Thu Jan 18 00:32:43 1996 Roland McGrath <roland@churchy.gnu.ai.mit.edu>
[glibc.git] / stdio-common / printf_fp.c
blob05bfd493ee2849e33578c06e5a7f7c081522f0a1
1 /* Floating point output for `printf'.
2 Copyright (C) 1995 Free Software Foundation, Inc.
3 Written by Ulrich Drepper.
5 This file is part of the GNU C Library.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
20 Cambridge, MA 02139, USA. */
22 #ifdef USE_IN_LIBIO
23 # include <libioP.h>
24 #else
25 # include <stdio.h>
26 #endif
27 #include <alloca.h>
28 #include <ansidecl.h>
29 #include <ctype.h>
30 #include <float.h>
31 #include <gmp-mparam.h>
32 #include "../stdlib/gmp.h"
33 #include "../stdlib/gmp-impl.h"
34 #include "../stdlib/longlong.h"
35 #include "../stdlib/fpioconst.h"
36 #include "../locale/localeinfo.h"
37 #include <limits.h>
38 #include <math.h>
39 #include <printf.h>
40 #include <string.h>
41 #include <unistd.h>
42 #include <stdlib.h>
44 #define NDEBUG /* Undefine this for debugging assertions. */
45 #include <assert.h>
47 /* This defines make it possible to use the same code for GNU C library and
48 the GNU I/O library. */
49 #ifdef USE_IN_LIBIO
50 # define PUT(f, s, n) _IO_sputn (f, s, n)
51 # define PAD(f, c, n) _IO_padn (f, c, n)
52 /* We use this file GNU C library and GNU I/O library. So make
53 names equal. */
54 # undef putc
55 # define putc(c, f) _IO_putc (c, f)
56 # define size_t _IO_size_t
57 # define FILE _IO_FILE
58 #else /* ! USE_IN_LIBIO */
59 # define PUT(f, s, n) fwrite (s, 1, n, f)
60 # define PAD(f, c, n) __printf_pad (f, c, n)
61 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
62 #endif /* USE_IN_LIBIO */
64 /* Macros for doing the actual output. */
66 #define outchar(ch) \
67 do \
68 { \
69 register CONST int outc = (ch); \
70 if (putc (outc, fp) == EOF) \
71 return -1; \
72 ++done; \
73 } while (0)
75 #define PRINT(ptr, len) \
76 do \
77 { \
78 register size_t outlen = (len); \
79 if (len > 20) \
80 { \
81 if (PUT (fp, ptr, outlen) != outlen) \
82 return -1; \
83 ptr += outlen; \
84 done += outlen; \
85 } \
86 else \
87 { \
88 while (outlen-- > 0) \
89 outchar (*ptr++); \
90 } \
91 } while (0)
93 #define PADN(ch, len) \
94 do \
95 { \
96 if (PAD (fp, ch, len) != len) \
97 return -1; \
98 done += len; \
99 } \
100 while (0)
102 /* We use the GNU MP library to handle large numbers.
104 An MP variable occupies a varying number of entries in its array. We keep
105 track of this number for efficiency reasons. Otherwise we would always
106 have to process the whole array. */
107 #define MPN_VAR(name) mp_limb *name; mp_size_t name##size
109 #define MPN_ASSIGN(dst,src) \
110 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
111 #define MPN_GE(u,v) \
112 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
114 extern int __isinfl (long double), __isnanl (long double);
116 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
117 int *expt, int *is_neg,
118 double value);
119 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
120 int *expt, int *is_neg,
121 long double value);
124 static unsigned int guess_grouping (unsigned int intdig_max,
125 const char *grouping, wchar_t sepchar);
126 static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
127 const char *grouping, wchar_t thousands_sep);
131 __printf_fp (fp, info, args)
132 FILE *fp;
133 const struct printf_info *info;
134 const *const *args;
136 /* The floating-point value to output. */
137 union
139 double dbl;
140 LONG_DOUBLE ldbl;
142 fpnum;
144 /* Locale-dependent representation of decimal point. */
145 wchar_t decimal;
147 /* Locale-dependent thousands separator and grouping specification. */
148 wchar_t thousands_sep;
149 const char *grouping;
151 /* "NaN" or "Inf" for the special cases. */
152 CONST char *special = NULL;
154 /* We need just a few limbs for the input before shifting to the right
155 position. */
156 mp_limb fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
