Merge branch 'master-3.5-release' into master-3.5
[linux-2.6-xlnx.git] / mm / memory.c
blob704a80129f3f492fbab94ea598024da9256a98a1
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 void sync_mm_rss(struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
138 current->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
162 #else /* SPLIT_RSS_COUNTING */
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167 static void check_sync_rss_stat(struct task_struct *task)
171 #endif /* SPLIT_RSS_COUNTING */
173 #ifdef HAVE_GENERIC_MMU_GATHER
175 static int tlb_next_batch(struct mmu_gather *tlb)
177 struct mmu_gather_batch *batch;
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
193 tlb->active->next = batch;
194 tlb->active = batch;
196 return 1;
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 tlb->mm = mm;
208 tlb->fullmm = fullmm;
209 tlb->need_flush = 0;
210 tlb->fast_mode = (num_possible_cpus() == 1);
211 tlb->local.next = NULL;
212 tlb->local.nr = 0;
213 tlb->local.max = ARRAY_SIZE(tlb->__pages);
214 tlb->active = &tlb->local;
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 tlb->batch = NULL;
218 #endif
221 void tlb_flush_mmu(struct mmu_gather *tlb)
223 struct mmu_gather_batch *batch;
225 if (!tlb->need_flush)
226 return;
227 tlb->need_flush = 0;
228 tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb_table_flush(tlb);
231 #endif
233 if (tlb_fast_mode(tlb))
234 return;
236 for (batch = &tlb->local; batch; batch = batch->next) {
237 free_pages_and_swap_cache(batch->pages, batch->nr);
238 batch->nr = 0;
240 tlb->active = &tlb->local;
243 /* tlb_finish_mmu
244 * Called at the end of the shootdown operation to free up any resources
245 * that were required.
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
249 struct mmu_gather_batch *batch, *next;
251 tlb_flush_mmu(tlb);
253 /* keep the page table cache within bounds */
254 check_pgt_cache();
256 for (batch = tlb->local.next; batch; batch = next) {
257 next = batch->next;
258 free_pages((unsigned long)batch, 0);
260 tlb->local.next = NULL;
263 /* __tlb_remove_page
264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265 * handling the additional races in SMP caused by other CPUs caching valid
266 * mappings in their TLBs. Returns the number of free page slots left.
267 * When out of page slots we must call tlb_flush_mmu().
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
271 struct mmu_gather_batch *batch;
273 VM_BUG_ON(!tlb->need_flush);
275 if (tlb_fast_mode(tlb)) {
276 free_page_and_swap_cache(page);
277 return 1; /* avoid calling tlb_flush_mmu() */
280 batch = tlb->active;
281 batch->pages[batch->nr++] = page;
282 if (batch->nr == batch->max) {
283 if (!tlb_next_batch(tlb))
284 return 0;
285 batch = tlb->active;
287 VM_BUG_ON(batch->nr > batch->max);
289 return batch->max - batch->nr;
292 #endif /* HAVE_GENERIC_MMU_GATHER */
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
297 * See the comment near struct mmu_table_batch.
300 static void tlb_remove_table_smp_sync(void *arg)
302 /* Simply deliver the interrupt */
305 static void tlb_remove_table_one(void *table)
308 * This isn't an RCU grace period and hence the page-tables cannot be
309 * assumed to be actually RCU-freed.
311 * It is however sufficient for software page-table walkers that rely on
312 * IRQ disabling. See the comment near struct mmu_table_batch.
314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 __tlb_remove_table(table);
318 static void tlb_remove_table_rcu(struct rcu_head *head)
320 struct mmu_table_batch *batch;
321 int i;
323 batch = container_of(head, struct mmu_table_batch, rcu);
325 for (i = 0; i < batch->nr; i++)
326 __tlb_remove_table(batch->tables[i]);
328 free_page((unsigned long)batch);
331 void tlb_table_flush(struct mmu_gather *tlb)
333 struct mmu_table_batch **batch = &tlb->batch;
335 if (*batch) {
336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 *batch = NULL;
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
343 struct mmu_table_batch **batch = &tlb->batch;
345 tlb->need_flush = 1;
348 * When there's less then two users of this mm there cannot be a
349 * concurrent page-table walk.
351 if (atomic_read(&tlb->mm->mm_users) < 2) {
352 __tlb_remove_table(table);
353 return;
356 if (*batch == NULL) {
357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 if (*batch == NULL) {
359 tlb_remove_table_one(table);
360 return;
362 (*batch)->nr = 0;
364 (*batch)->tables[(*batch)->nr++] = table;
365 if ((*batch)->nr == MAX_TABLE_BATCH)
366 tlb_table_flush(tlb);
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
372 * If a p?d_bad entry is found while walking page tables, report
373 * the error, before resetting entry to p?d_none. Usually (but
374 * very seldom) called out from the p?d_none_or_clear_bad macros.
377 void pgd_clear_bad(pgd_t *pgd)
379 pgd_ERROR(*pgd);
380 pgd_clear(pgd);
383 void pud_clear_bad(pud_t *pud)
385 pud_ERROR(*pud);
386 pud_clear(pud);
389 void pmd_clear_bad(pmd_t *pmd)
391 pmd_ERROR(*pmd);
392 pmd_clear(pmd);
396 * Note: this doesn't free the actual pages themselves. That
397 * has been handled earlier when unmapping all the memory regions.
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 unsigned long addr)
402 pgtable_t token = pmd_pgtable(*pmd);
403 pmd_clear(pmd);
404 pte_free_tlb(tlb, token, addr);
405 tlb->mm->nr_ptes--;
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 unsigned long addr, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
412 pmd_t *pmd;
413 unsigned long next;
414 unsigned long start;
416 start = addr;
417 pmd = pmd_offset(pud, addr);
418 do {
419 next = pmd_addr_end(addr, end);
420 if (pmd_none_or_clear_bad(pmd))
421 continue;
422 free_pte_range(tlb, pmd, addr);
423 } while (pmd++, addr = next, addr != end);
425 start &= PUD_MASK;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= PUD_MASK;
430 if (!ceiling)
431 return;
433 if (end - 1 > ceiling - 1)
434 return;
436 pmd = pmd_offset(pud, start);
437 pud_clear(pud);
438 pmd_free_tlb(tlb, pmd, start);
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
445 pud_t *pud;
446 unsigned long next;
447 unsigned long start;
449 start = addr;
450 pud = pud_offset(pgd, addr);
451 do {
452 next = pud_addr_end(addr, end);
453 if (pud_none_or_clear_bad(pud))
454 continue;
455 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456 } while (pud++, addr = next, addr != end);
458 start &= PGDIR_MASK;
459 if (start < floor)
460 return;
461 if (ceiling) {
462 ceiling &= PGDIR_MASK;
463 if (!ceiling)
464 return;
466 if (end - 1 > ceiling - 1)
467 return;
469 pud = pud_offset(pgd, start);
470 pgd_clear(pgd);
471 pud_free_tlb(tlb, pud, start);
475 * This function frees user-level page tables of a process.
477 * Must be called with pagetable lock held.
479 void free_pgd_range(struct mmu_gather *tlb,
480 unsigned long addr, unsigned long end,
481 unsigned long floor, unsigned long ceiling)
483 pgd_t *pgd;
484 unsigned long next;
487 * The next few lines have given us lots of grief...
489 * Why are we testing PMD* at this top level? Because often
490 * there will be no work to do at all, and we'd prefer not to
491 * go all the way down to the bottom just to discover that.
493 * Why all these "- 1"s? Because 0 represents both the bottom
494 * of the address space and the top of it (using -1 for the
495 * top wouldn't help much: the masks would do the wrong thing).
496 * The rule is that addr 0 and floor 0 refer to the bottom of
497 * the address space, but end 0 and ceiling 0 refer to the top
498 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 * that end 0 case should be mythical).
501 * Wherever addr is brought up or ceiling brought down, we must
502 * be careful to reject "the opposite 0" before it confuses the
503 * subsequent tests. But what about where end is brought down
504 * by PMD_SIZE below? no, end can't go down to 0 there.
506 * Whereas we round start (addr) and ceiling down, by different
507 * masks at different levels, in order to test whether a table
508 * now has no other vmas using it, so can be freed, we don't
509 * bother to round floor or end up - the tests don't need that.
512 addr &= PMD_MASK;
513 if (addr < floor) {
514 addr += PMD_SIZE;
515 if (!addr)
516 return;
518 if (ceiling) {
519 ceiling &= PMD_MASK;
520 if (!ceiling)
521 return;
523 if (end - 1 > ceiling - 1)
524 end -= PMD_SIZE;
525 if (addr > end - 1)
526 return;
528 pgd = pgd_offset(tlb->mm, addr);
529 do {
530 next = pgd_addr_end(addr, end);
531 if (pgd_none_or_clear_bad(pgd))
532 continue;
533 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534 } while (pgd++, addr = next, addr != end);
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538 unsigned long floor, unsigned long ceiling)
540 while (vma) {
541 struct vm_area_struct *next = vma->vm_next;
542 unsigned long addr = vma->vm_start;
545 * Hide vma from rmap and truncate_pagecache before freeing
546 * pgtables
548 unlink_anon_vmas(vma);
549 unlink_file_vma(vma);
551 if (is_vm_hugetlb_page(vma)) {
552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553 floor, next? next->vm_start: ceiling);
554 } else {
556 * Optimization: gather nearby vmas into one call down
558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559 && !is_vm_hugetlb_page(next)) {
560 vma = next;
561 next = vma->vm_next;
562 unlink_anon_vmas(vma);
563 unlink_file_vma(vma);
565 free_pgd_range(tlb, addr, vma->vm_end,
566 floor, next? next->vm_start: ceiling);
568 vma = next;
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 pmd_t *pmd, unsigned long address)
575 pgtable_t new = pte_alloc_one(mm, address);
576 int wait_split_huge_page;
577 if (!new)
578 return -ENOMEM;
581 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 * visible before the pte is made visible to other CPUs by being
583 * put into page tables.
585 * The other side of the story is the pointer chasing in the page
586 * table walking code (when walking the page table without locking;
587 * ie. most of the time). Fortunately, these data accesses consist
588 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 * being the notable exception) will already guarantee loads are
590 * seen in-order. See the alpha page table accessors for the
591 * smp_read_barrier_depends() barriers in page table walking code.
593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
595 spin_lock(&mm->page_table_lock);
596 wait_split_huge_page = 0;
597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
598 mm->nr_ptes++;
599 pmd_populate(mm, pmd, new);
600 new = NULL;
601 } else if (unlikely(pmd_trans_splitting(*pmd)))
602 wait_split_huge_page = 1;
603 spin_unlock(&mm->page_table_lock);
604 if (new)
605 pte_free(mm, new);
606 if (wait_split_huge_page)
607 wait_split_huge_page(vma->anon_vma, pmd);
608 return 0;
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
613 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 if (!new)
615 return -ENOMEM;
617 smp_wmb(); /* See comment in __pte_alloc */
619 spin_lock(&init_mm.page_table_lock);
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 pmd_populate_kernel(&init_mm, pmd, new);
622 new = NULL;
623 } else
624 VM_BUG_ON(pmd_trans_splitting(*pmd));
625 spin_unlock(&init_mm.page_table_lock);
626 if (new)
627 pte_free_kernel(&init_mm, new);
628 return 0;
631 static inline void init_rss_vec(int *rss)
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
638 int i;
640 if (current->mm == mm)
641 sync_mm_rss(mm);
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
652 * The calling function must still handle the error.
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
675 if (nr_unshown) {
676 printk(KERN_ALERT
677 "BUG: Bad page map: %lu messages suppressed\n",
678 nr_unshown);
679 nr_unshown = 0;
681 nr_shown = 0;
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
689 printk(KERN_ALERT
690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693 if (page)
694 dump_page(page);
695 printk(KERN_ALERT
696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
701 if (vma->vm_ops)
702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703 (unsigned long)vma->vm_ops->fault);
704 if (vma->vm_file && vma->vm_file->f_op)
705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706 (unsigned long)vma->vm_file->f_op->mmap);
707 dump_stack();
708 add_taint(TAINT_BAD_PAGE);
711 static inline int is_cow_mapping(vm_flags_t flags)
713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
719 return pfn == zero_pfn;
721 #endif
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
726 return zero_pfn;
728 #endif
731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
733 * "Special" mappings do not wish to be associated with a "struct page" (either
734 * it doesn't exist, or it exists but they don't want to touch it). In this
735 * case, NULL is returned here. "Normal" mappings do have a struct page.
737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738 * pte bit, in which case this function is trivial. Secondly, an architecture
739 * may not have a spare pte bit, which requires a more complicated scheme,
740 * described below.
742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743 * special mapping (even if there are underlying and valid "struct pages").
744 * COWed pages of a VM_PFNMAP are always normal.
746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749 * mapping will always honor the rule
751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
753 * And for normal mappings this is false.
755 * This restricts such mappings to be a linear translation from virtual address
756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
757 * as the vma is not a COW mapping; in that case, we know that all ptes are
758 * special (because none can have been COWed).
761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764 * page" backing, however the difference is that _all_ pages with a struct
765 * page (that is, those where pfn_valid is true) are refcounted and considered
766 * normal pages by the VM. The disadvantage is that pages are refcounted
767 * (which can be slower and simply not an option for some PFNMAP users). The
768 * advantage is that we don't have to follow the strict linearity rule of
769 * PFNMAP mappings in order to support COWable mappings.
