Sat May 27 16:23:22 1995 Jim Meyering (meyering@comco.com)
[glibc.git] / posix / regex.c
bloba79597c5425720d42b9986127c3029703a37da6a
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
8 This file is part of the GNU C Library. Its master source is NOT part of
9 the C library, however. The master source lives in /gd/gnu/lib.
11 The GNU C Library is free software; you can redistribute it and/or
12 modify it under the terms of the GNU Library General Public License as
13 published by the Free Software Foundation; either version 2 of the
14 License, or (at your option) any later version.
16 The GNU C Library is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 Library General Public License for more details.
21 You should have received a copy of the GNU Library General Public
22 License along with the GNU C Library; see the file COPYING.LIB. If
23 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
24 Cambridge, MA 02139, USA. */
26 /* AIX requires this to be the first thing in the file. */
27 #if defined (_AIX) && !defined (REGEX_MALLOC)
28 #pragma alloca
29 #endif
31 #define _GNU_SOURCE
33 #ifdef HAVE_CONFIG_H
34 #include <config.h>
35 #endif
37 /* We need this for `regex.h', and perhaps for the Emacs include files. */
38 #include <sys/types.h>
40 /* This is for other GNU distributions with internationalized messages. */
41 #if HAVE_LIBINTL_H || defined (_LIBC)
42 # include <libintl.h>
43 #else
44 # define gettext(msgid) (msgid)
45 #endif
47 /* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
49 #ifdef emacs
51 #include "lisp.h"
52 #include "buffer.h"
53 #include "syntax.h"
55 #else /* not emacs */
57 /* If we are not linking with Emacs proper,
58 we can't use the relocating allocator
59 even if config.h says that we can. */
60 #undef REL_ALLOC
62 #if defined (STDC_HEADERS) || defined (_LIBC)
63 #include <stdlib.h>
64 #else
65 char *malloc ();
66 char *realloc ();
67 #endif
69 /* We used to test for `BSTRING' here, but only GCC and Emacs define
70 `BSTRING', as far as I know, and neither of them use this code. */
71 #ifndef INHIBIT_STRING_HEADER
72 #if HAVE_STRING_H || STDC_HEADERS || defined (_LIBC)
73 #include <string.h>
74 #ifndef bcmp
75 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
76 #endif
77 #ifndef bcopy
78 #define bcopy(s, d, n) memcpy ((d), (s), (n))
79 #endif
80 #ifndef bzero
81 #define bzero(s, n) memset ((s), 0, (n))
82 #endif
83 #else
84 #include <strings.h>
85 #endif
86 #endif
88 /* Define the syntax stuff for \<, \>, etc. */
90 /* This must be nonzero for the wordchar and notwordchar pattern
91 commands in re_match_2. */
92 #ifndef Sword
93 #define Sword 1
94 #endif
96 #ifdef SWITCH_ENUM_BUG
97 #define SWITCH_ENUM_CAST(x) ((int)(x))
98 #else
99 #define SWITCH_ENUM_CAST(x) (x)
100 #endif
102 #ifdef SYNTAX_TABLE
104 extern char *re_syntax_table;
106 #else /* not SYNTAX_TABLE */
108 /* How many characters in the character set. */
109 #define CHAR_SET_SIZE 256
111 static char re_syntax_table[CHAR_SET_SIZE];
113 static void
114 init_syntax_once ()
116 register int c;
117 static int done = 0;
119 if (done)
120 return;
122 bzero (re_syntax_table, sizeof re_syntax_table);
124 for (c = 'a'; c <= 'z'; c++)
125 re_syntax_table[c] = Sword;
127 for (c = 'A'; c <= 'Z'; c++)
128 re_syntax_table[c] = Sword;
130 for (c = '0'; c <= '9'; c++)
131 re_syntax_table[c] = Sword;
133 re_syntax_table['_'] = Sword;
135 done = 1;
138 #endif /* not SYNTAX_TABLE */
140 #define SYNTAX(c) re_syntax_table[c]
142 #endif /* not emacs */
144 /* Get the interface, including the syntax bits. */
145 #include "regex.h"
147 /* isalpha etc. are used for the character classes. */
148 #include <ctype.h>
150 /* Jim Meyering writes:
152 "... Some ctype macros are valid only for character codes that
153 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
154 using /bin/cc or gcc but without giving an ansi option). So, all
155 ctype uses should be through macros like ISPRINT... If
156 STDC_HEADERS is defined, then autoconf has verified that the ctype
157 macros don't need to be guarded with references to isascii. ...
158 Defining isascii to 1 should let any compiler worth its salt
159 eliminate the && through constant folding." */
161 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
162 #define ISASCII(c) 1
163 #else
164 #define ISASCII(c) isascii(c)
165 #endif
167 #ifdef isblank
168 #define ISBLANK(c) (ISASCII (c) && isblank (c))
169 #else
170 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
171 #endif
172 #ifdef isgraph
173 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
174 #else
175 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
176 #endif
178 #define ISPRINT(c) (ISASCII (c) && isprint (c))
179 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
180 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
181 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
182 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
183 #define ISLOWER(c) (ISASCII (c) && islower (c))
184 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
185 #define ISSPACE(c) (ISASCII (c) && isspace (c))
186 #define ISUPPER(c) (ISASCII (c) && isupper (c))
187 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
189 #ifndef NULL
190 #define NULL 0
191 #endif
193 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
194 since ours (we hope) works properly with all combinations of
195 machines, compilers, `char' and `unsigned char' argument types.
196 (Per Bothner suggested the basic approach.) */
197 #undef SIGN_EXTEND_CHAR
198 #if __STDC__
199 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
200 #else /* not __STDC__ */
201 /* As in Harbison and Steele. */
202 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
203 #endif
205 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
206 use `alloca' instead of `malloc'. This is because using malloc in
207 re_search* or re_match* could cause memory leaks when C-g is used in
208 Emacs; also, malloc is slower and causes storage fragmentation. On
209 the other hand, malloc is more portable, and easier to debug.
211 Because we sometimes use alloca, some routines have to be macros,
212 not functions -- `alloca'-allocated space disappears at the end of the
213 function it is called in. */
215 #ifdef REGEX_MALLOC
217 #define REGEX_ALLOCATE malloc
218 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
219 #define REGEX_FREE free
221 #else /* not REGEX_MALLOC */
223 /* Emacs already defines alloca, sometimes. */
224 #ifndef alloca
226 /* Make alloca work the best possible way. */
227 #ifdef __GNUC__
228 #define alloca __builtin_alloca
229 #else /* not __GNUC__ */
230 #if HAVE_ALLOCA_H
231 #include <alloca.h>
232 #else /* not __GNUC__ or HAVE_ALLOCA_H */
233 #ifndef _AIX /* Already did AIX, up at the top. */
234 char *alloca ();
235 #endif /* not _AIX */
236 #endif /* not HAVE_ALLOCA_H */
237 #endif /* not __GNUC__ */
239 #endif /* not alloca */
241 #define REGEX_ALLOCATE alloca
243 /* Assumes a `char *destination' variable. */
244 #define REGEX_REALLOCATE(source, osize, nsize) \
245 (destination = (char *) alloca (nsize), \
246 bcopy (source, destination, osize), \
247 destination)
249 /* No need to do anything to free, after alloca. */
250 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
252 #endif /* not REGEX_MALLOC */
254 /* Define how to allocate the failure stack. */
256 #ifdef REL_ALLOC
257 #define REGEX_ALLOCATE_STACK(size) \
258 r_alloc (&failure_stack_ptr, (size))
259 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
260 r_re_alloc (&failure_stack_ptr, (nsize))
261 #define REGEX_FREE_STACK(ptr) \
262 r_alloc_free (&failure_stack_ptr)
264 #else /* not REL_ALLOC */
266 #ifdef REGEX_MALLOC
268 #define REGEX_ALLOCATE_STACK malloc
269 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
270 #define REGEX_FREE_STACK free
272 #else /* not REGEX_MALLOC */
274 #define REGEX_ALLOCATE_STACK alloca
276 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
277 REGEX_REALLOCATE (source, osize, nsize)
278 /* No need to explicitly free anything. */
279 #define REGEX_FREE_STACK(arg)
281 #endif /* not REGEX_MALLOC */
282 #endif /* not REL_ALLOC */
285 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
286 `string1' or just past its end. This works if PTR is NULL, which is
287 a good thing. */
288 #define FIRST_STRING_P(ptr) \
289 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
291 /* (Re)Allocate N items of type T using malloc, or fail. */
292 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
293 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
294 #define RETALLOC_IF(addr, n, t) \
295 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
296 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
298 #define BYTEWIDTH 8 /* In bits. */
300 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
302 #undef MAX
303 #undef MIN
304 #define MAX(a, b) ((a) > (b) ? (a) : (b))
305 #define MIN(a, b) ((a) < (b) ? (a) : (b))
307 typedef char boolean;
308 #define false 0
309 #define true 1
311 static int re_match_2_internal ();
313 /* These are the command codes that appear in compiled regular
314 expressions. Some opcodes are followed by argument bytes. A
315 command code can specify any interpretation whatsoever for its
316 arguments. Zero bytes may appear in the compiled regular expression. */
318 typedef enum
320 no_op = 0,
322 /* Succeed right away--no more backtracking. */
323 succeed,
325 /* Followed by one byte giving n, then by n literal bytes. */
326 exactn,
328 /* Matches any (more or less) character. */
329 anychar,
331 /* Matches any one char belonging to specified set. First
332 following byte is number of bitmap bytes. Then come bytes
333 for a bitmap saying which chars are in. Bits in each byte
334 are ordered low-bit-first. A character is in the set if its
335 bit is 1. A character too large to have a bit in the map is
336 automatically not in the set. */
337 charset,
339 /* Same parameters as charset, but match any character that is
340 not one of those specified. */
341 charset_not,
343 /* Start remembering the text that is matched, for storing in a
344 register. Followed by one byte with the register number, in
345 the range 0 to one less than the pattern buffer's re_nsub
346 field. Then followed by one byte with the number of groups
347 inner to this one. (This last has to be part of the
348 start_memory only because we need it in the on_failure_jump
349 of re_match_2.) */
350 start_memory,
352 /* Stop remembering the text that is matched and store it in a
353 memory register. Followed by one byte with the register
354 number, in the range 0 to one less than `re_nsub' in the
355 pattern buffer, and one byte with the number of inner groups,
356 just like `start_memory'. (We need the number of inner
357 groups here because we don't have any easy way of finding the
358 corresponding start_memory when we're at a stop_memory.) */
359 stop_memory,
361 /* Match a duplicate of something remembered. Followed by one
362 byte containing the register number. */
363 duplicate,
365 /* Fail unless at beginning of line. */
366 begline,
368 /* Fail unless at end of line. */
369 endline,
371 /* Succeeds if at beginning of buffer (if emacs) or at beginning
372 of string to be matched (if not). */
373 begbuf,
375 /* Analogously, for end of buffer/string. */
376 endbuf,
378 /* Followed by two byte relative address to which to jump. */
379 jump,
381 /* Same as jump, but marks the end of an alternative. */
382 jump_past_alt,
384 /* Followed by two-byte relative address of place to resume at
385 in case of failure. */
386 on_failure_jump,
388 /* Like on_failure_jump, but pushes a placeholder instead of the
389 current string position when executed. */
390 on_failure_keep_string_jump,
392 /* Throw away latest failure point and then jump to following
393 two-byte relative address. */
394 pop_failure_jump,
396 /* Change to pop_failure_jump if know won't have to backtrack to
397 match; otherwise change to jump. This is used to jump
398 back to the beginning of a repeat. If what follows this jump
399 clearly won't match what the repeat does, such that we can be
400 sure that there is no use backtracking out of repetitions
401 already matched, then we change it to a pop_failure_jump.