157 /* We need to shift the contents of fp_input by this amount of bits. */
158 int to_shift;
160 /* The significant of the floting-point value in question */
161 MPN_VAR(frac);
162 /* and the exponent. */
163 int exponent;
164 /* Sign of the exponent. */
165 int expsign = 0;
166 /* Sign of float number. */
167 int is_neg = 0;
169 /* Scaling factor. */
170 MPN_VAR(scale);
172 /* Temporary bignum value. */
173 MPN_VAR(tmp);
175 /* Digit which is result of last hack_digit() call. */
176 int digit;
178 /* The type of output format that will be used: 'e'/'E' or 'f'. */
179 int type;
181 /* Counter for number of written characters. */
182 int done = 0;
184 /* General helper (carry limb). */
185 mp_limb cy;
187 char hack_digit (void)
189 mp_limb hi;
191 if (expsign != 0 && type == 'f' && exponent-- > 0)
192 hi = 0;
193 else if (scalesize == 0)
195 hi = frac[fracsize - 1];
196 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
197 frac[fracsize - 1] = cy;
199 else
201 if (fracsize < scalesize)
202 hi = 0;
203 else
205 hi = __mpn_divmod (tmp, frac, fracsize, scale, scalesize);
206 tmp[fracsize - scalesize] = hi;
207 hi = tmp[0];
209 fracsize = __mpn_normal_size (frac, scalesize);
210 if (fracsize == 0)
212 /* We're not prepared for an mpn variable with zero
213 limbs. */
214 fracsize = 1;
215 return '0' + hi;
219 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
220 if (cy != 0)
221 frac[fracsize++] = cy;
224 return '0' + hi;
228 /* Figure out the decimal point character. */
229 if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
230 strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
231 decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
234 if (info->group)
236 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
237 if (*grouping <= 0 || *grouping == CHAR_MAX)
238 grouping = NULL;
239 else
241 /* Figure out the thousands seperator character. */
242 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP),
243 strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP))) <= 0)
244 thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
245 if (thousands_sep == L'\0')
246 grouping = NULL;
249 else
250 grouping = NULL;
252 /* Fetch the argument value. */
253 if (info->is_long_double && sizeof (long double) > sizeof (double))
255 fpnum.ldbl = *(const long double *) args[0];
257 /* Check for special values: not a number or infinity. */
258 if (__isnanl (fpnum.ldbl))
260 special = "NaN";
261 is_neg = 0;
263 else if (__isinfl (fpnum.ldbl))
265 special = "Inf";
266 is_neg = fpnum.ldbl < 0;
268 else
270 fracsize = __mpn_extract_long_double (fp_input,
271 (sizeof (fp_input) /
272 sizeof (fp_input[0])),
273 &exponent, &is_neg,
274 fpnum.ldbl);
275 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
278 else
280 fpnum.dbl = *(const double *) args[0];
282 /* Check for special values: not a number or infinity. */
283 if (__isnan (fpnum.dbl))
285 special = "NaN";
286 is_neg = 0;
288 else if (__isinf (fpnum.dbl))
290 special = "Inf";
291 is_neg = fpnum.dbl < 0;
293 else
295 fracsize = __mpn_extract_double (fp_input,
296 (sizeof (fp_input)
297 / sizeof (fp_input[0])),
298 &exponent, &is_neg, fpnum.dbl);
299 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
303 if (special)
305 int width = info->prec > info->width ? info->prec : info->width;
307 if (is_neg || info->showsign || info->space)
308 --width;
309 width -= 3;
311 if (!info->left && width > 0)
312 PADN (' ', width);
314 if (is_neg)
315 outchar ('-');
316 else if (info->showsign)
317 outchar ('+');
318 else if (info->space)
319 outchar (' ');
321 PRINT (special, 3);
323 if (info->left && width > 0)
324 PADN (' ', width);
326 return done;
330 /* We need three multiprecision variables. Now that we have the exponent
331 of the number we can allocate the needed memory. It would be more
332 efficient to use variables of the fixed maximum size but because this
333 would be really big it could lead to memory problems. */