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 pte_t pte)
780 unsigned long pfn = pte_pfn(pte);
782 if (HAVE_PTE_SPECIAL) {
783 if (likely(!pte_special(pte)))
784 goto check_pfn;
785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 return NULL;
787 if (!is_zero_pfn(pfn))
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
792 /* !HAVE_PTE_SPECIAL case follows: */
794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 if (vma->vm_flags & VM_MIXEDMAP) {
796 if (!pfn_valid(pfn))
797 return NULL;
798 goto out;
799 } else {
800 unsigned long off;
801 off = (addr - vma->vm_start) >> PAGE_SHIFT;
802 if (pfn == vma->vm_pgoff + off)
803 return NULL;
804 if (!is_cow_mapping(vma->vm_flags))
805 return NULL;
809 if (is_zero_pfn(pfn))
810 return NULL;
811 check_pfn:
812 if (unlikely(pfn > highest_memmap_pfn)) {
813 print_bad_pte(vma, addr, pte, NULL);
814 return NULL;
818 * NOTE! We still have PageReserved() pages in the page tables.
819 * eg. VDSO mappings can cause them to exist.
821 out:
822 return pfn_to_page(pfn);
824 EXPORT_SYMBOL(vm_normal_page);
827 * copy one vm_area from one task to the other. Assumes the page tables
828 * already present in the new task to be cleared in the whole range
829 * covered by this vma.
832 static inline unsigned long
833 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
834 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
835 unsigned long addr, int *rss)
837 unsigned long vm_flags = vma->vm_flags;
838 pte_t pte = *src_pte;
839 struct page *page;
841 /* pte contains position in swap or file, so copy. */
842 if (unlikely(!pte_present(pte))) {
843 if (!pte_file(pte)) {
844 swp_entry_t entry = pte_to_swp_entry(pte);
846 if (swap_duplicate(entry) < 0)
847 return entry.val;
849 /* make sure dst_mm is on swapoff's mmlist. */
850 if (unlikely(list_empty(&dst_mm->mmlist))) {
851 spin_lock(&mmlist_lock);
852 if (list_empty(&dst_mm->mmlist))
853 list_add(&dst_mm->mmlist,
854 &src_mm->mmlist);
855 spin_unlock(&mmlist_lock);
857 if (likely(!non_swap_entry(entry)))
858 rss[MM_SWAPENTS]++;
859 else if (is_migration_entry(entry)) {
860 page = migration_entry_to_page(entry);
862 if (PageAnon(page))
863 rss[MM_ANONPAGES]++;
864 else
865 rss[MM_FILEPAGES]++;
867 if (is_write_migration_entry(entry) &&
868 is_cow_mapping(vm_flags)) {
870 * COW mappings require pages in both
871 * parent and child to be set to read.
873 make_migration_entry_read(&entry);
874 pte = swp_entry_to_pte(entry);
875 set_pte_at(src_mm, addr, src_pte, pte);
879 goto out_set_pte;
883 * If it's a COW mapping, write protect it both
884 * in the parent and the child
886 if (is_cow_mapping(vm_flags)) {
887 ptep_set_wrprotect(src_mm, addr, src_pte);
888 pte = pte_wrprotect(pte);
892 * If it's a shared mapping, mark it clean in
893 * the child
895 if (vm_flags & VM_SHARED)
896 pte = pte_mkclean(pte);
897 pte = pte_mkold(pte);
899 page = vm_normal_page(vma, addr, pte);
900 if (page) {
901 get_page(page);
902 page_dup_rmap(page);
903 if (PageAnon(page))
904 rss[MM_ANONPAGES]++;
905 else
906 rss[MM_FILEPAGES]++;
909 out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
911 return 0;
914 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
918 pte_t *orig_src_pte, *orig_dst_pte;
919 pte_t *src_pte, *dst_pte;
920 spinlock_t *src_ptl, *dst_ptl;
921 int progress = 0;
922 int rss[NR_MM_COUNTERS];
923 swp_entry_t entry = (swp_entry_t){0};
925 again:
926 init_rss_vec(rss);
928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 if (!dst_pte)
930 return -ENOMEM;
931 src_pte = pte_offset_map(src_pmd, addr);
932 src_ptl = pte_lockptr(src_mm, src_pmd);
933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
936 arch_enter_lazy_mmu_mode();
938 do {
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 break;
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl);
962 pte_unmap(orig_src_pte);
963 add_mm_rss_vec(dst_mm, rss);
964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 cond_resched();
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
972 if (addr != end)
973 goto again;
974 return 0;
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
990 if (pmd_trans_huge(*src_pmd)) {
991 int err;
992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
1039 int ret;
1042 * Don't copy ptes where a page fault will fill them correctly.
1043 * Fork becomes much lighter when there are big shared or private
1044 * readonly mappings. The tradeoff is that copy_page_range is more
1045 * efficient than faulting.
1047 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1048 if (!vma->anon_vma)
1049 return 0;
1052 if (is_vm_hugetlb_page(vma))
1053 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1055 if (unlikely(is_pfn_mapping(vma))) {
1057 * We do not free on error cases below as remove_vma
1058 * gets called on error from higher level routine
1060 ret = track_pfn_vma_copy(vma);
1061 if (ret)
1062 return ret;
1066 * We need to invalidate the secondary MMU mappings only when
1067 * there could be a permission downgrade on the ptes of the
1068 * parent mm. And a permission downgrade will only happen if
1069 * is_cow_mapping() returns true.
1071 if (is_cow_mapping(vma->vm_flags))
1072 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1074 ret = 0;
1075 dst_pgd = pgd_offset(dst_mm, addr);
1076 src_pgd = pgd_offset(src_mm, addr);
1077 do {
1078 next = pgd_addr_end(addr, end);
1079 if (pgd_none_or_clear_bad(src_pgd))
1080 continue;
1081 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1082 vma, addr, next))) {
1083 ret = -ENOMEM;
1084 break;
1086 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1088 if (is_cow_mapping(vma->vm_flags))
1089 mmu_notifier_invalidate_range_end(src_mm,
1090 vma->vm_start, end);
1091 return ret;
1094 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1095 struct vm_area_struct *vma, pmd_t *pmd,
1096 unsigned long addr, unsigned long end,
1097 struct zap_details *details)
1099 struct mm_struct *mm = tlb->mm;
1100 int force_flush = 0;
1101 int rss[NR_MM_COUNTERS];
1102 spinlock_t *ptl;
1103 pte_t *start_pte;
1104 pte_t *pte;
1106 again:
1107 init_rss_vec(rss);
1108 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1109 pte = start_pte;
1110 arch_enter_lazy_mmu_mode();
1111 do {
1112 pte_t ptent = *pte;
1113 if (pte_none(ptent)) {
1114 continue;
1117 if (pte_present(ptent)) {
1118 struct page *page;
1120 page = vm_normal_page(vma, addr, ptent);
1121 if (unlikely(details) && page) {
1123 * unmap_shared_mapping_pages() wants to
1124 * invalidate cache without truncating:
1125 * unmap shared but keep private pages.
1127 if (details->check_mapping &&
1128 details->check_mapping != page->mapping)
1129 continue;
1131 * Each page->index must be checked when
1132 * invalidating or truncating nonlinear.
1134 if (details->nonlinear_vma &&
1135 (page->index < details->first_index ||
1136 page->index > details->last_index))
1137 continue;
1139 ptent = ptep_get_and_clear_full(mm, addr, pte,
1140 tlb->fullmm);
1141 tlb_remove_tlb_entry(tlb, pte, addr);
1142 if (unlikely(!page))
1143 continue;
1144 if (unlikely(details) && details->nonlinear_vma
1145 && linear_page_index(details->nonlinear_vma,
1146 addr) != page->index)
1147 set_pte_at(mm, addr, pte,
1148 pgoff_to_pte(page->index));
1149 if (PageAnon(page))
1150 rss[MM_ANONPAGES]--;
1151 else {
1152 if (pte_dirty(ptent))
1153 set_page_dirty(page);
1154 if (pte_young(ptent) &&
1155 likely(!VM_SequentialReadHint(vma)))
1156 mark_page_accessed(page);
1157 rss[MM_FILEPAGES]--;
1159 page_remove_rmap(page);
1160 if (unlikely(page_mapcount(page) < 0))
1161 print_bad_pte(vma, addr, ptent, page);
1162 force_flush = !__tlb_remove_page(tlb, page);
1163 if (force_flush)
1164 break;
1165 continue;
1168 * If details->check_mapping, we leave swap entries;
1169 * if details->nonlinear_vma, we leave file entries.
1171 if (unlikely(details))
1172 continue;
1173 if (pte_file(ptent)) {
1174 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1175 print_bad_pte(vma, addr, ptent, NULL);
1176 } else {
1177 swp_entry_t entry = pte_to_swp_entry(ptent);
1179 if (!non_swap_entry(entry))
1180 rss[MM_SWAPENTS]--;
1181 else if (is_migration_entry(entry)) {
1182 struct page *page;
1184 page = migration_entry_to_page(entry);
1186 if (PageAnon(page))
1187 rss[MM_ANONPAGES]--;
1188 else
1189 rss[MM_FILEPAGES]--;
1191 if (unlikely(!free_swap_and_cache(entry)))
1192 print_bad_pte(vma, addr, ptent, NULL);
1194 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1195 } while (pte++, addr += PAGE_SIZE, addr != end);
1197 add_mm_rss_vec(mm, rss);
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(start_pte, ptl);
1202 * mmu_gather ran out of room to batch pages, we break out of
1203 * the PTE lock to avoid doing the potential expensive TLB invalidate
1204 * and page-free while holding it.
1206 if (force_flush) {
1207 force_flush = 0;
1208 tlb_flush_mmu(tlb);
1209 if (addr != end)
1210 goto again;
1213 return addr;
1216 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1217 struct vm_area_struct *vma, pud_t *pud,
1218 unsigned long addr, unsigned long end,
1219 struct zap_details *details)
1221 pmd_t *pmd;
1222 unsigned long next;
1224 pmd = pmd_offset(pud, addr);
1225 do {
1226 next = pmd_addr_end(addr, end);
1227 if (pmd_trans_huge(*pmd)) {
1228 if (next - addr != HPAGE_PMD_SIZE) {
1229 #ifdef CONFIG_DEBUG_VM
1230 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1231 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1232 __func__, addr, end,
1233 vma->vm_start,
1234 vma->vm_end);
1235 BUG();
1237 #endif
1238 split_huge_page_pmd(vma->vm_mm, pmd);
1239 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1240 goto next;
1241 /* fall through */
1244 * Here there can be other concurrent MADV_DONTNEED or
1245 * trans huge page faults running, and if the pmd is
1246 * none or trans huge it can change under us. This is
1247 * because MADV_DONTNEED holds the mmap_sem in read
1248 * mode.
1250 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1251 goto next;
1252 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1253 next:
1254 cond_resched();
1255 } while (pmd++, addr = next, addr != end);
1257 return addr;
1260 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1261 struct vm_area_struct *vma, pgd_t *pgd,
1262 unsigned long addr, unsigned long end,
1263 struct zap_details *details)
1265 pud_t *pud;
1266 unsigned long next;
1268 pud = pud_offset(pgd, addr);
1269 do {
1270 next = pud_addr_end(addr, end);
1271 if (pud_none_or_clear_bad(pud))
1272 continue;
1273 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1274 } while (pud++, addr = next, addr != end);
1276 return addr;
1279 static void unmap_page_range(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma,
1281 unsigned long addr, unsigned long end,
1282 struct zap_details *details)
1284 pgd_t *pgd;
1285 unsigned long next;
1287 if (details && !details->check_mapping && !details->nonlinear_vma)
1288 details = NULL;
1290 BUG_ON(addr >= end);
1291 mem_cgroup_uncharge_start();
1292 tlb_start_vma(tlb, vma);
1293 pgd = pgd_offset(vma->vm_mm, addr);
1294 do {
1295 next = pgd_addr_end(addr, end);
1296 if (pgd_none_or_clear_bad(pgd))
1297 continue;
1298 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299 } while (pgd++, addr = next, addr != end);
1300 tlb_end_vma(tlb, vma);
1301 mem_cgroup_uncharge_end();
1305 static void unmap_single_vma(struct mmu_gather *tlb,
1306 struct vm_area_struct *vma, unsigned long start_addr,
1307 unsigned long end_addr,
1308 struct zap_details *details)
1310 unsigned long start = max(vma->vm_start, start_addr);
1311 unsigned long end;
1313 if (start >= vma->vm_end)
1314 return;
1315 end = min(vma->vm_end, end_addr);
1316 if (end <= vma->vm_start)
1317 return;
1319 if (vma->vm_file)
1320 uprobe_munmap(vma, start, end);
1322 if (unlikely(is_pfn_mapping(vma)))
1323 untrack_pfn_vma(vma, 0, 0);
1325 if (start != end) {
1326 if (unlikely(is_vm_hugetlb_page(vma))) {
1328 * It is undesirable to test vma->vm_file as it
1329 * should be non-null for valid hugetlb area.