402 Followed by two-byte address. */
403 maybe_pop_jump,
405 /* Jump to following two-byte address, and push a dummy failure
406 point. This failure point will be thrown away if an attempt
407 is made to use it for a failure. A `+' construct makes this
408 before the first repeat. Also used as an intermediary kind
409 of jump when compiling an alternative. */
410 dummy_failure_jump,
412 /* Push a dummy failure point and continue. Used at the end of
413 alternatives. */
414 push_dummy_failure,
416 /* Followed by two-byte relative address and two-byte number n.
417 After matching N times, jump to the address upon failure. */
418 succeed_n,
420 /* Followed by two-byte relative address, and two-byte number n.
421 Jump to the address N times, then fail. */
422 jump_n,
424 /* Set the following two-byte relative address to the
425 subsequent two-byte number. The address *includes* the two
426 bytes of number. */
427 set_number_at,
429 wordchar, /* Matches any word-constituent character. */
430 notwordchar, /* Matches any char that is not a word-constituent. */
432 wordbeg, /* Succeeds if at word beginning. */
433 wordend, /* Succeeds if at word end. */
435 wordbound, /* Succeeds if at a word boundary. */
436 notwordbound /* Succeeds if not at a word boundary. */
438 #ifdef emacs
439 ,before_dot, /* Succeeds if before point. */
440 at_dot, /* Succeeds if at point. */
441 after_dot, /* Succeeds if after point. */
443 /* Matches any character whose syntax is specified. Followed by
444 a byte which contains a syntax code, e.g., Sword. */
445 syntaxspec,
447 /* Matches any character whose syntax is not that specified. */
448 notsyntaxspec
449 #endif /* emacs */
450 } re_opcode_t;
452 /* Common operations on the compiled pattern. */
454 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
456 #define STORE_NUMBER(destination, number) \
457 do { \
458 (destination)[0] = (number) & 0377; \
459 (destination)[1] = (number) >> 8; \
460 } while (0)
462 /* Same as STORE_NUMBER, except increment DESTINATION to
463 the byte after where the number is stored. Therefore, DESTINATION
464 must be an lvalue. */
466 #define STORE_NUMBER_AND_INCR(destination, number) \
467 do { \
468 STORE_NUMBER (destination, number); \
469 (destination) += 2; \
470 } while (0)
472 /* Put into DESTINATION a number stored in two contiguous bytes starting
473 at SOURCE. */
475 #define EXTRACT_NUMBER(destination, source) \
476 do { \
477 (destination) = *(source) & 0377; \
478 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
479 } while (0)
481 #ifdef DEBUG
482 static void
483 extract_number (dest, source)
484 int *dest;
485 unsigned char *source;
487 int temp = SIGN_EXTEND_CHAR (*(source + 1));
488 *dest = *source & 0377;
489 *dest += temp << 8;
492 #ifndef EXTRACT_MACROS /* To debug the macros. */
493 #undef EXTRACT_NUMBER
494 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
495 #endif /* not EXTRACT_MACROS */
497 #endif /* DEBUG */
499 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
500 SOURCE must be an lvalue. */
502 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
503 do { \
504 EXTRACT_NUMBER (destination, source); \
505 (source) += 2; \
506 } while (0)
508 #ifdef DEBUG
509 static void
510 extract_number_and_incr (destination, source)
511 int *destination;
512 unsigned char **source;
514 extract_number (destination, *source);
515 *source += 2;
518 #ifndef EXTRACT_MACROS
519 #undef EXTRACT_NUMBER_AND_INCR
520 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
521 extract_number_and_incr (&dest, &src)
522 #endif /* not EXTRACT_MACROS */
524 #endif /* DEBUG */
526 /* If DEBUG is defined, Regex prints many voluminous messages about what
527 it is doing (if the variable `debug' is nonzero). If linked with the
528 main program in `iregex.c', you can enter patterns and strings
529 interactively. And if linked with the main program in `main.c' and
530 the other test files, you can run the already-written tests. */
532 #ifdef DEBUG
534 /* We use standard I/O for debugging. */
535 #include <stdio.h>
537 /* It is useful to test things that ``must'' be true when debugging. */
538 #include <assert.h>
540 static int debug = 0;
542 #define DEBUG_STATEMENT(e) e
543 #define DEBUG_PRINT1(x) if (debug) printf (x)
544 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
545 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
546 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
547 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
548 if (debug) print_partial_compiled_pattern (s, e)
549 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
550 if (debug) print_double_string (w, s1, sz1, s2, sz2)
553 /* Print the fastmap in human-readable form. */
555 void
556 print_fastmap (fastmap)
557 char *fastmap;
559 unsigned was_a_range = 0;
560 unsigned i = 0;
562 while (i < (1 << BYTEWIDTH))
564 if (fastmap[i++])
566 was_a_range = 0;
567 putchar (i - 1);
568 while (i < (1 << BYTEWIDTH) && fastmap[i])
570 was_a_range = 1;
571 i++;
573 if (was_a_range)
575 printf ("-");
576 putchar (i - 1);
580 putchar ('\n');
584 /* Print a compiled pattern string in human-readable form, starting at
585 the START pointer into it and ending just before the pointer END. */
587 void
588 print_partial_compiled_pattern (start, end)
589 unsigned char *start;
590 unsigned char *end;
592 int mcnt, mcnt2;
593 unsigned char *p = start;
594 unsigned char *pend = end;
596 if (start == NULL)
598 printf ("(null)\n");
599 return;
602 /* Loop over pattern commands. */
603 while (p < pend)
605 printf ("%d:\t", p - start);
607 switch ((re_opcode_t) *p++)
609 case no_op:
610 printf ("/no_op");
611 break;
613 case exactn:
614 mcnt = *p++;
615 printf ("/exactn/%d", mcnt);
618 putchar ('/');
619 putchar (*p++);
621 while (--mcnt);
622 break;
624 case start_memory:
625 mcnt = *p++;
626 printf ("/start_memory/%d/%d", mcnt, *p++);
627 break;
629 case stop_memory:
630 mcnt = *p++;
631 printf ("/stop_memory/%d/%d", mcnt, *p++);
632 break;
634 case duplicate:
635 printf ("/duplicate/%d", *p++);
636 break;
638 case anychar:
639 printf ("/anychar");
640 break;
642 case charset:
643 case charset_not:
645 register int c, last = -100;
646 register int in_range = 0;
648 printf ("/charset [%s",
649 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
651 assert (p + *p < pend);
653 for (c = 0; c < 256; c++)
654 if (c / 8 < *p
655 && (p[1 + (c/8)] & (1 << (c % 8))))
657 /* Are we starting a range? */
658 if (last + 1 == c && ! in_range)
660 putchar ('-');
661 in_range = 1;
663 /* Have we broken a range? */
664 else if (last + 1 != c && in_range)
666 putchar (last);
667 in_range = 0;
670 if (! in_range)
671 putchar (c);
673 last = c;
676 if (in_range)
677 putchar (last);
679 putchar (']');
681 p += 1 + *p;
683 break;
685 case begline:
686 printf ("/begline");
687 break;
689 case endline:
690 printf ("/endline");
691 break;
693 case on_failure_jump:
694 extract_number_and_incr (&mcnt, &p);
695 printf ("/on_failure_jump to %d", p + mcnt - start);
696 break;
698 case on_failure_keep_string_jump:
699 extract_number_and_incr (&mcnt, &p);
700 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
701 break;
703 case dummy_failure_jump:
704 extract_number_and_incr (&mcnt, &p);
705 printf ("/dummy_failure_jump to %d", p + mcnt - start);
706 break;
708 case push_dummy_failure:
709 printf ("/push_dummy_failure");
710 break;
712 case maybe_pop_jump:
713 extract_number_and_incr (&mcnt, &p);
714 printf ("/maybe_pop_jump to %d", p + mcnt - start);
715 break;
717 case pop_failure_jump:
718 extract_number_and_incr (&mcnt, &p);
