initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / sunrpc / svcsock.c
blobd2d8e9b006c892021306720d93f3ad41c3591848
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/suspend.h>
35 #include <net/sock.h>
36 #include <net/checksum.h>
37 #include <net/ip.h>
38 #include <net/tcp.h>
39 #include <asm/uaccess.h>
40 #include <asm/ioctls.h>
42 #include <linux/sunrpc/types.h>
43 #include <linux/sunrpc/xdr.h>
44 #include <linux/sunrpc/svcsock.h>
45 #include <linux/sunrpc/stats.h>
47 /* SMP locking strategy:
49 * svc_serv->sv_lock protects most stuff for that service.
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
54 * SK_BUSY can be set to 0 at any time.
55 * svc_sock_enqueue must be called afterwards
56 * SK_CONN, SK_DATA, can be set or cleared at any time.
57 * after a set, svc_sock_enqueue must be called.
58 * after a clear, the socket must be read/accepted
59 * if this succeeds, it must be set again.
60 * SK_CLOSE can set at any time. It is never cleared.
64 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
67 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
68 int *errp, int pmap_reg);
69 static void svc_udp_data_ready(struct sock *, int);
70 static int svc_udp_recvfrom(struct svc_rqst *);
71 static int svc_udp_sendto(struct svc_rqst *);
73 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
74 static int svc_deferred_recv(struct svc_rqst *rqstp);
75 static struct cache_deferred_req *svc_defer(struct cache_req *req);
78 * Queue up an idle server thread. Must have serv->sv_lock held.
79 * Note: this is really a stack rather than a queue, so that we only
80 * use as many different threads as we need, and the rest don't polute
81 * the cache.
83 static inline void
84 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
86 list_add(&rqstp->rq_list, &serv->sv_threads);
90 * Dequeue an nfsd thread. Must have serv->sv_lock held.
92 static inline void
93 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
95 list_del(&rqstp->rq_list);
99 * Release an skbuff after use
101 static inline void
102 svc_release_skb(struct svc_rqst *rqstp)
104 struct sk_buff *skb = rqstp->rq_skbuff;
105 struct svc_deferred_req *dr = rqstp->rq_deferred;
107 if (skb) {
108 rqstp->rq_skbuff = NULL;
110 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
111 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
113 if (dr) {
114 rqstp->rq_deferred = NULL;
115 kfree(dr);
120 * Any space to write?
122 static inline unsigned long
123 svc_sock_wspace(struct svc_sock *svsk)
125 int wspace;
127 if (svsk->sk_sock->type == SOCK_STREAM)
128 wspace = sk_stream_wspace(svsk->sk_sk);
129 else
130 wspace = sock_wspace(svsk->sk_sk);
132 return wspace;
136 * Queue up a socket with data pending. If there are idle nfsd
137 * processes, wake 'em up.
140 static void
141 svc_sock_enqueue(struct svc_sock *svsk)
143 struct svc_serv *serv = svsk->sk_server;
144 struct svc_rqst *rqstp;
146 if (!(svsk->sk_flags &
147 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
148 return;
149 if (test_bit(SK_DEAD, &svsk->sk_flags))
150 return;
152 spin_lock_bh(&serv->sv_lock);
154 if (!list_empty(&serv->sv_threads) &&
155 !list_empty(&serv->sv_sockets))
156 printk(KERN_ERR
157 "svc_sock_enqueue: threads and sockets both waiting??\n");
159 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
160 /* Don't enqueue dead sockets */
161 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
162 goto out_unlock;
165 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
166 /* Don't enqueue socket while daemon is receiving */
167 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
168 goto out_unlock;
171 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
172 if (((svsk->sk_reserved + serv->sv_bufsz)*2
173 > svc_sock_wspace(svsk))
174 && !test_bit(SK_CLOSE, &svsk->sk_flags)
175 && !test_bit(SK_CONN, &svsk->sk_flags)) {
176 /* Don't enqueue while not enough space for reply */
177 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
178 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
179 svc_sock_wspace(svsk));
180 goto out_unlock;
182 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
184 /* Mark socket as busy. It will remain in this state until the
185 * server has processed all pending data and put the socket back
186 * on the idle list.
188 set_bit(SK_BUSY, &svsk->sk_flags);
190 if (!list_empty(&serv->sv_threads)) {
191 rqstp = list_entry(serv->sv_threads.next,
192 struct svc_rqst,
193 rq_list);
194 dprintk("svc: socket %p served by daemon %p\n",
195 svsk->sk_sk, rqstp);
196 svc_serv_dequeue(serv, rqstp);
197 if (rqstp->rq_sock)
198 printk(KERN_ERR
199 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
200 rqstp, rqstp->rq_sock);
201 rqstp->rq_sock = svsk;
202 svsk->sk_inuse++;
203 rqstp->rq_reserved = serv->sv_bufsz;
204 svsk->sk_reserved += rqstp->rq_reserved;
205 wake_up(&rqstp->rq_wait);
206 } else {
207 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
208 list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
211 out_unlock:
212 spin_unlock_bh(&serv->sv_lock);
216 * Dequeue the first socket. Must be called with the serv->sv_lock held.
218 static inline struct svc_sock *
219 svc_sock_dequeue(struct svc_serv *serv)
221 struct svc_sock *svsk;
223 if (list_empty(&serv->sv_sockets))
224 return NULL;
226 svsk = list_entry(serv->sv_sockets.next,
227 struct svc_sock, sk_ready);
228 list_del_init(&svsk->sk_ready);
230 dprintk("svc: socket %p dequeued, inuse=%d\n",
231 svsk->sk_sk, svsk->sk_inuse);
233 return svsk;
237 * Having read something from a socket, check whether it
238 * needs to be re-enqueued.
