Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse2_double.c
blob4c9d79ad11e948f3b2c2752f3827cb37579bd99b
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
38 * Electrostatics interaction: CubicSplineTable
39 * VdW interaction: LennardJones
40 * Geometry: Water4-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwioffset1;
69 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70 int vdwioffset2;
71 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72 int vdwioffset3;
73 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74 int vdwjidx0A,vdwjidx0B;
75 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
81 real *charge;
82 int nvdwtype;
83 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84 int *vdwtype;
85 real *vdwparam;
86 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
87 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
88 __m128i vfitab;
89 __m128i ifour = _mm_set1_epi32(4);
90 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91 real *vftab;
92 __m128d dummy_mask,cutoff_mask;
93 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94 __m128d one = _mm_set1_pd(1.0);
95 __m128d two = _mm_set1_pd(2.0);
96 x = xx[0];
97 f = ff[0];
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = _mm_set1_pd(fr->epsfac);
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
113 vftab = kernel_data->table_elec->data;
114 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
123 /* Avoid stupid compiler warnings */
124 jnrA = jnrB = 0;
125 j_coord_offsetA = 0;
126 j_coord_offsetB = 0;
128 outeriter = 0;
129 inneriter = 0;
131 /* Start outer loop over neighborlists */
132 for(iidx=0; iidx<nri; iidx++)
134 /* Load shift vector for this list */
135 i_shift_offset = DIM*shiftidx[iidx];
137 /* Load limits for loop over neighbors */
138 j_index_start = jindex[iidx];
139 j_index_end = jindex[iidx+1];
141 /* Get outer coordinate index */
142 inr = iinr[iidx];
143 i_coord_offset = DIM*inr;
145 /* Load i particle coords and add shift vector */
146 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
149 fix0 = _mm_setzero_pd();
150 fiy0 = _mm_setzero_pd();
151 fiz0 = _mm_setzero_pd();
152 fix1 = _mm_setzero_pd();
153 fiy1 = _mm_setzero_pd();
154 fiz1 = _mm_setzero_pd();
155 fix2 = _mm_setzero_pd();
156 fiy2 = _mm_setzero_pd();
157 fiz2 = _mm_setzero_pd();
158 fix3 = _mm_setzero_pd();
159 fiy3 = _mm_setzero_pd();
160 fiz3 = _mm_setzero_pd();
162 /* Reset potential sums */
163 velecsum = _mm_setzero_pd();
164 vvdwsum = _mm_setzero_pd();
166 /* Start inner kernel loop */
167 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170 /* Get j neighbor index, and coordinate index */
171 jnrA = jjnr[jidx];
172 jnrB = jjnr[jidx+1];
173 j_coord_offsetA = DIM*jnrA;
174 j_coord_offsetB = DIM*jnrB;
176 /* load j atom coordinates */
177 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178 &jx0,&jy0,&jz0);
180 /* Calculate displacement vector */
181 dx00 = _mm_sub_pd(ix0,jx0);
182 dy00 = _mm_sub_pd(iy0,jy0);
183 dz00 = _mm_sub_pd(iz0,jz0);
184 dx10 = _mm_sub_pd(ix1,jx0);
185 dy10 = _mm_sub_pd(iy1,jy0);
186 dz10 = _mm_sub_pd(iz1,jz0);
187 dx20 = _mm_sub_pd(ix2,jx0);
188 dy20 = _mm_sub_pd(iy2,jy0);
189 dz20 = _mm_sub_pd(iz2,jz0);
190 dx30 = _mm_sub_pd(ix3,jx0);
191 dy30 = _mm_sub_pd(iy3,jy0);
192 dz30 = _mm_sub_pd(iz3,jz0);
194 /* Calculate squared distance and things based on it */
195 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
200 rinv10 = gmx_mm_invsqrt_pd(rsq10);
201 rinv20 = gmx_mm_invsqrt_pd(rsq20);
202 rinv30 = gmx_mm_invsqrt_pd(rsq30);
204 rinvsq00 = gmx_mm_inv_pd(rsq00);
206 /* Load parameters for j particles */
207 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208 vdwjidx0A = 2*vdwtype[jnrA+0];
209 vdwjidx0B = 2*vdwtype[jnrB+0];
211 fjx0 = _mm_setzero_pd();
212 fjy0 = _mm_setzero_pd();
213 fjz0 = _mm_setzero_pd();
215 /**************************
216 * CALCULATE INTERACTIONS *
217 **************************/
219 /* Compute parameters for interactions between i and j atoms */
220 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
223 /* LENNARD-JONES DISPERSION/REPULSION */
225 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
227 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
228 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
229 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
231 /* Update potential sum for this i atom from the interaction with this j atom. */
232 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
234 fscal = fvdw;
236 /* Calculate temporary vectorial force */
237 tx = _mm_mul_pd(fscal,dx00);
238 ty = _mm_mul_pd(fscal,dy00);
239 tz = _mm_mul_pd(fscal,dz00);
241 /* Update vectorial force */
242 fix0 = _mm_add_pd(fix0,tx);