719 printf ("/pop_failure_jump to %d", p + mcnt - start);
720 break;
722 case jump_past_alt:
723 extract_number_and_incr (&mcnt, &p);
724 printf ("/jump_past_alt to %d", p + mcnt - start);
725 break;
727 case jump:
728 extract_number_and_incr (&mcnt, &p);
729 printf ("/jump to %d", p + mcnt - start);
730 break;
732 case succeed_n:
733 extract_number_and_incr (&mcnt, &p);
734 extract_number_and_incr (&mcnt2, &p);
735 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
736 break;
738 case jump_n:
739 extract_number_and_incr (&mcnt, &p);
740 extract_number_and_incr (&mcnt2, &p);
741 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
742 break;
744 case set_number_at:
745 extract_number_and_incr (&mcnt, &p);
746 extract_number_and_incr (&mcnt2, &p);
747 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
748 break;
750 case wordbound:
751 printf ("/wordbound");
752 break;
754 case notwordbound:
755 printf ("/notwordbound");
756 break;
758 case wordbeg:
759 printf ("/wordbeg");
760 break;
762 case wordend:
763 printf ("/wordend");
765 #ifdef emacs
766 case before_dot:
767 printf ("/before_dot");
768 break;
770 case at_dot:
771 printf ("/at_dot");
772 break;
774 case after_dot:
775 printf ("/after_dot");
776 break;
778 case syntaxspec:
779 printf ("/syntaxspec");
780 mcnt = *p++;
781 printf ("/%d", mcnt);
782 break;
784 case notsyntaxspec:
785 printf ("/notsyntaxspec");
786 mcnt = *p++;
787 printf ("/%d", mcnt);
788 break;
789 #endif /* emacs */
791 case wordchar:
792 printf ("/wordchar");
793 break;
795 case notwordchar:
796 printf ("/notwordchar");
797 break;
799 case begbuf:
800 printf ("/begbuf");
801 break;
803 case endbuf:
804 printf ("/endbuf");
805 break;
807 default:
808 printf ("?%d", *(p-1));
811 putchar ('\n');
814 printf ("%d:\tend of pattern.\n", p - start);
818 void
819 print_compiled_pattern (bufp)
820 struct re_pattern_buffer *bufp;
822 unsigned char *buffer = bufp->buffer;
824 print_partial_compiled_pattern (buffer, buffer + bufp->used);
825 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
827 if (bufp->fastmap_accurate && bufp->fastmap)
829 printf ("fastmap: ");
830 print_fastmap (bufp->fastmap);
833 printf ("re_nsub: %d\t", bufp->re_nsub);
834 printf ("regs_alloc: %d\t", bufp->regs_allocated);
835 printf ("can_be_null: %d\t", bufp->can_be_null);
836 printf ("newline_anchor: %d\n", bufp->newline_anchor);
837 printf ("no_sub: %d\t", bufp->no_sub);
838 printf ("not_bol: %d\t", bufp->not_bol);
839 printf ("not_eol: %d\t", bufp->not_eol);
840 printf ("syntax: %d\n", bufp->syntax);
841 /* Perhaps we should print the translate table? */
845 void
846 print_double_string (where, string1, size1, string2, size2)
847 const char *where;
848 const char *string1;
849 const char *string2;
850 int size1;
851 int size2;
853 unsigned this_char;
855 if (where == NULL)
856 printf ("(null)");
857 else
859 if (FIRST_STRING_P (where))
861 for (this_char = where - string1; this_char < size1; this_char++)
862 putchar (string1[this_char]);
864 where = string2;
867 for (this_char = where - string2; this_char < size2; this_char++)
868 putchar (string2[this_char]);
872 #else /* not DEBUG */
874 #undef assert
875 #define assert(e)
877 #define DEBUG_STATEMENT(e)
878 #define DEBUG_PRINT1(x)
879 #define DEBUG_PRINT2(x1, x2)
880 #define DEBUG_PRINT3(x1, x2, x3)
881 #define DEBUG_PRINT4(x1, x2, x3, x4)
882 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
883 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
885 #endif /* not DEBUG */
887 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
888 also be assigned to arbitrarily: each pattern buffer stores its own
889 syntax, so it can be changed between regex compilations. */
890 /* This has no initializer because initialized variables in Emacs
891 become read-only after dumping. */
892 reg_syntax_t re_syntax_options;
895 /* Specify the precise syntax of regexps for compilation. This provides
896 for compatibility for various utilities which historically have
897 different, incompatible syntaxes.
899 The argument SYNTAX is a bit mask comprised of the various bits
900 defined in regex.h. We return the old syntax. */
902 reg_syntax_t
903 re_set_syntax (syntax)
904 reg_syntax_t syntax;
906 reg_syntax_t ret = re_syntax_options;
908 re_syntax_options = syntax;
909 return ret;
912 /* This table gives an error message for each of the error codes listed
913 in regex.h. Obviously the order here has to be same as there.
914 POSIX doesn't require that we do anything for REG_NOERROR,
915 but why not be nice? */
917 static const char *re_error_msgid[] =
918 { "Success", /* REG_NOERROR */
919 "No match", /* REG_NOMATCH */
920 "Invalid regular expression", /* REG_BADPAT */
921 "Invalid collation character", /* REG_ECOLLATE */
922 "Invalid character class name", /* REG_ECTYPE */
923 "Trailing backslash", /* REG_EESCAPE */
924 "Invalid back reference", /* REG_ESUBREG */
925 "Unmatched [ or [^", /* REG_EBRACK */
926 "Unmatched ( or \\(", /* REG_EPAREN */
927 "Unmatched \\{", /* REG_EBRACE */
928 "Invalid content of \\{\\}", /* REG_BADBR */
929 "Invalid range end", /* REG_ERANGE */
930 "Memory exhausted", /* REG_ESPACE */
931 "Invalid preceding regular expression", /* REG_BADRPT */
932 "Premature end of regular expression", /* REG_EEND */
933 "Regular expression too big", /* REG_ESIZE */
934 "Unmatched ) or \\)", /* REG_ERPAREN */
937 /* Avoiding alloca during matching, to placate r_alloc. */
939 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
940 searching and matching functions should not call alloca. On some
941 systems, alloca is implemented in terms of malloc, and if we're
942 using the relocating allocator routines, then malloc could cause a
943 relocation, which might (if the strings being searched are in the
944 ralloc heap) shift the data out from underneath the regexp
945 routines.
947 Here's another reason to avoid allocation: Emacs
948 processes input from X in a signal handler; processing X input may
949 call malloc; if input arrives while a matching routine is calling
950 malloc, then we're scrod. But Emacs can't just block input while
951 calling matching routines; then we don't notice interrupts when
952 they come in. So, Emacs blocks input around all regexp calls
953 except the matching calls, which it leaves unprotected, in the
954 faith that they will not malloc. */
956 /* Normally, this is fine. */
957 #define MATCH_MAY_ALLOCATE
959 /* When using GNU C, we are not REALLY using the C alloca, no matter
960 what config.h may say. So don't take precautions for it. */
961 #ifdef __GNUC__
962 #undef C_ALLOCA
963 #endif
965 /* The match routines may not allocate if (1) they would do it with malloc
966 and (2) it's not safe for them to use malloc.
967 Note that if REL_ALLOC is defined, matching would not use malloc for the
968 failure stack, but we would still use it for the register vectors;
969 so REL_ALLOC should not affect this. */
970 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
971 #undef MATCH_MAY_ALLOCATE
972 #endif
975 /* Failure stack declarations and macros; both re_compile_fastmap and
976 re_match_2 use a failure stack. These have to be macros because of
977 REGEX_ALLOCATE_STACK. */
980 /* Number of failure points for which to initially allocate space
981 when matching. If this number is exceeded, we allocate more
982 space, so it is not a hard limit. */
983 #ifndef INIT_FAILURE_ALLOC
984 #define INIT_FAILURE_ALLOC 5
985 #endif
987 /* Roughly the maximum number of failure points on the stack. Would be
988 exactly that if always used MAX_FAILURE_SPACE each time we failed.