1330 * However, vm_file will be NULL in the error
1331 * cleanup path of do_mmap_pgoff. When
1332 * hugetlbfs ->mmap method fails,
1333 * do_mmap_pgoff() nullifies vma->vm_file
1334 * before calling this function to clean up.
1335 * Since no pte has actually been setup, it is
1336 * safe to do nothing in this case.
1338 if (vma->vm_file)
1339 unmap_hugepage_range(vma, start, end, NULL);
1340 } else
1341 unmap_page_range(tlb, vma, start, end, details);
1346 * unmap_vmas - unmap a range of memory covered by a list of vma's
1347 * @tlb: address of the caller's struct mmu_gather
1348 * @vma: the starting vma
1349 * @start_addr: virtual address at which to start unmapping
1350 * @end_addr: virtual address at which to end unmapping
1352 * Unmap all pages in the vma list.
1354 * Only addresses between `start' and `end' will be unmapped.
1356 * The VMA list must be sorted in ascending virtual address order.
1358 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1359 * range after unmap_vmas() returns. So the only responsibility here is to
1360 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1361 * drops the lock and schedules.
1363 void unmap_vmas(struct mmu_gather *tlb,
1364 struct vm_area_struct *vma, unsigned long start_addr,
1365 unsigned long end_addr)
1367 struct mm_struct *mm = vma->vm_mm;
1369 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1370 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1371 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1372 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1376 * zap_page_range - remove user pages in a given range
1377 * @vma: vm_area_struct holding the applicable pages
1378 * @start: starting address of pages to zap
1379 * @size: number of bytes to zap
1380 * @details: details of nonlinear truncation or shared cache invalidation
1382 * Caller must protect the VMA list
1384 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1385 unsigned long size, struct zap_details *details)
1387 struct mm_struct *mm = vma->vm_mm;
1388 struct mmu_gather tlb;
1389 unsigned long end = start + size;
1391 lru_add_drain();
1392 tlb_gather_mmu(&tlb, mm, 0);
1393 update_hiwater_rss(mm);
1394 mmu_notifier_invalidate_range_start(mm, start, end);
1395 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1396 unmap_single_vma(&tlb, vma, start, end, details);
1397 mmu_notifier_invalidate_range_end(mm, start, end);
1398 tlb_finish_mmu(&tlb, start, end);
1402 * zap_page_range_single - remove user pages in a given range
1403 * @vma: vm_area_struct holding the applicable pages
1404 * @address: starting address of pages to zap
1405 * @size: number of bytes to zap
1406 * @details: details of nonlinear truncation or shared cache invalidation
1408 * The range must fit into one VMA.
1410 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size, struct zap_details *details)
1413 struct mm_struct *mm = vma->vm_mm;
1414 struct mmu_gather tlb;
1415 unsigned long end = address + size;
1417 lru_add_drain();
1418 tlb_gather_mmu(&tlb, mm, 0);
1419 update_hiwater_rss(mm);
1420 mmu_notifier_invalidate_range_start(mm, address, end);
1421 unmap_single_vma(&tlb, vma, address, end, details);
1422 mmu_notifier_invalidate_range_end(mm, address, end);
1423 tlb_finish_mmu(&tlb, address, end);
1427 * zap_vma_ptes - remove ptes mapping the vma
1428 * @vma: vm_area_struct holding ptes to be zapped
1429 * @address: starting address of pages to zap
1430 * @size: number of bytes to zap
1432 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1434 * The entire address range must be fully contained within the vma.
1436 * Returns 0 if successful.
1438 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1439 unsigned long size)
1441 if (address < vma->vm_start || address + size > vma->vm_end ||
1442 !(vma->vm_flags & VM_PFNMAP))
1443 return -1;
1444 zap_page_range_single(vma, address, size, NULL);
1445 return 0;
1447 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1450 * follow_page - look up a page descriptor from a user-virtual address
1451 * @vma: vm_area_struct mapping @address
1452 * @address: virtual address to look up
1453 * @flags: flags modifying lookup behaviour
1455 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1457 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1458 * an error pointer if there is a mapping to something not represented
1459 * by a page descriptor (see also vm_normal_page()).
1461 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1462 unsigned int flags)
1464 pgd_t *pgd;
1465 pud_t *pud;
1466 pmd_t *pmd;
1467 pte_t *ptep, pte;
1468 spinlock_t *ptl;
1469 struct page *page;
1470 struct mm_struct *mm = vma->vm_mm;
1472 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1473 if (!IS_ERR(page)) {
1474 BUG_ON(flags & FOLL_GET);
1475 goto out;
1478 page = NULL;
1479 pgd = pgd_offset(mm, address);
1480 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1481 goto no_page_table;
1483 pud = pud_offset(pgd, address);
1484 if (pud_none(*pud))
1485 goto no_page_table;
1486 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1487 BUG_ON(flags & FOLL_GET);
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out;
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1494 pmd = pmd_offset(pud, address);
1495 if (pmd_none(*pmd))
1496 goto no_page_table;
1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 BUG_ON(flags & FOLL_GET);
1499 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1500 goto out;
1502 if (pmd_trans_huge(*pmd)) {
1503 if (flags & FOLL_SPLIT) {
1504 split_huge_page_pmd(mm, pmd);
1505 goto split_fallthrough;
1507 spin_lock(&mm->page_table_lock);
1508 if (likely(pmd_trans_huge(*pmd))) {
1509 if (unlikely(pmd_trans_splitting(*pmd))) {
1510 spin_unlock(&mm->page_table_lock);
1511 wait_split_huge_page(vma->anon_vma, pmd);
1512 } else {
1513 page = follow_trans_huge_pmd(mm, address,
1514 pmd, flags);
1515 spin_unlock(&mm->page_table_lock);
1516 goto out;
1518 } else
1519 spin_unlock(&mm->page_table_lock);
1520 /* fall through */
1522 split_fallthrough:
1523 if (unlikely(pmd_bad(*pmd)))
1524 goto no_page_table;
1526 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1528 pte = *ptep;
1529 if (!pte_present(pte))
1530 goto no_page;
1531 if ((flags & FOLL_WRITE) && !pte_write(pte))
1532 goto unlock;
1534 page = vm_normal_page(vma, address, pte);
1535 if (unlikely(!page)) {
1536 if ((flags & FOLL_DUMP) ||
1537 !is_zero_pfn(pte_pfn(pte)))
1538 goto bad_page;
1539 page = pte_page(pte);
1542 if (flags & FOLL_GET)
1543 get_page_foll(page);
1544 if (flags & FOLL_TOUCH) {
1545 if ((flags & FOLL_WRITE) &&
1546 !pte_dirty(pte) && !PageDirty(page))
1547 set_page_dirty(page);
1549 * pte_mkyoung() would be more correct here, but atomic care
1550 * is needed to avoid losing the dirty bit: it is easier to use
1551 * mark_page_accessed().
1553 mark_page_accessed(page);
1555 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1557 * The preliminary mapping check is mainly to avoid the
1558 * pointless overhead of lock_page on the ZERO_PAGE
1559 * which might bounce very badly if there is contention.
1561 * If the page is already locked, we don't need to
1562 * handle it now - vmscan will handle it later if and
1563 * when it attempts to reclaim the page.
1565 if (page->mapping && trylock_page(page)) {
1566 lru_add_drain(); /* push cached pages to LRU */
1568 * Because we lock page here and migration is
1569 * blocked by the pte's page reference, we need
1570 * only check for file-cache page truncation.
1572 if (page->mapping)
1573 mlock_vma_page(page);
1574 unlock_page(page);
1577 unlock:
1578 pte_unmap_unlock(ptep, ptl);
1579 out:
1580 return page;
1582 bad_page:
1583 pte_unmap_unlock(ptep, ptl);
1584 return ERR_PTR(-EFAULT);
1586 no_page:
1587 pte_unmap_unlock(ptep, ptl);
1588 if (!pte_none(pte))
1589 return page;
1591 no_page_table:
1593 * When core dumping an enormous anonymous area that nobody
1594 * has touched so far, we don't want to allocate unnecessary pages or
1595 * page tables. Return error instead of NULL to skip handle_mm_fault,
1596 * then get_dump_page() will return NULL to leave a hole in the dump.
1597 * But we can only make this optimization where a hole would surely
1598 * be zero-filled if handle_mm_fault() actually did handle it.
1600 if ((flags & FOLL_DUMP) &&
1601 (!vma->vm_ops || !vma->vm_ops->fault))
1602 return ERR_PTR(-EFAULT);
1603 return page;
1605 EXPORT_SYMBOL(follow_page);
1607 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1609 return stack_guard_page_start(vma, addr) ||
1610 stack_guard_page_end(vma, addr+PAGE_SIZE);
1614 * __get_user_pages() - pin user pages in memory
1615 * @tsk: task_struct of target task
1616 * @mm: mm_struct of target mm
1617 * @start: starting user address
1618 * @nr_pages: number of pages from start to pin
1619 * @gup_flags: flags modifying pin behaviour
1620 * @pages: array that receives pointers to the pages pinned.
1621 * Should be at least nr_pages long. Or NULL, if caller
1622 * only intends to ensure the pages are faulted in.
1623 * @vmas: array of pointers to vmas corresponding to each page.
1624 * Or NULL if the caller does not require them.
1625 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1627 * Returns number of pages pinned. This may be fewer than the number
1628 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1629 * were pinned, returns -errno. Each page returned must be released
1630 * with a put_page() call when it is finished with. vmas will only
1631 * remain valid while mmap_sem is held.
1633 * Must be called with mmap_sem held for read or write.
1635 * __get_user_pages walks a process's page tables and takes a reference to
1636 * each struct page that each user address corresponds to at a given
1637 * instant. That is, it takes the page that would be accessed if a user
1638 * thread accesses the given user virtual address at that instant.
1640 * This does not guarantee that the page exists in the user mappings when
1641 * __get_user_pages returns, and there may even be a completely different
1642 * page there in some cases (eg. if mmapped pagecache has been invalidated
1643 * and subsequently re faulted). However it does guarantee that the page
1644 * won't be freed completely. And mostly callers simply care that the page
1645 * contains data that was valid *at some point in time*. Typically, an IO
1646 * or similar operation cannot guarantee anything stronger anyway because
1647 * locks can't be held over the syscall boundary.
1649 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1650 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1651 * appropriate) must be called after the page is finished with, and
1652 * before put_page is called.
1654 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1655 * or mmap_sem contention, and if waiting is needed to pin all pages,
1656 * *@nonblocking will be set to 0.
1658 * In most cases, get_user_pages or get_user_pages_fast should be used
1659 * instead of __get_user_pages. __get_user_pages should be used only if
1660 * you need some special @gup_flags.
1662 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1663 unsigned long start, int nr_pages, unsigned int gup_flags,
1664 struct page **pages, struct vm_area_struct **vmas,
1665 int *nonblocking)
1667 int i;
1668 unsigned long vm_flags;
1670 if (nr_pages <= 0)
1671 return 0;
1673 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1676 * Require read or write permissions.
1677 * If FOLL_FORCE is set, we only require the "MAY" flags.
1679 vm_flags = (gup_flags & FOLL_WRITE) ?
1680 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1681 vm_flags &= (gup_flags & FOLL_FORCE) ?
1682 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1683 i = 0;
1685 do {
1686 struct vm_area_struct *vma;
1688 vma = find_extend_vma(mm, start);
1689 if (!vma && in_gate_area(mm, start)) {
1690 unsigned long pg = start & PAGE_MASK;
1691 pgd_t *pgd;
1692 pud_t *pud;
1693 pmd_t *pmd;
1694 pte_t *pte;
1696 /* user gate pages are read-only */
1697 if (gup_flags & FOLL_WRITE)
1698 return i ? : -EFAULT;
1699 if (pg > TASK_SIZE)
1700 pgd = pgd_offset_k(pg);
1701 else
1702 pgd = pgd_offset_gate(mm, pg);
1703 BUG_ON(pgd_none(*pgd));
1704 pud = pud_offset(pgd, pg);
1705 BUG_ON(pud_none(*pud));
1706 pmd = pmd_offset(pud, pg);
1707 if (pmd_none(*pmd))
1708 return i ? : -EFAULT;
1709 VM_BUG_ON(pmd_trans_huge(*pmd));
1710 pte = pte_offset_map(pmd, pg);
1711 if (pte_none(*pte)) {
1712 pte_unmap(pte);
1713 return i ? : -EFAULT;
1715 vma = get_gate_vma(mm);
1716 if (pages) {
1717 struct page *page;
1719 page = vm_normal_page(vma, start, *pte);
1720 if (!page) {
1721 if (!(gup_flags & FOLL_DUMP) &&
1722 is_zero_pfn(pte_pfn(*pte)))
1723 page = pte_page(*pte);
1724 else {
1725 pte_unmap(pte);
1726 return i ? : -EFAULT;
1729 pages[i] = page;
1730 get_page(page);
1732 pte_unmap(pte);
1733 goto next_page;
1736 if (!vma ||
1737 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1738 !(vm_flags & vma->vm_flags))
1739 return i ? : -EFAULT;
1741 if (is_vm_hugetlb_page(vma)) {
1742 i = follow_hugetlb_page(mm, vma, pages, vmas,
1743 &start, &nr_pages, i, gup_flags);
1744 continue;
1747 do {
1748 struct page *page;
1749 unsigned int foll_flags = gup_flags;
1752 * If we have a pending SIGKILL, don't keep faulting
1753 * pages and potentially allocating memory.
