isl_tab: keep (in)equalities of bset (if any) in sync
[isl.git] / isl_sample.c
blob73033fec7230d30674f0e5454b3191552f96ef68
1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
3 #include "isl_vec.h"
4 #include "isl_mat.h"
5 #include "isl_seq.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
13 struct isl_vec *vec;
15 vec = isl_vec_alloc(bset->ctx, 0);
16 isl_basic_set_free(bset);
17 return vec;
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
26 unsigned dim;
27 struct isl_vec *sample;
29 dim = isl_basic_set_total_dim(bset);
30 sample = isl_vec_alloc(bset->ctx, 1 + dim);
31 if (sample) {
32 isl_int_set_si(sample->el[0], 1);
33 isl_seq_clr(sample->el + 1, dim);
35 isl_basic_set_free(bset);
36 return sample;
39 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
41 int i;
42 isl_int t;
43 struct isl_vec *sample;
45 bset = isl_basic_set_simplify(bset);
46 if (!bset)
47 return NULL;
48 if (isl_basic_set_fast_is_empty(bset))
49 return empty_sample(bset);
50 if (bset->n_eq == 0 && bset->n_ineq == 0)
51 return zero_sample(bset);
53 sample = isl_vec_alloc(bset->ctx, 2);
54 isl_int_set_si(sample->block.data[0], 1);
56 if (bset->n_eq > 0) {
57 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
58 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
59 if (isl_int_is_one(bset->eq[0][1]))
60 isl_int_neg(sample->el[1], bset->eq[0][0]);
61 else {
62 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
63 goto error);
64 isl_int_set(sample->el[1], bset->eq[0][0]);
66 isl_basic_set_free(bset);
67 return sample;
70 isl_int_init(t);
71 if (isl_int_is_one(bset->ineq[0][1]))
72 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
73 else
74 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
75 for (i = 1; i < bset->n_ineq; ++i) {
76 isl_seq_inner_product(sample->block.data,
77 bset->ineq[i], 2, &t);
78 if (isl_int_is_neg(t))
79 break;
81 isl_int_clear(t);
82 if (i < bset->n_ineq) {
83 isl_vec_free(sample);
84 return empty_sample(bset);
87 isl_basic_set_free(bset);
88 return sample;
89 error:
90 isl_basic_set_free(bset);
91 isl_vec_free(sample);
92 return NULL;
95 static struct isl_mat *independent_bounds(struct isl_basic_set *bset)
97 int i, j, n;
98 struct isl_mat *dirs = NULL;
99 struct isl_mat *bounds = NULL;
100 unsigned dim;
102 if (!bset)
103 return NULL;
105 dim = isl_basic_set_n_dim(bset);
106 bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim);
107 if (!bounds)
108 return NULL;
110 isl_int_set_si(bounds->row[0][0], 1);
111 isl_seq_clr(bounds->row[0]+1, dim);
112 bounds->n_row = 1;
114 if (bset->n_ineq == 0)
115 return bounds;
117 dirs = isl_mat_alloc(bset->ctx, dim, dim);
118 if (!dirs) {
119 isl_mat_free(bounds);
120 return NULL;
122 isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
123 isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
124 for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
125 int pos;
127 isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
129 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
130 if (pos < 0)
131 continue;
132 for (i = 0; i < n; ++i) {
133 int pos_i;
134 pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
135 if (pos_i < pos)
136 continue;
137 if (pos_i > pos)
138 break;
139 isl_seq_elim(dirs->row[n], dirs->row[i], pos,
140 dirs->n_col, NULL);
141 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
142 if (pos < 0)
143 break;
145 if (pos < 0)
146 continue;
147 if (i < n) {
148 int k;
149 isl_int *t = dirs->row[n];
150 for (k = n; k > i; --k)
151 dirs->row[k] = dirs->row[k-1];
152 dirs->row[i] = t;
154 ++n;
155 isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
157 isl_mat_free(dirs);
158 bounds->n_row = 1+n;
159 return bounds;
162 static void swap_inequality(struct isl_basic_set *bset, int a, int b)
164 isl_int *t = bset->ineq[a];
165 bset->ineq[a] = bset->ineq[b];
166 bset->ineq[b] = t;
169 /* Skew into positive orthant and project out lineality space.