989 This is a variable only so users of regex can assign to it; we never
990 change it ourselves. */
991 #if defined (MATCH_MAY_ALLOCATE)
992 int re_max_failures = 200000;
993 #else
994 int re_max_failures = 2000;
995 #endif
997 union fail_stack_elt
999 unsigned char *pointer;
1000 int integer;
1003 typedef union fail_stack_elt fail_stack_elt_t;
1005 typedef struct
1007 fail_stack_elt_t *stack;
1008 unsigned size;
1009 unsigned avail; /* Offset of next open position. */
1010 } fail_stack_type;
1012 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1013 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1014 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1017 /* Define macros to initialize and free the failure stack.
1018 Do `return -2' if the alloc fails. */
1020 #ifdef MATCH_MAY_ALLOCATE
1021 #define INIT_FAIL_STACK() \
1022 do { \
1023 fail_stack.stack = (fail_stack_elt_t *) \
1024 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1026 if (fail_stack.stack == NULL) \
1027 return -2; \
1029 fail_stack.size = INIT_FAILURE_ALLOC; \
1030 fail_stack.avail = 0; \
1031 } while (0)
1033 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1034 #else
1035 #define INIT_FAIL_STACK() \
1036 do { \
1037 fail_stack.avail = 0; \
1038 } while (0)
1040 #define RESET_FAIL_STACK()
1041 #endif
1044 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1046 Return 1 if succeeds, and 0 if either ran out of memory
1047 allocating space for it or it was already too large.
1049 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1051 #define DOUBLE_FAIL_STACK(fail_stack) \
1052 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1053 ? 0 \
1054 : ((fail_stack).stack = (fail_stack_elt_t *) \
1055 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1056 (fail_stack).size * sizeof (fail_stack_elt_t), \
1057 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1059 (fail_stack).stack == NULL \
1060 ? 0 \
1061 : ((fail_stack).size <<= 1, \
1062 1)))
1065 /* Push pointer POINTER on FAIL_STACK.
1066 Return 1 if was able to do so and 0 if ran out of memory allocating
1067 space to do so. */
1068 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1069 ((FAIL_STACK_FULL () \
1070 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1071 ? 0 \
1072 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1075 /* Push a pointer value onto the failure stack.
1076 Assumes the variable `fail_stack'. Probably should only
1077 be called from within `PUSH_FAILURE_POINT'. */
1078 #define PUSH_FAILURE_POINTER(item) \
1079 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1081 /* This pushes an integer-valued item onto the failure stack.
1082 Assumes the variable `fail_stack'. Probably should only
1083 be called from within `PUSH_FAILURE_POINT'. */
1084 #define PUSH_FAILURE_INT(item) \
1085 fail_stack.stack[fail_stack.avail++].integer = (item)
1087 /* Push a fail_stack_elt_t value onto the failure stack.
1088 Assumes the variable `fail_stack'. Probably should only
1089 be called from within `PUSH_FAILURE_POINT'. */
1090 #define PUSH_FAILURE_ELT(item) \
1091 fail_stack.stack[fail_stack.avail++] = (item)
1093 /* These three POP... operations complement the three PUSH... operations.
1094 All assume that `fail_stack' is nonempty. */
1095 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1096 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1097 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1099 /* Used to omit pushing failure point id's when we're not debugging. */
1100 #ifdef DEBUG
1101 #define DEBUG_PUSH PUSH_FAILURE_INT
1102 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1103 #else
1104 #define DEBUG_PUSH(item)
1105 #define DEBUG_POP(item_addr)
1106 #endif
1109 /* Push the information about the state we will need
1110 if we ever fail back to it.
1112 Requires variables fail_stack, regstart, regend, reg_info, and
1113 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1114 declared.
1116 Does `return FAILURE_CODE' if runs out of memory. */
1118 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1119 do { \
1120 char *destination; \
1121 /* Must be int, so when we don't save any registers, the arithmetic \
1122 of 0 + -1 isn't done as unsigned. */ \
1123 int this_reg; \
1125 DEBUG_STATEMENT (failure_id++); \
1126 DEBUG_STATEMENT (nfailure_points_pushed++); \
1127 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1128 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1129 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1131 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1132 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1134 /* Ensure we have enough space allocated for what we will push. */ \
1135 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1137 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1138 return failure_code; \
1140 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1141 (fail_stack).size); \
1142 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1145 /* Push the info, starting with the registers. */ \
1146 DEBUG_PRINT1 ("\n"); \
1148 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1149 this_reg++) \
1151 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1152 DEBUG_STATEMENT (num_regs_pushed++); \
1154 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1155 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1157 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1158 PUSH_FAILURE_POINTER (regend[this_reg]); \
1160 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1161 DEBUG_PRINT2 (" match_null=%d", \
1162 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1163 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1164 DEBUG_PRINT2 (" matched_something=%d", \
1165 MATCHED_SOMETHING (reg_info[this_reg])); \
1166 DEBUG_PRINT2 (" ever_matched=%d", \
1167 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1168 DEBUG_PRINT1 ("\n"); \
1169 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1172 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1173 PUSH_FAILURE_INT (lowest_active_reg); \
1175 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1176 PUSH_FAILURE_INT (highest_active_reg); \
1178 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1179 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1180 PUSH_FAILURE_POINTER (pattern_place); \
1182 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1183 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1184 size2); \
1185 DEBUG_PRINT1 ("'\n"); \
1186 PUSH_FAILURE_POINTER (string_place); \
1188 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1189 DEBUG_PUSH (failure_id); \
1190 } while (0)
1192 /* This is the number of items that are pushed and popped on the stack
1193 for each register. */
1194 #define NUM_REG_ITEMS 3
1196 /* Individual items aside from the registers. */
1197 #ifdef DEBUG
1198 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1199 #else
1200 #define NUM_NONREG_ITEMS 4
1201 #endif
1203 /* We push at most this many items on the stack. */
1204 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1206 /* We actually push this many items. */
1207 #define NUM_FAILURE_ITEMS \
1208 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1209 + NUM_NONREG_ITEMS)
1211 /* How many items can still be added to the stack without overflowing it. */
1212 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1215 /* Pops what PUSH_FAIL_STACK pushes.
1217 We restore into the parameters, all of which should be lvalues:
1218 STR -- the saved data position.
1219 PAT -- the saved pattern position.
1220 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1221 REGSTART, REGEND -- arrays of string positions.
1222 REG_INFO -- array of information about each subexpression.
1224 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1225 `pend', `string1', `size1', `string2', and `size2'. */
1227 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1229 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1230 int this_reg; \
1231 const unsigned char *string_temp; \
1233 assert (!FAIL_STACK_EMPTY ()); \
1235 /* Remove failure points and point to how many regs pushed. */ \
1236 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1237 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1238 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1240 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1242 DEBUG_POP (&failure_id); \
1243 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1245 /* If the saved string location is NULL, it came from an \
1246 on_failure_keep_string_jump opcode, and we want to throw away the \
1247 saved NULL, thus retaining our current position in the string. */ \
1248 string_temp = POP_FAILURE_POINTER (); \
1249 if (string_temp != NULL) \
1250 str = (const char *) string_temp; \
1252 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1253 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1254 DEBUG_PRINT1 ("'\n"); \
1256 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1257 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1258 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1260 /* Restore register info. */ \
1261 high_reg = (unsigned) POP_FAILURE_INT (); \
1262 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1264 low_reg = (unsigned) POP_FAILURE_INT (); \
1265 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1267 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1269 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1271 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1272 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1274 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1275 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1277 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1278 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1281 set_regs_matched_done = 0; \
1282 DEBUG_STATEMENT (nfailure_points_popped++); \
1283 } /* POP_FAILURE_POINT */
1287 /* Structure for per-register (a.k.a. per-group) information.
1288 Other register information, such as the
1289 starting and ending positions (which are addresses), and the list of
1290 inner groups (which is a bits list) are maintained in separate
1291 variables.