239 * Note: SK_DATA only gets cleared when a read-attempt finds
240 * no (or insufficient) data.
242 static inline void
243 svc_sock_received(struct svc_sock *svsk)
245 clear_bit(SK_BUSY, &svsk->sk_flags);
246 svc_sock_enqueue(svsk);
251 * svc_reserve - change the space reserved for the reply to a request.
252 * @rqstp: The request in question
253 * @space: new max space to reserve
255 * Each request reserves some space on the output queue of the socket
256 * to make sure the reply fits. This function reduces that reserved
257 * space to be the amount of space used already, plus @space.
260 void svc_reserve(struct svc_rqst *rqstp, int space)
262 space += rqstp->rq_res.head[0].iov_len;
264 if (space < rqstp->rq_reserved) {
265 struct svc_sock *svsk = rqstp->rq_sock;
266 spin_lock_bh(&svsk->sk_server->sv_lock);
267 svsk->sk_reserved -= (rqstp->rq_reserved - space);
268 rqstp->rq_reserved = space;
269 spin_unlock_bh(&svsk->sk_server->sv_lock);
271 svc_sock_enqueue(svsk);
276 * Release a socket after use.
278 static inline void
279 svc_sock_put(struct svc_sock *svsk)
281 struct svc_serv *serv = svsk->sk_server;
283 spin_lock_bh(&serv->sv_lock);
284 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
285 spin_unlock_bh(&serv->sv_lock);
286 dprintk("svc: releasing dead socket\n");
287 sock_release(svsk->sk_sock);
288 kfree(svsk);
290 else
291 spin_unlock_bh(&serv->sv_lock);
294 static void
295 svc_sock_release(struct svc_rqst *rqstp)
297 struct svc_sock *svsk = rqstp->rq_sock;
299 svc_release_skb(rqstp);
301 svc_free_allpages(rqstp);
302 rqstp->rq_res.page_len = 0;
303 rqstp->rq_res.page_base = 0;
306 /* Reset response buffer and release
307 * the reservation.
308 * But first, check that enough space was reserved
309 * for the reply, otherwise we have a bug!
311 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
312 printk(KERN_ERR "RPC request reserved %d but used %d\n",
313 rqstp->rq_reserved,
314 rqstp->rq_res.len);
316 rqstp->rq_res.head[0].iov_len = 0;
317 svc_reserve(rqstp, 0);
318 rqstp->rq_sock = NULL;
320 svc_sock_put(svsk);
324 * External function to wake up a server waiting for data
326 void
327 svc_wake_up(struct svc_serv *serv)
329 struct svc_rqst *rqstp;
331 spin_lock_bh(&serv->sv_lock);
332 if (!list_empty(&serv->sv_threads)) {
333 rqstp = list_entry(serv->sv_threads.next,
334 struct svc_rqst,
335 rq_list);
336 dprintk("svc: daemon %p woken up.\n", rqstp);
338 svc_serv_dequeue(serv, rqstp);
339 rqstp->rq_sock = NULL;
341 wake_up(&rqstp->rq_wait);
343 spin_unlock_bh(&serv->sv_lock);
347 * Generic sendto routine
349 static int
350 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
352 struct svc_sock *svsk = rqstp->rq_sock;
353 struct socket *sock = svsk->sk_sock;
354 int slen;
355 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
356 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
357 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
358 int len = 0;
359 int result;
360 int size;
361 struct page **ppage = xdr->pages;
362 size_t base = xdr->page_base;
363 unsigned int pglen = xdr->page_len;
364 unsigned int flags = MSG_MORE;
366 slen = xdr->len;
368 if (rqstp->rq_prot == IPPROTO_UDP) {
369 /* set the source and destination */
370 struct msghdr msg;
371 msg.msg_name = &rqstp->rq_addr;
372 msg.msg_namelen = sizeof(rqstp->rq_addr);
373 msg.msg_iov = NULL;
374 msg.msg_iovlen = 0;
375 msg.msg_flags = MSG_MORE;
377 msg.msg_control = cmh;
378 msg.msg_controllen = sizeof(buffer);
379 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
380 cmh->cmsg_level = SOL_IP;
381 cmh->cmsg_type = IP_PKTINFO;
382 pki->ipi_ifindex = 0;
383 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
385 if (sock_sendmsg(sock, &msg, 0) < 0)
386 goto out;
389 /* send head */
390 if (slen == xdr->head[0].iov_len)
391 flags = 0;
392 len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
393 if (len != xdr->head[0].iov_len)
394 goto out;
395 slen -= xdr->head[0].iov_len;
396 if (slen == 0)
397 goto out;
399 /* send page data */
400 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
401 while (pglen > 0) {
402 if (slen == size)
403 flags = 0;
404 result = sock->ops->sendpage(sock, *ppage, base, size, flags);
405 if (result > 0)
406 len += result;
407 if (result != size)
408 goto out;
409 slen -= size;
410 pglen -= size;
411 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
412 base = 0;
413 ppage++;
415 /* send tail */
416 if (xdr->tail[0].iov_len) {
417 result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
418 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
419 xdr->tail[0].iov_len, 0);
421 if (result > 0)
422 len += result;
424 out:
425 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
426 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
427 rqstp->rq_addr.sin_addr.s_addr);
429 return len;
433 * Check input queue length
435 static int
436 svc_recv_available(struct svc_sock *svsk)
438 mm_segment_t oldfs;
439 struct socket *sock = svsk->sk_sock;
440 int avail, err;
442 oldfs = get_fs(); set_fs(KERNEL_DS);
443 err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail);
444 set_fs(oldfs);
446 return (err >= 0)? avail : err;
450 * Generic recvfrom routine.