243 fiy0 = _mm_add_pd(fiy0,ty);
244 fiz0 = _mm_add_pd(fiz0,tz);
246 fjx0 = _mm_add_pd(fjx0,tx);
247 fjy0 = _mm_add_pd(fjy0,ty);
248 fjz0 = _mm_add_pd(fjz0,tz);
250 /**************************
251 * CALCULATE INTERACTIONS *
252 **************************/
254 r10 = _mm_mul_pd(rsq10,rinv10);
256 /* Compute parameters for interactions between i and j atoms */
257 qq10 = _mm_mul_pd(iq1,jq0);
259 /* Calculate table index by multiplying r with table scale and truncate to integer */
260 rt = _mm_mul_pd(r10,vftabscale);
261 vfitab = _mm_cvttpd_epi32(rt);
262 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
263 vfitab = _mm_slli_epi32(vfitab,2);
265 /* CUBIC SPLINE TABLE ELECTROSTATICS */
266 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
267 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
268 GMX_MM_TRANSPOSE2_PD(Y,F);
269 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
270 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
271 GMX_MM_TRANSPOSE2_PD(G,H);
272 Heps = _mm_mul_pd(vfeps,H);
273 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
274 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
275 velec = _mm_mul_pd(qq10,VV);
276 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
277 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
279 /* Update potential sum for this i atom from the interaction with this j atom. */
280 velecsum = _mm_add_pd(velecsum,velec);
282 fscal = felec;
284 /* Calculate temporary vectorial force */
285 tx = _mm_mul_pd(fscal,dx10);
286 ty = _mm_mul_pd(fscal,dy10);
287 tz = _mm_mul_pd(fscal,dz10);
289 /* Update vectorial force */
290 fix1 = _mm_add_pd(fix1,tx);
291 fiy1 = _mm_add_pd(fiy1,ty);
292 fiz1 = _mm_add_pd(fiz1,tz);
294 fjx0 = _mm_add_pd(fjx0,tx);
295 fjy0 = _mm_add_pd(fjy0,ty);
296 fjz0 = _mm_add_pd(fjz0,tz);
298 /**************************
299 * CALCULATE INTERACTIONS *
300 **************************/
302 r20 = _mm_mul_pd(rsq20,rinv20);
304 /* Compute parameters for interactions between i and j atoms */
305 qq20 = _mm_mul_pd(iq2,jq0);
307 /* Calculate table index by multiplying r with table scale and truncate to integer */
308 rt = _mm_mul_pd(r20,vftabscale);
309 vfitab = _mm_cvttpd_epi32(rt);
310 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
311 vfitab = _mm_slli_epi32(vfitab,2);
313 /* CUBIC SPLINE TABLE ELECTROSTATICS */
314 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
315 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
316 GMX_MM_TRANSPOSE2_PD(Y,F);
317 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
318 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
319 GMX_MM_TRANSPOSE2_PD(G,H);
320 Heps = _mm_mul_pd(vfeps,H);
321 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
322 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
323 velec = _mm_mul_pd(qq20,VV);
324 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
325 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
327 /* Update potential sum for this i atom from the interaction with this j atom. */
328 velecsum = _mm_add_pd(velecsum,velec);
330 fscal = felec;
332 /* Calculate temporary vectorial force */
333 tx = _mm_mul_pd(fscal,dx20);
334 ty = _mm_mul_pd(fscal,dy20);
335 tz = _mm_mul_pd(fscal,dz20);
337 /* Update vectorial force */
338 fix2 = _mm_add_pd(fix2,tx);
339 fiy2 = _mm_add_pd(fiy2,ty);
340 fiz2 = _mm_add_pd(fiz2,tz);
342 fjx0 = _mm_add_pd(fjx0,tx);
343 fjy0 = _mm_add_pd(fjy0,ty);
344 fjz0 = _mm_add_pd(fjz0,tz);
346 /**************************
347 * CALCULATE INTERACTIONS *
348 **************************/
350 r30 = _mm_mul_pd(rsq30,rinv30);
352 /* Compute parameters for interactions between i and j atoms */
353 qq30 = _mm_mul_pd(iq3,jq0);
355 /* Calculate table index by multiplying r with table scale and truncate to integer */
356 rt = _mm_mul_pd(r30,vftabscale);
357 vfitab = _mm_cvttpd_epi32(rt);
358 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
359 vfitab = _mm_slli_epi32(vfitab,2);
361 /* CUBIC SPLINE TABLE ELECTROSTATICS */
362 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
363 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
364 GMX_MM_TRANSPOSE2_PD(Y,F);
365 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
366 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
367 GMX_MM_TRANSPOSE2_PD(G,H);
368 Heps = _mm_mul_pd(vfeps,H);
369 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
370 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
371 velec = _mm_mul_pd(qq30,VV);
372 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
373 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
375 /* Update potential sum for this i atom from the interaction with this j atom. */