171 * We perform a unimodular transformation that turns a selected
172 * maximal set of linearly independent bounds into constraints
173 * on the first dimensions that impose that these first dimensions
174 * are non-negative. In particular, the constraint matrix is lower
175 * triangular with positive entries on the diagonal and negative
176 * entries below.
177 * If "bset" has a lineality space then these constraints (and therefore
178 * all constraints in bset) only involve the first dimensions.
179 * The remaining dimensions then do not appear in any constraints and
180 * we can select any value for them, say zero. We therefore project
181 * out this final dimensions and plug in the value zero later. This
182 * is accomplished by simply dropping the final columns of
183 * the unimodular transformation.
185 static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
186 struct isl_basic_set *bset, struct isl_mat **T)
188 struct isl_mat *U = NULL;
189 struct isl_mat *bounds = NULL;
190 int i, j;
191 unsigned old_dim, new_dim;
193 *T = NULL;
194 if (!bset)
195 return NULL;
197 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
198 isl_assert(bset->ctx, bset->n_div == 0, goto error);
199 isl_assert(bset->ctx, bset->n_eq == 0, goto error);
201 old_dim = isl_basic_set_n_dim(bset);
202 /* Try to move (multiples of) unit rows up. */
203 for (i = 0, j = 0; i < bset->n_ineq; ++i) {
204 int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
205 if (pos < 0)
206 continue;
207 if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
208 old_dim-pos-1) >= 0)
209 continue;
210 if (i != j)
211 swap_inequality(bset, i, j);
212 ++j;
214 bounds = independent_bounds(bset);
215 if (!bounds)
216 goto error;
217 new_dim = bounds->n_row - 1;
218 bounds = isl_mat_left_hermite(bounds, 1, &U, NULL);
219 if (!bounds)
220 goto error;
221 U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim);
222 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
223 if (!bset)
224 goto error;
225 *T = U;
226 isl_mat_free(bounds);
227 return bset;
228 error:
229 isl_mat_free(bounds);
230 isl_mat_free(U);
231 isl_basic_set_free(bset);
232 return NULL;
235 /* Find a sample integer point, if any, in bset, which is known
236 * to have equalities. If bset contains no integer points, then
237 * return a zero-length vector.
238 * We simply remove the known equalities, compute a sample
239 * in the resulting bset, using the specified recurse function,
240 * and then transform the sample back to the original space.
242 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
243 struct isl_vec *(*recurse)(struct isl_basic_set *))
245 struct isl_mat *T;
246 struct isl_vec *sample;
248 if (!bset)
249 return NULL;
251 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
252 sample = recurse(bset);
253 if (!sample || sample->size == 0)
254 isl_mat_free(T);
255 else
256 sample = isl_mat_vec_product(T, sample);
257 return sample;
260 /* Given a tableau that is known to represent a bounded set, find and return
261 * an integer point in the set, if there is any.
263 * We perform a depth first search
264 * for an integer point, by scanning all possible values in the range
265 * attained by a basis vector, where the initial basis is assumed
266 * to have been set by the calling function.
267 * tab->n_zero is currently ignored and is clobbered by this function.
269 * The search is implemented iteratively. "level" identifies the current
270 * basis vector. "init" is true if we want the first value at the current
271 * level and false if we want the next value.
273 * The initial basis is the identity matrix. If the range in some direction
274 * contains more than one integer value, we perform basis reduction based
275 * on the value of ctx->gbr
276 * - ISL_GBR_NEVER: never perform basis reduction
277 * - ISL_GBR_ONCE: only perform basis reduction the first
278 * time such a range is encountered
279 * - ISL_GBR_ALWAYS: always perform basis reduction when
280 * such a range is encountered
282 * When ctx->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
283 * reduction computation to return early. That is, as soon as it
284 * finds a reasonable first direction.