335 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
336 / BITS_PER_MP_LIMB + 3) * sizeof (mp_limb);
337 frac = (mp_limb *) alloca (bignum_size);
338 tmp = (mp_limb *) alloca (bignum_size);
339 scale = (mp_limb *) alloca (bignum_size);
342 /* We now have to distinguish between numbers with positive and negative
343 exponents because the method used for the one is not applicable/efficient
344 for the other. */
345 scalesize = 0;
346 if (exponent > 2)
348 /* |FP| >= 8.0. */
349 int scaleexpo = 0;
350 int explog = LDBL_MAX_10_EXP_LOG;
351 int exp10 = 0;
352 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
353 int cnt_h, cnt_l, i;
355 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
357 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
358 fp_input, fracsize);
359 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
361 else
363 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
364 fp_input, fracsize,
365 (exponent + to_shift) % BITS_PER_MP_LIMB);
366 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
367 if (cy)
368 frac[fracsize++] = cy;
370 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
372 assert (tens > &_fpioconst_pow10[0]);
375 --tens;
377 /* The number of the product of two binary numbers with n and m
378 bits respectively has m+n or m+n-1 bits. */
379 if (exponent >= scaleexpo + tens->p_expo - 1)
381 if (scalesize == 0)
382 MPN_ASSIGN (tmp, tens->array);
383 else
385 cy = __mpn_mul (tmp, scale, scalesize,
386 tens->array + 2, tens->arraysize - 2);
387 tmpsize = scalesize + tens->arraysize - 2;
388 if (cy == 0)
389 --tmpsize;
392 if (MPN_GE (frac, tmp))
394 int cnt;
395 MPN_ASSIGN (scale, tmp);
396 count_leading_zeros (cnt, scale[scalesize - 1]);
397 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
398 exp10 |= 1 << explog;
401 --explog;
403 while (tens > &_fpioconst_pow10[0]);
404 exponent = exp10;
406 /* Optimize number representations. We want to represent the numbers
407 with the lowest number of bytes possible without losing any
408 bytes. Also the highest bit in the scaling factor has to be set
409 (this is a requirement of the MPN division routines). */
410 if (scalesize > 0)
412 /* Determine minimum number of zero bits at the end of
413 both numbers. */
414 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
417 /* Determine number of bits the scaling factor is misplaced. */
418 count_leading_zeros (cnt_h, scale[scalesize - 1]);
420 if (cnt_h == 0)
422 /* The highest bit of the scaling factor is already set. So
423 we only have to remove the trailing empty limbs. */
424 if (i > 0)
426 MPN_COPY_INCR (scale, scale + i, scalesize - i);
427 scalesize -= i;
428 MPN_COPY_INCR (frac, frac + i, fracsize - i);
429 fracsize -= i;
432 else
434 if (scale[i] != 0)
436 count_trailing_zeros (cnt_l, scale[i]);
437 if (frac[i] != 0)
439 int cnt_l2;
440 count_trailing_zeros (cnt_l2, frac[i]);
441 if (cnt_l2 < cnt_l)
442 cnt_l = cnt_l2;
445 else
446 count_trailing_zeros (cnt_l, frac[i]);
448 /* Now shift the numbers to their optimal position. */
449 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
451 /* We cannot save any memory. So just roll both numbers
452 so that the scaling factor has its highest bit set. */
454 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
455 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
456 if (cy != 0)
457 frac[fracsize++] = cy;
459 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
461 /* We can save memory by removing the trailing zero limbs
462 and by packing the non-zero limbs which gain another
463 free one. */
465 (void) __mpn_rshift (scale, scale + i, scalesize - i,
466 BITS_PER_MP_LIMB - cnt_h);
467 scalesize -= i + 1;
468 (void) __mpn_rshift (frac, frac + i, fracsize - i,
469 BITS_PER_MP_LIMB - cnt_h);
470 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
472 else
474 /* We can only save the memory of the limbs which are zero.