376 velecsum = _mm_add_pd(velecsum,velec);
378 fscal = felec;
380 /* Calculate temporary vectorial force */
381 tx = _mm_mul_pd(fscal,dx30);
382 ty = _mm_mul_pd(fscal,dy30);
383 tz = _mm_mul_pd(fscal,dz30);
385 /* Update vectorial force */
386 fix3 = _mm_add_pd(fix3,tx);
387 fiy3 = _mm_add_pd(fiy3,ty);
388 fiz3 = _mm_add_pd(fiz3,tz);
390 fjx0 = _mm_add_pd(fjx0,tx);
391 fjy0 = _mm_add_pd(fjy0,ty);
392 fjz0 = _mm_add_pd(fjz0,tz);
394 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
396 /* Inner loop uses 164 flops */
399 if(jidx<j_index_end)
402 jnrA = jjnr[jidx];
403 j_coord_offsetA = DIM*jnrA;
405 /* load j atom coordinates */
406 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
407 &jx0,&jy0,&jz0);
409 /* Calculate displacement vector */
410 dx00 = _mm_sub_pd(ix0,jx0);
411 dy00 = _mm_sub_pd(iy0,jy0);
412 dz00 = _mm_sub_pd(iz0,jz0);
413 dx10 = _mm_sub_pd(ix1,jx0);
414 dy10 = _mm_sub_pd(iy1,jy0);
415 dz10 = _mm_sub_pd(iz1,jz0);
416 dx20 = _mm_sub_pd(ix2,jx0);
417 dy20 = _mm_sub_pd(iy2,jy0);
418 dz20 = _mm_sub_pd(iz2,jz0);
419 dx30 = _mm_sub_pd(ix3,jx0);
420 dy30 = _mm_sub_pd(iy3,jy0);
421 dz30 = _mm_sub_pd(iz3,jz0);
423 /* Calculate squared distance and things based on it */
424 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
425 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
426 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
427 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
429 rinv10 = gmx_mm_invsqrt_pd(rsq10);
430 rinv20 = gmx_mm_invsqrt_pd(rsq20);
431 rinv30 = gmx_mm_invsqrt_pd(rsq30);
433 rinvsq00 = gmx_mm_inv_pd(rsq00);
435 /* Load parameters for j particles */
436 jq0 = _mm_load_sd(charge+jnrA+0);
437 vdwjidx0A = 2*vdwtype[jnrA+0];
439 fjx0 = _mm_setzero_pd();
440 fjy0 = _mm_setzero_pd();
441 fjz0 = _mm_setzero_pd();
443 /**************************
444 * CALCULATE INTERACTIONS *
445 **************************/
447 /* Compute parameters for interactions between i and j atoms */
448 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
450 /* LENNARD-JONES DISPERSION/REPULSION */
452 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
453 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
454 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
455 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
456 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
458 /* Update potential sum for this i atom from the interaction with this j atom. */
459 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
460 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
462 fscal = fvdw;
464 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
466 /* Calculate temporary vectorial force */
467 tx = _mm_mul_pd(fscal,dx00);
468 ty = _mm_mul_pd(fscal,dy00);
469 tz = _mm_mul_pd(fscal,dz00);
471 /* Update vectorial force */
472 fix0 = _mm_add_pd(fix0,tx);
473 fiy0 = _mm_add_pd(fiy0,ty);
474 fiz0 = _mm_add_pd(fiz0,tz);
476 fjx0 = _mm_add_pd(fjx0,tx);
477 fjy0 = _mm_add_pd(fjy0,ty);
478 fjz0 = _mm_add_pd(fjz0,tz);
480 /**************************
481 * CALCULATE INTERACTIONS *
482 **************************/
484 r10 = _mm_mul_pd(rsq10,rinv10);
486 /* Compute parameters for interactions between i and j atoms */
487 qq10 = _mm_mul_pd(iq1,jq0);
489 /* Calculate table index by multiplying r with table scale and truncate to integer */
490 rt = _mm_mul_pd(r10,vftabscale);
491 vfitab = _mm_cvttpd_epi32(rt);
492 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
493 vfitab = _mm_slli_epi32(vfitab,2);
495 /* CUBIC SPLINE TABLE ELECTROSTATICS */
496 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
497 F = _mm_setzero_pd();
498 GMX_MM_TRANSPOSE2_PD(Y,F);
499 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
500 H = _mm_setzero_pd();
501 GMX_MM_TRANSPOSE2_PD(G,H);
502 Heps = _mm_mul_pd(vfeps,H);
503 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
504 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
505 velec = _mm_mul_pd(qq10,VV);
506 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
507 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
509 /* Update potential sum for this i atom from the interaction with this j atom. */
510 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
511 velecsum = _mm_add_pd(velecsum,velec);
513 fscal = felec;
515 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517 /* Calculate temporary vectorial force */
518 tx = _mm_mul_pd(fscal,dx10);
519 ty = _mm_mul_pd(fscal,dy10);
520 tz = _mm_mul_pd(fscal,dz10);
522 /* Update vectorial force */
523 fix1 = _mm_add_pd(fix1,tx);
524 fiy1 = _mm_add_pd(fiy1,ty);
525 fiz1 = _mm_add_pd(fiz1,tz);
527 fjx0 = _mm_add_pd(fjx0,tx);
528 fjy0 = _mm_add_pd(fjy0,ty);
529 fjz0 = _mm_add_pd(fjz0,tz);