452 static int
453 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
455 struct msghdr msg;
456 struct socket *sock;
457 int len, alen;
459 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
460 sock = rqstp->rq_sock->sk_sock;
462 msg.msg_name = &rqstp->rq_addr;
463 msg.msg_namelen = sizeof(rqstp->rq_addr);
464 msg.msg_control = NULL;
465 msg.msg_controllen = 0;
467 msg.msg_flags = MSG_DONTWAIT;
469 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
471 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
472 * possibly we should cache this in the svc_sock structure
473 * at accept time. FIXME
475 alen = sizeof(rqstp->rq_addr);
476 sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1);
478 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
479 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
481 return len;
485 * Set socket snd and rcv buffer lengths
487 static inline void
488 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
490 #if 0
491 mm_segment_t oldfs;
492 oldfs = get_fs(); set_fs(KERNEL_DS);
493 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
494 (char*)&snd, sizeof(snd));
495 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
496 (char*)&rcv, sizeof(rcv));
497 #else
498 /* sock_setsockopt limits use to sysctl_?mem_max,
499 * which isn't acceptable. Until that is made conditional
500 * on not having CAP_SYS_RESOURCE or similar, we go direct...
501 * DaveM said I could!
503 lock_sock(sock->sk);
504 sock->sk->sk_sndbuf = snd * 2;
505 sock->sk->sk_rcvbuf = rcv * 2;
506 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
507 release_sock(sock->sk);
508 #endif
511 * INET callback when data has been received on the socket.
513 static void
514 svc_udp_data_ready(struct sock *sk, int count)
516 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
518 if (!svsk)
519 goto out;
520 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
521 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
522 set_bit(SK_DATA, &svsk->sk_flags);
523 svc_sock_enqueue(svsk);
524 out:
525 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
526 wake_up_interruptible(sk->sk_sleep);
530 * INET callback when space is newly available on the socket.
532 static void
533 svc_write_space(struct sock *sk)
535 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
537 if (svsk) {
538 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
539 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
540 svc_sock_enqueue(svsk);
543 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
544 printk(KERN_WARNING "RPC svc_write_space: some sleeping on %p\n",
545 svsk);
546 wake_up_interruptible(sk->sk_sleep);
551 * Receive a datagram from a UDP socket.
553 extern int
554 csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb);
556 static int
557 svc_udp_recvfrom(struct svc_rqst *rqstp)
559 struct svc_sock *svsk = rqstp->rq_sock;
560 struct svc_serv *serv = svsk->sk_server;
561 struct sk_buff *skb;
562 int err, len;
564 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
565 /* udp sockets need large rcvbuf as all pending
566 * requests are still in that buffer. sndbuf must
567 * also be large enough that there is enough space
568 * for one reply per thread.
570 svc_sock_setbufsize(svsk->sk_sock,
571 (serv->sv_nrthreads+3) * serv->sv_bufsz,
572 (serv->sv_nrthreads+3) * serv->sv_bufsz);
574 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
575 svc_sock_received(svsk);
576 return svc_deferred_recv(rqstp);
579 clear_bit(SK_DATA, &svsk->sk_flags);
580 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
581 if (err == -EAGAIN) {
582 svc_sock_received(svsk);
583 return err;
585 /* possibly an icmp error */
586 dprintk("svc: recvfrom returned error %d\n", -err);
588 if (skb->stamp.tv_sec == 0) {
589 skb->stamp.tv_sec = xtime.tv_sec;
590 skb->stamp.tv_usec = xtime.tv_nsec * 1000;
591 /* Don't enable netstamp, sunrpc doesn't
592 need that much accuracy */
594 svsk->sk_sk->sk_stamp = skb->stamp;
595 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
598 * Maybe more packets - kick another thread ASAP.
600 svc_sock_received(svsk);
602 len = skb->len - sizeof(struct udphdr);
603 rqstp->rq_arg.len = len;
605 rqstp->rq_prot = IPPROTO_UDP;
607 /* Get sender address */
608 rqstp->rq_addr.sin_family = AF_INET;
609 rqstp->rq_addr.sin_port = skb->h.uh->source;
610 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
611 rqstp->rq_daddr = skb->nh.iph->daddr;
613 if (skb_is_nonlinear(skb)) {
614 /* we have to copy */
615 local_bh_disable();
616 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
617 local_bh_enable();
618 /* checksum error */
619 skb_free_datagram(svsk->sk_sk, skb);
620 return 0;
622 local_bh_enable();
623 skb_free_datagram(svsk->sk_sk, skb);
624 } else {
625 /* we can use it in-place */
626 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
627 rqstp->rq_arg.head[0].iov_len = len;
628 if (skb->ip_summed != CHECKSUM_UNNECESSARY) {
629 if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) {
630 skb_free_datagram(svsk->sk_sk, skb);
631 return 0;
633 skb->ip_summed = CHECKSUM_UNNECESSARY;
635 rqstp->rq_skbuff = skb;
638 rqstp->rq_arg.page_base = 0;
639 if (len <= rqstp->rq_arg.head[0].iov_len) {
640 rqstp->rq_arg.head[0].iov_len = len;
641 rqstp->rq_arg.page_len = 0;
642 } else {
643 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
644 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
647 if (serv->sv_stats)
648 serv->sv_stats->netudpcnt++;
650 return len;
653 static int
654 svc_udp_sendto(struct svc_rqst *rqstp)
656 int error;
658 error = svc_sendto(rqstp, &rqstp->rq_res);
659 if (error == -ECONNREFUSED)
660 /* ICMP error on earlier request. */
661 error = svc_sendto(rqstp, &rqstp->rq_res);
663 return error;
666 static void
667 svc_udp_init(struct svc_sock *svsk)
669 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
670 svsk->sk_sk->sk_write_space = svc_write_space;
671 svsk->sk_recvfrom = svc_udp_recvfrom;
672 svsk->sk_sendto = svc_udp_sendto;
674 /* initialise setting must have enough space to
675 * receive and respond to one request.