475 The non-zero parts occupy the same number of limbs. */
477 (void) __mpn_rshift (scale, scale + (i - 1),
478 scalesize - (i - 1),
479 BITS_PER_MP_LIMB - cnt_h);
480 scalesize -= i;
481 (void) __mpn_rshift (frac, frac + (i - 1),
482 fracsize - (i - 1),
483 BITS_PER_MP_LIMB - cnt_h);
484 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
489 else if (exponent < 0)
491 /* |FP| < 1.0. */
492 int exp10 = 0;
493 int explog = LDBL_MAX_10_EXP_LOG;
494 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
495 mp_size_t used_limbs = fracsize - 1;
497 /* Now shift the input value to its right place. */
498 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
499 frac[fracsize++] = cy;
500 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
502 expsign = 1;
503 exponent = -exponent;
505 assert (tens != &_fpioconst_pow10[0]);
508 --tens;
510 if (exponent >= tens->m_expo)
512 int i, incr, cnt_h, cnt_l;
513 mp_limb topval[2];
515 /* The __mpn_mul function expects the first argument to be
516 bigger than the second. */
517 if (fracsize < tens->arraysize - 2)
518 cy = __mpn_mul (tmp, &tens->array[2], tens->arraysize - 2,
519 frac, fracsize);
520 else
521 cy = __mpn_mul (tmp, frac, fracsize,
522 &tens->array[2], tens->arraysize - 2);
523 tmpsize = fracsize + tens->arraysize - 2;
524 if (cy == 0)
525 --tmpsize;
527 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
528 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
529 + BITS_PER_MP_LIMB - 1 - cnt_h;
531 assert (incr <= tens->p_expo);
533 /* If we increased the exponent by exactly 3 we have to test
534 for overflow. This is done by comparing with 10 shifted
535 to the right position. */
536 if (incr == exponent + 3)
537 if (cnt_h <= BITS_PER_MP_LIMB - 4)
539 topval[0] = 0;
540 topval[1] = 10 << (BITS_PER_MP_LIMB - 4 - cnt_h);
542 else
544 topval[0] = 10 << (BITS_PER_MP_LIMB - 4);
545 topval[1] = 0;
546 (void) __mpn_lshift (topval, topval, 2,
547 BITS_PER_MP_LIMB - cnt_h);
550 /* We have to be careful when multiplying the last factor.
551 If the result is greater than 1.0 be have to test it
552 against 10.0. If it is greater or equal to 10.0 the
553 multiplication was not valid. This is because we cannot
554 determine the number of bits in the result in advance. */
555 if (incr < exponent + 3
556 || (incr == exponent + 3 &&
557 (tmp[tmpsize - 1] < topval[1]
558 || (tmp[tmpsize - 1] == topval[1]
559 && tmp[tmpsize - 2] < topval[0]))))
561 /* The factor is right. Adapt binary and decimal
562 exponents. */
563 exponent -= incr;
564 exp10 |= 1 << explog;
566 /* If this factor yields a number greater or equal to
567 1.0, we must not shift the non-fractional digits down. */
568 if (exponent < 0)
569 cnt_h += -exponent;
571 /* Now we optimize the number representation. */
572 for (i = 0; tmp[i] == 0; ++i);
573 if (cnt_h == BITS_PER_MP_LIMB - 1)
575 MPN_COPY (frac, tmp + i, tmpsize - i);
576 fracsize = tmpsize - i;
578 else
580 count_trailing_zeros (cnt_l, tmp[i]);
582 /* Now shift the numbers to their optimal position. */
583 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
585 /* We cannot save any memory. Just roll the
586 number so that the leading digit is in a
587 seperate limb. */
589 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
590 fracsize = tmpsize + 1;
591 frac[fracsize - 1] = cy;
593 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
595 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
596 BITS_PER_MP_LIMB - 1 - cnt_h);
597 fracsize = tmpsize - i;
599 else
601 /* We can only save the memory of the limbs which
602 are zero. The non-zero parts occupy the same
603 number of limbs. */
605 (void) __mpn_rshift (frac, tmp + (i - 1),
606 tmpsize - (i - 1),
607 BITS_PER_MP_LIMB - 1 - cnt_h);
608 fracsize = tmpsize - (i - 1);
611 used_limbs = fracsize - 1;
614 --explog;
616 while (tens != &_fpioconst_pow10[1] && exponent > 0);
617 /* All factors but 10^-1 are tested now. */
618 if (exponent > 0)
620 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
621 tmpsize = fracsize;
622 assert (cy == 0 || tmp[tmpsize - 1] < 20);
624 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
625 fracsize = tmpsize;
626 exp10 |= 1;
627 assert (frac[fracsize - 1] < 10);
629 exponent = exp10;
631 else
633 /* This is a special case. We don't need a factor because the
634 numbers are in the range of 0.0 <= fp < 8.0. We simply
635 shift it to the right place and divide it by 1.0 to get the
636 leading digit. (Of course this division is not really made.) */
637 assert (0 <= exponent && exponent < 3 &&
638 exponent + to_shift < BITS_PER_MP_LIMB);
640 /* Now shift the input value to its right place. */
641 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
642 frac[fracsize++] = cy;