286 struct isl_vec *isl_tab_sample(struct isl_tab *tab)
288 unsigned dim;
289 unsigned gbr;
290 struct isl_ctx *ctx;
291 struct isl_vec *sample;
292 struct isl_vec *min;
293 struct isl_vec *max;
294 enum isl_lp_result res;
295 int level;
296 int init;
297 int reduced;
298 struct isl_tab_undo **snap;
300 if (!tab)
301 return NULL;
302 if (tab->empty)
303 return isl_vec_alloc(tab->mat->ctx, 0);
305 ctx = tab->mat->ctx;
306 dim = tab->n_var;
307 gbr = ctx->gbr;
309 isl_assert(ctx, tab->basis, return NULL);
311 if (isl_tab_extend_cons(tab, dim + 1) < 0)
312 return NULL;
314 min = isl_vec_alloc(ctx, dim);
315 max = isl_vec_alloc(ctx, dim);
316 snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
318 if (!min || !max || !snap)
319 goto error;
321 level = 0;
322 init = 1;
323 reduced = 0;
325 while (level >= 0) {
326 int empty = 0;
327 if (init) {
328 res = isl_tab_min(tab, tab->basis->row[1 + level],
329 ctx->one, &min->el[level], NULL, 0);
330 if (res == isl_lp_empty)
331 empty = 1;
332 isl_assert(ctx, res != isl_lp_unbounded, goto error);
333 if (res == isl_lp_error)
334 goto error;
335 if (!empty && isl_tab_sample_is_integer(tab))
336 break;
337 isl_seq_neg(tab->basis->row[1 + level] + 1,
338 tab->basis->row[1 + level] + 1, dim);
339 res = isl_tab_min(tab, tab->basis->row[1 + level],
340 ctx->one, &max->el[level], NULL, 0);
341 isl_seq_neg(tab->basis->row[1 + level] + 1,
342 tab->basis->row[1 + level] + 1, dim);
343 isl_int_neg(max->el[level], max->el[level]);
344 if (res == isl_lp_empty)
345 empty = 1;
346 isl_assert(ctx, res != isl_lp_unbounded, goto error);
347 if (res == isl_lp_error)
348 goto error;
349 if (!empty && isl_tab_sample_is_integer(tab))
350 break;
351 if (!empty && !reduced && ctx->gbr != ISL_GBR_NEVER &&
352 isl_int_lt(min->el[level], max->el[level])) {
353 unsigned gbr_only_first;
354 if (ctx->gbr == ISL_GBR_ONCE)
355 ctx->gbr = ISL_GBR_NEVER;
356 tab->n_zero = level;
357 gbr_only_first = ctx->gbr_only_first;
358 ctx->gbr_only_first =
359 ctx->gbr == ISL_GBR_ALWAYS;
360 tab = isl_tab_compute_reduced_basis(tab);
361 ctx->gbr_only_first = gbr_only_first;
362 if (!tab || !tab->basis)
363 goto error;
364 reduced = 1;
365 continue;
367 reduced = 0;
368 snap[level] = isl_tab_snap(tab);
369 } else
370 isl_int_add_ui(min->el[level], min->el[level], 1);
372 if (empty || isl_int_gt(min->el[level], max->el[level])) {
373 level--;
374 init = 0;
375 if (level >= 0)
376 isl_tab_rollback(tab, snap[level]);
377 continue;
379 isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
380 tab = isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]);
381 isl_int_set_si(tab->basis->row[1 + level][0], 0);
382 if (level < dim - 1) {
383 ++level;
384 init = 1;
385 continue;
387 break;
390 if (level >= 0)
391 sample = isl_tab_get_sample_value(tab);
392 else
393 sample = isl_vec_alloc(ctx, 0);
395 ctx->gbr = gbr;
396 isl_vec_free(min);
397 isl_vec_free(max);
398 free(snap);
399 return sample;
400 error:
401 ctx->gbr = gbr;
402 isl_vec_free(min);
403 isl_vec_free(max);
404 free(snap);
405 return NULL;
408 /* Given a basic set that is known to be bounded, find and return
409 * an integer point in the basic set, if there is any.