531 /**************************
532 * CALCULATE INTERACTIONS *
533 **************************/
535 r20 = _mm_mul_pd(rsq20,rinv20);
537 /* Compute parameters for interactions between i and j atoms */
538 qq20 = _mm_mul_pd(iq2,jq0);
540 /* Calculate table index by multiplying r with table scale and truncate to integer */
541 rt = _mm_mul_pd(r20,vftabscale);
542 vfitab = _mm_cvttpd_epi32(rt);
543 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
544 vfitab = _mm_slli_epi32(vfitab,2);
546 /* CUBIC SPLINE TABLE ELECTROSTATICS */
547 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
548 F = _mm_setzero_pd();
549 GMX_MM_TRANSPOSE2_PD(Y,F);
550 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
551 H = _mm_setzero_pd();
552 GMX_MM_TRANSPOSE2_PD(G,H);
553 Heps = _mm_mul_pd(vfeps,H);
554 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
555 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
556 velec = _mm_mul_pd(qq20,VV);
557 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
558 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
560 /* Update potential sum for this i atom from the interaction with this j atom. */
561 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
562 velecsum = _mm_add_pd(velecsum,velec);
564 fscal = felec;
566 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
568 /* Calculate temporary vectorial force */
569 tx = _mm_mul_pd(fscal,dx20);
570 ty = _mm_mul_pd(fscal,dy20);
571 tz = _mm_mul_pd(fscal,dz20);
573 /* Update vectorial force */
574 fix2 = _mm_add_pd(fix2,tx);
575 fiy2 = _mm_add_pd(fiy2,ty);
576 fiz2 = _mm_add_pd(fiz2,tz);
578 fjx0 = _mm_add_pd(fjx0,tx);
579 fjy0 = _mm_add_pd(fjy0,ty);
580 fjz0 = _mm_add_pd(fjz0,tz);
582 /**************************
583 * CALCULATE INTERACTIONS *
584 **************************/
586 r30 = _mm_mul_pd(rsq30,rinv30);
588 /* Compute parameters for interactions between i and j atoms */
589 qq30 = _mm_mul_pd(iq3,jq0);
591 /* Calculate table index by multiplying r with table scale and truncate to integer */
592 rt = _mm_mul_pd(r30,vftabscale);
593 vfitab = _mm_cvttpd_epi32(rt);
594 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
595 vfitab = _mm_slli_epi32(vfitab,2);
597 /* CUBIC SPLINE TABLE ELECTROSTATICS */
598 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
599 F = _mm_setzero_pd();
600 GMX_MM_TRANSPOSE2_PD(Y,F);
601 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
602 H = _mm_setzero_pd();
603 GMX_MM_TRANSPOSE2_PD(G,H);
604 Heps = _mm_mul_pd(vfeps,H);
605 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
606 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
607 velec = _mm_mul_pd(qq30,VV);
608 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
609 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
611 /* Update potential sum for this i atom from the interaction with this j atom. */
612 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
613 velecsum = _mm_add_pd(velecsum,velec);
615 fscal = felec;
617 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
619 /* Calculate temporary vectorial force */
620 tx = _mm_mul_pd(fscal,dx30);
621 ty = _mm_mul_pd(fscal,dy30);
622 tz = _mm_mul_pd(fscal,dz30);
624 /* Update vectorial force */
625 fix3 = _mm_add_pd(fix3,tx);
626 fiy3 = _mm_add_pd(fiy3,ty);
627 fiz3 = _mm_add_pd(fiz3,tz);
629 fjx0 = _mm_add_pd(fjx0,tx);
630 fjy0 = _mm_add_pd(fjy0,ty);
631 fjz0 = _mm_add_pd(fjz0,tz);
633 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
635 /* Inner loop uses 164 flops */
638 /* End of innermost loop */
640 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
641 f+i_coord_offset,fshift+i_shift_offset);
643 ggid = gid[iidx];
644 /* Update potential energies */
645 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
646 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
648 /* Increment number of inner iterations */
649 inneriter += j_index_end - j_index_start;
651 /* Outer loop uses 26 flops */
654 /* Increment number of outer iterations */
655 outeriter += nri;
657 /* Update outer/inner flops */
659 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
662 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
663 * Electrostatics interaction: CubicSplineTable
664 * VdW interaction: LennardJones
665 * Geometry: Water4-Particle
666 * Calculate force/pot: Force
668 void
669 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
670 (t_nblist * gmx_restrict nlist,
671 rvec * gmx_restrict xx,
672 rvec * gmx_restrict ff,
673 t_forcerec * gmx_restrict fr,
674 t_mdatoms * gmx_restrict mdatoms,
675 nb_kernel_data_t * gmx_restrict kernel_data,
676 t_nrnb * gmx_restrict nrnb)
678 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
679 * just 0 for non-waters.