1293 We are making a (strictly speaking) nonportable assumption here: that
1294 the compiler will pack our bit fields into something that fits into
1295 the type of `word', i.e., is something that fits into one item on the
1296 failure stack. */
1298 typedef union
1300 fail_stack_elt_t word;
1301 struct
1303 /* This field is one if this group can match the empty string,
1304 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1305 #define MATCH_NULL_UNSET_VALUE 3
1306 unsigned match_null_string_p : 2;
1307 unsigned is_active : 1;
1308 unsigned matched_something : 1;
1309 unsigned ever_matched_something : 1;
1310 } bits;
1311 } register_info_type;
1313 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1314 #define IS_ACTIVE(R) ((R).bits.is_active)
1315 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1316 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1319 /* Call this when have matched a real character; it sets `matched' flags
1320 for the subexpressions which we are currently inside. Also records
1321 that those subexprs have matched. */
1322 #define SET_REGS_MATCHED() \
1323 do \
1325 if (!set_regs_matched_done) \
1327 unsigned r; \
1328 set_regs_matched_done = 1; \
1329 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1331 MATCHED_SOMETHING (reg_info[r]) \
1332 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1333 = 1; \
1337 while (0)
1339 /* Registers are set to a sentinel when they haven't yet matched. */
1340 static char reg_unset_dummy;
1341 #define REG_UNSET_VALUE (&reg_unset_dummy)
1342 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1344 /* Subroutine declarations and macros for regex_compile. */
1346 static void store_op1 (), store_op2 ();
1347 static void insert_op1 (), insert_op2 ();
1348 static boolean at_begline_loc_p (), at_endline_loc_p ();
1349 static boolean group_in_compile_stack ();
1350 static reg_errcode_t compile_range ();
1352 /* Fetch the next character in the uncompiled pattern---translating it
1353 if necessary. Also cast from a signed character in the constant
1354 string passed to us by the user to an unsigned char that we can use
1355 as an array index (in, e.g., `translate'). */
1356 #define PATFETCH(c) \
1357 do {if (p == pend) return REG_EEND; \
1358 c = (unsigned char) *p++; \
1359 if (translate) c = translate[c]; \
1360 } while (0)
1362 /* Fetch the next character in the uncompiled pattern, with no
1363 translation. */
1364 #define PATFETCH_RAW(c) \
1365 do {if (p == pend) return REG_EEND; \
1366 c = (unsigned char) *p++; \
1367 } while (0)
1369 /* Go backwards one character in the pattern. */
1370 #define PATUNFETCH p--
1373 /* If `translate' is non-null, return translate[D], else just D. We
1374 cast the subscript to translate because some data is declared as
1375 `char *', to avoid warnings when a string constant is passed. But
1376 when we use a character as a subscript we must make it unsigned. */
1377 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1380 /* Macros for outputting the compiled pattern into `buffer'. */
1382 /* If the buffer isn't allocated when it comes in, use this. */
1383 #define INIT_BUF_SIZE 32
1385 /* Make sure we have at least N more bytes of space in buffer. */
1386 #define GET_BUFFER_SPACE(n) \
1387 while (b - bufp->buffer + (n) > bufp->allocated) \
1388 EXTEND_BUFFER ()
1390 /* Make sure we have one more byte of buffer space and then add C to it. */
1391 #define BUF_PUSH(c) \
1392 do { \
1393 GET_BUFFER_SPACE (1); \
1394 *b++ = (unsigned char) (c); \
1395 } while (0)
1398 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1399 #define BUF_PUSH_2(c1, c2) \
1400 do { \
1401 GET_BUFFER_SPACE (2); \
1402 *b++ = (unsigned char) (c1); \
1403 *b++ = (unsigned char) (c2); \
1404 } while (0)
1407 /* As with BUF_PUSH_2, except for three bytes. */
1408 #define BUF_PUSH_3(c1, c2, c3) \
1409 do { \
1410 GET_BUFFER_SPACE (3); \
1411 *b++ = (unsigned char) (c1); \
1412 *b++ = (unsigned char) (c2); \
1413 *b++ = (unsigned char) (c3); \
1414 } while (0)
1417 /* Store a jump with opcode OP at LOC to location TO. We store a
1418 relative address offset by the three bytes the jump itself occupies. */
1419 #define STORE_JUMP(op, loc, to) \
1420 store_op1 (op, loc, (to) - (loc) - 3)
1422 /* Likewise, for a two-argument jump. */
1423 #define STORE_JUMP2(op, loc, to, arg) \
1424 store_op2 (op, loc, (to) - (loc) - 3, arg)
1426 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1427 #define INSERT_JUMP(op, loc, to) \
1428 insert_op1 (op, loc, (to) - (loc) - 3, b)
1430 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1431 #define INSERT_JUMP2(op, loc, to, arg) \
1432 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1435 /* This is not an arbitrary limit: the arguments which represent offsets
1436 into the pattern are two bytes long. So if 2^16 bytes turns out to
1437 be too small, many things would have to change. */
1438 #define MAX_BUF_SIZE (1L << 16)
1441 /* Extend the buffer by twice its current size via realloc and
1442 reset the pointers that pointed into the old block to point to the
1443 correct places in the new one. If extending the buffer results in it
1444 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1445 #define EXTEND_BUFFER() \
1446 do { \
1447 unsigned char *old_buffer = bufp->buffer; \
1448 if (bufp->allocated == MAX_BUF_SIZE) \
1449 return REG_ESIZE; \
1450 bufp->allocated <<= 1; \
1451 if (bufp->allocated > MAX_BUF_SIZE) \
1452 bufp->allocated = MAX_BUF_SIZE; \
1453 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1454 if (bufp->buffer == NULL) \
1455 return REG_ESPACE; \
1456 /* If the buffer moved, move all the pointers into it. */ \
1457 if (old_buffer != bufp->buffer) \
1459 b = (b - old_buffer) + bufp->buffer; \
1460 begalt = (begalt - old_buffer) + bufp->buffer; \
1461 if (fixup_alt_jump) \
1462 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1463 if (laststart) \
1464 laststart = (laststart - old_buffer) + bufp->buffer; \
1465 if (pending_exact) \
1466 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1468 } while (0)
1471 /* Since we have one byte reserved for the register number argument to
1472 {start,stop}_memory, the maximum number of groups we can report
1473 things about is what fits in that byte. */
1474 #define MAX_REGNUM 255
1476 /* But patterns can have more than `MAX_REGNUM' registers. We just
1477 ignore the excess. */
1478 typedef unsigned regnum_t;
1481 /* Macros for the compile stack. */
1483 /* Since offsets can go either forwards or backwards, this type needs to
1484 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1485 typedef int pattern_offset_t;
1487 typedef struct
1489 pattern_offset_t begalt_offset;
1490 pattern_offset_t fixup_alt_jump;
1491 pattern_offset_t inner_group_offset;
1492 pattern_offset_t laststart_offset;
1493 regnum_t regnum;
1494 } compile_stack_elt_t;
1497 typedef struct
1499 compile_stack_elt_t *stack;
1500 unsigned size;
1501 unsigned avail; /* Offset of next open position. */
1502 } compile_stack_type;
1505 #define INIT_COMPILE_STACK_SIZE 32
1507 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1508 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1510 /* The next available element. */
1511 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1514 /* Set the bit for character C in a list. */
1515 #define SET_LIST_BIT(c) \
1516 (b[((unsigned char) (c)) / BYTEWIDTH] \
1517 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1520 /* Get the next unsigned number in the uncompiled pattern. */
1521 #define GET_UNSIGNED_NUMBER(num) \
1522 { if (p != pend) \
1524 PATFETCH (c); \
1525 while (ISDIGIT (c)) \
1527 if (num < 0) \
1528 num = 0; \
1529 num = num * 10 + c - '0'; \
1530 if (p == pend) \
1531 break; \
1532 PATFETCH (c); \
1537 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1539 #define IS_CHAR_CLASS(string) \
1540 (STREQ (string, "alpha") || STREQ (string, "upper") \
1541 || STREQ (string, "lower") || STREQ (string, "digit") \
1542 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1543 || STREQ (string, "space") || STREQ (string, "print") \
1544 || STREQ (string, "punct") || STREQ (string, "graph") \
1545 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1547 #ifndef MATCH_MAY_ALLOCATE
1549 /* If we cannot allocate large objects within re_match_2_internal,
1550 we make the fail stack and register vectors global.
1551 The fail stack, we grow to the maximum size when a regexp
1552 is compiled.
1553 The register vectors, we adjust in size each time we
1554 compile a regexp, according to the number of registers it needs. */
1556 static fail_stack_type fail_stack;
1558 /* Size with which the following vectors are currently allocated.
1559 That is so we can make them bigger as needed,
1560 but never make them smaller. */
1561 static int regs_allocated_size;
1563 static const char ** regstart, ** regend;
1564 static const char ** old_regstart, ** old_regend;
1565 static const char **best_regstart, **best_regend;
1566 static register_info_type *reg_info;
1567 static const char **reg_dummy;
1568 static register_info_type *reg_info_dummy;
1570 /* Make the register vectors big enough for NUM_REGS registers,
1571 but don't make them smaller. */
1573 static
1574 regex_grow_registers (num_regs)
1575 int num_regs;
1577 if (num_regs > regs_allocated_size)
1579 RETALLOC_IF (regstart, num_regs, const char *);
1580 RETALLOC_IF (regend, num_regs, const char *);
1581 RETALLOC_IF (old_regstart, num_regs, const char *);
1582 RETALLOC_IF (old_regend, num_regs, const char *);
1583 RETALLOC_IF (best_regstart, num_regs, const char *);
1584 RETALLOC_IF (best_regend, num_regs, const char *);
1585 RETALLOC_IF (reg_info, num_regs, register_info_type);
1586 RETALLOC_IF (reg_dummy, num_regs, const char *);
1587 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1589 regs_allocated_size = num_regs;
1593 #endif /* not MATCH_MAY_ALLOCATE */
1595 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1596 Returns one of error codes defined in `regex.h', or zero for success.
1598 Assumes the `allocated' (and perhaps `buffer') and `translate'
1599 fields are set in BUFP on entry.