1755 if (unlikely(fatal_signal_pending(current)))
1756 return i ? i : -ERESTARTSYS;
1758 cond_resched();
1759 while (!(page = follow_page(vma, start, foll_flags))) {
1760 int ret;
1761 unsigned int fault_flags = 0;
1763 /* For mlock, just skip the stack guard page. */
1764 if (foll_flags & FOLL_MLOCK) {
1765 if (stack_guard_page(vma, start))
1766 goto next_page;
1768 if (foll_flags & FOLL_WRITE)
1769 fault_flags |= FAULT_FLAG_WRITE;
1770 if (nonblocking)
1771 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1772 if (foll_flags & FOLL_NOWAIT)
1773 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1775 ret = handle_mm_fault(mm, vma, start,
1776 fault_flags);
1778 if (ret & VM_FAULT_ERROR) {
1779 if (ret & VM_FAULT_OOM)
1780 return i ? i : -ENOMEM;
1781 if (ret & (VM_FAULT_HWPOISON |
1782 VM_FAULT_HWPOISON_LARGE)) {
1783 if (i)
1784 return i;
1785 else if (gup_flags & FOLL_HWPOISON)
1786 return -EHWPOISON;
1787 else
1788 return -EFAULT;
1790 if (ret & VM_FAULT_SIGBUS)
1791 return i ? i : -EFAULT;
1792 BUG();
1795 if (tsk) {
1796 if (ret & VM_FAULT_MAJOR)
1797 tsk->maj_flt++;
1798 else
1799 tsk->min_flt++;
1802 if (ret & VM_FAULT_RETRY) {
1803 if (nonblocking)
1804 *nonblocking = 0;
1805 return i;
1809 * The VM_FAULT_WRITE bit tells us that
1810 * do_wp_page has broken COW when necessary,
1811 * even if maybe_mkwrite decided not to set
1812 * pte_write. We can thus safely do subsequent
1813 * page lookups as if they were reads. But only
1814 * do so when looping for pte_write is futile:
1815 * in some cases userspace may also be wanting
1816 * to write to the gotten user page, which a
1817 * read fault here might prevent (a readonly
1818 * page might get reCOWed by userspace write).
1820 if ((ret & VM_FAULT_WRITE) &&
1821 !(vma->vm_flags & VM_WRITE))
1822 foll_flags &= ~FOLL_WRITE;
1824 cond_resched();
1826 if (IS_ERR(page))
1827 return i ? i : PTR_ERR(page);
1828 if (pages) {
1829 pages[i] = page;
1831 flush_anon_page(vma, page, start);
1832 flush_dcache_page(page);
1834 next_page:
1835 if (vmas)
1836 vmas[i] = vma;
1837 i++;
1838 start += PAGE_SIZE;
1839 nr_pages--;
1840 } while (nr_pages && start < vma->vm_end);
1841 } while (nr_pages);
1842 return i;
1844 EXPORT_SYMBOL(__get_user_pages);
1847 * fixup_user_fault() - manually resolve a user page fault
1848 * @tsk: the task_struct to use for page fault accounting, or
1849 * NULL if faults are not to be recorded.
1850 * @mm: mm_struct of target mm
1851 * @address: user address
1852 * @fault_flags:flags to pass down to handle_mm_fault()
1854 * This is meant to be called in the specific scenario where for locking reasons
1855 * we try to access user memory in atomic context (within a pagefault_disable()
1856 * section), this returns -EFAULT, and we want to resolve the user fault before
1857 * trying again.
1859 * Typically this is meant to be used by the futex code.
1861 * The main difference with get_user_pages() is that this function will
1862 * unconditionally call handle_mm_fault() which will in turn perform all the
1863 * necessary SW fixup of the dirty and young bits in the PTE, while
1864 * handle_mm_fault() only guarantees to update these in the struct page.
1866 * This is important for some architectures where those bits also gate the
1867 * access permission to the page because they are maintained in software. On
1868 * such architectures, gup() will not be enough to make a subsequent access
1869 * succeed.
1871 * This should be called with the mm_sem held for read.
1873 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1874 unsigned long address, unsigned int fault_flags)
1876 struct vm_area_struct *vma;
1877 int ret;
1879 vma = find_extend_vma(mm, address);
1880 if (!vma || address < vma->vm_start)
1881 return -EFAULT;
1883 ret = handle_mm_fault(mm, vma, address, fault_flags);
1884 if (ret & VM_FAULT_ERROR) {
1885 if (ret & VM_FAULT_OOM)
1886 return -ENOMEM;
1887 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1888 return -EHWPOISON;
1889 if (ret & VM_FAULT_SIGBUS)
1890 return -EFAULT;
1891 BUG();
1893 if (tsk) {
1894 if (ret & VM_FAULT_MAJOR)
1895 tsk->maj_flt++;
1896 else
1897 tsk->min_flt++;
1899 return 0;
1903 * get_user_pages() - pin user pages in memory
1904 * @tsk: the task_struct to use for page fault accounting, or
1905 * NULL if faults are not to be recorded.
1906 * @mm: mm_struct of target mm
1907 * @start: starting user address
1908 * @nr_pages: number of pages from start to pin
1909 * @write: whether pages will be written to by the caller
1910 * @force: whether to force write access even if user mapping is
1911 * readonly. This will result in the page being COWed even
1912 * in MAP_SHARED mappings. You do not want this.
1913 * @pages: array that receives pointers to the pages pinned.
1914 * Should be at least nr_pages long. Or NULL, if caller
1915 * only intends to ensure the pages are faulted in.
1916 * @vmas: array of pointers to vmas corresponding to each page.
1917 * Or NULL if the caller does not require them.
1919 * Returns number of pages pinned. This may be fewer than the number
1920 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1921 * were pinned, returns -errno. Each page returned must be released
1922 * with a put_page() call when it is finished with. vmas will only
1923 * remain valid while mmap_sem is held.
1925 * Must be called with mmap_sem held for read or write.
1927 * get_user_pages walks a process's page tables and takes a reference to
1928 * each struct page that each user address corresponds to at a given
1929 * instant. That is, it takes the page that would be accessed if a user
1930 * thread accesses the given user virtual address at that instant.
1932 * This does not guarantee that the page exists in the user mappings when
1933 * get_user_pages returns, and there may even be a completely different
1934 * page there in some cases (eg. if mmapped pagecache has been invalidated
1935 * and subsequently re faulted). However it does guarantee that the page
1936 * won't be freed completely. And mostly callers simply care that the page
1937 * contains data that was valid *at some point in time*. Typically, an IO
1938 * or similar operation cannot guarantee anything stronger anyway because
1939 * locks can't be held over the syscall boundary.
1941 * If write=0, the page must not be written to. If the page is written to,
1942 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1943 * after the page is finished with, and before put_page is called.
1945 * get_user_pages is typically used for fewer-copy IO operations, to get a
1946 * handle on the memory by some means other than accesses via the user virtual
1947 * addresses. The pages may be submitted for DMA to devices or accessed via
1948 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1949 * use the correct cache flushing APIs.
1951 * See also get_user_pages_fast, for performance critical applications.
1953 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1954 unsigned long start, int nr_pages, int write, int force,
1955 struct page **pages, struct vm_area_struct **vmas)
1957 int flags = FOLL_TOUCH;
1959 if (pages)
1960 flags |= FOLL_GET;
1961 if (write)
1962 flags |= FOLL_WRITE;
1963 if (force)
1964 flags |= FOLL_FORCE;
1966 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1967 NULL);
1969 EXPORT_SYMBOL(get_user_pages);
1972 * get_dump_page() - pin user page in memory while writing it to core dump
1973 * @addr: user address
1975 * Returns struct page pointer of user page pinned for dump,
1976 * to be freed afterwards by page_cache_release() or put_page().
1978 * Returns NULL on any kind of failure - a hole must then be inserted into
1979 * the corefile, to preserve alignment with its headers; and also returns
1980 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1981 * allowing a hole to be left in the corefile to save diskspace.
1983 * Called without mmap_sem, but after all other threads have been killed.
1985 #ifdef CONFIG_ELF_CORE
1986 struct page *get_dump_page(unsigned long addr)
1988 struct vm_area_struct *vma;
1989 struct page *page;
1991 if (__get_user_pages(current, current->mm, addr, 1,
1992 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1993 NULL) < 1)
1994 return NULL;
1995 flush_cache_page(vma, addr, page_to_pfn(page));
1996 return page;
1998 #endif /* CONFIG_ELF_CORE */
2000 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2001 spinlock_t **ptl)
2003 pgd_t * pgd = pgd_offset(mm, addr);
2004 pud_t * pud = pud_alloc(mm, pgd, addr);
2005 if (pud) {
2006 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2007 if (pmd) {
2008 VM_BUG_ON(pmd_trans_huge(*pmd));
2009 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2012 return NULL;
2016 * This is the old fallback for page remapping.
2018 * For historical reasons, it only allows reserved pages. Only
2019 * old drivers should use this, and they needed to mark their
2020 * pages reserved for the old functions anyway.
2022 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2023 struct page *page, pgprot_t prot)
2025 struct mm_struct *mm = vma->vm_mm;
2026 int retval;
2027 pte_t *pte;
2028 spinlock_t *ptl;
2030 retval = -EINVAL;
2031 if (PageAnon(page))
2032 goto out;
2033 retval = -ENOMEM;
2034 flush_dcache_page(page);
2035 pte = get_locked_pte(mm, addr, &ptl);
2036 if (!pte)
2037 goto out;
2038 retval = -EBUSY;
2039 if (!pte_none(*pte))
2040 goto out_unlock;
2042 /* Ok, finally just insert the thing.. */
2043 get_page(page);
2044 inc_mm_counter_fast(mm, MM_FILEPAGES);
2045 page_add_file_rmap(page);
2046 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2048 retval = 0;
2049 pte_unmap_unlock(pte, ptl);
2050 return retval;
2051 out_unlock:
2052 pte_unmap_unlock(pte, ptl);
2053 out:
2054 return retval;
2058 * vm_insert_page - insert single page into user vma
2059 * @vma: user vma to map to
2060 * @addr: target user address of this page
2061 * @page: source kernel page
2063 * This allows drivers to insert individual pages they've allocated
2064 * into a user vma.
2066 * The page has to be a nice clean _individual_ kernel allocation.
2067 * If you allocate a compound page, you need to have marked it as
2068 * such (__GFP_COMP), or manually just split the page up yourself
2069 * (see split_page()).
2071 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2072 * took an arbitrary page protection parameter. This doesn't allow
2073 * that. Your vma protection will have to be set up correctly, which
2074 * means that if you want a shared writable mapping, you'd better
2075 * ask for a shared writable mapping!
2077 * The page does not need to be reserved.
2079 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 struct page *page)
2082 if (addr < vma->vm_start || addr >= vma->vm_end)
2083 return -EFAULT;
2084 if (!page_count(page))
2085 return -EINVAL;
2086 vma->vm_flags |= VM_INSERTPAGE;
2087 return insert_page(vma, addr, page, vma->vm_page_prot);
2089 EXPORT_SYMBOL(vm_insert_page);
2091 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2092 unsigned long pfn, pgprot_t prot)
2094 struct mm_struct *mm = vma->vm_mm;
2095 int retval;
2096 pte_t *pte, entry;
2097 spinlock_t *ptl;
2099 retval = -ENOMEM;
2100 pte = get_locked_pte(mm, addr, &ptl);
2101 if (!pte)
2102 goto out;
2103 retval = -EBUSY;
2104 if (!pte_none(*pte))
2105 goto out_unlock;
2107 /* Ok, finally just insert the thing.. */
2108 entry = pte_mkspecial(pfn_pte(pfn, prot));
2109 set_pte_at(mm, addr, pte, entry);
2110 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2112 retval = 0;
2113 out_unlock:
2114 pte_unmap_unlock(pte, ptl);
2115 out:
2116 return retval;
2120 * vm_insert_pfn - insert single pfn into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2125 * Similar to vm_inert_page, this allows drivers to insert individual pages
2126 * they've allocated into a user vma. Same comments apply.
2128 * This function should only be called from a vm_ops->fault handler, and
2129 * in that case the handler should return NULL.
2131 * vma cannot be a COW mapping.
2133 * As this is called only for pages that do not currently exist, we
2134 * do not need to flush old virtual caches or the TLB.
2136 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2137 unsigned long pfn)
2139 int ret;
2140 pgprot_t pgprot = vma->vm_page_prot;
2142 * Technically, architectures with pte_special can avoid all these
2143 * restrictions (same for remap_pfn_range). However we would like
2144 * consistency in testing and feature parity among all, so we should
2145 * try to keep these invariants in place for everybody.
2147 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2148 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2149 (VM_PFNMAP|VM_MIXEDMAP));
2150 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2151 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2153 if (addr < vma->vm_start || addr >= vma->vm_end)
2154 return -EFAULT;
2155 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2156 return -EINVAL;
2158 ret = insert_pfn(vma, addr, pfn, pgprot);
2160 if (ret)
2161 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2163 return ret;
2165 EXPORT_SYMBOL(vm_insert_pfn);
2167 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2168 unsigned long pfn)
2170 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2172 if (addr < vma->vm_start || addr >= vma->vm_end)
2173 return -EFAULT;
2176 * If we don't have pte special, then we have to use the pfn_valid()
2177 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2178 * refcount the page if pfn_valid is true (hence insert_page rather
2179 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2180 * without pte special, it would there be refcounted as a normal page.