643 exponent = 0;
647 int width = info->width;
648 char *buffer, *startp, *cp;
649 int chars_needed;
650 int expscale;
651 int intdig_max, intdig_no = 0;
652 int fracdig_min, fracdig_max, fracdig_no = 0;
653 int dig_max;
654 int significant;
656 if (tolower (info->spec) == 'e')
658 type = info->spec;
659 intdig_max = 1;
660 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
661 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
662 /* d . ddd e +- ddd */
663 dig_max = INT_MAX; /* Unlimited. */
664 significant = 1; /* Does not matter here. */
666 else if (info->spec == 'f')
668 type = 'f';
669 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
670 if (expsign == 0)
672 intdig_max = exponent + 1;
673 /* This can be really big! */ /* XXX Maybe malloc if too big? */
674 chars_needed = exponent + 1 + 1 + fracdig_max;
676 else
678 intdig_max = 1;
679 chars_needed = 1 + 1 + fracdig_max;
681 dig_max = INT_MAX; /* Unlimited. */
682 significant = 1; /* Does not matter here. */
684 else
686 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
687 if ((expsign == 0 && exponent >= dig_max)
688 || (expsign != 0 && exponent > 4))
690 type = isupper (info->spec) ? 'E' : 'e';
691 fracdig_max = dig_max - 1;
692 intdig_max = 1;
693 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
695 else
697 type = 'f';
698 intdig_max = expsign == 0 ? exponent + 1 : 0;
699 fracdig_max = dig_max - intdig_max;
700 /* We need space for the significant digits and perhaps for
701 leading zeros when < 1.0. Pessimistic guess: dig_max. */
702 chars_needed = dig_max + dig_max + 1;
704 fracdig_min = info->alt ? fracdig_max : 0;
705 significant = 0; /* We count significant digits. */
708 if (grouping)
709 /* Guess the number of groups we will make, and thus how
710 many spaces we need for separator characters. */
711 chars_needed += guess_grouping (intdig_max, grouping, thousands_sep);
713 /* Allocate buffer for output. We need two more because while rounding
714 it is possible that we need two more characters in front of all the
715 other output. */
716 buffer = alloca (2 + chars_needed);
717 cp = startp = buffer + 2; /* Let room for rounding. */
719 /* Do the real work: put digits in allocated buffer. */
720 if (expsign == 0 || type != 'f')
722 assert (expsign == 0 || intdig_max == 1);
723 while (intdig_no < intdig_max)
725 ++intdig_no;
726 *cp++ = hack_digit ();
728 significant = 1;
729 if (info->alt
730 || fracdig_min > 0
731 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
732 *cp++ = decimal;
734 else
736 /* |fp| < 1.0 and the selected type is 'f', so put "0."
737 in the buffer. */
738 *cp++ = '0';
739 --exponent;
740 *cp++ = decimal;
743 /* Generate the needed number of fractional digits. */
744 while (fracdig_no < fracdig_min
745 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
747 ++fracdig_no;
748 *cp = hack_digit ();
749 if (*cp != '0')
750 significant = 1;
751 else if (significant == 0)
753 ++fracdig_max;
754 if (fracdig_min > 0)
755 ++fracdig_min;
757 ++cp;
760 /* Do rounding. */
761 digit = hack_digit ();
762 if (digit > '4')
764 char *tp = cp;
766 if (digit == '5')
767 /* This is the critical case. */
768 if (fracsize == 1 && frac[0] == 0)
769 /* Rest of the number is zero -> round to even.
770 (IEEE 754-1985 4.1 says this is the default rounding.) */
771 if ((*(cp - 1) & 1) == 0)
772 goto do_expo;
774 if (fracdig_no > 0)
776 /* Process fractional digits. Terminate if not rounded or
777 radix character is reached. */
778 while (*--tp != decimal && *tp == '9')
779 *tp = '0';
780 if (*tp != decimal)
781 /* Round up. */
782 (*tp)++;
785 if (fracdig_no == 0 || *tp == decimal)
787 /* Round the integer digits. */
788 if (*(tp - 1) == decimal)
789 --tp;
791 while (--tp >= startp && *tp == '9')
792 *tp = '0';
794 if (tp >= startp)
795 /* Round up. */
796 (*tp)++;
797 else
798 /* It is more citical. All digits were 9's. */
800 if (type != 'f')
802 *startp = '1';
803 exponent += expsign == 0 ? 1 : -1;
805 else if (intdig_no == dig_max)
807 /* This is the case where for type %g the number fits
808 really in the range for %f output but after rounding
809 the number of digits is too big. */
810 *--startp = decimal;
811 *--startp = '1';
813 if (info->alt || fracdig_no > 0)
815 /* Overwrite the old radix character. */
816 startp[intdig_no + 2] = '0';
817 ++fracdig_no;
820 fracdig_no += intdig_no;
821 intdig_no = 1;
822 fracdig_max = intdig_max - intdig_no;
823 ++exponent;
824 /* Now we must print the exponent. */
825 type = isupper (info->spec) ? 'E' : 'e';
827 else
829 /* We can simply add another another digit before the
830 radix. */
831 *--startp = '1';
832 ++intdig_no;
835 /* While rounding the number of digits can change.