1601 If it succeeds, results are put in BUFP (if it returns an error, the
1602 contents of BUFP are undefined):
1603 `buffer' is the compiled pattern;
1604 `syntax' is set to SYNTAX;
1605 `used' is set to the length of the compiled pattern;
1606 `fastmap_accurate' is zero;
1607 `re_nsub' is the number of subexpressions in PATTERN;
1608 `not_bol' and `not_eol' are zero;
1610 The `fastmap' and `newline_anchor' fields are neither
1611 examined nor set. */
1613 /* Return, freeing storage we allocated. */
1614 #define FREE_STACK_RETURN(value) \
1615 return (free (compile_stack.stack), value)
1617 static reg_errcode_t
1618 regex_compile (pattern, size, syntax, bufp)
1619 const char *pattern;
1620 int size;
1621 reg_syntax_t syntax;
1622 struct re_pattern_buffer *bufp;
1624 /* We fetch characters from PATTERN here. Even though PATTERN is
1625 `char *' (i.e., signed), we declare these variables as unsigned, so
1626 they can be reliably used as array indices. */
1627 register unsigned char c, c1;
1629 /* A random temporary spot in PATTERN. */
1630 const char *p1;
1632 /* Points to the end of the buffer, where we should append. */
1633 register unsigned char *b;
1635 /* Keeps track of unclosed groups. */
1636 compile_stack_type compile_stack;
1638 /* Points to the current (ending) position in the pattern. */
1639 const char *p = pattern;
1640 const char *pend = pattern + size;
1642 /* How to translate the characters in the pattern. */
1643 char *translate = bufp->translate;
1645 /* Address of the count-byte of the most recently inserted `exactn'
1646 command. This makes it possible to tell if a new exact-match
1647 character can be added to that command or if the character requires
1648 a new `exactn' command. */
1649 unsigned char *pending_exact = 0;
1651 /* Address of start of the most recently finished expression.
1652 This tells, e.g., postfix * where to find the start of its
1653 operand. Reset at the beginning of groups and alternatives. */
1654 unsigned char *laststart = 0;
1656 /* Address of beginning of regexp, or inside of last group. */
1657 unsigned char *begalt;
1659 /* Place in the uncompiled pattern (i.e., the {) to
1660 which to go back if the interval is invalid. */
1661 const char *beg_interval;
1663 /* Address of the place where a forward jump should go to the end of
1664 the containing expression. Each alternative of an `or' -- except the
1665 last -- ends with a forward jump of this sort. */
1666 unsigned char *fixup_alt_jump = 0;
1668 /* Counts open-groups as they are encountered. Remembered for the
1669 matching close-group on the compile stack, so the same register
1670 number is put in the stop_memory as the start_memory. */
1671 regnum_t regnum = 0;
1673 #ifdef DEBUG
1674 DEBUG_PRINT1 ("\nCompiling pattern: ");
1675 if (debug)
1677 unsigned debug_count;
1679 for (debug_count = 0; debug_count < size; debug_count++)
1680 putchar (pattern[debug_count]);
1681 putchar ('\n');
1683 #endif /* DEBUG */
1685 /* Initialize the compile stack. */
1686 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1687 if (compile_stack.stack == NULL)
1688 return REG_ESPACE;
1690 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1691 compile_stack.avail = 0;
1693 /* Initialize the pattern buffer. */
1694 bufp->syntax = syntax;
1695 bufp->fastmap_accurate = 0;
1696 bufp->not_bol = bufp->not_eol = 0;
1698 /* Set `used' to zero, so that if we return an error, the pattern
1699 printer (for debugging) will think there's no pattern. We reset it
1700 at the end. */
1701 bufp->used = 0;
1703 /* Always count groups, whether or not bufp->no_sub is set. */
1704 bufp->re_nsub = 0;
1706 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1707 /* Initialize the syntax table. */
1708 init_syntax_once ();
1709 #endif
1711 if (bufp->allocated == 0)
1713 if (bufp->buffer)
1714 { /* If zero allocated, but buffer is non-null, try to realloc
1715 enough space. This loses if buffer's address is bogus, but
1716 that is the user's responsibility. */
1717 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1719 else
1720 { /* Caller did not allocate a buffer. Do it for them. */
1721 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1723 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1725 bufp->allocated = INIT_BUF_SIZE;
1728 begalt = b = bufp->buffer;
1730 /* Loop through the uncompiled pattern until we're at the end. */
1731 while (p != pend)
1733 PATFETCH (c);
1735 switch (c)
1737 case '^':
1739 if ( /* If at start of pattern, it's an operator. */
1740 p == pattern + 1
1741 /* If context independent, it's an operator. */
1742 || syntax & RE_CONTEXT_INDEP_ANCHORS
1743 /* Otherwise, depends on what's come before. */
1744 || at_begline_loc_p (pattern, p, syntax))
1745 BUF_PUSH (begline);
1746 else
1747 goto normal_char;
1749 break;
1752 case '$':
1754 if ( /* If at end of pattern, it's an operator. */
1755 p == pend
1756 /* If context independent, it's an operator. */
1757 || syntax & RE_CONTEXT_INDEP_ANCHORS
1758 /* Otherwise, depends on what's next. */
1759 || at_endline_loc_p (p, pend, syntax))
1760 BUF_PUSH (endline);
1761 else
1762 goto normal_char;
1764 break;
1767 case '+':
1768 case '?':
1769 if ((syntax & RE_BK_PLUS_QM)
1770 || (syntax & RE_LIMITED_OPS))
1771 goto normal_char;
1772 handle_plus:
1773 case '*':
1774 /* If there is no previous pattern... */
1775 if (!laststart)
1777 if (syntax & RE_CONTEXT_INVALID_OPS)
1778 FREE_STACK_RETURN (REG_BADRPT);
1779 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1780 goto normal_char;
1784 /* Are we optimizing this jump? */
1785 boolean keep_string_p = false;
1787 /* 1 means zero (many) matches is allowed. */
1788 char zero_times_ok = 0, many_times_ok = 0;
1790 /* If there is a sequence of repetition chars, collapse it
1791 down to just one (the right one). We can't combine
1792 interval operators with these because of, e.g., `a{2}*',
1793 which should only match an even number of `a's. */
1795 for (;;)
1797 zero_times_ok |= c != '+';
1798 many_times_ok |= c != '?';
1800 if (p == pend)
1801 break;
1803 PATFETCH (c);
1805 if (c == '*'
1806 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1809 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1811 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1813 PATFETCH (c1);
1814 if (!(c1 == '+' || c1 == '?'))
1816 PATUNFETCH;
1817 PATUNFETCH;
1818 break;
1821 c = c1;
1823 else
1825 PATUNFETCH;
1826 break;
1829 /* If we get here, we found another repeat character. */
1832 /* Star, etc. applied to an empty pattern is equivalent
1833 to an empty pattern. */
1834 if (!laststart)
1835 break;
1837 /* Now we know whether or not zero matches is allowed
1838 and also whether or not two or more matches is allowed. */
1839 if (many_times_ok)
1840 { /* More than one repetition is allowed, so put in at the
1841 end a backward relative jump from `b' to before the next
1842 jump we're going to put in below (which jumps from
1843 laststart to after this jump).