676 * svc_udp_recvfrom will re-adjust if necessary
678 svc_sock_setbufsize(svsk->sk_sock,
679 3 * svsk->sk_server->sv_bufsz,
680 3 * svsk->sk_server->sv_bufsz);
682 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
683 set_bit(SK_CHNGBUF, &svsk->sk_flags);
687 * A data_ready event on a listening socket means there's a connection
688 * pending. Do not use state_change as a substitute for it.
690 static void
691 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
693 struct svc_sock *svsk;
695 dprintk("svc: socket %p TCP (listen) state change %d\n",
696 sk, sk->sk_state);
698 if (sk->sk_state != TCP_LISTEN) {
700 * This callback may called twice when a new connection
701 * is established as a child socket inherits everything
702 * from a parent LISTEN socket.
703 * 1) data_ready method of the parent socket will be called
704 * when one of child sockets become ESTABLISHED.
705 * 2) data_ready method of the child socket may be called
706 * when it receives data before the socket is accepted.
707 * In case of 2, we should ignore it silently.
709 goto out;
711 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) {
712 printk("svc: socket %p: no user data\n", sk);
713 goto out;
715 set_bit(SK_CONN, &svsk->sk_flags);
716 svc_sock_enqueue(svsk);
717 out:
718 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
719 wake_up_interruptible_all(sk->sk_sleep);
723 * A state change on a connected socket means it's dying or dead.
725 static void
726 svc_tcp_state_change(struct sock *sk)
728 struct svc_sock *svsk;
730 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
731 sk, sk->sk_state, sk->sk_user_data);
733 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) {
734 printk("svc: socket %p: no user data\n", sk);
735 goto out;
737 set_bit(SK_CLOSE, &svsk->sk_flags);
738 svc_sock_enqueue(svsk);
739 out:
740 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
741 wake_up_interruptible_all(sk->sk_sleep);
744 static void
745 svc_tcp_data_ready(struct sock *sk, int count)
747 struct svc_sock * svsk;
749 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
750 sk, sk->sk_user_data);
751 if (!(svsk = (struct svc_sock *)(sk->sk_user_data)))
752 goto out;
753 set_bit(SK_DATA, &svsk->sk_flags);
754 svc_sock_enqueue(svsk);
755 out:
756 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
757 wake_up_interruptible(sk->sk_sleep);
761 * Accept a TCP connection
763 static void
764 svc_tcp_accept(struct svc_sock *svsk)
766 struct sockaddr_in sin;
767 struct svc_serv *serv = svsk->sk_server;
768 struct socket *sock = svsk->sk_sock;
769 struct socket *newsock;
770 struct proto_ops *ops;
771 struct svc_sock *newsvsk;
772 int err, slen;
774 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
775 if (!sock)
776 return;
778 err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock);
779 if (err) {
780 if (err == -ENOMEM)
781 printk(KERN_WARNING "%s: no more sockets!\n",
782 serv->sv_name);
783 return;
786 dprintk("svc: tcp_accept %p allocated\n", newsock);
787 newsock->ops = ops = sock->ops;
789 clear_bit(SK_CONN, &svsk->sk_flags);
790 if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) {
791 if (err != -EAGAIN && net_ratelimit())
792 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
793 serv->sv_name, -err);
794 goto failed; /* aborted connection or whatever */
796 set_bit(SK_CONN, &svsk->sk_flags);
797 svc_sock_enqueue(svsk);
799 slen = sizeof(sin);
800 err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1);
801 if (err < 0) {
802 if (net_ratelimit())
803 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
804 serv->sv_name, -err);
805 goto failed; /* aborted connection or whatever */
808 /* Ideally, we would want to reject connections from unauthorized
809 * hosts here, but when we get encription, the IP of the host won't
810 * tell us anything. For now just warn about unpriv connections.
812 if (ntohs(sin.sin_port) >= 1024) {
813 dprintk(KERN_WARNING
814 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
815 serv->sv_name,
816 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
819 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
820 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
822 /* make sure that a write doesn't block forever when
823 * low on memory
825 newsock->sk->sk_sndtimeo = HZ*30;
827 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
828 goto failed;
831 /* make sure that we don't have too many active connections.
832 * If we have, something must be dropped.
834 * There's no point in trying to do random drop here for
835 * DoS prevention. The NFS clients does 1 reconnect in 15
836 * seconds. An attacker can easily beat that.
838 * The only somewhat efficient mechanism would be if drop
839 * old connections from the same IP first. But right now
840 * we don't even record the client IP in svc_sock.
842 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
843 struct svc_sock *svsk = NULL;
844 spin_lock_bh(&serv->sv_lock);
845 if (!list_empty(&serv->sv_tempsocks)) {
846 if (net_ratelimit()) {
847 /* Try to help the admin */
848 printk(KERN_NOTICE "%s: too many open TCP "
849 "sockets, consider increasing the "
850 "number of nfsd threads\n",
851 serv->sv_name);
852 printk(KERN_NOTICE "%s: last TCP connect from "
853 "%u.%u.%u.%u:%d\n",
854 serv->sv_name,
855 NIPQUAD(sin.sin_addr.s_addr),
856 ntohs(sin.sin_port));
859 * Always select the oldest socket. It's not fair,
860 * but so is life
862 svsk = list_entry(serv->sv_tempsocks.prev,
863 struct svc_sock,
864 sk_list);
865 set_bit(SK_CLOSE, &svsk->sk_flags);
866 svsk->sk_inuse ++;
868 spin_unlock_bh(&serv->sv_lock);
870 if (svsk) {
871 svc_sock_enqueue(svsk);
872 svc_sock_put(svsk);
877 if (serv->sv_stats)
878 serv->sv_stats->nettcpconn++;
880 return;
882 failed:
883 sock_release(newsock);
884 return;
888 * Receive data from a TCP socket.