411 * After handling some trivial cases, we construct a tableau
412 * and then use isl_tab_sample to find a sample, passing it
413 * the identity matrix as initial basis.
415 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
417 unsigned dim;
418 struct isl_ctx *ctx;
419 struct isl_vec *sample;
420 struct isl_tab *tab = NULL;
422 if (!bset)
423 return NULL;
425 if (isl_basic_set_fast_is_empty(bset))
426 return empty_sample(bset);
428 dim = isl_basic_set_total_dim(bset);
429 if (dim == 0)
430 return zero_sample(bset);
431 if (dim == 1)
432 return interval_sample(bset);
433 if (bset->n_eq > 0)
434 return sample_eq(bset, sample_bounded);
436 ctx = bset->ctx;
438 tab = isl_tab_from_basic_set(bset);
439 if (!tab)
440 goto error;
442 tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
443 if (!tab->basis)
444 goto error;
446 sample = isl_tab_sample(tab);
447 if (!sample)
448 goto error;
450 if (sample->size > 0) {
451 isl_vec_free(bset->sample);
452 bset->sample = isl_vec_copy(sample);
455 isl_basic_set_free(bset);
456 isl_tab_free(tab);
457 return sample;
458 error:
459 isl_basic_set_free(bset);
460 isl_tab_free(tab);
461 return NULL;
464 /* Given a basic set "bset" and a value "sample" for the first coordinates
465 * of bset, plug in these values and drop the corresponding coordinates.
467 * We do this by computing the preimage of the transformation
469 * [ 1 0 ]
470 * x = [ s 0 ] x'
471 * [ 0 I ]
473 * where [1 s] is the sample value and I is the identity matrix of the
474 * appropriate dimension.
476 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
477 struct isl_vec *sample)
479 int i;
480 unsigned total;
481 struct isl_mat *T;
483 if (!bset || !sample)
484 goto error;
486 total = isl_basic_set_total_dim(bset);
487 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
488 if (!T)
489 goto error;
491 for (i = 0; i < sample->size; ++i) {
492 isl_int_set(T->row[i][0], sample->el[i]);
493 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
495 for (i = 0; i < T->n_col - 1; ++i) {
496 isl_seq_clr(T->row[sample->size + i], T->n_col);
497 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
499 isl_vec_free(sample);
501 bset = isl_basic_set_preimage(bset, T);
502 return bset;
503 error:
504 isl_basic_set_free(bset);
505 isl_vec_free(sample);
506 return NULL;
509 /* Given a basic set "bset", return any (possibly non-integer) point
510 * in the basic set.
512 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
514 struct isl_tab *tab;
515 struct isl_vec *sample;
517 if (!bset)
518 return NULL;
520 tab = isl_tab_from_basic_set(bset);
521 sample = isl_tab_get_sample_value(tab);
522 isl_tab_free(tab);
524 isl_basic_set_free(bset);
526 return sample;
529 /* Given a linear cone "cone" and a rational point "vec",
530 * construct a polyhedron with shifted copies of the constraints in "cone",
531 * i.e., a polyhedron with "cone" as its recession cone, such that each
532 * point x in this polyhedron is such that the unit box positioned at x
533 * lies entirely inside the affine cone 'vec + cone'.
534 * Any rational point in this polyhedron may therefore be rounded up
535 * to yield an integer point that lies inside said affine cone.
537 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
538 * point "vec" by v/d.
539 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
540 * by <a_i, x> - b/d >= 0.
541 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
542 * We prefer this polyhedron over the actual affine cone because it doesn't
543 * require a scaling of the constraints.