1845 But if we are at the `*' in the exact sequence `.*\n',
1846 insert an unconditional jump backwards to the .,
1847 instead of the beginning of the loop. This way we only
1848 push a failure point once, instead of every time
1849 through the loop. */
1850 assert (p - 1 > pattern);
1852 /* Allocate the space for the jump. */
1853 GET_BUFFER_SPACE (3);
1855 /* We know we are not at the first character of the pattern,
1856 because laststart was nonzero. And we've already
1857 incremented `p', by the way, to be the character after
1858 the `*'. Do we have to do something analogous here
1859 for null bytes, because of RE_DOT_NOT_NULL? */
1860 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1861 && zero_times_ok
1862 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1863 && !(syntax & RE_DOT_NEWLINE))
1864 { /* We have .*\n. */
1865 STORE_JUMP (jump, b, laststart);
1866 keep_string_p = true;
1868 else
1869 /* Anything else. */
1870 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1872 /* We've added more stuff to the buffer. */
1873 b += 3;
1876 /* On failure, jump from laststart to b + 3, which will be the
1877 end of the buffer after this jump is inserted. */
1878 GET_BUFFER_SPACE (3);
1879 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1880 : on_failure_jump,
1881 laststart, b + 3);
1882 pending_exact = 0;
1883 b += 3;
1885 if (!zero_times_ok)
1887 /* At least one repetition is required, so insert a
1888 `dummy_failure_jump' before the initial
1889 `on_failure_jump' instruction of the loop. This
1890 effects a skip over that instruction the first time
1891 we hit that loop. */
1892 GET_BUFFER_SPACE (3);
1893 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1894 b += 3;
1897 break;
1900 case '.':
1901 laststart = b;
1902 BUF_PUSH (anychar);
1903 break;
1906 case '[':
1908 boolean had_char_class = false;
1910 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1912 /* Ensure that we have enough space to push a charset: the
1913 opcode, the length count, and the bitset; 34 bytes in all. */
1914 GET_BUFFER_SPACE (34);
1916 laststart = b;
1918 /* We test `*p == '^' twice, instead of using an if
1919 statement, so we only need one BUF_PUSH. */
1920 BUF_PUSH (*p == '^' ? charset_not : charset);
1921 if (*p == '^')
1922 p++;
1924 /* Remember the first position in the bracket expression. */
1925 p1 = p;
1927 /* Push the number of bytes in the bitmap. */
1928 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1930 /* Clear the whole map. */
1931 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1933 /* charset_not matches newline according to a syntax bit. */
1934 if ((re_opcode_t) b[-2] == charset_not
1935 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1936 SET_LIST_BIT ('\n');
1938 /* Read in characters and ranges, setting map bits. */
1939 for (;;)
1941 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1943 PATFETCH (c);
1945 /* \ might escape characters inside [...] and [^...]. */
1946 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1948 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1950 PATFETCH (c1);
1951 SET_LIST_BIT (c1);
1952 continue;
1955 /* Could be the end of the bracket expression. If it's
1956 not (i.e., when the bracket expression is `[]' so
1957 far), the ']' character bit gets set way below. */
1958 if (c == ']' && p != p1 + 1)
1959 break;
1961 /* Look ahead to see if it's a range when the last thing
1962 was a character class. */
1963 if (had_char_class && c == '-' && *p != ']')
1964 FREE_STACK_RETURN (REG_ERANGE);
1966 /* Look ahead to see if it's a range when the last thing
1967 was a character: if this is a hyphen not at the
1968 beginning or the end of a list, then it's the range
1969 operator. */
1970 if (c == '-'
1971 && !(p - 2 >= pattern && p[-2] == '[')
1972 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1973 && *p != ']')
1975 reg_errcode_t ret
1976 = compile_range (&p, pend, translate, syntax, b);
1977 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1980 else if (p[0] == '-' && p[1] != ']')
1981 { /* This handles ranges made up of characters only. */
1982 reg_errcode_t ret;
1984 /* Move past the `-'. */
1985 PATFETCH (c1);
1987 ret = compile_range (&p, pend, translate, syntax, b);
1988 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1991 /* See if we're at the beginning of a possible character
1992 class. */
1994 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1995 { /* Leave room for the null. */
1996 char str[CHAR_CLASS_MAX_LENGTH + 1];
1998 PATFETCH (c);
1999 c1 = 0;
2001 /* If pattern is `[[:'. */
2002 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2004 for (;;)
2006 PATFETCH (c);
2007 if (c == ':' || c == ']' || p == pend
2008 || c1 == CHAR_CLASS_MAX_LENGTH)
2009 break;
2010 str[c1++] = c;
2012 str[c1] = '\0';
2014 /* If isn't a word bracketed by `[:' and:`]':
2015 undo the ending character, the letters, and leave
2016 the leading `:' and `[' (but set bits for them). */
2017 if (c == ':' && *p == ']')
2019 int ch;
2020 boolean is_alnum = STREQ (str, "alnum");
2021 boolean is_alpha = STREQ (str, "alpha");
2022 boolean is_blank = STREQ (str, "blank");
2023 boolean is_cntrl = STREQ (str, "cntrl");
2024 boolean is_digit = STREQ (str, "digit");
2025 boolean is_graph = STREQ (str, "graph");
2026 boolean is_lower = STREQ (str, "lower");
2027 boolean is_print = STREQ (str, "print");
2028 boolean is_punct = STREQ (str, "punct");
2029 boolean is_space = STREQ (str, "space");
2030 boolean is_upper = STREQ (str, "upper");
2031 boolean is_xdigit = STREQ (str, "xdigit");
2033 if (!IS_CHAR_CLASS (str))
2034 FREE_STACK_RETURN (REG_ECTYPE);
2036 /* Throw away the ] at the end of the character
2037 class. */
2038 PATFETCH (c);
2040 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2042 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2044 /* This was split into 3 if's to
2045 avoid an arbitrary limit in some compiler. */
2046 if ( (is_alnum && ISALNUM (ch))
2047 || (is_alpha && ISALPHA (ch))
2048 || (is_blank && ISBLANK (ch))
2049 || (is_cntrl && ISCNTRL (ch)))
2050 SET_LIST_BIT (ch);
2051 if ( (is_digit && ISDIGIT (ch))
2052 || (is_graph && ISGRAPH (ch))
2053 || (is_lower && ISLOWER (ch))
2054 || (is_print && ISPRINT (ch)))
2055 SET_LIST_BIT (ch);
2056 if ( (is_punct && ISPUNCT (ch))
2057 || (is_space && ISSPACE (ch))
2058 || (is_upper && ISUPPER (ch))
2059 || (is_xdigit && ISXDIGIT (ch)))
2060 SET_LIST_BIT (ch);
2062 had_char_class = true;
2064 else
2066 c1++;
2067 while (c1--)
2068 PATUNFETCH;
2069 SET_LIST_BIT ('[');
2070 SET_LIST_BIT (':');
2071 had_char_class = false;
2074 else
2076 had_char_class = false;
2077 SET_LIST_BIT (c);
2081 /* Discard any (non)matching list bytes that are all 0 at the
2082 end of the map. Decrease the map-length byte too. */
2083 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2084 b[-1]--;
2085 b += b[-1];
2087 break;
2090 case '(':
2091 if (syntax & RE_NO_BK_PARENS)
2092 goto handle_open;
2093 else
2094 goto normal_char;
2097 case ')':
2098 if (syntax & RE_NO_BK_PARENS)
2099 goto handle_close;
2100 else
2101 goto normal_char;
2104 case '\n':
2105 if (syntax & RE_NEWLINE_ALT)
2106 goto handle_alt;
2107 else
2108 goto normal_char;
2111 case '|':
2112 if (syntax & RE_NO_BK_VBAR)
2113 goto handle_alt;
2114 else
2115 goto normal_char;
2118 case '{':
2119 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2120 goto handle_interval;
2121 else
2122 goto normal_char;
2125 case '\\':
2126 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2128 /* Do not translate the character after the \, so that we can
2129 distinguish, e.g., \B from \b, even if we normally would
2130 translate, e.g., B to b. */
2131 PATFETCH_RAW (c);
2133 switch (c)
2135 case '(':
2136 if (syntax & RE_NO_BK_PARENS)
2137 goto normal_backslash;
2139 handle_open:
2140 bufp->re_nsub++;
2141 regnum++;
2143 if (COMPILE_STACK_FULL)
2145 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2146 compile_stack_elt_t);
2147 if (compile_stack.stack == NULL) return REG_ESPACE;
2149 compile_stack.size <<= 1;
2152 /* These are the values to restore when we hit end of this
2153 group. They are all relative offsets, so that if the
2154 whole pattern moves because of realloc, they will still
2155 be valid. */
2156 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2157 COMPILE_STACK_TOP.fixup_alt_jump
2158 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2159 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2160 COMPILE_STACK_TOP.regnum = regnum;
2162 /* We will eventually replace the 0 with the number of
2163 groups inner to this one. But do not push a
2164 start_memory for groups beyond the last one we can
2165 represent in the compiled pattern. */
2166 if (regnum <= MAX_REGNUM)
2168 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2169 BUF_PUSH_3 (start_memory, regnum, 0);
2172 compile_stack.avail++;
2174 fixup_alt_jump = 0;
2175 laststart = 0;
2176 begalt = b;
2177 /* If we've reached MAX_REGNUM groups, then this open
2178 won't actually generate any code, so we'll have to
2179 clear pending_exact explicitly. */
2180 pending_exact = 0;
2181 break;
2184 case ')':
2185 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2187 if (COMPILE_STACK_EMPTY)
2188 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2189 goto normal_backslash;
2190 else
2191 FREE_STACK_RETURN (REG_ERPAREN);
2193 handle_close:
2194 if (fixup_alt_jump)
2195 { /* Push a dummy failure point at the end of the
2196 alternative for a possible future
2197 `pop_failure_jump' to pop. See comments at
2198 `push_dummy_failure' in `re_match_2'. */
2199 BUF_PUSH (push_dummy_failure);
2201 /* We allocated space for this jump when we assigned
2202 to `fixup_alt_jump', in the `handle_alt' case below. */
2203 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2206 /* See similar code for backslashed left paren above. */