680 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
681 * jnr indices corresponding to data put in the four positions in the SIMD register.
683 int i_shift_offset,i_coord_offset,outeriter,inneriter;
684 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
685 int jnrA,jnrB;
686 int j_coord_offsetA,j_coord_offsetB;
687 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
688 real rcutoff_scalar;
689 real *shiftvec,*fshift,*x,*f;
690 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
691 int vdwioffset0;
692 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693 int vdwioffset1;
694 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695 int vdwioffset2;
696 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697 int vdwioffset3;
698 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
699 int vdwjidx0A,vdwjidx0B;
700 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
701 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
702 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
703 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
704 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
705 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
706 real *charge;
707 int nvdwtype;
708 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
709 int *vdwtype;
710 real *vdwparam;
711 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
712 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
713 __m128i vfitab;
714 __m128i ifour = _mm_set1_epi32(4);
715 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
716 real *vftab;
717 __m128d dummy_mask,cutoff_mask;
718 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
719 __m128d one = _mm_set1_pd(1.0);
720 __m128d two = _mm_set1_pd(2.0);
721 x = xx[0];
722 f = ff[0];
724 nri = nlist->nri;
725 iinr = nlist->iinr;
726 jindex = nlist->jindex;
727 jjnr = nlist->jjnr;
728 shiftidx = nlist->shift;
729 gid = nlist->gid;
730 shiftvec = fr->shift_vec[0];
731 fshift = fr->fshift[0];
732 facel = _mm_set1_pd(fr->epsfac);
733 charge = mdatoms->chargeA;
734 nvdwtype = fr->ntype;
735 vdwparam = fr->nbfp;
736 vdwtype = mdatoms->typeA;
738 vftab = kernel_data->table_elec->data;
739 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
741 /* Setup water-specific parameters */
742 inr = nlist->iinr[0];
743 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
744 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
745 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
746 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
748 /* Avoid stupid compiler warnings */
749 jnrA = jnrB = 0;
750 j_coord_offsetA = 0;
751 j_coord_offsetB = 0;
753 outeriter = 0;
754 inneriter = 0;
756 /* Start outer loop over neighborlists */
757 for(iidx=0; iidx<nri; iidx++)
759 /* Load shift vector for this list */
760 i_shift_offset = DIM*shiftidx[iidx];
762 /* Load limits for loop over neighbors */
763 j_index_start = jindex[iidx];
764 j_index_end = jindex[iidx+1];
766 /* Get outer coordinate index */
767 inr = iinr[iidx];
768 i_coord_offset = DIM*inr;
770 /* Load i particle coords and add shift vector */
771 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
772 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
774 fix0 = _mm_setzero_pd();
775 fiy0 = _mm_setzero_pd();
776 fiz0 = _mm_setzero_pd();
777 fix1 = _mm_setzero_pd();
778 fiy1 = _mm_setzero_pd();
779 fiz1 = _mm_setzero_pd();
780 fix2 = _mm_setzero_pd();
781 fiy2 = _mm_setzero_pd();
782 fiz2 = _mm_setzero_pd();
783 fix3 = _mm_setzero_pd();
784 fiy3 = _mm_setzero_pd();
785 fiz3 = _mm_setzero_pd();
787 /* Start inner kernel loop */
788 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
791 /* Get j neighbor index, and coordinate index */
792 jnrA = jjnr[jidx];
793 jnrB = jjnr[jidx+1];
794 j_coord_offsetA = DIM*jnrA;
795 j_coord_offsetB = DIM*jnrB;
797 /* load j atom coordinates */
798 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
799 &jx0,&jy0,&jz0);
801 /* Calculate displacement vector */
802 dx00 = _mm_sub_pd(ix0,jx0);
803 dy00 = _mm_sub_pd(iy0,jy0);
804 dz00 = _mm_sub_pd(iz0,jz0);
805 dx10 = _mm_sub_pd(ix1,jx0);
806 dy10 = _mm_sub_pd(iy1,jy0);
807 dz10 = _mm_sub_pd(iz1,jz0);
808 dx20 = _mm_sub_pd(ix2,jx0);
809 dy20 = _mm_sub_pd(iy2,jy0);
810 dz20 = _mm_sub_pd(iz2,jz0);
811 dx30 = _mm_sub_pd(ix3,jx0);
812 dy30 = _mm_sub_pd(iy3,jy0);