544 * If each of the vertices of the unit cube positioned at x lies inside
545 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
546 * We therefore impose that x' = x + \sum e_i, for any selection of unit
547 * vectors lies inside the polyhedron, i.e.,
549 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
551 * The most stringent of these constraints is the one that selects
552 * all negative a_i, so the polyhedron we are looking for has constraints
554 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
556 * Note that if cone were known to have only non-negative rays
557 * (which can be accomplished by a unimodular transformation),
558 * then we would only have to check the points x' = x + e_i
559 * and we only have to add the smallest negative a_i (if any)
560 * instead of the sum of all negative a_i.
562 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
563 struct isl_vec *vec)
565 int i, j, k;
566 unsigned total;
568 struct isl_basic_set *shift = NULL;
570 if (!cone || !vec)
571 goto error;
573 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
575 total = isl_basic_set_total_dim(cone);
577 shift = isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone),
578 0, 0, cone->n_ineq);
580 for (i = 0; i < cone->n_ineq; ++i) {
581 k = isl_basic_set_alloc_inequality(shift);
582 if (k < 0)
583 goto error;
584 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
585 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
586 &shift->ineq[k][0]);
587 isl_int_cdiv_q(shift->ineq[k][0],
588 shift->ineq[k][0], vec->el[0]);
589 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
590 for (j = 0; j < total; ++j) {
591 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
592 continue;
593 isl_int_add(shift->ineq[k][0],
594 shift->ineq[k][0], shift->ineq[k][1 + j]);
598 isl_basic_set_free(cone);
599 isl_vec_free(vec);
601 return isl_basic_set_finalize(shift);
602 error:
603 isl_basic_set_free(shift);
604 isl_basic_set_free(cone);
605 isl_vec_free(vec);
606 return NULL;
609 /* Given a rational point vec in a (transformed) basic set,
610 * such that cone is the recession cone of the original basic set,
611 * "round up" the rational point to an integer point.
613 * We first check if the rational point just happens to be integer.
614 * If not, we transform the cone in the same way as the basic set,
615 * pick a point x in this cone shifted to the rational point such that
616 * the whole unit cube at x is also inside this affine cone.
617 * Then we simply round up the coordinates of x and return the
618 * resulting integer point.
620 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
621 struct isl_basic_set *cone, struct isl_mat *U)
623 unsigned total;
625 if (!vec || !cone || !U)
626 goto error;
628 isl_assert(vec->ctx, vec->size != 0, goto error);
629 if (isl_int_is_one(vec->el[0])) {
630 isl_mat_free(U);
631 isl_basic_set_free(cone);
632 return vec;
635 total = isl_basic_set_total_dim(cone);
636 cone = isl_basic_set_preimage(cone, U);
637 cone = isl_basic_set_remove_dims(cone, 0, total - (vec->size - 1));
639 cone = shift_cone(cone, vec);
641 vec = rational_sample(cone);
642 vec = isl_vec_ceil(vec);
643 return vec;
644 error:
645 isl_mat_free(U);
646 isl_vec_free(vec);
647 isl_basic_set_free(cone);
648 return NULL;
651 /* Concatenate two integer vectors, i.e., two vectors with denominator
652 * (stored in element 0) equal to 1.
654 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
656 struct isl_vec *vec;
658 if (!vec1 || !vec2)
659 goto error;
660 isl_assert(vec1->ctx, vec1->size > 0, goto error);
661 isl_assert(vec2->ctx, vec2->size > 0, goto error);
662 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
663 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
665 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
666 if (!vec)
667 goto error;
669 isl_seq_cpy(vec->el, vec1->el, vec1->size);
670 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
672 isl_vec_free(vec1);
673 isl_vec_free(vec2);
675 return vec;
676 error:
677 isl_vec_free(vec1);
678 isl_vec_free(vec2);
679 return NULL;
682 /* Drop all constraints in bset that involve any of the dimensions
683 * first to first+n-1.