890 static int
891 svc_tcp_recvfrom(struct svc_rqst *rqstp)
893 struct svc_sock *svsk = rqstp->rq_sock;
894 struct svc_serv *serv = svsk->sk_server;
895 int len;
896 struct kvec vec[RPCSVC_MAXPAGES];
897 int pnum, vlen;
899 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
900 svsk, test_bit(SK_DATA, &svsk->sk_flags),
901 test_bit(SK_CONN, &svsk->sk_flags),
902 test_bit(SK_CLOSE, &svsk->sk_flags));
904 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
905 svc_sock_received(svsk);
906 return svc_deferred_recv(rqstp);
909 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
910 svc_delete_socket(svsk);
911 return 0;
914 if (test_bit(SK_CONN, &svsk->sk_flags)) {
915 svc_tcp_accept(svsk);
916 svc_sock_received(svsk);
917 return 0;
920 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
921 /* sndbuf needs to have room for one request
922 * per thread, otherwise we can stall even when the
923 * network isn't a bottleneck.
924 * rcvbuf just needs to be able to hold a few requests.
925 * Normally they will be removed from the queue
926 * as soon a a complete request arrives.
928 svc_sock_setbufsize(svsk->sk_sock,
929 (serv->sv_nrthreads+3) * serv->sv_bufsz,
930 3 * serv->sv_bufsz);
932 clear_bit(SK_DATA, &svsk->sk_flags);
934 /* Receive data. If we haven't got the record length yet, get
935 * the next four bytes. Otherwise try to gobble up as much as
936 * possible up to the complete record length.
938 if (svsk->sk_tcplen < 4) {
939 unsigned long want = 4 - svsk->sk_tcplen;
940 struct kvec iov;
942 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
943 iov.iov_len = want;
944 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
945 goto error;
946 svsk->sk_tcplen += len;
948 if (len < want) {
949 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
950 len, want);
951 svc_sock_received(svsk);
952 return -EAGAIN; /* record header not complete */
955 svsk->sk_reclen = ntohl(svsk->sk_reclen);
956 if (!(svsk->sk_reclen & 0x80000000)) {
957 /* FIXME: technically, a record can be fragmented,
958 * and non-terminal fragments will not have the top
959 * bit set in the fragment length header.
960 * But apparently no known nfs clients send fragmented
961 * records. */
962 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
963 (unsigned long) svsk->sk_reclen);
964 goto err_delete;
966 svsk->sk_reclen &= 0x7fffffff;
967 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
968 if (svsk->sk_reclen > serv->sv_bufsz) {
969 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
970 (unsigned long) svsk->sk_reclen);
971 goto err_delete;
975 /* Check whether enough data is available */
976 len = svc_recv_available(svsk);
977 if (len < 0)
978 goto error;
980 if (len < svsk->sk_reclen) {
981 dprintk("svc: incomplete TCP record (%d of %d)\n",
982 len, svsk->sk_reclen);
983 svc_sock_received(svsk);
984 return -EAGAIN; /* record not complete */
986 len = svsk->sk_reclen;
987 set_bit(SK_DATA, &svsk->sk_flags);
989 vec[0] = rqstp->rq_arg.head[0];
990 vlen = PAGE_SIZE;
991 pnum = 1;
992 while (vlen < len) {
993 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
994 vec[pnum].iov_len = PAGE_SIZE;
995 pnum++;
996 vlen += PAGE_SIZE;
999 /* Now receive data */
1000 len = svc_recvfrom(rqstp, vec, pnum, len);
1001 if (len < 0)
1002 goto error;
1004 dprintk("svc: TCP complete record (%d bytes)\n", len);
1005 rqstp->rq_arg.len = len;
1006 rqstp->rq_arg.page_base = 0;
1007 if (len <= rqstp->rq_arg.head[0].iov_len) {
1008 rqstp->rq_arg.head[0].iov_len = len;
1009 rqstp->rq_arg.page_len = 0;
1010 } else {
1011 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1014 rqstp->rq_skbuff = NULL;
1015 rqstp->rq_prot = IPPROTO_TCP;
1017 /* Reset TCP read info */
1018 svsk->sk_reclen = 0;
1019 svsk->sk_tcplen = 0;
1021 svc_sock_received(svsk);
1022 if (serv->sv_stats)
1023 serv->sv_stats->nettcpcnt++;
1025 return len;
1027 err_delete:
1028 svc_delete_socket(svsk);
1029 return -EAGAIN;
1031 error:
1032 if (len == -EAGAIN) {
1033 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1034 svc_sock_received(svsk);
1035 } else {
1036 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1037 svsk->sk_server->sv_name, -len);
1038 svc_sock_received(svsk);
1041 return len;
1045 * Send out data on TCP socket.
1047 static int
1048 svc_tcp_sendto(struct svc_rqst *rqstp)
1050 struct xdr_buf *xbufp = &rqstp->rq_res;
1051 int sent;
1052 u32 reclen;
1054 /* Set up the first element of the reply kvec.
1055 * Any other kvecs that may be in use have been taken
1056 * care of by the server implementation itself.