813 dz30 = _mm_sub_pd(iz3,jz0);
815 /* Calculate squared distance and things based on it */
816 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
817 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
818 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
819 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
821 rinv10 = gmx_mm_invsqrt_pd(rsq10);
822 rinv20 = gmx_mm_invsqrt_pd(rsq20);
823 rinv30 = gmx_mm_invsqrt_pd(rsq30);
825 rinvsq00 = gmx_mm_inv_pd(rsq00);
827 /* Load parameters for j particles */
828 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
829 vdwjidx0A = 2*vdwtype[jnrA+0];
830 vdwjidx0B = 2*vdwtype[jnrB+0];
832 fjx0 = _mm_setzero_pd();
833 fjy0 = _mm_setzero_pd();
834 fjz0 = _mm_setzero_pd();
836 /**************************
837 * CALCULATE INTERACTIONS *
838 **************************/
840 /* Compute parameters for interactions between i and j atoms */
841 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
842 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
844 /* LENNARD-JONES DISPERSION/REPULSION */
846 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
847 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
849 fscal = fvdw;
851 /* Calculate temporary vectorial force */
852 tx = _mm_mul_pd(fscal,dx00);
853 ty = _mm_mul_pd(fscal,dy00);
854 tz = _mm_mul_pd(fscal,dz00);
856 /* Update vectorial force */
857 fix0 = _mm_add_pd(fix0,tx);
858 fiy0 = _mm_add_pd(fiy0,ty);
859 fiz0 = _mm_add_pd(fiz0,tz);
861 fjx0 = _mm_add_pd(fjx0,tx);
862 fjy0 = _mm_add_pd(fjy0,ty);
863 fjz0 = _mm_add_pd(fjz0,tz);
865 /**************************
866 * CALCULATE INTERACTIONS *
867 **************************/
869 r10 = _mm_mul_pd(rsq10,rinv10);
871 /* Compute parameters for interactions between i and j atoms */
872 qq10 = _mm_mul_pd(iq1,jq0);
874 /* Calculate table index by multiplying r with table scale and truncate to integer */
875 rt = _mm_mul_pd(r10,vftabscale);
876 vfitab = _mm_cvttpd_epi32(rt);
877 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
878 vfitab = _mm_slli_epi32(vfitab,2);
880 /* CUBIC SPLINE TABLE ELECTROSTATICS */
881 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
882 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
883 GMX_MM_TRANSPOSE2_PD(Y,F);
884 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
885 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
886 GMX_MM_TRANSPOSE2_PD(G,H);
887 Heps = _mm_mul_pd(vfeps,H);
888 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
889 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
890 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
892 fscal = felec;
894 /* Calculate temporary vectorial force */
895 tx = _mm_mul_pd(fscal,dx10);
896 ty = _mm_mul_pd(fscal,dy10);
897 tz = _mm_mul_pd(fscal,dz10);
899 /* Update vectorial force */
900 fix1 = _mm_add_pd(fix1,tx);
901 fiy1 = _mm_add_pd(fiy1,ty);
902 fiz1 = _mm_add_pd(fiz1,tz);
904 fjx0 = _mm_add_pd(fjx0,tx);
905 fjy0 = _mm_add_pd(fjy0,ty);
906 fjz0 = _mm_add_pd(fjz0,tz);
908 /**************************
909 * CALCULATE INTERACTIONS *
910 **************************/
912 r20 = _mm_mul_pd(rsq20,rinv20);
914 /* Compute parameters for interactions between i and j atoms */
915 qq20 = _mm_mul_pd(iq2,jq0);
917 /* Calculate table index by multiplying r with table scale and truncate to integer */
918 rt = _mm_mul_pd(r20,vftabscale);
919 vfitab = _mm_cvttpd_epi32(rt);
920 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
921 vfitab = _mm_slli_epi32(vfitab,2);
923 /* CUBIC SPLINE TABLE ELECTROSTATICS */
924 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
925 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
926 GMX_MM_TRANSPOSE2_PD(Y,F);
927 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
928 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
929 GMX_MM_TRANSPOSE2_PD(G,H);
930 Heps = _mm_mul_pd(vfeps,H);
931 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
932 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
933 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
935 fscal = felec;
937 /* Calculate temporary vectorial force */
938 tx = _mm_mul_pd(fscal,dx20);
939 ty = _mm_mul_pd(fscal,dy20);
940 tz = _mm_mul_pd(fscal,dz20);
942 /* Update vectorial force */
943 fix2 = _mm_add_pd(fix2,tx);
944 fiy2 = _mm_add_pd(fiy2,ty);
945 fiz2 = _mm_add_pd(fiz2,tz);