2182 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2183 struct page *page;
2185 page = pfn_to_page(pfn);
2186 return insert_page(vma, addr, page, vma->vm_page_prot);
2188 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2190 EXPORT_SYMBOL(vm_insert_mixed);
2193 * maps a range of physical memory into the requested pages. the old
2194 * mappings are removed. any references to nonexistent pages results
2195 * in null mappings (currently treated as "copy-on-access")
2197 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2198 unsigned long addr, unsigned long end,
2199 unsigned long pfn, pgprot_t prot)
2201 pte_t *pte;
2202 spinlock_t *ptl;
2204 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2205 if (!pte)
2206 return -ENOMEM;
2207 arch_enter_lazy_mmu_mode();
2208 do {
2209 BUG_ON(!pte_none(*pte));
2210 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2211 pfn++;
2212 } while (pte++, addr += PAGE_SIZE, addr != end);
2213 arch_leave_lazy_mmu_mode();
2214 pte_unmap_unlock(pte - 1, ptl);
2215 return 0;
2218 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2219 unsigned long addr, unsigned long end,
2220 unsigned long pfn, pgprot_t prot)
2222 pmd_t *pmd;
2223 unsigned long next;
2225 pfn -= addr >> PAGE_SHIFT;
2226 pmd = pmd_alloc(mm, pud, addr);
2227 if (!pmd)
2228 return -ENOMEM;
2229 VM_BUG_ON(pmd_trans_huge(*pmd));
2230 do {
2231 next = pmd_addr_end(addr, end);
2232 if (remap_pte_range(mm, pmd, addr, next,
2233 pfn + (addr >> PAGE_SHIFT), prot))
2234 return -ENOMEM;
2235 } while (pmd++, addr = next, addr != end);
2236 return 0;
2239 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2240 unsigned long addr, unsigned long end,
2241 unsigned long pfn, pgprot_t prot)
2243 pud_t *pud;
2244 unsigned long next;
2246 pfn -= addr >> PAGE_SHIFT;
2247 pud = pud_alloc(mm, pgd, addr);
2248 if (!pud)
2249 return -ENOMEM;
2250 do {
2251 next = pud_addr_end(addr, end);
2252 if (remap_pmd_range(mm, pud, addr, next,
2253 pfn + (addr >> PAGE_SHIFT), prot))
2254 return -ENOMEM;
2255 } while (pud++, addr = next, addr != end);
2256 return 0;
2260 * remap_pfn_range - remap kernel memory to userspace
2261 * @vma: user vma to map to
2262 * @addr: target user address to start at
2263 * @pfn: physical address of kernel memory
2264 * @size: size of map area
2265 * @prot: page protection flags for this mapping
2267 * Note: this is only safe if the mm semaphore is held when called.
2269 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2270 unsigned long pfn, unsigned long size, pgprot_t prot)
2272 pgd_t *pgd;
2273 unsigned long next;
2274 unsigned long end = addr + PAGE_ALIGN(size);
2275 struct mm_struct *mm = vma->vm_mm;
2276 int err;
2279 * Physically remapped pages are special. Tell the
2280 * rest of the world about it:
2281 * VM_IO tells people not to look at these pages
2282 * (accesses can have side effects).
2283 * VM_RESERVED is specified all over the place, because
2284 * in 2.4 it kept swapout's vma scan off this vma; but
2285 * in 2.6 the LRU scan won't even find its pages, so this
2286 * flag means no more than count its pages in reserved_vm,
2287 * and omit it from core dump, even when VM_IO turned off.
2288 * VM_PFNMAP tells the core MM that the base pages are just
2289 * raw PFN mappings, and do not have a "struct page" associated
2290 * with them.
2292 * There's a horrible special case to handle copy-on-write
2293 * behaviour that some programs depend on. We mark the "original"
2294 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2296 if (addr == vma->vm_start && end == vma->vm_end) {
2297 vma->vm_pgoff = pfn;
2298 vma->vm_flags |= VM_PFN_AT_MMAP;
2299 } else if (is_cow_mapping(vma->vm_flags))
2300 return -EINVAL;
2302 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2304 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2305 if (err) {
2307 * To indicate that track_pfn related cleanup is not
2308 * needed from higher level routine calling unmap_vmas
2310 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2311 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2312 return -EINVAL;
2315 BUG_ON(addr >= end);
2316 pfn -= addr >> PAGE_SHIFT;
2317 pgd = pgd_offset(mm, addr);
2318 flush_cache_range(vma, addr, end);
2319 do {
2320 next = pgd_addr_end(addr, end);
2321 err = remap_pud_range(mm, pgd, addr, next,
2322 pfn + (addr >> PAGE_SHIFT), prot);
2323 if (err)
2324 break;
2325 } while (pgd++, addr = next, addr != end);
2327 if (err)
2328 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2330 return err;
2332 EXPORT_SYMBOL(remap_pfn_range);
2334 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2335 unsigned long addr, unsigned long end,
2336 pte_fn_t fn, void *data)
2338 pte_t *pte;
2339 int err;
2340 pgtable_t token;
2341 spinlock_t *uninitialized_var(ptl);
2343 pte = (mm == &init_mm) ?
2344 pte_alloc_kernel(pmd, addr) :
2345 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2346 if (!pte)
2347 return -ENOMEM;
2349 BUG_ON(pmd_huge(*pmd));
2351 arch_enter_lazy_mmu_mode();
2353 token = pmd_pgtable(*pmd);
2355 do {
2356 err = fn(pte++, token, addr, data);
2357 if (err)
2358 break;
2359 } while (addr += PAGE_SIZE, addr != end);
2361 arch_leave_lazy_mmu_mode();
2363 if (mm != &init_mm)
2364 pte_unmap_unlock(pte-1, ptl);
2365 return err;
2368 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2369 unsigned long addr, unsigned long end,
2370 pte_fn_t fn, void *data)
2372 pmd_t *pmd;
2373 unsigned long next;
2374 int err;
2376 BUG_ON(pud_huge(*pud));
2378 pmd = pmd_alloc(mm, pud, addr);
2379 if (!pmd)
2380 return -ENOMEM;
2381 do {
2382 next = pmd_addr_end(addr, end);
2383 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2384 if (err)
2385 break;
2386 } while (pmd++, addr = next, addr != end);
2387 return err;
2390 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2391 unsigned long addr, unsigned long end,
2392 pte_fn_t fn, void *data)
2394 pud_t *pud;
2395 unsigned long next;
2396 int err;
2398 pud = pud_alloc(mm, pgd, addr);
2399 if (!pud)
2400 return -ENOMEM;
2401 do {
2402 next = pud_addr_end(addr, end);
2403 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2404 if (err)
2405 break;
2406 } while (pud++, addr = next, addr != end);
2407 return err;
2411 * Scan a region of virtual memory, filling in page tables as necessary
2412 * and calling a provided function on each leaf page table.
2414 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2415 unsigned long size, pte_fn_t fn, void *data)
2417 pgd_t *pgd;
2418 unsigned long next;
2419 unsigned long end = addr + size;
2420 int err;
2422 BUG_ON(addr >= end);
2423 pgd = pgd_offset(mm, addr);
2424 do {
2425 next = pgd_addr_end(addr, end);
2426 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2427 if (err)
2428 break;
2429 } while (pgd++, addr = next, addr != end);
2431 return err;
2433 EXPORT_SYMBOL_GPL(apply_to_page_range);
2436 * handle_pte_fault chooses page fault handler according to an entry
2437 * which was read non-atomically. Before making any commitment, on
2438 * those architectures or configurations (e.g. i386 with PAE) which
2439 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2440 * must check under lock before unmapping the pte and proceeding
2441 * (but do_wp_page is only called after already making such a check;
2442 * and do_anonymous_page can safely check later on).
2444 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2445 pte_t *page_table, pte_t orig_pte)
2447 int same = 1;
2448 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2449 if (sizeof(pte_t) > sizeof(unsigned long)) {
2450 spinlock_t *ptl = pte_lockptr(mm, pmd);
2451 spin_lock(ptl);
2452 same = pte_same(*page_table, orig_pte);
2453 spin_unlock(ptl);
2455 #endif
2456 pte_unmap(page_table);
2457 return same;
2460 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2463 * If the source page was a PFN mapping, we don't have
2464 * a "struct page" for it. We do a best-effort copy by
2465 * just copying from the original user address. If that
2466 * fails, we just zero-fill it. Live with it.
2468 if (unlikely(!src)) {
2469 void *kaddr = kmap_atomic(dst);
2470 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2473 * This really shouldn't fail, because the page is there
2474 * in the page tables. But it might just be unreadable,
2475 * in which case we just give up and fill the result with
2476 * zeroes.
2478 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2479 clear_page(kaddr);
2480 kunmap_atomic(kaddr);
2481 flush_dcache_page(dst);
2482 } else
2483 copy_user_highpage(dst, src, va, vma);
2487 * This routine handles present pages, when users try to write
2488 * to a shared page. It is done by copying the page to a new address
2489 * and decrementing the shared-page counter for the old page.
2491 * Note that this routine assumes that the protection checks have been
2492 * done by the caller (the low-level page fault routine in most cases).
2493 * Thus we can safely just mark it writable once we've done any necessary
2494 * COW.
2496 * We also mark the page dirty at this point even though the page will
2497 * change only once the write actually happens. This avoids a few races,
2498 * and potentially makes it more efficient.
2500 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2501 * but allow concurrent faults), with pte both mapped and locked.
2502 * We return with mmap_sem still held, but pte unmapped and unlocked.
2504 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2505 unsigned long address, pte_t *page_table, pmd_t *pmd,
2506 spinlock_t *ptl, pte_t orig_pte)
2507 __releases(ptl)
2509 struct page *old_page, *new_page;
2510 pte_t entry;
2511 int ret = 0;
2512 int page_mkwrite = 0;
2513 struct page *dirty_page = NULL;
2515 old_page = vm_normal_page(vma, address, orig_pte);
2516 if (!old_page) {
2518 * VM_MIXEDMAP !pfn_valid() case
2520 * We should not cow pages in a shared writeable mapping.
2521 * Just mark the pages writable as we can't do any dirty
2522 * accounting on raw pfn maps.
2524 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2525 (VM_WRITE|VM_SHARED))
2526 goto reuse;
2527 goto gotten;
2531 * Take out anonymous pages first, anonymous shared vmas are
2532 * not dirty accountable.
2534 if (PageAnon(old_page) && !PageKsm(old_page)) {
2535 if (!trylock_page(old_page)) {
2536 page_cache_get(old_page);
2537 pte_unmap_unlock(page_table, ptl);
2538 lock_page(old_page);
2539 page_table = pte_offset_map_lock(mm, pmd, address,
2540 &ptl);
2541 if (!pte_same(*page_table, orig_pte)) {
2542 unlock_page(old_page);
2543 goto unlock;
2545 page_cache_release(old_page);
2547 if (reuse_swap_page(old_page)) {
2549 * The page is all ours. Move it to our anon_vma so
2550 * the rmap code will not search our parent or siblings.
2551 * Protected against the rmap code by the page lock.
2553 page_move_anon_rmap(old_page, vma, address);
2554 unlock_page(old_page);
2555 goto reuse;
2557 unlock_page(old_page);
2558 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2559 (VM_WRITE|VM_SHARED))) {
2561 * Only catch write-faults on shared writable pages,
2562 * read-only shared pages can get COWed by
2563 * get_user_pages(.write=1, .force=1).
2565 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2566 struct vm_fault vmf;
2567 int tmp;
2569 vmf.virtual_address = (void __user *)(address &
2570 PAGE_MASK);
2571 vmf.pgoff = old_page->index;
2572 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2573 vmf.page = old_page;
2576 * Notify the address space that the page is about to
2577 * become writable so that it can prohibit this or wait
2578 * for the page to get into an appropriate state.
2580 * We do this without the lock held, so that it can
2581 * sleep if it needs to.
2583 page_cache_get(old_page);
2584 pte_unmap_unlock(page_table, ptl);
2586 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2587 if (unlikely(tmp &
2588 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2589 ret = tmp;
2590 goto unwritable_page;
2592 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2593 lock_page(old_page);
2594 if (!old_page->mapping) {
2595 ret = 0; /* retry the fault */
2596 unlock_page(old_page);
2597 goto unwritable_page;
2599 } else
2600 VM_BUG_ON(!PageLocked(old_page));
2603 * Since we dropped the lock we need to revalidate
2604 * the PTE as someone else may have changed it. If
2605 * they did, we just return, as we can count on the
2606 * MMU to tell us if they didn't also make it writable.
