initial commit with v2.6.9
[linux-2.6.9-moxart.git] / fs / reiserfs / objectid.c
blob8db22b469ca40291b3b8a0751954e8d12ac0da74
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/config.h>
6 #include <linux/string.h>
7 #include <linux/random.h>
8 #include <linux/time.h>
9 #include <linux/reiserfs_fs.h>
10 #include <linux/reiserfs_fs_sb.h>
12 // find where objectid map starts
13 #define objectid_map(s,rs) (old_format_only (s) ? \
14 (__u32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
15 (__u32 *)((rs) + 1))
18 #ifdef CONFIG_REISERFS_CHECK
20 static void check_objectid_map (struct super_block * s, __u32 * map)
22 if (le32_to_cpu (map[0]) != 1)
23 reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted: %lx",
24 ( long unsigned int ) le32_to_cpu (map[0]));
26 // FIXME: add something else here
29 #else
30 static void check_objectid_map (struct super_block * s, __u32 * map)
31 {;}
32 #endif
35 /* When we allocate objectids we allocate the first unused objectid.
36 Each sequence of objectids in use (the odd sequences) is followed
37 by a sequence of objectids not in use (the even sequences). We
38 only need to record the last objectid in each of these sequences
39 (both the odd and even sequences) in order to fully define the
40 boundaries of the sequences. A consequence of allocating the first
41 objectid not in use is that under most conditions this scheme is
42 extremely compact. The exception is immediately after a sequence
43 of operations which deletes a large number of objects of
44 non-sequential objectids, and even then it will become compact
45 again as soon as more objects are created. Note that many
46 interesting optimizations of layout could result from complicating
47 objectid assignment, but we have deferred making them for now. */
50 /* get unique object identifier */
51 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th)
53 struct super_block * s = th->t_super;
54 struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
55 __u32 * map = objectid_map (s, rs);
56 __u32 unused_objectid;
59 check_objectid_map (s, map);
61 reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
62 /* comment needed -Hans */
63 unused_objectid = le32_to_cpu (map[1]);
64 if (unused_objectid == U32_MAX) {
65 reiserfs_warning (s, "%s: no more object ids", __FUNCTION__);
66 reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ;
67 return 0;
70 /* This incrementation allocates the first unused objectid. That
71 is to say, the first entry on the objectid map is the first
72 unused objectid, and by incrementing it we use it. See below
73 where we check to see if we eliminated a sequence of unused
74 objectids.... */
75 map[1] = cpu_to_le32 (unused_objectid + 1);
77 /* Now we check to see if we eliminated the last remaining member of
78 the first even sequence (and can eliminate the sequence by
79 eliminating its last objectid from oids), and can collapse the
80 first two odd sequences into one sequence. If so, then the net
81 result is to eliminate a pair of objectids from oids. We do this
82 by shifting the entire map to the left. */
83 if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
84 memmove (map + 1, map + 3, (sb_oid_cursize(rs) - 3) * sizeof(__u32));
85 set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 );
88 journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s));
89 return unused_objectid;
93 /* makes object identifier unused */
94 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th,
95 __u32 objectid_to_release)
97 struct super_block * s = th->t_super;
98 struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
99 __u32 * map = objectid_map (s, rs);
100 int i = 0;
102 //return;
103 check_objectid_map (s, map);
105 reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
106 journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s));
108 /* start at the beginning of the objectid map (i = 0) and go to
109 the end of it (i = disk_sb->s_oid_cursize). Linear search is
110 what we use, though it is possible that binary search would be
111 more efficient after performing lots of deletions (which is
112 when oids is large.) We only check even i's. */
113 while (i < sb_oid_cursize(rs)) {
114 if (objectid_to_release == le32_to_cpu (map[i])) {
115 /* This incrementation unallocates the objectid. */
116 //map[i]++;
117 map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1);
119 /* Did we unallocate the last member of an odd sequence, and can shrink oids? */
120 if (map[i] == map[i+1]) {
121 /* shrink objectid map */
122 memmove (map + i, map + i + 2,
123 (sb_oid_cursize(rs) - i - 2) * sizeof (__u32));
124 //disk_sb->s_oid_cursize -= 2;
125 set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 );
127 RFALSE( sb_oid_cursize(rs) < 2 ||
128 sb_oid_cursize(rs) > sb_oid_maxsize(rs),
129 "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
130 sb_oid_cursize(rs), sb_oid_maxsize(rs));
132 return;
135 if (objectid_to_release > le32_to_cpu (map[i]) &&
136 objectid_to_release < le32_to_cpu (map[i + 1])) {
137 /* size of objectid map is not changed */
138 if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) {
139 //objectid_map[i+1]--;
140 map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1);
141 return;
144 /* JDM comparing two little-endian values for equality -- safe */
145 if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
146 /* objectid map must be expanded, but there is no space */
147 PROC_INFO_INC( s, leaked_oid );
148 return;
151 /* expand the objectid map*/
152 memmove (map + i + 3, map + i + 1,
153 (sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
154 map[i + 1] = cpu_to_le32 (objectid_to_release);
155 map[i + 2] = cpu_to_le32 (objectid_to_release + 1);
156 set_sb_oid_cursize( rs, sb_oid_cursize(rs) + 2 );
157 return;
159 i += 2;
162 reiserfs_warning (s, "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)",
163 ( long unsigned ) objectid_to_release);
167 int reiserfs_convert_objectid_map_v1(struct super_block *s) {
168 struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s);
169 int cur_size = sb_oid_cursize(disk_sb);
170 int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ;
171 int old_max = sb_oid_maxsize(disk_sb);
172 struct reiserfs_super_block_v1 *disk_sb_v1 ;
173 __u32 *objectid_map, *new_objectid_map ;
174 int i ;
176 disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
177 objectid_map = (__u32 *)(disk_sb_v1 + 1) ;
178 new_objectid_map = (__u32 *)(disk_sb + 1) ;
180 if (cur_size > new_size) {
181 /* mark everyone used that was listed as free at the end of the objectid
182 ** map
184 objectid_map[new_size - 1] = objectid_map[cur_size - 1] ;
185 set_sb_oid_cursize(disk_sb,new_size) ;
187 /* move the smaller objectid map past the end of the new super */
188 for (i = new_size - 1 ; i >= 0 ; i--) {
189 objectid_map[i + (old_max - new_size)] = objectid_map[i] ;
193 /* set the max size so we don't overflow later */
194 set_sb_oid_maxsize(disk_sb,new_size) ;
196 /* Zero out label and generate random UUID */
197 memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)) ;
198 generate_random_uuid(disk_sb->s_uuid);
200 /* finally, zero out the unused chunk of the new super */
201 memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ;
202 return 0 ;