1058 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1059 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1061 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1062 return -ENOTCONN;
1064 sent = svc_sendto(rqstp, &rqstp->rq_res);
1065 if (sent != xbufp->len) {
1066 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1067 rqstp->rq_sock->sk_server->sv_name,
1068 (sent<0)?"got error":"sent only",
1069 sent, xbufp->len);
1070 svc_delete_socket(rqstp->rq_sock);
1071 sent = -EAGAIN;
1073 return sent;
1076 static void
1077 svc_tcp_init(struct svc_sock *svsk)
1079 struct sock *sk = svsk->sk_sk;
1080 struct tcp_opt *tp = tcp_sk(sk);
1082 svsk->sk_recvfrom = svc_tcp_recvfrom;
1083 svsk->sk_sendto = svc_tcp_sendto;
1085 if (sk->sk_state == TCP_LISTEN) {
1086 dprintk("setting up TCP socket for listening\n");
1087 sk->sk_data_ready = svc_tcp_listen_data_ready;
1088 set_bit(SK_CONN, &svsk->sk_flags);
1089 } else {
1090 dprintk("setting up TCP socket for reading\n");
1091 sk->sk_state_change = svc_tcp_state_change;
1092 sk->sk_data_ready = svc_tcp_data_ready;
1093 sk->sk_write_space = svc_write_space;
1095 svsk->sk_reclen = 0;
1096 svsk->sk_tcplen = 0;
1098 tp->nonagle = 1; /* disable Nagle's algorithm */
1100 /* initialise setting must have enough space to
1101 * receive and respond to one request.
1102 * svc_tcp_recvfrom will re-adjust if necessary
1104 svc_sock_setbufsize(svsk->sk_sock,
1105 3 * svsk->sk_server->sv_bufsz,
1106 3 * svsk->sk_server->sv_bufsz);
1108 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1109 set_bit(SK_DATA, &svsk->sk_flags);
1110 if (sk->sk_state != TCP_ESTABLISHED)
1111 set_bit(SK_CLOSE, &svsk->sk_flags);
1115 void
1116 svc_sock_update_bufs(struct svc_serv *serv)
1119 * The number of server threads has changed. Update
1120 * rcvbuf and sndbuf accordingly on all sockets
1122 struct list_head *le;
1124 spin_lock_bh(&serv->sv_lock);
1125 list_for_each(le, &serv->sv_permsocks) {
1126 struct svc_sock *svsk =
1127 list_entry(le, struct svc_sock, sk_list);
1128 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1130 list_for_each(le, &serv->sv_tempsocks) {
1131 struct svc_sock *svsk =
1132 list_entry(le, struct svc_sock, sk_list);
1133 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1135 spin_unlock_bh(&serv->sv_lock);
1139 * Receive the next request on any socket.
1142 svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
1144 struct svc_sock *svsk =NULL;
1145 int len;
1146 int pages;
1147 struct xdr_buf *arg;
1148 DECLARE_WAITQUEUE(wait, current);
1150 dprintk("svc: server %p waiting for data (to = %ld)\n",
1151 rqstp, timeout);
1153 if (rqstp->rq_sock)
1154 printk(KERN_ERR
1155 "svc_recv: service %p, socket not NULL!\n",
1156 rqstp);
1157 if (waitqueue_active(&rqstp->rq_wait))
1158 printk(KERN_ERR
1159 "svc_recv: service %p, wait queue active!\n",
1160 rqstp);
1162 /* Initialize the buffers */
1163 /* first reclaim pages that were moved to response list */
1164 svc_pushback_allpages(rqstp);
1166 /* now allocate needed pages. If we get a failure, sleep briefly */
1167 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
1168 while (rqstp->rq_arghi < pages) {
1169 struct page *p = alloc_page(GFP_KERNEL);
1170 if (!p) {
1171 set_current_state(TASK_UNINTERRUPTIBLE);
1172 schedule_timeout(HZ/2);
1173 continue;
1175 rqstp->rq_argpages[rqstp->rq_arghi++] = p;
1178 /* Make arg->head point to first page and arg->pages point to rest */
1179 arg = &rqstp->rq_arg;
1180 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
1181 arg->head[0].iov_len = PAGE_SIZE;
1182 rqstp->rq_argused = 1;
1183 arg->pages = rqstp->rq_argpages + 1;
1184 arg->page_base = 0;
1185 /* save at least one page for response */
1186 arg->page_len = (pages-2)*PAGE_SIZE;
1187 arg->len = (pages-1)*PAGE_SIZE;
1188 arg->tail[0].iov_len = 0;
1190 if (signalled())
1191 return -EINTR;
1193 spin_lock_bh(&serv->sv_lock);
1194 if (!list_empty(&serv->sv_tempsocks)) {
1195 svsk = list_entry(serv->sv_tempsocks.next,
1196 struct svc_sock, sk_list);
1197 /* apparently the "standard" is that clients close
1198 * idle connections after 5 minutes, servers after
1199 * 6 minutes
1200 * http://www.connectathon.org/talks96/nfstcp.pdf
1202 if (get_seconds() - svsk->sk_lastrecv < 6*60
1203 || test_bit(SK_BUSY, &svsk->sk_flags))
1204 svsk = NULL;
1206 if (svsk) {
1207 set_bit(SK_BUSY, &svsk->sk_flags);
1208 set_bit(SK_CLOSE, &svsk->sk_flags);
1209 rqstp->rq_sock = svsk;
1210 svsk->sk_inuse++;
1211 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
1212 rqstp->rq_sock = svsk;
1213 svsk->sk_inuse++;
1214 rqstp->rq_reserved = serv->sv_bufsz;
1215 svsk->sk_reserved += rqstp->rq_reserved;
1216 } else {
1217 /* No data pending. Go to sleep */
1218 svc_serv_enqueue(serv, rqstp);
1221 * We have to be able to interrupt this wait
1222 * to bring down the daemons ...