2608 page_table = pte_offset_map_lock(mm, pmd, address,
2609 &ptl);
2610 if (!pte_same(*page_table, orig_pte)) {
2611 unlock_page(old_page);
2612 goto unlock;
2615 page_mkwrite = 1;
2617 dirty_page = old_page;
2618 get_page(dirty_page);
2620 reuse:
2621 flush_cache_page(vma, address, pte_pfn(orig_pte));
2622 entry = pte_mkyoung(orig_pte);
2623 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2624 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2625 update_mmu_cache(vma, address, page_table);
2626 pte_unmap_unlock(page_table, ptl);
2627 ret |= VM_FAULT_WRITE;
2629 if (!dirty_page)
2630 return ret;
2633 * Yes, Virginia, this is actually required to prevent a race
2634 * with clear_page_dirty_for_io() from clearing the page dirty
2635 * bit after it clear all dirty ptes, but before a racing
2636 * do_wp_page installs a dirty pte.
2638 * __do_fault is protected similarly.
2640 if (!page_mkwrite) {
2641 wait_on_page_locked(dirty_page);
2642 set_page_dirty_balance(dirty_page, page_mkwrite);
2644 put_page(dirty_page);
2645 if (page_mkwrite) {
2646 struct address_space *mapping = dirty_page->mapping;
2648 set_page_dirty(dirty_page);
2649 unlock_page(dirty_page);
2650 page_cache_release(dirty_page);
2651 if (mapping) {
2653 * Some device drivers do not set page.mapping
2654 * but still dirty their pages
2656 balance_dirty_pages_ratelimited(mapping);
2660 /* file_update_time outside page_lock */
2661 if (vma->vm_file)
2662 file_update_time(vma->vm_file);
2664 return ret;
2668 * Ok, we need to copy. Oh, well..
2670 page_cache_get(old_page);
2671 gotten:
2672 pte_unmap_unlock(page_table, ptl);
2674 if (unlikely(anon_vma_prepare(vma)))
2675 goto oom;
2677 if (is_zero_pfn(pte_pfn(orig_pte))) {
2678 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2679 if (!new_page)
2680 goto oom;
2681 } else {
2682 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2683 if (!new_page)
2684 goto oom;
2685 cow_user_page(new_page, old_page, address, vma);
2687 __SetPageUptodate(new_page);
2689 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2690 goto oom_free_new;
2693 * Re-check the pte - we dropped the lock
2695 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2696 if (likely(pte_same(*page_table, orig_pte))) {
2697 if (old_page) {
2698 if (!PageAnon(old_page)) {
2699 dec_mm_counter_fast(mm, MM_FILEPAGES);
2700 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 } else
2703 inc_mm_counter_fast(mm, MM_ANONPAGES);
2704 flush_cache_page(vma, address, pte_pfn(orig_pte));
2705 entry = mk_pte(new_page, vma->vm_page_prot);
2706 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2708 * Clear the pte entry and flush it first, before updating the
2709 * pte with the new entry. This will avoid a race condition
2710 * seen in the presence of one thread doing SMC and another
2711 * thread doing COW.
2713 ptep_clear_flush(vma, address, page_table);
2714 page_add_new_anon_rmap(new_page, vma, address);
2716 * We call the notify macro here because, when using secondary
2717 * mmu page tables (such as kvm shadow page tables), we want the
2718 * new page to be mapped directly into the secondary page table.
2720 set_pte_at_notify(mm, address, page_table, entry);
2721 update_mmu_cache(vma, address, page_table);
2722 if (old_page) {
2724 * Only after switching the pte to the new page may
2725 * we remove the mapcount here. Otherwise another
2726 * process may come and find the rmap count decremented
2727 * before the pte is switched to the new page, and
2728 * "reuse" the old page writing into it while our pte
2729 * here still points into it and can be read by other
2730 * threads.
2732 * The critical issue is to order this
2733 * page_remove_rmap with the ptp_clear_flush above.
2734 * Those stores are ordered by (if nothing else,)
2735 * the barrier present in the atomic_add_negative
2736 * in page_remove_rmap.
2738 * Then the TLB flush in ptep_clear_flush ensures that
2739 * no process can access the old page before the
2740 * decremented mapcount is visible. And the old page
2741 * cannot be reused until after the decremented
2742 * mapcount is visible. So transitively, TLBs to
2743 * old page will be flushed before it can be reused.
2745 page_remove_rmap(old_page);
2748 /* Free the old page.. */
2749 new_page = old_page;
2750 ret |= VM_FAULT_WRITE;
2751 } else
2752 mem_cgroup_uncharge_page(new_page);
2754 if (new_page)
2755 page_cache_release(new_page);
2756 unlock:
2757 pte_unmap_unlock(page_table, ptl);
2758 if (old_page) {
2760 * Don't let another task, with possibly unlocked vma,
2761 * keep the mlocked page.
2763 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2764 lock_page(old_page); /* LRU manipulation */
2765 munlock_vma_page(old_page);
2766 unlock_page(old_page);
2768 page_cache_release(old_page);
2770 return ret;
2771 oom_free_new:
2772 page_cache_release(new_page);
2773 oom:
2774 if (old_page) {
2775 if (page_mkwrite) {
2776 unlock_page(old_page);
2777 page_cache_release(old_page);
2779 page_cache_release(old_page);
2781 return VM_FAULT_OOM;
2783 unwritable_page:
2784 page_cache_release(old_page);
2785 return ret;
2788 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2789 unsigned long start_addr, unsigned long end_addr,
2790 struct zap_details *details)
2792 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2795 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2796 struct zap_details *details)
2798 struct vm_area_struct *vma;
2799 struct prio_tree_iter iter;
2800 pgoff_t vba, vea, zba, zea;
2802 vma_prio_tree_foreach(vma, &iter, root,
2803 details->first_index, details->last_index) {
2805 vba = vma->vm_pgoff;
2806 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2807 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2808 zba = details->first_index;
2809 if (zba < vba)
2810 zba = vba;
2811 zea = details->last_index;
2812 if (zea > vea)
2813 zea = vea;
2815 unmap_mapping_range_vma(vma,
2816 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2817 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2818 details);
2822 static inline void unmap_mapping_range_list(struct list_head *head,
2823 struct zap_details *details)
2825 struct vm_area_struct *vma;
2828 * In nonlinear VMAs there is no correspondence between virtual address
2829 * offset and file offset. So we must perform an exhaustive search
2830 * across *all* the pages in each nonlinear VMA, not just the pages
2831 * whose virtual address lies outside the file truncation point.
2833 list_for_each_entry(vma, head, shared.vm_set.list) {
2834 details->nonlinear_vma = vma;
2835 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2840 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2841 * @mapping: the address space containing mmaps to be unmapped.
2842 * @holebegin: byte in first page to unmap, relative to the start of
2843 * the underlying file. This will be rounded down to a PAGE_SIZE
2844 * boundary. Note that this is different from truncate_pagecache(), which
2845 * must keep the partial page. In contrast, we must get rid of
2846 * partial pages.
2847 * @holelen: size of prospective hole in bytes. This will be rounded
2848 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2849 * end of the file.
2850 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2851 * but 0 when invalidating pagecache, don't throw away private data.
2853 void unmap_mapping_range(struct address_space *mapping,
2854 loff_t const holebegin, loff_t const holelen, int even_cows)
2856 struct zap_details details;
2857 pgoff_t hba = holebegin >> PAGE_SHIFT;
2858 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2860 /* Check for overflow. */
2861 if (sizeof(holelen) > sizeof(hlen)) {
2862 long long holeend =
2863 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2864 if (holeend & ~(long long)ULONG_MAX)
2865 hlen = ULONG_MAX - hba + 1;
2868 details.check_mapping = even_cows? NULL: mapping;
2869 details.nonlinear_vma = NULL;
2870 details.first_index = hba;
2871 details.last_index = hba + hlen - 1;
2872 if (details.last_index < details.first_index)
2873 details.last_index = ULONG_MAX;
2876 mutex_lock(&mapping->i_mmap_mutex);
2877 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2878 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2879 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2880 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2881 mutex_unlock(&mapping->i_mmap_mutex);
2883 EXPORT_SYMBOL(unmap_mapping_range);
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
2888 * We return with mmap_sem still held, but pte unmapped and unlocked.
2890 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2891 unsigned long address, pte_t *page_table, pmd_t *pmd,
2892 unsigned int flags, pte_t orig_pte)
2894 spinlock_t *ptl;
2895 struct page *page, *swapcache = NULL;
2896 swp_entry_t entry;
2897 pte_t pte;
2898 int locked;
2899 struct mem_cgroup *ptr;
2900 int exclusive = 0;
2901 int ret = 0;
2903 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2904 goto out;
2906 entry = pte_to_swp_entry(orig_pte);
2907 if (unlikely(non_swap_entry(entry))) {
2908 if (is_migration_entry(entry)) {
2909 migration_entry_wait(mm, pmd, address);
2910 } else if (is_hwpoison_entry(entry)) {
2911 ret = VM_FAULT_HWPOISON;
2912 } else {
2913 print_bad_pte(vma, address, orig_pte, NULL);
2914 ret = VM_FAULT_SIGBUS;
2916 goto out;
2918 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2919 page = lookup_swap_cache(entry);
2920 if (!page) {
2921 page = swapin_readahead(entry,
2922 GFP_HIGHUSER_MOVABLE, vma, address);
2923 if (!page) {
2925 * Back out if somebody else faulted in this pte
2926 * while we released the pte lock.
2928 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2929 if (likely(pte_same(*page_table, orig_pte)))
2930 ret = VM_FAULT_OOM;
2931 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2932 goto unlock;
2935 /* Had to read the page from swap area: Major fault */
2936 ret = VM_FAULT_MAJOR;
2937 count_vm_event(PGMAJFAULT);
2938 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2939 } else if (PageHWPoison(page)) {
2941 * hwpoisoned dirty swapcache pages are kept for killing
2942 * owner processes (which may be unknown at hwpoison time)
2944 ret = VM_FAULT_HWPOISON;
2945 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2946 goto out_release;
2949 locked = lock_page_or_retry(page, mm, flags);
2951 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2952 if (!locked) {
2953 ret |= VM_FAULT_RETRY;
2954 goto out_release;
2958 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2959 * release the swapcache from under us. The page pin, and pte_same
2960 * test below, are not enough to exclude that. Even if it is still
2961 * swapcache, we need to check that the page's swap has not changed.
2963 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2964 goto out_page;
2966 if (ksm_might_need_to_copy(page, vma, address)) {
2967 swapcache = page;
2968 page = ksm_does_need_to_copy(page, vma, address);
2970 if (unlikely(!page)) {
2971 ret = VM_FAULT_OOM;
2972 page = swapcache;
2973 swapcache = NULL;
2974 goto out_page;
2978 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2979 ret = VM_FAULT_OOM;
2980 goto out_page;
2984 * Back out if somebody else already faulted in this pte.
2986 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2987 if (unlikely(!pte_same(*page_table, orig_pte)))
2988 goto out_nomap;
2990 if (unlikely(!PageUptodate(page))) {
2991 ret = VM_FAULT_SIGBUS;
2992 goto out_nomap;
2996 * The page isn't present yet, go ahead with the fault.
2998 * Be careful about the sequence of operations here.
2999 * To get its accounting right, reuse_swap_page() must be called
3000 * while the page is counted on swap but not yet in mapcount i.e.
3001 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3002 * must be called after the swap_free(), or it will never succeed.
3003 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3004 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3005 * in page->private. In this case, a record in swap_cgroup is silently
3006 * discarded at swap_free().
3009 inc_mm_counter_fast(mm, MM_ANONPAGES);
3010 dec_mm_counter_fast(mm, MM_SWAPENTS);
3011 pte = mk_pte(page, vma->vm_page_prot);
3012 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3013 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3014 flags &= ~FAULT_FLAG_WRITE;
3015 ret |= VM_FAULT_WRITE;
3016 exclusive = 1;
3018 flush_icache_page(vma, page);
3019 set_pte_at(mm, address, page_table, pte);
3020 do_page_add_anon_rmap(page, vma, address, exclusive);
3021 /* It's better to call commit-charge after rmap is established */
3022 mem_cgroup_commit_charge_swapin(page, ptr);
3024 swap_free(entry);
3025 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3026 try_to_free_swap(page);
3027 unlock_page(page);
3028 if (swapcache) {
3030 * Hold the lock to avoid the swap entry to be reused
3031 * until we take the PT lock for the pte_same() check
3032 * (to avoid false positives from pte_same). For
3033 * further safety release the lock after the swap_free
3034 * so that the swap count won't change under a
3035 * parallel locked swapcache.
3037 unlock_page(swapcache);
3038 page_cache_release(swapcache);
3041 if (flags & FAULT_FLAG_WRITE) {
3042 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3043 if (ret & VM_FAULT_ERROR)
3044 ret &= VM_FAULT_ERROR;
3045 goto out;
3048 /* No need to invalidate - it was non-present before */
3049 update_mmu_cache(vma, address, page_table);
3050 unlock:
3051 pte_unmap_unlock(page_table, ptl);
3052 out:
3053 return ret;
3054 out_nomap:
3055 mem_cgroup_cancel_charge_swapin(ptr);
3056 pte_unmap_unlock(page_table, ptl);
3057 out_page:
3058 unlock_page(page);
3059 out_release:
3060 page_cache_release(page);
3061 if (swapcache) {
3062 unlock_page(swapcache);
3063 page_cache_release(swapcache);
3065 return ret;
3069 * This is like a special single-page "expand_{down|up}wards()",
3070 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3071 * doesn't hit another vma.
3073 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3075 address &= PAGE_MASK;
3076 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3077 struct vm_area_struct *prev = vma->vm_prev;
3080 * Is there a mapping abutting this one below?