685 static struct isl_basic_set *drop_constraints_involving
686 (struct isl_basic_set *bset, unsigned first, unsigned n)
688 int i;
690 if (!bset)
691 return NULL;
693 bset = isl_basic_set_cow(bset);
695 for (i = bset->n_ineq - 1; i >= 0; --i) {
696 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
697 continue;
698 isl_basic_set_drop_inequality(bset, i);
701 return bset;
704 /* Give a basic set "bset" with recession cone "cone", compute and
705 * return an integer point in bset, if any.
707 * If the recession cone is full-dimensional, then we know that
708 * bset contains an infinite number of integer points and it is
709 * fairly easy to pick one of them.
710 * If the recession cone is not full-dimensional, then we first
711 * transform bset such that the bounded directions appear as
712 * the first dimensions of the transformed basic set.
713 * We do this by using a unimodular transformation that transforms
714 * the equalities in the recession cone to equalities on the first
715 * dimensions.
717 * The transformed set is then projected onto its bounded dimensions.
718 * Note that to compute this projection, we can simply drop all constraints
719 * involving any of the unbounded dimensions since these constraints
720 * cannot be combined to produce a constraint on the bounded dimensions.
721 * To see this, assume that there is such a combination of constraints
722 * that produces a constraint on the bounded dimensions. This means
723 * that some combination of the unbounded dimensions has both an upper
724 * bound and a lower bound in terms of the bounded dimensions, but then
725 * this combination would be a bounded direction too and would have been
726 * transformed into a bounded dimensions.
728 * We then compute a sample value in the bounded dimensions.
729 * If no such value can be found, then the original set did not contain
730 * any integer points and we are done.
731 * Otherwise, we plug in the value we found in the bounded dimensions,
732 * project out these bounded dimensions and end up with a set with
733 * a full-dimensional recession cone.
734 * A sample point in this set is computed by "rounding up" any
735 * rational point in the set.
737 * The sample points in the bounded and unbounded dimensions are
738 * then combined into a single sample point and transformed back
739 * to the original space.
741 __isl_give isl_vec *isl_basic_set_sample_with_cone(
742 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
744 unsigned total;
745 unsigned cone_dim;
746 struct isl_mat *M, *U;
747 struct isl_vec *sample;
748 struct isl_vec *cone_sample;
749 struct isl_ctx *ctx;
750 struct isl_basic_set *bounded;
752 if (!bset || !cone)
753 goto error;
755 ctx = bset->ctx;
756 total = isl_basic_set_total_dim(cone);
757 cone_dim = total - cone->n_eq;
759 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
760 M = isl_mat_left_hermite(M, 0, &U, NULL);
761 if (!M)
762 goto error;
763 isl_mat_free(M);
765 U = isl_mat_lin_to_aff(U);
766 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
768 bounded = isl_basic_set_copy(bset);
769 bounded = drop_constraints_involving(bounded, total - cone_dim, cone_dim);
770 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
771 sample = sample_bounded(bounded);
772 if (!sample || sample->size == 0) {
773 isl_basic_set_free(bset);
774 isl_basic_set_free(cone);
775 isl_mat_free(U);
776 return sample;
778 bset = plug_in(bset, isl_vec_copy(sample));
779 cone_sample = rational_sample(bset);
780 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
781 sample = vec_concat(sample, cone_sample);
782 sample = isl_mat_vec_product(U, sample);
783 return sample;
784 error:
785 isl_basic_set_free(cone);
786 isl_basic_set_free(bset);
787 return NULL;
790 /* Compute and return a sample point in bset using generalized basis
791 * reduction. We first check if the input set has a non-trivial
792 * recession cone. If so, we perform some extra preprocessing in
793 * sample_with_cone. Otherwise, we directly perform generalized basis
794 * reduction.