836 If the number now exceeds the limits remove some
837 fractional digits. */
838 if (intdig_no + fracdig_no > dig_max)
840 cp -= intdig_no + fracdig_no - dig_max;
841 fracdig_no -= intdig_no + fracdig_no - dig_max;
847 do_expo:
848 /* Now remove unnecessary '0' at the end of the string. */
849 while (fracdig_no > fracdig_min && *(cp - 1) == '0')
851 --cp;
852 --fracdig_no;
854 /* If we eliminate all fractional digits we perhaps also can remove
855 the radix character. */
856 if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
857 --cp;
859 if (grouping)
860 /* Add in separator characters, overwriting the same buffer. */
861 cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
863 /* Write the exponent if it is needed. */
864 if (type != 'f')
866 *cp++ = type;
867 *cp++ = expsign ? '-' : '+';
869 /* Find the magnitude of the exponent. */
870 expscale = 10;
871 while (expscale <= exponent)
872 expscale *= 10;
874 if (exponent < 10)
875 /* Exponent always has at least two digits. */
876 *cp++ = '0';
877 else
880 expscale /= 10;
881 *cp++ = '0' + (exponent / expscale);
882 exponent %= expscale;
884 while (expscale > 10);
885 *cp++ = '0' + exponent;
888 /* Compute number of characters which must be filled with the padding
889 character. */
890 if (is_neg || info->showsign || info->space)
891 --width;
892 width -= cp - startp;
894 if (!info->left && info->pad != '0' && width > 0)
895 PADN (info->pad, width);
897 if (is_neg)
898 outchar ('-');
899 else if (info->showsign)
900 outchar ('+');
901 else if (info->space)
902 outchar (' ');
904 if (!info->left && info->pad == '0' && width > 0)
905 PADN ('0', width);
907 PRINT (startp, cp - startp);
909 if (info->left && width > 0)
910 PADN (info->pad, width);
912 return done;
915 /* Return the number of extra grouping characters that will be inserted
916 into a number with INTDIG_MAX integer digits. */
918 static unsigned int
919 guess_grouping (unsigned int intdig_max, const char *grouping, wchar_t sepchar)
921 unsigned int groups;
923 /* We treat all negative values like CHAR_MAX. */
925 if (*grouping == CHAR_MAX || *grouping <= 0)
926 /* No grouping should be done. */
927 return 0;
929 groups = 0;
930 while (intdig_max > (unsigned int) *grouping)
932 ++groups;
933 intdig_max -= *grouping++;
935 if (*grouping == CHAR_MAX || *grouping < 0)
936 /* No more grouping should be done. */
937 break;
938 else if (*grouping == 0)
940 /* Same grouping repeats. */
941 groups += intdig_max / grouping[-1];
942 break;
946 return groups;
949 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
950 There is guaranteed enough space past BUFEND to extend it.
951 Return the new end of buffer. */
953 static char *
954 group_number (char *buf, char *bufend, unsigned int intdig_no,
955 const char *grouping, wchar_t thousands_sep)
957 unsigned int groups = guess_grouping (intdig_no, grouping, thousands_sep);
958 char *p;
960 if (groups == 0)
961 return bufend;
963 /* Move the fractional part down. */
964 memmove (buf + intdig_no + groups, buf + intdig_no,
965 bufend - (buf + intdig_no));
967 p = buf + intdig_no + groups - 1;
970 unsigned int len = *grouping++;
972 *p-- = buf[--intdig_no];
973 while (--len > 0);
974 *p-- = thousands_sep;
976 if (*grouping == CHAR_MAX || *grouping < 0)
977 /* No more grouping should be done. */
978 break;
979 else if (*grouping == 0)
980 /* Same grouping repeats. */
981 --grouping;
982 } while (intdig_no > (unsigned int) *grouping);
984 /* Copy the remaining ungrouped digits. */
986 *p-- = buf[--intdig_no];
987 while (p > buf);
989 return bufend + groups;