1224 set_current_state(TASK_INTERRUPTIBLE);
1225 add_wait_queue(&rqstp->rq_wait, &wait);
1226 spin_unlock_bh(&serv->sv_lock);
1228 schedule_timeout(timeout);
1230 if (current->flags & PF_FREEZE)
1231 refrigerator(PF_FREEZE);
1233 spin_lock_bh(&serv->sv_lock);
1234 remove_wait_queue(&rqstp->rq_wait, &wait);
1236 if (!(svsk = rqstp->rq_sock)) {
1237 svc_serv_dequeue(serv, rqstp);
1238 spin_unlock_bh(&serv->sv_lock);
1239 dprintk("svc: server %p, no data yet\n", rqstp);
1240 return signalled()? -EINTR : -EAGAIN;
1243 spin_unlock_bh(&serv->sv_lock);
1245 dprintk("svc: server %p, socket %p, inuse=%d\n",
1246 rqstp, svsk, svsk->sk_inuse);
1247 len = svsk->sk_recvfrom(rqstp);
1248 dprintk("svc: got len=%d\n", len);
1250 /* No data, incomplete (TCP) read, or accept() */
1251 if (len == 0 || len == -EAGAIN) {
1252 rqstp->rq_res.len = 0;
1253 svc_sock_release(rqstp);
1254 return -EAGAIN;
1256 svsk->sk_lastrecv = get_seconds();
1257 if (test_bit(SK_TEMP, &svsk->sk_flags)) {
1258 /* push active sockets to end of list */
1259 spin_lock_bh(&serv->sv_lock);
1260 if (!list_empty(&svsk->sk_list))
1261 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
1262 spin_unlock_bh(&serv->sv_lock);
1265 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1266 rqstp->rq_chandle.defer = svc_defer;
1268 if (serv->sv_stats)
1269 serv->sv_stats->netcnt++;
1270 return len;
1274 * Drop request
1276 void
1277 svc_drop(struct svc_rqst *rqstp)
1279 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1280 svc_sock_release(rqstp);
1284 * Return reply to client.
1287 svc_send(struct svc_rqst *rqstp)
1289 struct svc_sock *svsk;
1290 int len;
1291 struct xdr_buf *xb;
1293 if ((svsk = rqstp->rq_sock) == NULL) {
1294 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1295 __FILE__, __LINE__);
1296 return -EFAULT;
1299 /* release the receive skb before sending the reply */
1300 svc_release_skb(rqstp);
1302 /* calculate over-all length */
1303 xb = & rqstp->rq_res;
1304 xb->len = xb->head[0].iov_len +
1305 xb->page_len +
1306 xb->tail[0].iov_len;
1308 /* Grab svsk->sk_sem to serialize outgoing data. */
1309 down(&svsk->sk_sem);
1310 if (test_bit(SK_DEAD, &svsk->sk_flags))
1311 len = -ENOTCONN;
1312 else
1313 len = svsk->sk_sendto(rqstp);
1314 up(&svsk->sk_sem);
1315 svc_sock_release(rqstp);
1317 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1318 return 0;
1319 return len;
1323 * Initialize socket for RPC use and create svc_sock struct
1324 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1326 static struct svc_sock *
1327 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1328 int *errp, int pmap_register)
1330 struct svc_sock *svsk;
1331 struct sock *inet;
1333 dprintk("svc: svc_setup_socket %p\n", sock);
1334 if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) {
1335 *errp = -ENOMEM;
1336 return NULL;
1338 memset(svsk, 0, sizeof(*svsk));
1340 inet = sock->sk;
1342 /* Register socket with portmapper */
1343 if (*errp >= 0 && pmap_register)
1344 *errp = svc_register(serv, inet->sk_protocol,
1345 ntohs(inet_sk(inet)->sport));
1347 if (*errp < 0) {
1348 kfree(svsk);
1349 return NULL;
1352 set_bit(SK_BUSY, &svsk->sk_flags);
1353 inet->sk_user_data = svsk;
1354 svsk->sk_sock = sock;
1355 svsk->sk_sk = inet;
1356 svsk->sk_ostate = inet->sk_state_change;
1357 svsk->sk_odata = inet->sk_data_ready;
1358 svsk->sk_owspace = inet->sk_write_space;
1359 svsk->sk_server = serv;
1360 svsk->sk_lastrecv = get_seconds();
1361 INIT_LIST_HEAD(&svsk->sk_deferred);
1362 INIT_LIST_HEAD(&svsk->sk_ready);
1363 sema_init(&svsk->sk_sem, 1);
1365 /* Initialize the socket */
1366 if (sock->type == SOCK_DGRAM)
1367 svc_udp_init(svsk);
1368 else
1369 svc_tcp_init(svsk);
1371 spin_lock_bh(&serv->sv_lock);
1372 if (!pmap_register) {
1373 set_bit(SK_TEMP, &svsk->sk_flags);
1374 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1375 serv->sv_tmpcnt++;
1376 } else {
1377 clear_bit(SK_TEMP, &svsk->sk_flags);
1378 list_add(&svsk->sk_list, &serv->sv_permsocks);
1380 spin_unlock_bh(&serv->sv_lock);
1382 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1383 svsk, svsk->sk_sk);
1385 clear_bit(SK_BUSY, &svsk->sk_flags);
1386 svc_sock_enqueue(svsk);
1387 return svsk;
1391 * Create socket for RPC service.