947 fjx0 = _mm_add_pd(fjx0,tx);
948 fjy0 = _mm_add_pd(fjy0,ty);
949 fjz0 = _mm_add_pd(fjz0,tz);
951 /**************************
952 * CALCULATE INTERACTIONS *
953 **************************/
955 r30 = _mm_mul_pd(rsq30,rinv30);
957 /* Compute parameters for interactions between i and j atoms */
958 qq30 = _mm_mul_pd(iq3,jq0);
960 /* Calculate table index by multiplying r with table scale and truncate to integer */
961 rt = _mm_mul_pd(r30,vftabscale);
962 vfitab = _mm_cvttpd_epi32(rt);
963 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
964 vfitab = _mm_slli_epi32(vfitab,2);
966 /* CUBIC SPLINE TABLE ELECTROSTATICS */
967 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
968 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
969 GMX_MM_TRANSPOSE2_PD(Y,F);
970 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
971 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
972 GMX_MM_TRANSPOSE2_PD(G,H);
973 Heps = _mm_mul_pd(vfeps,H);
974 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
975 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
976 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
978 fscal = felec;
980 /* Calculate temporary vectorial force */
981 tx = _mm_mul_pd(fscal,dx30);
982 ty = _mm_mul_pd(fscal,dy30);
983 tz = _mm_mul_pd(fscal,dz30);
985 /* Update vectorial force */
986 fix3 = _mm_add_pd(fix3,tx);
987 fiy3 = _mm_add_pd(fiy3,ty);
988 fiz3 = _mm_add_pd(fiz3,tz);
990 fjx0 = _mm_add_pd(fjx0,tx);
991 fjy0 = _mm_add_pd(fjy0,ty);
992 fjz0 = _mm_add_pd(fjz0,tz);
994 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
996 /* Inner loop uses 147 flops */
999 if(jidx<j_index_end)
1002 jnrA = jjnr[jidx];
1003 j_coord_offsetA = DIM*jnrA;
1005 /* load j atom coordinates */
1006 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1007 &jx0,&jy0,&jz0);
1009 /* Calculate displacement vector */
1010 dx00 = _mm_sub_pd(ix0,jx0);
1011 dy00 = _mm_sub_pd(iy0,jy0);
1012 dz00 = _mm_sub_pd(iz0,jz0);
1013 dx10 = _mm_sub_pd(ix1,jx0);
1014 dy10 = _mm_sub_pd(iy1,jy0);
1015 dz10 = _mm_sub_pd(iz1,jz0);
1016 dx20 = _mm_sub_pd(ix2,jx0);
1017 dy20 = _mm_sub_pd(iy2,jy0);
1018 dz20 = _mm_sub_pd(iz2,jz0);
1019 dx30 = _mm_sub_pd(ix3,jx0);
1020 dy30 = _mm_sub_pd(iy3,jy0);
1021 dz30 = _mm_sub_pd(iz3,jz0);
1023 /* Calculate squared distance and things based on it */
1024 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1025 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1026 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1027 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1029 rinv10 = gmx_mm_invsqrt_pd(rsq10);
1030 rinv20 = gmx_mm_invsqrt_pd(rsq20);
1031 rinv30 = gmx_mm_invsqrt_pd(rsq30);
1033 rinvsq00 = gmx_mm_inv_pd(rsq00);
1035 /* Load parameters for j particles */
1036 jq0 = _mm_load_sd(charge+jnrA+0);
1037 vdwjidx0A = 2*vdwtype[jnrA+0];
1039 fjx0 = _mm_setzero_pd();
1040 fjy0 = _mm_setzero_pd();
1041 fjz0 = _mm_setzero_pd();
1043 /**************************
1044 * CALCULATE INTERACTIONS *
1045 **************************/
1047 /* Compute parameters for interactions between i and j atoms */
1048 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1050 /* LENNARD-JONES DISPERSION/REPULSION */
1052 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1053 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1055 fscal = fvdw;
1057 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1059 /* Calculate temporary vectorial force */
1060 tx = _mm_mul_pd(fscal,dx00);
1061 ty = _mm_mul_pd(fscal,dy00);
1062 tz = _mm_mul_pd(fscal,dz00);
1064 /* Update vectorial force */
1065 fix0 = _mm_add_pd(fix0,tx);
1066 fiy0 = _mm_add_pd(fiy0,ty);
1067 fiz0 = _mm_add_pd(fiz0,tz);
1069 fjx0 = _mm_add_pd(fjx0,tx);
1070 fjy0 = _mm_add_pd(fjy0,ty);
1071 fjz0 = _mm_add_pd(fjz0,tz);
1073 /**************************
1074 * CALCULATE INTERACTIONS *
1075 **************************/
1077 r10 = _mm_mul_pd(rsq10,rinv10);
1079 /* Compute parameters for interactions between i and j atoms */
1080 qq10 = _mm_mul_pd(iq1,jq0);
1082 /* Calculate table index by multiplying r with table scale and truncate to integer */
1083 rt = _mm_mul_pd(r10,vftabscale);
1084 vfitab = _mm_cvttpd_epi32(rt);
1085 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1086 vfitab = _mm_slli_epi32(vfitab,2);
1088 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1089 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1090 F = _mm_setzero_pd();