3082 * That's only ok if it's the same stack mapping
3083 * that has gotten split..
3085 if (prev && prev->vm_end == address)
3086 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3088 expand_downwards(vma, address - PAGE_SIZE);
3090 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3091 struct vm_area_struct *next = vma->vm_next;
3093 /* As VM_GROWSDOWN but s/below/above/ */
3094 if (next && next->vm_start == address + PAGE_SIZE)
3095 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3097 expand_upwards(vma, address + PAGE_SIZE);
3099 return 0;
3103 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3104 * but allow concurrent faults), and pte mapped but not yet locked.
3105 * We return with mmap_sem still held, but pte unmapped and unlocked.
3107 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3108 unsigned long address, pte_t *page_table, pmd_t *pmd,
3109 unsigned int flags)
3111 struct page *page;
3112 spinlock_t *ptl;
3113 pte_t entry;
3115 pte_unmap(page_table);
3117 /* Check if we need to add a guard page to the stack */
3118 if (check_stack_guard_page(vma, address) < 0)
3119 return VM_FAULT_SIGBUS;
3121 /* Use the zero-page for reads */
3122 if (!(flags & FAULT_FLAG_WRITE)) {
3123 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3124 vma->vm_page_prot));
3125 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3126 if (!pte_none(*page_table))
3127 goto unlock;
3128 goto setpte;
3131 /* Allocate our own private page. */
3132 if (unlikely(anon_vma_prepare(vma)))
3133 goto oom;
3134 page = alloc_zeroed_user_highpage_movable(vma, address);
3135 if (!page)
3136 goto oom;
3137 __SetPageUptodate(page);
3139 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3140 goto oom_free_page;
3142 entry = mk_pte(page, vma->vm_page_prot);
3143 if (vma->vm_flags & VM_WRITE)
3144 entry = pte_mkwrite(pte_mkdirty(entry));
3146 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3147 if (!pte_none(*page_table))
3148 goto release;
3150 inc_mm_counter_fast(mm, MM_ANONPAGES);
3151 page_add_new_anon_rmap(page, vma, address);
3152 setpte:
3153 set_pte_at(mm, address, page_table, entry);
3155 /* No need to invalidate - it was non-present before */
3156 update_mmu_cache(vma, address, page_table);
3157 unlock:
3158 pte_unmap_unlock(page_table, ptl);
3159 return 0;
3160 release:
3161 mem_cgroup_uncharge_page(page);
3162 page_cache_release(page);
3163 goto unlock;
3164 oom_free_page:
3165 page_cache_release(page);
3166 oom:
3167 return VM_FAULT_OOM;
3171 * __do_fault() tries to create a new page mapping. It aggressively
3172 * tries to share with existing pages, but makes a separate copy if
3173 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3174 * the next page fault.
3176 * As this is called only for pages that do not currently exist, we
3177 * do not need to flush old virtual caches or the TLB.
3179 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3180 * but allow concurrent faults), and pte neither mapped nor locked.
3181 * We return with mmap_sem still held, but pte unmapped and unlocked.
3183 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3184 unsigned long address, pmd_t *pmd,
3185 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3187 pte_t *page_table;
3188 spinlock_t *ptl;
3189 struct page *page;
3190 struct page *cow_page;
3191 pte_t entry;
3192 int anon = 0;
3193 struct page *dirty_page = NULL;
3194 struct vm_fault vmf;
3195 int ret;
3196 int page_mkwrite = 0;
3199 * If we do COW later, allocate page befor taking lock_page()
3200 * on the file cache page. This will reduce lock holding time.
3202 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3204 if (unlikely(anon_vma_prepare(vma)))
3205 return VM_FAULT_OOM;
3207 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3208 if (!cow_page)
3209 return VM_FAULT_OOM;
3211 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3212 page_cache_release(cow_page);
3213 return VM_FAULT_OOM;
3215 } else
3216 cow_page = NULL;
3218 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3219 vmf.pgoff = pgoff;
3220 vmf.flags = flags;
3221 vmf.page = NULL;
3223 ret = vma->vm_ops->fault(vma, &vmf);
3224 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3225 VM_FAULT_RETRY)))
3226 goto uncharge_out;
3228 if (unlikely(PageHWPoison(vmf.page))) {
3229 if (ret & VM_FAULT_LOCKED)
3230 unlock_page(vmf.page);
3231 ret = VM_FAULT_HWPOISON;
3232 goto uncharge_out;
3236 * For consistency in subsequent calls, make the faulted page always
3237 * locked.
3239 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3240 lock_page(vmf.page);
3241 else
3242 VM_BUG_ON(!PageLocked(vmf.page));
3245 * Should we do an early C-O-W break?
3247 page = vmf.page;
3248 if (flags & FAULT_FLAG_WRITE) {
3249 if (!(vma->vm_flags & VM_SHARED)) {
3250 page = cow_page;
3251 anon = 1;
3252 copy_user_highpage(page, vmf.page, address, vma);
3253 __SetPageUptodate(page);
3254 } else {
3256 * If the page will be shareable, see if the backing
3257 * address space wants to know that the page is about
3258 * to become writable
3260 if (vma->vm_ops->page_mkwrite) {
3261 int tmp;
3263 unlock_page(page);
3264 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3265 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3266 if (unlikely(tmp &
3267 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3268 ret = tmp;
3269 goto unwritable_page;
3271 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3272 lock_page(page);
3273 if (!page->mapping) {
3274 ret = 0; /* retry the fault */
3275 unlock_page(page);
3276 goto unwritable_page;
3278 } else
3279 VM_BUG_ON(!PageLocked(page));
3280 page_mkwrite = 1;
3286 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3289 * This silly early PAGE_DIRTY setting removes a race
3290 * due to the bad i386 page protection. But it's valid
3291 * for other architectures too.
3293 * Note that if FAULT_FLAG_WRITE is set, we either now have
3294 * an exclusive copy of the page, or this is a shared mapping,
3295 * so we can make it writable and dirty to avoid having to
3296 * handle that later.
3298 /* Only go through if we didn't race with anybody else... */
3299 if (likely(pte_same(*page_table, orig_pte))) {
3300 flush_icache_page(vma, page);
3301 entry = mk_pte(page, vma->vm_page_prot);
3302 if (flags & FAULT_FLAG_WRITE)
3303 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3304 if (anon) {
3305 inc_mm_counter_fast(mm, MM_ANONPAGES);
3306 page_add_new_anon_rmap(page, vma, address);
3307 } else {
3308 inc_mm_counter_fast(mm, MM_FILEPAGES);
3309 page_add_file_rmap(page);
3310 if (flags & FAULT_FLAG_WRITE) {
3311 dirty_page = page;
3312 get_page(dirty_page);
3315 set_pte_at(mm, address, page_table, entry);
3317 /* no need to invalidate: a not-present page won't be cached */
3318 update_mmu_cache(vma, address, page_table);
3319 } else {
3320 if (cow_page)
3321 mem_cgroup_uncharge_page(cow_page);
3322 if (anon)
3323 page_cache_release(page);
3324 else
3325 anon = 1; /* no anon but release faulted_page */
3328 pte_unmap_unlock(page_table, ptl);
3330 if (dirty_page) {
3331 struct address_space *mapping = page->mapping;
3333 if (set_page_dirty(dirty_page))
3334 page_mkwrite = 1;
3335 unlock_page(dirty_page);
3336 put_page(dirty_page);
3337 if (page_mkwrite && mapping) {
3339 * Some device drivers do not set page.mapping but still
3340 * dirty their pages
3342 balance_dirty_pages_ratelimited(mapping);
3345 /* file_update_time outside page_lock */
3346 if (vma->vm_file)
3347 file_update_time(vma->vm_file);
3348 } else {
3349 unlock_page(vmf.page);
3350 if (anon)
3351 page_cache_release(vmf.page);
3354 return ret;
3356 unwritable_page:
3357 page_cache_release(page);
3358 return ret;
3359 uncharge_out:
3360 /* fs's fault handler get error */
3361 if (cow_page) {
3362 mem_cgroup_uncharge_page(cow_page);
3363 page_cache_release(cow_page);
3365 return ret;
3368 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3369 unsigned long address, pte_t *page_table, pmd_t *pmd,
3370 unsigned int flags, pte_t orig_pte)
3372 pgoff_t pgoff = (((address & PAGE_MASK)
3373 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3375 pte_unmap(page_table);
3376 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3380 * Fault of a previously existing named mapping. Repopulate the pte
3381 * from the encoded file_pte if possible. This enables swappable
3382 * nonlinear vmas.
3384 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3385 * but allow concurrent faults), and pte mapped but not yet locked.
3386 * We return with mmap_sem still held, but pte unmapped and unlocked.
3388 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3389 unsigned long address, pte_t *page_table, pmd_t *pmd,
3390 unsigned int flags, pte_t orig_pte)
3392 pgoff_t pgoff;
3394 flags |= FAULT_FLAG_NONLINEAR;
3396 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3397 return 0;
3399 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3401 * Page table corrupted: show pte and kill process.
3403 print_bad_pte(vma, address, orig_pte, NULL);
3404 return VM_FAULT_SIGBUS;
3407 pgoff = pte_to_pgoff(orig_pte);
3408 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3412 * These routines also need to handle stuff like marking pages dirty
3413 * and/or accessed for architectures that don't do it in hardware (most
3414 * RISC architectures). The early dirtying is also good on the i386.
3416 * There is also a hook called "update_mmu_cache()" that architectures
3417 * with external mmu caches can use to update those (ie the Sparc or
3418 * PowerPC hashed page tables that act as extended TLBs).
3420 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3421 * but allow concurrent faults), and pte mapped but not yet locked.
3422 * We return with mmap_sem still held, but pte unmapped and unlocked.
3424 int handle_pte_fault(struct mm_struct *mm,
3425 struct vm_area_struct *vma, unsigned long address,
3426 pte_t *pte, pmd_t *pmd, unsigned int flags)
3428 pte_t entry;
3429 spinlock_t *ptl;
3431 entry = *pte;
3432 if (!pte_present(entry)) {
3433 if (pte_none(entry)) {
3434 if (vma->vm_ops) {
3435 if (likely(vma->vm_ops->fault))
3436 return do_linear_fault(mm, vma, address,
3437 pte, pmd, flags, entry);
3439 return do_anonymous_page(mm, vma, address,
3440 pte, pmd, flags);
3442 if (pte_file(entry))
3443 return do_nonlinear_fault(mm, vma, address,
3444 pte, pmd, flags, entry);
3445 return do_swap_page(mm, vma, address,
3446 pte, pmd, flags, entry);
3449 ptl = pte_lockptr(mm, pmd);
3450 spin_lock(ptl);
3451 if (unlikely(!pte_same(*pte, entry)))
3452 goto unlock;
3453 if (flags & FAULT_FLAG_WRITE) {
3454 if (!pte_write(entry))
3455 return do_wp_page(mm, vma, address,
3456 pte, pmd, ptl, entry);
3457 entry = pte_mkdirty(entry);
3459 entry = pte_mkyoung(entry);
3460 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3461 update_mmu_cache(vma, address, pte);
3462 } else {
3464 * This is needed only for protection faults but the arch code
3465 * is not yet telling us if this is a protection fault or not.
3466 * This still avoids useless tlb flushes for .text page faults
3467 * with threads.
3469 if (flags & FAULT_FLAG_WRITE)
3470 flush_tlb_fix_spurious_fault(vma, address);
3472 unlock:
3473 pte_unmap_unlock(pte, ptl);
3474 return 0;
3478 * By the time we get here, we already hold the mm semaphore
3480 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3481 unsigned long address, unsigned int flags)
3483 pgd_t *pgd;
3484 pud_t *pud;
3485 pmd_t *pmd;
3486 pte_t *pte;
3488 __set_current_state(TASK_RUNNING);
3490 count_vm_event(PGFAULT);
3491 mem_cgroup_count_vm_event(mm, PGFAULT);
3493 /* do counter updates before entering really critical section. */
3494 check_sync_rss_stat(current);
3496 if (unlikely(is_vm_hugetlb_page(vma)))
3497 return hugetlb_fault(mm, vma, address, flags);
3499 retry:
3500 pgd = pgd_offset(mm, address);
3501 pud = pud_alloc(mm, pgd, address);
3502 if (!pud)
3503 return VM_FAULT_OOM;
3504 pmd = pmd_alloc(mm, pud, address);
3505 if (!pmd)
3506 return VM_FAULT_OOM;
3507 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3508 if (!vma->vm_ops)
3509 return do_huge_pmd_anonymous_page(mm, vma, address,
3510 pmd, flags);
3511 } else {
3512 pmd_t orig_pmd = *pmd;
3513 int ret;
3515 barrier();
3516 if (pmd_trans_huge(orig_pmd)) {
3517 if (flags & FAULT_FLAG_WRITE &&
3518 !pmd_write(orig_pmd) &&
3519 !pmd_trans_splitting(orig_pmd)) {
3520 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3521 orig_pmd);
3523 * If COW results in an oom, the huge pmd will
3524 * have been split, so retry the fault on the
3525 * pte for a smaller charge.