796 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
798 unsigned dim;
799 struct isl_basic_set *cone;
801 dim = isl_basic_set_total_dim(bset);
803 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
805 if (cone->n_eq < dim)
806 return isl_basic_set_sample_with_cone(bset, cone);
808 isl_basic_set_free(cone);
809 return sample_bounded(bset);
812 static struct isl_vec *pip_sample(struct isl_basic_set *bset)
814 struct isl_mat *T;
815 struct isl_ctx *ctx;
816 struct isl_vec *sample;
818 bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
819 if (!bset)
820 return NULL;
822 ctx = bset->ctx;
823 sample = isl_pip_basic_set_sample(bset);
825 if (sample && sample->size != 0)
826 sample = isl_mat_vec_product(T, sample);
827 else
828 isl_mat_free(T);
830 return sample;
833 static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
835 struct isl_ctx *ctx;
836 unsigned dim;
837 if (!bset)
838 return NULL;
840 ctx = bset->ctx;
841 if (isl_basic_set_fast_is_empty(bset))
842 return empty_sample(bset);
844 dim = isl_basic_set_n_dim(bset);
845 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
846 isl_assert(ctx, bset->n_div == 0, goto error);
848 if (bset->sample && bset->sample->size == 1 + dim) {
849 int contains = isl_basic_set_contains(bset, bset->sample);
850 if (contains < 0)
851 goto error;
852 if (contains) {
853 struct isl_vec *sample = isl_vec_copy(bset->sample);
854 isl_basic_set_free(bset);
855 return sample;
858 isl_vec_free(bset->sample);
859 bset->sample = NULL;
861 if (bset->n_eq > 0)
862 return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
863 : isl_basic_set_sample_vec);
864 if (dim == 0)
865 return zero_sample(bset);
866 if (dim == 1)
867 return interval_sample(bset);
869 switch (bset->ctx->ilp_solver) {
870 case ISL_ILP_PIP:
871 return pip_sample(bset);
872 case ISL_ILP_GBR:
873 return bounded ? sample_bounded(bset) : gbr_sample(bset);
875 isl_assert(bset->ctx, 0, );
876 error:
877 isl_basic_set_free(bset);
878 return NULL;
881 __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
883 return basic_set_sample(bset, 0);
886 /* Compute an integer sample in "bset", where the caller guarantees
887 * that "bset" is bounded.
889 struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
891 return basic_set_sample(bset, 1);
894 __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
896 int i;
897 int k;
898 struct isl_basic_set *bset = NULL;
899 struct isl_ctx *ctx;
900 unsigned dim;
902 if (!vec)
903 return NULL;
904 ctx = vec->ctx;
905 isl_assert(ctx, vec->size != 0, goto error);
907 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
908 if (!bset)
909 goto error;
910 dim = isl_basic_set_n_dim(bset);
911 for (i = dim - 1; i >= 0; --i) {
912 k = isl_basic_set_alloc_equality(bset);
913 if (k < 0)
914 goto error;
915 isl_seq_clr(bset->eq[k], 1 + dim);
916 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
917 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
919 isl_vec_free(vec);
921 return bset;
922 error:
923 isl_basic_set_free(bset);
924 isl_vec_free(vec);
925 return NULL;
928 __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
930 struct isl_basic_set *bset;
931 struct isl_vec *sample_vec;
933 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
934 sample_vec = isl_basic_set_sample_vec(bset);
935 if (!sample_vec)
936 goto error;
937 if (sample_vec->size == 0) {
938 struct isl_basic_map *sample;
939 sample = isl_basic_map_empty_like(bmap);
940 isl_vec_free(sample_vec);
941 isl_basic_map_free(bmap);
942 return sample;
944 bset = isl_basic_set_from_vec(sample_vec);
945 return isl_basic_map_overlying_set(bset, bmap);
946 error:
947 isl_basic_map_free(bmap);
948 return NULL;
951 __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
953 int i;
954 isl_basic_map *sample = NULL;
956 if (!map)
957 goto error;
959 for (i = 0; i < map->n; ++i) {
960 sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
961 if (!sample)
962 goto error;
963 if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
964 break;
965 isl_basic_map_free(sample);
967 if (i == map->n)
968 sample = isl_basic_map_empty_like_map(map);
969 isl_map_free(map);
970 return sample;
971 error:
972 isl_map_free(map);
973 return NULL;
976 __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
978 return (isl_basic_set *) isl_map_sample((isl_map *)set);