1091 GMX_MM_TRANSPOSE2_PD(Y,F);
1092 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1093 H = _mm_setzero_pd();
1094 GMX_MM_TRANSPOSE2_PD(G,H);
1095 Heps = _mm_mul_pd(vfeps,H);
1096 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1097 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1098 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1100 fscal = felec;
1102 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1104 /* Calculate temporary vectorial force */
1105 tx = _mm_mul_pd(fscal,dx10);
1106 ty = _mm_mul_pd(fscal,dy10);
1107 tz = _mm_mul_pd(fscal,dz10);
1109 /* Update vectorial force */
1110 fix1 = _mm_add_pd(fix1,tx);
1111 fiy1 = _mm_add_pd(fiy1,ty);
1112 fiz1 = _mm_add_pd(fiz1,tz);
1114 fjx0 = _mm_add_pd(fjx0,tx);
1115 fjy0 = _mm_add_pd(fjy0,ty);
1116 fjz0 = _mm_add_pd(fjz0,tz);
1118 /**************************
1119 * CALCULATE INTERACTIONS *
1120 **************************/
1122 r20 = _mm_mul_pd(rsq20,rinv20);
1124 /* Compute parameters for interactions between i and j atoms */
1125 qq20 = _mm_mul_pd(iq2,jq0);
1127 /* Calculate table index by multiplying r with table scale and truncate to integer */
1128 rt = _mm_mul_pd(r20,vftabscale);
1129 vfitab = _mm_cvttpd_epi32(rt);
1130 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1131 vfitab = _mm_slli_epi32(vfitab,2);
1133 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1134 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1135 F = _mm_setzero_pd();
1136 GMX_MM_TRANSPOSE2_PD(Y,F);
1137 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1138 H = _mm_setzero_pd();
1139 GMX_MM_TRANSPOSE2_PD(G,H);
1140 Heps = _mm_mul_pd(vfeps,H);
1141 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1142 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1143 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1145 fscal = felec;
1147 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1149 /* Calculate temporary vectorial force */
1150 tx = _mm_mul_pd(fscal,dx20);
1151 ty = _mm_mul_pd(fscal,dy20);
1152 tz = _mm_mul_pd(fscal,dz20);
1154 /* Update vectorial force */
1155 fix2 = _mm_add_pd(fix2,tx);
1156 fiy2 = _mm_add_pd(fiy2,ty);
1157 fiz2 = _mm_add_pd(fiz2,tz);
1159 fjx0 = _mm_add_pd(fjx0,tx);
1160 fjy0 = _mm_add_pd(fjy0,ty);
1161 fjz0 = _mm_add_pd(fjz0,tz);
1163 /**************************
1164 * CALCULATE INTERACTIONS *
1165 **************************/
1167 r30 = _mm_mul_pd(rsq30,rinv30);
1169 /* Compute parameters for interactions between i and j atoms */
1170 qq30 = _mm_mul_pd(iq3,jq0);
1172 /* Calculate table index by multiplying r with table scale and truncate to integer */
1173 rt = _mm_mul_pd(r30,vftabscale);
1174 vfitab = _mm_cvttpd_epi32(rt);
1175 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1176 vfitab = _mm_slli_epi32(vfitab,2);
1178 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1179 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1180 F = _mm_setzero_pd();
1181 GMX_MM_TRANSPOSE2_PD(Y,F);
1182 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1183 H = _mm_setzero_pd();
1184 GMX_MM_TRANSPOSE2_PD(G,H);
1185 Heps = _mm_mul_pd(vfeps,H);
1186 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1187 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1188 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1190 fscal = felec;
1192 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194 /* Calculate temporary vectorial force */
1195 tx = _mm_mul_pd(fscal,dx30);
1196 ty = _mm_mul_pd(fscal,dy30);
1197 tz = _mm_mul_pd(fscal,dz30);
1199 /* Update vectorial force */
1200 fix3 = _mm_add_pd(fix3,tx);
1201 fiy3 = _mm_add_pd(fiy3,ty);
1202 fiz3 = _mm_add_pd(fiz3,tz);
1204 fjx0 = _mm_add_pd(fjx0,tx);
1205 fjy0 = _mm_add_pd(fjy0,ty);
1206 fjz0 = _mm_add_pd(fjz0,tz);
1208 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1210 /* Inner loop uses 147 flops */
1213 /* End of innermost loop */
1215 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1216 f+i_coord_offset,fshift+i_shift_offset);
1218 /* Increment number of inner iterations */
1219 inneriter += j_index_end - j_index_start;
1221 /* Outer loop uses 24 flops */
1224 /* Increment number of outer iterations */
1225 outeriter += nri;
1227 /* Update outer/inner flops */
1229 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);