1393 static int
1394 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1396 struct svc_sock *svsk;
1397 struct socket *sock;
1398 int error;
1399 int type;
1401 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1402 serv->sv_program->pg_name, protocol,
1403 NIPQUAD(sin->sin_addr.s_addr),
1404 ntohs(sin->sin_port));
1406 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1407 printk(KERN_WARNING "svc: only UDP and TCP "
1408 "sockets supported\n");
1409 return -EINVAL;
1411 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1413 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1414 return error;
1416 if (sin != NULL) {
1417 if (type == SOCK_STREAM)
1418 sock->sk->sk_reuse = 1; /* allow address reuse */
1419 error = sock->ops->bind(sock, (struct sockaddr *) sin,
1420 sizeof(*sin));
1421 if (error < 0)
1422 goto bummer;
1425 if (protocol == IPPROTO_TCP) {
1426 if ((error = sock->ops->listen(sock, 64)) < 0)
1427 goto bummer;
1430 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1431 return 0;
1433 bummer:
1434 dprintk("svc: svc_create_socket error = %d\n", -error);
1435 sock_release(sock);
1436 return error;
1440 * Remove a dead socket
1442 void
1443 svc_delete_socket(struct svc_sock *svsk)
1445 struct svc_serv *serv;
1446 struct sock *sk;
1448 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1450 serv = svsk->sk_server;
1451 sk = svsk->sk_sk;
1453 sk->sk_state_change = svsk->sk_ostate;
1454 sk->sk_data_ready = svsk->sk_odata;
1455 sk->sk_write_space = svsk->sk_owspace;
1457 spin_lock_bh(&serv->sv_lock);
1459 list_del_init(&svsk->sk_list);
1460 list_del_init(&svsk->sk_ready);
1461 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1462 if (test_bit(SK_TEMP, &svsk->sk_flags))
1463 serv->sv_tmpcnt--;
1465 if (!svsk->sk_inuse) {
1466 spin_unlock_bh(&serv->sv_lock);
1467 sock_release(svsk->sk_sock);
1468 kfree(svsk);
1469 } else {
1470 spin_unlock_bh(&serv->sv_lock);
1471 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
1472 /* svsk->sk_server = NULL; */
1477 * Make a socket for nfsd and lockd
1480 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1482 struct sockaddr_in sin;
1484 dprintk("svc: creating socket proto = %d\n", protocol);
1485 sin.sin_family = AF_INET;
1486 sin.sin_addr.s_addr = INADDR_ANY;
1487 sin.sin_port = htons(port);
1488 return svc_create_socket(serv, protocol, &sin);
1492 * Handle defer and revisit of requests
1495 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1497 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1498 struct svc_serv *serv = dreq->owner;
1499 struct svc_sock *svsk;
1501 if (too_many) {
1502 svc_sock_put(dr->svsk);
1503 kfree(dr);
1504 return;
1506 dprintk("revisit queued\n");
1507 svsk = dr->svsk;
1508 dr->svsk = NULL;
1509 spin_lock_bh(&serv->sv_lock);
1510 list_add(&dr->handle.recent, &svsk->sk_deferred);
1511 spin_unlock_bh(&serv->sv_lock);
1512 set_bit(SK_DEFERRED, &svsk->sk_flags);
1513 svc_sock_enqueue(svsk);
1514 svc_sock_put(svsk);
1517 static struct cache_deferred_req *
1518 svc_defer(struct cache_req *req)
1520 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1521 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1522 struct svc_deferred_req *dr;
1524 if (rqstp->rq_arg.page_len)
1525 return NULL; /* if more than a page, give up FIXME */
1526 if (rqstp->rq_deferred) {
1527 dr = rqstp->rq_deferred;
1528 rqstp->rq_deferred = NULL;
1529 } else {
1530 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1531 /* FIXME maybe discard if size too large */
1532 dr = kmalloc(size, GFP_KERNEL);
1533 if (dr == NULL)
1534 return NULL;
1536 dr->handle.owner = rqstp->rq_server;
1537 dr->prot = rqstp->rq_prot;
1538 dr->addr = rqstp->rq_addr;
1539 dr->argslen = rqstp->rq_arg.len >> 2;
1540 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1542 spin_lock_bh(&rqstp->rq_server->sv_lock);
1543 rqstp->rq_sock->sk_inuse++;
1544 dr->svsk = rqstp->rq_sock;
1545 spin_unlock_bh(&rqstp->rq_server->sv_lock);
1547 dr->handle.revisit = svc_revisit;
1548 return &dr->handle;
1552 * recv data from a deferred request into an active one
1554 static int svc_deferred_recv(struct svc_rqst *rqstp)
1556 struct svc_deferred_req *dr = rqstp->rq_deferred;
1558 rqstp->rq_arg.head[0].iov_base = dr->args;
1559 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1560 rqstp->rq_arg.page_len = 0;
1561 rqstp->rq_arg.len = dr->argslen<<2;
1562 rqstp->rq_prot = dr->prot;
1563 rqstp->rq_addr = dr->addr;
1564 return dr->argslen<<2;
1568 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1570 struct svc_deferred_req *dr = NULL;
1571 struct svc_serv *serv = svsk->sk_server;
1573 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1574 return NULL;
1575 spin_lock_bh(&serv->sv_lock);
1576 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1577 if (!list_empty(&svsk->sk_deferred)) {
1578 dr = list_entry(svsk->sk_deferred.next,
1579 struct svc_deferred_req,
1580 handle.recent);
1581 list_del_init(&dr->handle.recent);
1582 set_bit(SK_DEFERRED, &svsk->sk_flags);
1584 spin_unlock_bh(&serv->sv_lock);
1585 return dr;