3527 if (unlikely(ret & VM_FAULT_OOM))
3528 goto retry;
3529 return ret;
3531 return 0;
3536 * Use __pte_alloc instead of pte_alloc_map, because we can't
3537 * run pte_offset_map on the pmd, if an huge pmd could
3538 * materialize from under us from a different thread.
3540 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3541 return VM_FAULT_OOM;
3542 /* if an huge pmd materialized from under us just retry later */
3543 if (unlikely(pmd_trans_huge(*pmd)))
3544 return 0;
3546 * A regular pmd is established and it can't morph into a huge pmd
3547 * from under us anymore at this point because we hold the mmap_sem
3548 * read mode and khugepaged takes it in write mode. So now it's
3549 * safe to run pte_offset_map().
3551 pte = pte_offset_map(pmd, address);
3553 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3555 EXPORT_SYMBOL(handle_mm_fault);
3557 #ifndef __PAGETABLE_PUD_FOLDED
3559 * Allocate page upper directory.
3560 * We've already handled the fast-path in-line.
3562 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3564 pud_t *new = pud_alloc_one(mm, address);
3565 if (!new)
3566 return -ENOMEM;
3568 smp_wmb(); /* See comment in __pte_alloc */
3570 spin_lock(&mm->page_table_lock);
3571 if (pgd_present(*pgd)) /* Another has populated it */
3572 pud_free(mm, new);
3573 else
3574 pgd_populate(mm, pgd, new);
3575 spin_unlock(&mm->page_table_lock);
3576 return 0;
3578 #endif /* __PAGETABLE_PUD_FOLDED */
3580 #ifndef __PAGETABLE_PMD_FOLDED
3582 * Allocate page middle directory.
3583 * We've already handled the fast-path in-line.
3585 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3587 pmd_t *new = pmd_alloc_one(mm, address);
3588 if (!new)
3589 return -ENOMEM;
3591 smp_wmb(); /* See comment in __pte_alloc */
3593 spin_lock(&mm->page_table_lock);
3594 #ifndef __ARCH_HAS_4LEVEL_HACK
3595 if (pud_present(*pud)) /* Another has populated it */
3596 pmd_free(mm, new);
3597 else
3598 pud_populate(mm, pud, new);
3599 #else
3600 if (pgd_present(*pud)) /* Another has populated it */
3601 pmd_free(mm, new);
3602 else
3603 pgd_populate(mm, pud, new);
3604 #endif /* __ARCH_HAS_4LEVEL_HACK */
3605 spin_unlock(&mm->page_table_lock);
3606 return 0;
3608 #endif /* __PAGETABLE_PMD_FOLDED */
3610 int make_pages_present(unsigned long addr, unsigned long end)
3612 int ret, len, write;
3613 struct vm_area_struct * vma;
3615 vma = find_vma(current->mm, addr);
3616 if (!vma)
3617 return -ENOMEM;
3619 * We want to touch writable mappings with a write fault in order
3620 * to break COW, except for shared mappings because these don't COW
3621 * and we would not want to dirty them for nothing.
3623 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3624 BUG_ON(addr >= end);
3625 BUG_ON(end > vma->vm_end);
3626 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3627 ret = get_user_pages(current, current->mm, addr,
3628 len, write, 0, NULL, NULL);
3629 if (ret < 0)
3630 return ret;
3631 return ret == len ? 0 : -EFAULT;
3634 #if !defined(__HAVE_ARCH_GATE_AREA)
3636 #if defined(AT_SYSINFO_EHDR)
3637 static struct vm_area_struct gate_vma;
3639 static int __init gate_vma_init(void)
3641 gate_vma.vm_mm = NULL;
3642 gate_vma.vm_start = FIXADDR_USER_START;
3643 gate_vma.vm_end = FIXADDR_USER_END;
3644 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3645 gate_vma.vm_page_prot = __P101;
3647 return 0;
3649 __initcall(gate_vma_init);
3650 #endif
3652 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3654 #ifdef AT_SYSINFO_EHDR
3655 return &gate_vma;
3656 #else
3657 return NULL;
3658 #endif
3660 EXPORT_SYMBOL(get_gate_vma);
3662 int in_gate_area_no_mm(unsigned long addr)
3664 #ifdef AT_SYSINFO_EHDR
3665 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3666 return 1;
3667 #endif
3668 return 0;
3670 EXPORT_SYMBOL(in_gate_area_no_mm);
3672 #endif /* __HAVE_ARCH_GATE_AREA */
3674 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3675 pte_t **ptepp, spinlock_t **ptlp)
3677 pgd_t *pgd;
3678 pud_t *pud;
3679 pmd_t *pmd;
3680 pte_t *ptep;
3682 pgd = pgd_offset(mm, address);
3683 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3684 goto out;
3686 pud = pud_offset(pgd, address);
3687 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3688 goto out;
3690 pmd = pmd_offset(pud, address);
3691 VM_BUG_ON(pmd_trans_huge(*pmd));
3692 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3693 goto out;
3695 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3696 if (pmd_huge(*pmd))
3697 goto out;
3699 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3700 if (!ptep)
3701 goto out;
3702 if (!pte_present(*ptep))
3703 goto unlock;
3704 *ptepp = ptep;
3705 return 0;
3706 unlock:
3707 pte_unmap_unlock(ptep, *ptlp);
3708 out:
3709 return -EINVAL;
3712 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3713 pte_t **ptepp, spinlock_t **ptlp)
3715 int res;
3717 /* (void) is needed to make gcc happy */
3718 (void) __cond_lock(*ptlp,
3719 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3720 return res;
3724 * follow_pfn - look up PFN at a user virtual address
3725 * @vma: memory mapping
3726 * @address: user virtual address
3727 * @pfn: location to store found PFN
3729 * Only IO mappings and raw PFN mappings are allowed.
3731 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3733 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3734 unsigned long *pfn)
3736 int ret = -EINVAL;
3737 spinlock_t *ptl;
3738 pte_t *ptep;
3740 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3741 return ret;
3743 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3744 if (ret)
3745 return ret;
3746 *pfn = pte_pfn(*ptep);
3747 pte_unmap_unlock(ptep, ptl);
3748 return 0;
3750 EXPORT_SYMBOL(follow_pfn);
3752 #ifdef CONFIG_HAVE_IOREMAP_PROT
3753 int follow_phys(struct vm_area_struct *vma,
3754 unsigned long address, unsigned int flags,
3755 unsigned long *prot, resource_size_t *phys)
3757 int ret = -EINVAL;
3758 pte_t *ptep, pte;
3759 spinlock_t *ptl;
3761 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3762 goto out;
3764 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3765 goto out;
3766 pte = *ptep;
3768 if ((flags & FOLL_WRITE) && !pte_write(pte))
3769 goto unlock;
3771 *prot = pgprot_val(pte_pgprot(pte));
3772 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3774 ret = 0;
3775 unlock:
3776 pte_unmap_unlock(ptep, ptl);
3777 out:
3778 return ret;
3781 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3782 void *buf, int len, int write)
3784 resource_size_t phys_addr;
3785 unsigned long prot = 0;
3786 void __iomem *maddr;
3787 int offset = addr & (PAGE_SIZE-1);
3789 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3790 return -EINVAL;
3792 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3793 if (write)
3794 memcpy_toio(maddr + offset, buf, len);
3795 else
3796 memcpy_fromio(buf, maddr + offset, len);
3797 iounmap(maddr);
3799 return len;
3801 #endif
3804 * Access another process' address space as given in mm. If non-NULL, use the
3805 * given task for page fault accounting.
3807 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3808 unsigned long addr, void *buf, int len, int write)
3810 struct vm_area_struct *vma;
3811 void *old_buf = buf;
3813 down_read(&mm->mmap_sem);
3814 /* ignore errors, just check how much was successfully transferred */
3815 while (len) {
3816 int bytes, ret, offset;
3817 void *maddr;
3818 struct page *page = NULL;
3820 ret = get_user_pages(tsk, mm, addr, 1,
3821 write, 1, &page, &vma);
3822 if (ret <= 0) {
3824 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3825 * we can access using slightly different code.
3827 #ifdef CONFIG_HAVE_IOREMAP_PROT
3828 vma = find_vma(mm, addr);
3829 if (!vma || vma->vm_start > addr)
3830 break;
3831 if (vma->vm_ops && vma->vm_ops->access)
3832 ret = vma->vm_ops->access(vma, addr, buf,
3833 len, write);
3834 if (ret <= 0)
3835 #endif
3836 break;
3837 bytes = ret;
3838 } else {
3839 bytes = len;
3840 offset = addr & (PAGE_SIZE-1);
3841 if (bytes > PAGE_SIZE-offset)
3842 bytes = PAGE_SIZE-offset;
3844 maddr = kmap(page);
3845 if (write) {
3846 copy_to_user_page(vma, page, addr,
3847 maddr + offset, buf, bytes);
3848 set_page_dirty_lock(page);
3849 } else {
3850 copy_from_user_page(vma, page, addr,
3851 buf, maddr + offset, bytes);
3853 kunmap(page);
3854 page_cache_release(page);
3856 len -= bytes;
3857 buf += bytes;
3858 addr += bytes;
3860 up_read(&mm->mmap_sem);
3862 return buf - old_buf;
3866 * access_remote_vm - access another process' address space
3867 * @mm: the mm_struct of the target address space
3868 * @addr: start address to access
3869 * @buf: source or destination buffer
3870 * @len: number of bytes to transfer
3871 * @write: whether the access is a write
3873 * The caller must hold a reference on @mm.
3875 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3876 void *buf, int len, int write)
3878 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3882 * Access another process' address space.
3883 * Source/target buffer must be kernel space,
3884 * Do not walk the page table directly, use get_user_pages
3886 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3887 void *buf, int len, int write)
3889 struct mm_struct *mm;
3890 int ret;
3892 mm = get_task_mm(tsk);
3893 if (!mm)
3894 return 0;
3896 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3897 mmput(mm);
3899 return ret;
3903 * Print the name of a VMA.
3905 void print_vma_addr(char *prefix, unsigned long ip)
3907 struct mm_struct *mm = current->mm;
3908 struct vm_area_struct *vma;
3911 * Do not print if we are in atomic
3912 * contexts (in exception stacks, etc.):
3914 if (preempt_count())
3915 return;
3917 down_read(&mm->mmap_sem);
3918 vma = find_vma(mm, ip);
3919 if (vma && vma->vm_file) {
3920 struct file *f = vma->vm_file;
3921 char *buf = (char *)__get_free_page(GFP_KERNEL);
3922 if (buf) {
3923 char *p, *s;
3925 p = d_path(&f->f_path, buf, PAGE_SIZE);
3926 if (IS_ERR(p))
3927 p = "?";
3928 s = strrchr(p, '/');
3929 if (s)
3930 p = s+1;
3931 printk("%s%s[%lx+%lx]", prefix, p,
3932 vma->vm_start,
3933 vma->vm_end - vma->vm_start);
3934 free_page((unsigned long)buf);
3937 up_read(&current->mm->mmap_sem);
3940 #ifdef CONFIG_PROVE_LOCKING
3941 void might_fault(void)
3944 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3945 * holding the mmap_sem, this is safe because kernel memory doesn't
3946 * get paged out, therefore we'll never actually fault, and the
3947 * below annotations will generate false positives.
3949 if (segment_eq(get_fs(), KERNEL_DS))
3950 return;
3952 might_sleep();
3954 * it would be nicer only to annotate paths which are not under
3955 * pagefault_disable, however that requires a larger audit and
3956 * providing helpers like get_user_atomic.
3958 if (!in_atomic() && current->mm)
3959 might_lock_read(&current->mm->mmap_sem);
3961 EXPORT_SYMBOL(might_fault);
3962 #endif
3964 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3965 static void clear_gigantic_page(struct page *page,
3966 unsigned long addr,
3967 unsigned int pages_per_huge_page)
3969 int i;
3970 struct page *p = page;
3972 might_sleep();
3973 for (i = 0; i < pages_per_huge_page;
3974 i++, p = mem_map_next(p, page, i)) {
3975 cond_resched();
3976 clear_user_highpage(p, addr + i * PAGE_SIZE);
3979 void clear_huge_page(struct page *page,
3980 unsigned long addr, unsigned int pages_per_huge_page)
3982 int i;
3984 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3985 clear_gigantic_page(page, addr, pages_per_huge_page);
3986 return;
3989 might_sleep();
3990 for (i = 0; i < pages_per_huge_page; i++) {
3991 cond_resched();
3992 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3996 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3997 unsigned long addr,
3998 struct vm_area_struct *vma,
3999 unsigned int pages_per_huge_page)
4001 int i;
4002 struct page *dst_base = dst;
4003 struct page *src_base = src;
4005 for (i = 0; i < pages_per_huge_page; ) {
4006 cond_resched();
4007 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4009 i++;
4010 dst = mem_map_next(dst, dst_base, i);
4011 src = mem_map_next(src, src_base, i);
4015 void copy_user_huge_page(struct page *dst, struct page *src,
4016 unsigned long addr, struct vm_area_struct *vma,
4017 unsigned int pages_per_huge_page)
4019 int i;
4021 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4022 copy_user_gigantic_page(dst, src, addr, vma,
4023 pages_per_huge_page);
4024 return;
4027 might_sleep();
4028 for (i = 0; i < pages_per_huge_page; i++) {
4029 cond_resched();
4030 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */