pmd);
915 pgtable_page_dtor(table);
916 __free_page(table);
919 static void arm_smmu_free_pmds(pud_t *pud)
921 int i;
922 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
924 pmd = pmd_base;
925 for (i = 0; i < PTRS_PER_PMD; ++i) {
926 if (pmd_none(*pmd))
927 continue;
929 arm_smmu_free_ptes(pmd);
930 pmd++;
933 pmd_free(NULL, pmd_base);
936 static void arm_smmu_free_puds(pgd_t *pgd)
938 int i;
939 pud_t *pud, *pud_base = pud_offset(pgd, 0);
941 pud = pud_base;
942 for (i = 0; i < PTRS_PER_PUD; ++i) {
943 if (pud_none(*pud))
944 continue;
946 arm_smmu_free_pmds(pud);
947 pud++;
950 pud_free(NULL, pud_base);
953 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
955 int i;
956 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
957 pgd_t *pgd, *pgd_base = root_cfg->pgd;
960 * Recursively free the page tables for this domain. We don't
961 * care about speculative TLB filling, because the TLB will be
962 * nuked next time this context bank is re-allocated and no devices
963 * currently map to these tables.
965 pgd = pgd_base;
966 for (i = 0; i < PTRS_PER_PGD; ++i) {
967 if (pgd_none(*pgd))
968 continue;
969 arm_smmu_free_puds(pgd);
970 pgd++;
973 kfree(pgd_base);
976 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
978 struct arm_smmu_domain *smmu_domain = domain->priv;
981 * Free the domain resources. We assume that all devices have
982 * already been detached.
984 arm_smmu_destroy_domain_context(domain);
985 arm_smmu_free_pgtables(smmu_domain);
986 kfree(smmu_domain);
989 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
990 struct arm_smmu_master *master)
992 int i;
993 struct arm_smmu_smr *smrs;
994 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
996 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
997 return 0;
999 if (master->smrs)
1000 return -EEXIST;
1002 smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1003 if (!smrs) {
1004 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1005 master->num_streamids, master->of_node->name);
1006 return -ENOMEM;
1009 /* Allocate the SMRs on the root SMMU */
1010 for (i = 0; i < master->num_streamids; ++i) {
1011 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1012 smmu->num_mapping_groups);
1013 if (IS_ERR_VALUE(idx)) {
1014 dev_err(smmu->dev, "failed to allocate free SMR\n");
1015 goto err_free_smrs;
1018 smrs[i] = (struct arm_smmu_smr) {
1019 .idx = idx,
1020 .mask = 0, /* We don't currently share SMRs */
1021 .id = master->streamids[i],
1025 /* It worked! Now, poke the actual hardware */
1026 for (i = 0; i < master->num_streamids; ++i) {
1027 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1028 smrs[i].mask << SMR_MASK_SHIFT;
1029 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1032 master->smrs = smrs;
1033 return 0;
1035 err_free_smrs:
1036 while (--i >= 0)
1037 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1038 kfree(smrs);
1039 return -ENOSPC;
1042 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1043 struct arm_smmu_master *master)
1045 int i;
1046 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1047 struct arm_smmu_smr *smrs = master->smrs;
1049 /* Invalidate the SMRs before freeing back to the allocator */
1050 for (i = 0; i < master->num_streamids; ++i) {
1051 u8 idx = smrs[i].idx;
1052 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1053 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1056 master->smrs = NULL;
1057 kfree(smrs);
1060 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1061 struct arm_smmu_master *master)
1063 int i;
1064 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1066 for (i = 0; i < master->num_streamids; ++i) {
1067 u16 sid = master->streamids[i];
1068 writel_relaxed(S2CR_TYPE_BYPASS,
1069 gr0_base + ARM_SMMU_GR0_S2CR(sid));
1073 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1074 struct arm_smmu_master *master)
1076 int i, ret;
1077 struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1078 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1080 ret = arm_smmu_master_configure_smrs(smmu, master);
1081 if (ret)
1082 return ret;
1084 /* Bypass the leaves */
1085 smmu = smmu_domain->leaf_smmu;
1086 while ((parent = find_parent_smmu(smmu))) {
1088 * We won't have a StreamID match for anything but the root
1089 * smmu, so we only need to worry about StreamID indexing,
1090 * where we must install bypass entries in the S2CRs.
1092 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1093 continue;
1095 arm_smmu_bypass_stream_mapping(smmu, master);
1096 smmu = parent;
1099 /* Now we're at the root, time to point at our context bank */
1100 for (i = 0; i < master->num_streamids; ++i) {
1101 u32 idx, s2cr;
1102 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1103 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1104 (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1105 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1108 return 0;
1111 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1112 struct arm_smmu_master *master)
1114 struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1117 * We *must* clear the S2CR first, because freeing the SMR means
1118 * that it can be re-allocated immediately.
1120 arm_smmu_bypass_stream_mapping(smmu, master);
1121 arm_smmu_master_free_smrs(smmu, master);
1124 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1126 int ret = -EINVAL;
1127 struct arm_smmu_domain *smmu_domain = domain->priv;
1128 struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1129 struct arm_smmu_master *master;
1131 if (!device_smmu) {
1132 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1133 return -ENXIO;
1137 * Sanity check the domain. We don't currently support domains
1138 * that cross between different SMMU chains.
1140 spin_lock(&smmu_domain->lock);
1141 if (!smmu_domain->leaf_smmu) {
1142 /* Now that we have a master, we can finalise the domain */
1143 ret = arm_smmu_init_domain_context(domain, dev);
1144 if (IS_ERR_VALUE(ret))
1145 goto err_unlock;
1147 smmu_domain->leaf_smmu = device_smmu;
1148 } else if (smmu_domain->leaf_smmu != device_smmu) {
1149 dev_err(dev,
1150 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1151 dev_name(smmu_domain->leaf_smmu->dev),
1152 dev_name(device_smmu->dev));
1153 goto err_unlock;
1155 spin_unlock(&smmu_domain->lock);
1157 /* Looks ok, so add the device to the domain */
1158 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1159 if (!master)
1160 return -ENODEV;
1162 return arm_smmu_domain_add_master(smmu_domain, master);
1164 err_unlock:
1165 spin_unlock(&smmu_domain->lock);
1166 return ret;
1169 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1171 struct arm_smmu_domain *smmu_domain = domain->priv;
1172 struct arm_smmu_master *master;
1174 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1175 if (master)
1176 arm_smmu_domain_remove_master(smmu_domain, master);
1179 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1180 size_t size)
1182 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1185 * If the SMMU can't walk tables in the CPU caches, treat them
1186 * like non-coherent DMA since we need to flush the new entries
1187 * all the way out to memory. There's no possibility of recursion
1188 * here as the SMMU table walker will not be wired through another
1189 * SMMU.
1191 if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1192 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1193 DMA_TO_DEVICE);
1196 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1197 unsigned long end)
1199 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1200 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1203 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1204 unsigned long addr, unsigned long end,
1205 unsigned long pfn, int flags, int stage)
1207 pte_t *pte, *start;
1208 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1210 if (pmd_none(*pmd)) {
1211 /* Allocate a new set of tables */
1212 pgtable_t table = alloc_page(PGALLOC_GFP);
1213 if (!table)
1214 return -ENOMEM;
1216 arm_smmu_flush_pgtable(smmu, page_address(table),
1217 ARM_SMMU_PTE_HWTABLE_SIZE);
1218 if (!pgtable_page_ctor(table)) {
1219 __free_page(table);
1220 return -ENOMEM;
1222 pmd_populate(NULL, pmd, table);
1223 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1226 if (stage == 1) {
1227 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1228 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1229 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1231 if (flags & IOMMU_CACHE)
1232 pteval |= (MAIR_ATTR_IDX_CACHE <<
1233 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1234 } else {
1235 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1236 if (flags & IOMMU_READ)
1237 pteval |= ARM_SMMU_PTE_HAP_READ;
1238 if (flags & IOMMU_WRITE)
1239 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1240 if (flags & IOMMU_CACHE)
1241 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1242 else
1243 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1246 /* If no access, create a faulting entry to avoid TLB fills */
1247 if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1248 pteval &= ~ARM_SMMU_PTE_PAGE;
1250 pteval |= ARM_SMMU_PTE_SH_IS;
1251 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1252 pte = start;
1255 * Install the page table entries. This is fairly complicated
1256 * since we attempt to make use of the contiguous hint in the
1257 * ptes where possible. The contiguous hint indicates a series
1258 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1259 * contiguous region with the following constraints:
1261 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1262 * - Each pte in the region has the contiguous hint bit set
1264 * This complicates unmapping (also handled by this code, when
1265 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1266 * possible, yet highly unlikely, that a client may unmap only
1267 * part of a contiguous range. This requires clearing of the
1268 * contiguous hint bits in the range before installing the new
1269 * faulting entries.
1271 * Note that re-mapping an address range without first unmapping
1272 * it is not supported, so TLB invalidation is not required here
1273 * and is instead performed at unmap and domain-init time.
1275 do {
1276 int i = 1;
1277 pteval &= ~ARM_SMMU_PTE_CONT;
1279 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1280 i = ARM_SMMU_PTE_CONT_ENTRIES;
1281 pteval |= ARM_SMMU_PTE_CONT;
1282 } else if (pte_val(*pte) &
1283 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1284 int j;
1285 pte_t *cont_start;
1286 unsigned long idx = pte_index(addr);
1288 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1289 cont_start = pmd_page_vaddr(*pmd) + idx;
1290 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1291 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1293 arm_smmu_flush_pgtable(smmu, cont_start,
1294 sizeof(*pte) *
1295 ARM_SMMU_PTE_CONT_ENTRIES);
1298 do {
1299 *pte = pfn_pte(pfn, __pgprot(pteval));
1300 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1301 } while (addr != end);
1303 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1304 return 0;
1307 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1308 unsigned long addr, unsigned long end,
1309 phys_addr_t phys, int flags, int stage)
1311 int ret;
1312 pmd_t *pmd;
1313 unsigned long next, pfn = __phys_to_pfn(phys);
1315 #ifndef __PAGETABLE_PMD_FOLDED
1316 if (pud_none(*pud)) {
1317 pmd = pmd_alloc_one(NULL, addr);
1318 if (!pmd)
1319 return -ENOMEM;
1320 } else
1321 #endif
1322 pmd = pmd_offset(pud, addr);
1324 do {
1325 next = pmd_addr_end(addr, end);
1326 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1327 flags, stage);
1328 pud_populate(NULL, pud, pmd);
1329 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1330 phys += next - addr;
1331 } while (pmd++, addr = next, addr < end);
1333 return ret;
1336 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1337 unsigned long addr, unsigned long end,
1338 phys_addr_t phys, int flags, int stage)
1340 int ret = 0;
1341 pud_t *pud;
1342 unsigned long next;
1344 #ifndef __PAGETABLE_PUD_FOLDED
1345 if (pgd_none(*pgd)) {
1346 pud = pud_alloc_one(NULL, addr);
1347 if (!pud)
1348 return -ENOMEM;
1349 } else
1350 #endif
1351 pud = pud_offset(pgd, addr);
1353 do {
1354 next = pud_addr_end(addr, end);
1355 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1356 flags, stage);
1357 pgd_populate(NULL, pud, pgd);
1358 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1359 phys += next - addr;
1360 } while (pud++, addr = next, addr < end);
1362 return ret;
1365 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1366 unsigned long iova, phys_addr_t paddr,
1367 size_t size, int flags)
1369 int ret, stage;
1370 unsigned long end;
1371 phys_addr_t input_mask, output_mask;
1372 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1373 pgd_t *pgd = root_cfg->pgd;
1374 struct arm_smmu_device *smmu = root_cfg->smmu;
1376 if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1377 stage = 2;
1378 output_mask = (1ULL << smmu->s2_output_size) - 1;
1379 } else {
1380 stage = 1;
1381 output_mask = (1ULL << smmu->s1_output_size) - 1;
1384 if (!pgd)
1385 return -EINVAL;
1387 if (size & ~PAGE_MASK)
1388 return -EINVAL;
1390 input_mask = (1ULL << smmu->input_size) - 1;
1391 if ((phys_addr_t)iova & ~input_mask)
1392 return -ERANGE;
1394 if (paddr & ~output_mask)
1395 return -ERANGE;
1397 spin_lock(&smmu_domain->lock);
1398 pgd += pgd_index(iova);
1399 end = iova + size;
1400 do {
1401 unsigned long next = pgd_addr_end(iova, end);
1403 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1404 flags, stage);
1405 if (ret)
1406 goto out_unlock;
1408 paddr += next - iova;
1409 iova = next;
1410 } while (pgd++, iova != end);
1412 out_unlock:
1413 spin_unlock(&smmu_domain->lock);
1415 /* Ensure new page tables are visible to the hardware walker */
1416 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1417 dsb();
1419 return ret;
1422 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1423 phys_addr_t paddr, size_t size, int flags)
1425 struct arm_smmu_domain *smmu_domain = domain->priv;
1426 struct arm_smmu_device *smmu = smmu_domain->leaf_smmu;
1428 if (!smmu_domain || !smmu)
1429 return -ENODEV;
1431 /* Check for silent address truncation up the SMMU chain. */
1432 if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1433 return -ERANGE;
1435 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1438 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1439 size_t size)
1441 int ret;
1442 struct arm_smmu_domain *smmu_domain = domain->priv;
1444 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1445 arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
1446 return ret ? ret : size;
1449 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1450 dma_addr_t iova)
1452 pgd_t *pgd;
1453 pud_t *pud;
1454 pmd_t *pmd;
1455 pte_t *pte;
1456 struct arm_smmu_domain *smmu_domain = domain->priv;
1457 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1458 struct arm_smmu_device *smmu = root_cfg->smmu;
1460 spin_lock(&smmu_domain->lock);
1461 pgd = root_cfg->pgd;
1462 if (!pgd)
1463 goto err_unlock;
1465 pgd += pgd_index(iova);
1466 if (pgd_none_or_clear_bad(pgd))
1467 goto err_unlock;
1469 pud = pud_offset(pgd, iova);
1470 if (pud_none_or_clear_bad(pud))
1471 goto err_unlock;
1473 pmd = pmd_offset(pud, iova);
1474 if (pmd_none_or_clear_bad(pmd))
1475 goto err_unlock;
1477 pte = pmd_page_vaddr(*pmd) + pte_index(iova);
1478 if (pte_none(pte))
1479 goto err_unlock;
1481 spin_unlock(&smmu_domain->lock);
1482 return __pfn_to_phys(pte_pfn(*pte)) | (iova & ~PAGE_MASK);
1484 err_unlock:
1485 spin_unlock(&smmu_domain->lock);
1486 dev_warn(smmu->dev,
1487 "invalid (corrupt?) page tables detected for iova 0x%llx\n",
1488 (unsigned long long)iova);
1489 return -EINVAL;
1492 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1493 unsigned long cap)
1495 unsigned long caps = 0;
1496 struct arm_smmu_domain *smmu_domain = domain->priv;
1498 if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1499 caps |= IOMMU_CAP_CACHE_COHERENCY;
1501 return !!(cap & caps);
1504 static int arm_smmu_add_device(struct device *dev)
1506 struct arm_smmu_device *child, *parent, *smmu;
1507 struct arm_smmu_master *master = NULL;
1509 spin_lock(&arm_smmu_devices_lock);
1510 list_for_each_entry(parent, &arm_smmu_devices, list) {
1511 smmu = parent;
1513 /* Try to find a child of the current SMMU. */
1514 list_for_each_entry(child, &arm_smmu_devices, list) {
1515 if (child->parent_of_node == parent->dev->of_node) {
1516 /* Does the child sit above our master? */
1517 master = find_smmu_master(child, dev->of_node);
1518 if (master) {
1519 smmu = NULL;
1520 break;
1525 /* We found some children, so keep searching. */
1526 if (!smmu) {
1527 master = NULL;
1528 continue;
1531 master = find_smmu_master(smmu, dev->of_node);
1532 if (master)
1533 break;
1535 spin_unlock(&arm_smmu_devices_lock);
1537 if (!master)
1538 return -ENODEV;
1540 dev->archdata.iommu = smmu;
1541 return 0;
1544 static void arm_smmu_remove_device(struct device *dev)
1546 dev->archdata.iommu = NULL;
1549 static struct iommu_ops arm_smmu_ops = {
1550 .domain_init = arm_smmu_domain_init,
1551 .domain_destroy = arm_smmu_domain_destroy,
1552 .attach_dev = arm_smmu_attach_dev,
1553 .detach_dev = arm_smmu_detach_dev,
1554 .map = arm_smmu_map,
1555 .unmap = arm_smmu_unmap,
1556 .iova_to_phys = arm_smmu_iova_to_phys,
1557 .domain_has_cap = arm_smmu_domain_has_cap,
1558 .add_device = arm_smmu_add_device,
1559 .remove_device = arm_smmu_remove_device,
1560 .pgsize_bitmap = (SECTION_SIZE |
1561 ARM_SMMU_PTE_CONT_SIZE |
1562 PAGE_SIZE),
1565 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1567 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1568 void __iomem *cb_base;
1569 int i = 0;
1570 u32 reg;
1572 /* Clear Global FSR */
1573 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
1574 writel(reg, gr0_base + ARM_SMMU_GR0_sGFSR);
1576 /* Mark all SMRn as invalid and all S2CRn as bypass */
1577 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1578 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1579 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1582 /* Make sure all context banks are disabled and clear CB_FSR */
1583 for (i = 0; i < smmu->num_context_banks; ++i) {
1584 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1585 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1586 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1589 /* Invalidate the TLB, just in case */
1590 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1591 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1592 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1594 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1596 /* Enable fault reporting */
1597 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1599 /* Disable TLB broadcasting. */
1600 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1602 /* Enable client access, but bypass when no mapping is found */
1603 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1605 /* Disable forced broadcasting */
1606 reg &= ~sCR0_FB;
1608 /* Don't upgrade barriers */
1609 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1611 /* Push the button */
1612 arm_smmu_tlb_sync(smmu);
1613 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sCR0);
1616 static int arm_smmu_id_size_to_bits(int size)
1618 switch (size) {
1619 case 0:
1620 return 32;
1621 case 1:
1622 return 36;
1623 case 2:
1624 return 40;
1625 case 3:
1626 return 42;
1627 case 4:
1628 return 44;
1629 case 5:
1630 default:
1631 return 48;
1635 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1637 unsigned long size;
1638 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1639 u32 id;
1641 dev_notice(smmu->dev, "probing hardware configuration...\n");
1643 /* Primecell ID */
1644 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1645 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1646 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1648 /* ID0 */
1649 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1650 #ifndef CONFIG_64BIT
1651 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1652 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1653 return -ENODEV;
1655 #endif
1656 if (id & ID0_S1TS) {
1657 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1658 dev_notice(smmu->dev, "\tstage 1 translation\n");
1661 if (id & ID0_S2TS) {
1662 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1663 dev_notice(smmu->dev, "\tstage 2 translation\n");
1666 if (id & ID0_NTS) {
1667 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1668 dev_notice(smmu->dev, "\tnested translation\n");
1671 if (!(smmu->features &
1672 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1673 ARM_SMMU_FEAT_TRANS_NESTED))) {
1674 dev_err(smmu->dev, "\tno translation support!\n");
1675 return -ENODEV;
1678 if (id & ID0_CTTW) {
1679 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1680 dev_notice(smmu->dev, "\tcoherent table walk\n");
1683 if (id & ID0_SMS) {
1684 u32 smr, sid, mask;
1686 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1687 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1688 ID0_NUMSMRG_MASK;
1689 if (smmu->num_mapping_groups == 0) {
1690 dev_err(smmu->dev,
1691 "stream-matching supported, but no SMRs present!\n");
1692 return -ENODEV;
1695 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1696 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1697 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1698 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1700 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1701 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1702 if ((mask & sid) != sid) {
1703 dev_err(smmu->dev,
1704 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1705 mask, sid);
1706 return -ENODEV;
1709 dev_notice(smmu->dev,
1710 "\tstream matching with %u register groups, mask 0x%x",
1711 smmu->num_mapping_groups, mask);
1714 /* ID1 */
1715 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1716 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1718 /* Check for size mismatch of SMMU address space from mapped region */
1719 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1720 size *= (smmu->pagesize << 1);
1721 if (smmu->size != size)
1722 dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1723 "from mapped region size (0x%lx)!\n", size, smmu->size);
1725 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1726 ID1_NUMS2CB_MASK;
1727 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1728 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1729 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1730 return -ENODEV;
1732 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1733 smmu->num_context_banks, smmu->num_s2_context_banks);
1735 /* ID2 */
1736 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1737 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1740 * Stage-1 output limited by stage-2 input size due to pgd
1741 * allocation (PTRS_PER_PGD).
1743 #ifdef CONFIG_64BIT
1744 /* Current maximum output size of 39 bits */
1745 smmu->s1_output_size = min(39UL, size);
1746 #else
1747 smmu->s1_output_size = min(32UL, size);
1748 #endif
1750 /* The stage-2 output mask is also applied for bypass */
1751 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1752 smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1754 if (smmu->version == 1) {
1755 smmu->input_size = 32;
1756 } else {
1757 #ifdef CONFIG_64BIT
1758 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1759 size = min(39, arm_smmu_id_size_to_bits(size));
1760 #else
1761 size = 32;
1762 #endif
1763 smmu->input_size = size;
1765 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1766 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1767 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1768 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1769 PAGE_SIZE);
1770 return -ENODEV;
1774 dev_notice(smmu->dev,
1775 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1776 smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1777 return 0;
1780 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1782 struct resource *res;
1783 struct arm_smmu_device *smmu;
1784 struct device_node *dev_node;
1785 struct device *dev = &pdev->dev;
1786 struct rb_node *node;
1787 struct of_phandle_args masterspec;
1788 int num_irqs, i, err;
1790 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1791 if (!smmu) {
1792 dev_err(dev, "failed to allocate arm_smmu_device\n");
1793 return -ENOMEM;
1795 smmu->dev = dev;
1797 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1798 smmu->base = devm_ioremap_resource(dev, res);
1799 if (IS_ERR(smmu->base))
1800 return PTR_ERR(smmu->base);
1801 smmu->size = resource_size(res);
1803 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1804 &smmu->num_global_irqs)) {
1805 dev_err(dev, "missing #global-interrupts property\n");
1806 return -ENODEV;
1809 num_irqs = 0;
1810 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1811 num_irqs++;
1812 if (num_irqs > smmu->num_global_irqs)
1813 smmu->num_context_irqs++;
1816 if (!smmu->num_context_irqs) {
1817 dev_err(dev, "found %d interrupts but expected at least %d\n",
1818 num_irqs, smmu->num_global_irqs + 1);
1819 return -ENODEV;
1822 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1823 GFP_KERNEL);
1824 if (!smmu->irqs) {
1825 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1826 return -ENOMEM;
1829 for (i = 0; i < num_irqs; ++i) {
1830 int irq = platform_get_irq(pdev, i);
1831 if (irq < 0) {
1832 dev_err(dev, "failed to get irq index %d\n", i);
1833 return -ENODEV;
1835 smmu->irqs[i] = irq;
1838 i = 0;
1839 smmu->masters = RB_ROOT;
1840 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1841 "#stream-id-cells", i,
1842 &masterspec)) {
1843 err = register_smmu_master(smmu, dev, &masterspec);
1844 if (err) {
1845 dev_err(dev, "failed to add master %s\n",
1846 masterspec.np->name);
1847 goto out_put_masters;
1850 i++;
1852 dev_notice(dev, "registered %d master devices\n", i);
1854 if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1855 smmu->parent_of_node = dev_node;
1857 err = arm_smmu_device_cfg_probe(smmu);
1858 if (err)
1859 goto out_put_parent;
1861 if (smmu->version > 1 &&
1862 smmu->num_context_banks != smmu->num_context_irqs) {
1863 dev_err(dev,
1864 "found only %d context interrupt(s) but %d required\n",
1865 smmu->num_context_irqs, smmu->num_context_banks);
1866 goto out_put_parent;
1869 for (i = 0; i < smmu->num_global_irqs; ++i) {
1870 err = request_irq(smmu->irqs[i],
1871 arm_smmu_global_fault,
1872 IRQF_SHARED,
1873 "arm-smmu global fault",
1874 smmu);
1875 if (err) {
1876 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1877 i, smmu->irqs[i]);
1878 goto out_free_irqs;
1882 INIT_LIST_HEAD(&smmu->list);
1883 spin_lock(&arm_smmu_devices_lock);
1884 list_add(&smmu->list, &arm_smmu_devices);
1885 spin_unlock(&arm_smmu_devices_lock);
1887 arm_smmu_device_reset(smmu);
1888 return 0;
1890 out_free_irqs:
1891 while (i--)
1892 free_irq(smmu->irqs[i], smmu);
1894 out_put_parent:
1895 if (smmu->parent_of_node)
1896 of_node_put(smmu->parent_of_node);
1898 out_put_masters:
1899 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1900 struct arm_smmu_master *master;
1901 master = container_of(node, struct arm_smmu_master, node);
1902 of_node_put(master->of_node);
1905 return err;
1908 static int arm_smmu_device_remove(struct platform_device *pdev)
1910 int i;
1911 struct device *dev = &pdev->dev;
1912 struct arm_smmu_device *curr, *smmu = NULL;
1913 struct rb_node *node;
1915 spin_lock(&arm_smmu_devices_lock);
1916 list_for_each_entry(curr, &arm_smmu_devices, list) {
1917 if (curr->dev == dev) {
1918 smmu = curr;
1919 list_del(&smmu->list);
1920 break;
1923 spin_unlock(&arm_smmu_devices_lock);
1925 if (!smmu)
1926 return -ENODEV;
1928 if (smmu->parent_of_node)
1929 of_node_put(smmu->parent_of_node);
1931 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1932 struct arm_smmu_master *master;
1933 master = container_of(node, struct arm_smmu_master, node);
1934 of_node_put(master->of_node);
1937 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1938 dev_err(dev, "removing device with active domains!\n");
1940 for (i = 0; i < smmu->num_global_irqs; ++i)
1941 free_irq(smmu->irqs[i], smmu);
1943 /* Turn the thing off */
1944 writel_relaxed(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1945 return 0;
1948 #ifdef CONFIG_OF
1949 static struct of_device_id arm_smmu_of_match[] = {
1950 { .compatible = "arm,smmu-v1", },
1951 { .compatible = "arm,smmu-v2", },
1952 { .compatible = "arm,mmu-400", },
1953 { .compatible = "arm,mmu-500", },
1954 { },
1956 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1957 #endif
1959 static struct platform_driver arm_smmu_driver = {
1960 .driver = {
1961 .owner = THIS_MODULE,
1962 .name = "arm-smmu",
1963 .of_match_table = of_match_ptr(arm_smmu_of_match),
1965 .probe = arm_smmu_device_dt_probe,
1966 .remove = arm_smmu_device_remove,
1969 static int __init arm_smmu_init(void)
1971 int ret;
1973 ret = platform_driver_register(&arm_smmu_driver);
1974 if (ret)
1975 return ret;
1977 /* Oh, for a proper bus abstraction */
1978 if (!iommu_present(&platform_bus_type))
1979 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1981 if (!iommu_present(&amba_bustype))
1982 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1984 return 0;
1987 static void __exit arm_smmu_exit(void)
1989 return platform_driver_unregister(&arm_smmu_driver);
1992 subsys_initcall(arm_smmu_init);
1993 module_exit(arm_smmu_exit);
1995 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1996 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1997 MODULE_LICENSE("GPL v2");