2207 if (COMPILE_STACK_EMPTY)
2208 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2209 goto normal_char;
2210 else
2211 FREE_STACK_RETURN (REG_ERPAREN);
2213 /* Since we just checked for an empty stack above, this
2214 ``can't happen''. */
2215 assert (compile_stack.avail != 0);
2217 /* We don't just want to restore into `regnum', because
2218 later groups should continue to be numbered higher,
2219 as in `(ab)c(de)' -- the second group is #2. */
2220 regnum_t this_group_regnum;
2222 compile_stack.avail--;
2223 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2224 fixup_alt_jump
2225 = COMPILE_STACK_TOP.fixup_alt_jump
2226 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2227 : 0;
2228 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2229 this_group_regnum = COMPILE_STACK_TOP.regnum;
2230 /* If we've reached MAX_REGNUM groups, then this open
2231 won't actually generate any code, so we'll have to
2232 clear pending_exact explicitly. */
2233 pending_exact = 0;
2235 /* We're at the end of the group, so now we know how many
2236 groups were inside this one. */
2237 if (this_group_regnum <= MAX_REGNUM)
2239 unsigned char *inner_group_loc
2240 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2242 *inner_group_loc = regnum - this_group_regnum;
2243 BUF_PUSH_3 (stop_memory, this_group_regnum,
2244 regnum - this_group_regnum);
2247 break;
2250 case '|': /* `\|'. */
2251 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2252 goto normal_backslash;
2253 handle_alt:
2254 if (syntax & RE_LIMITED_OPS)
2255 goto normal_char;
2257 /* Insert before the previous alternative a jump which
2258 jumps to this alternative if the former fails. */
2259 GET_BUFFER_SPACE (3);
2260 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2261 pending_exact = 0;
2262 b += 3;
2264 /* The alternative before this one has a jump after it
2265 which gets executed if it gets matched. Adjust that
2266 jump so it will jump to this alternative's analogous
2267 jump (put in below, which in turn will jump to the next
2268 (if any) alternative's such jump, etc.). The last such
2269 jump jumps to the correct final destination. A picture:
2270 _____ _____
2271 | | | |
2272 | v | v
2273 a | b | c
2275 If we are at `b', then fixup_alt_jump right now points to a
2276 three-byte space after `a'. We'll put in the jump, set
2277 fixup_alt_jump to right after `b', and leave behind three
2278 bytes which we'll fill in when we get to after `c'. */
2280 if (fixup_alt_jump)
2281 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2283 /* Mark and leave space for a jump after this alternative,
2284 to be filled in later either by next alternative or
2285 when know we're at the end of a series of alternatives. */
2286 fixup_alt_jump = b;
2287 GET_BUFFER_SPACE (3);
2288 b += 3;
2290 laststart = 0;
2291 begalt = b;
2292 break;
2295 case '{':
2296 /* If \{ is a literal. */
2297 if (!(syntax & RE_INTERVALS)
2298 /* If we're at `\{' and it's not the open-interval
2299 operator. */
2300 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2301 || (p - 2 == pattern && p == pend))
2302 goto normal_backslash;
2304 handle_interval:
2306 /* If got here, then the syntax allows intervals. */
2308 /* At least (most) this many matches must be made. */
2309 int lower_bound = -1, upper_bound = -1;
2311 beg_interval = p - 1;
2313 if (p == pend)
2315 if (syntax & RE_NO_BK_BRACES)
2316 goto unfetch_interval;
2317 else
2318 FREE_STACK_RETURN (REG_EBRACE);
2321 GET_UNSIGNED_NUMBER (lower_bound);
2323 if (c == ',')
2325 GET_UNSIGNED_NUMBER (upper_bound);
2326 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2328 else
2329 /* Interval such as `{1}' => match exactly once. */
2330 upper_bound = lower_bound;
2332 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2333 || lower_bound > upper_bound)
2335 if (syntax & RE_NO_BK_BRACES)
2336 goto unfetch_interval;
2337 else
2338 FREE_STACK_RETURN (REG_BADBR);
2341 if (!(syntax & RE_NO_BK_BRACES))
2343 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2345 PATFETCH (c);
2348 if (c != '}')
2350 if (syntax & RE_NO_BK_BRACES)
2351 goto unfetch_interval;
2352 else
2353 FREE_STACK_RETURN (REG_BADBR);
2356 /* We just parsed a valid interval. */
2358 /* If it's invalid to have no preceding re. */
2359 if (!laststart)
2361 if (syntax & RE_CONTEXT_INVALID_OPS)
2362 FREE_STACK_RETURN (REG_BADRPT);
2363 else if (syntax & RE_CONTEXT_INDEP_OPS)
2364 laststart = b;
2365 else
2366 goto unfetch_interval;
2369 /* If the upper bound is zero, don't want to succeed at
2370 all; jump from `laststart' to `b + 3', which will be
2371 the end of the buffer after we insert the jump. */
2372 if (upper_bound == 0)
2374 GET_BUFFER_SPACE (3);
2375 INSERT_JUMP (jump, laststart, b + 3);
2376 b += 3;
2379 /* Otherwise, we have a nontrivial interval. When
2380 we're all done, the pattern will look like:
2381 set_number_at <jump count> <upper bound>
2382 set_number_at <succeed_n count> <lower bound>
2383 succeed_n <after jump addr> <succeed_n count>
2384 <body of loop>
2385 jump_n <succeed_n addr> <jump count>
2386 (The upper bound and `jump_n' are omitted if
2387 `upper_bound' is 1, though.) */
2388 else
2389 { /* If the upper bound is > 1, we need to insert
2390 more at the end of the loop. */
2391 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2393 GET_BUFFER_SPACE (nbytes);
2395 /* Initialize lower bound of the `succeed_n', even
2396 though it will be set during matching by its
2397 attendant `set_number_at' (inserted next),
2398 because `re_compile_fastmap' needs to know.
2399 Jump to the `jump_n' we might insert below. */
2400 INSERT_JUMP2 (succeed_n, laststart,
2401 b + 5 + (upper_bound > 1) * 5,
2402 lower_bound);
2403 b += 5;
2405 /* Code to initialize the lower bound. Insert
2406 before the `succeed_n'. The `5' is the last two
2407 bytes of this `set_number_at', plus 3 bytes of
2408 the following `succeed_n'. */
2409 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2410 b += 5;
2412 if (upper_bound > 1)
2413 { /* More than one repetition is allowed, so
2414 append a backward jump to the `succeed_n'
2415 that starts this interval.
2417 When we've reached this during matching,
2418 we'll have matched the interval once, so
2419 jump back only `upper_bound - 1' times. */
2420 STORE_JUMP2 (jump_n, b, laststart + 5,
2421 upper_bound - 1);
2422 b += 5;
2424 /* The location we want to set is the second
2425 parameter of the `jump_n'; that is `b-2' as
2426 an absolute address. `laststart' will be
2427 the `set_number_at' we're about to insert;
2428 `laststart+3' the number to set, the source
2429 for the relative address. But we are
2430 inserting into the middle of the pattern --
2431 so everything is getting moved up by 5.
2432 Conclusion: (b - 2) - (laststart + 3) + 5,
2433 i.e., b - laststart.
2435 We insert this at the beginning of the loop
2436 so that if we fail during matching, we'll
2437 reinitialize the bounds. */
2438 insert_op2 (set_number_at, laststart, b - laststart,
2439 upper_bound - 1, b);
2440 b += 5;
2443 pending_exact = 0;
2444 beg_interval = NULL;
2446 break;
2448 unfetch_interval:
2449 /* If an invalid interval, match the characters as literals. */
2450 assert (beg_interval);
2451 p = beg_interval;
2452 beg_interval = NULL;
2454 /* normal_char and normal_backslash need `c'. */
2455 PATFETCH (c);
2457 if (!(syntax & RE_NO_BK_BRACES))
2459 if (p > pattern && p[-1] == '\\')
2460 goto normal_backslash;
2462 goto normal_char;
2464 #ifdef emacs
2465 /* There is no way to specify the before_dot and after_dot
2466 operators. rms says this is ok. --karl */
2467 case '=':
2468 BUF_PUSH (at_dot);
2469 break;
2471 case 's':
2472 laststart = b;
2473 PATFETCH (c);
2474 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2475 break;
2477 case 'S':
2478 laststart = b;
2479 PATFETCH (c);
2480 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2481 break;
2482 #endif /* emacs */
2485 case 'w':
2486 laststart = b;
2487 BUF_PUSH (wordchar);
2488 break;
2491 case 'W':
2492 laststart = b;
2493 BUF_PUSH (notwordchar);
2494 break;
2497 case '<':
2498 BUF_PUSH (wordbeg);
2499 break;
2501 case '>':
2502 BUF_PUSH (wordend);
2503 break;
2505 case 'b':
2506 BUF_PUSH (wordbound);
2507 break;
2509 case 'B':
2510 BUF_PUSH (notwordbound);
2511 break;
2513 case '`':
2514 BUF_PUSH (begbuf);
2515 break;
2517 case '\'':
2518 BUF_PUSH (endbuf);
2519 break;
2521 case '1': case '2': case '3': case '4': case '5':
2522 case '6': case '7': case '8': case '9':
2523 if (syntax & RE_NO_BK_REFS)
2524 goto normal_char;
2526 c1 = c - '0';
2528 if (c1 > regnum)
2529 FREE_STACK_RETURN (REG_ESUBREG);
2531 /* Can't back reference to a subexpression if inside of it. */
2532 if (group_in_compile_stack (compile_stack, c1))
2533 goto normal_char;
2535 laststart = b;
2536 BUF_PUSH_2 (duplicate, c1);
2537 break;
2540 case '+':
2541 case '?':
2542 if (syntax & RE_BK_PLUS_QM)
2543 goto handle_plus;
2544 else
2545 goto normal_backslash;
2547 default:
2548 normal_backslash:
2549 /* You might think it would be useful for \ to mean
2550 not to translate; but if we don't translate it
2551 it will never match anything. */
2552 c = TRANSLATE (c);
2553 goto normal_char;
2555 break;
2558 default:
2559 /* Expects the character in `c'. */
2560 normal_char:
2561 /* If no exactn currently being built. */
2562 if (!pending_exact
2564 /* If last exactn not at current position. */
2565 || pending_exact + *pending_exact + 1 != b
2567 /* We have only one byte following the exactn for the count. */
2568 || *pending_exact == (1 << BYTEWIDTH) - 1
2570 /* If followed by a repetition operator. */
2571 || *p == '*' || *p == '^'
2572 || ((syntax & RE_BK_PLUS_QM)
2573 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2574 : (*p == '+' || *p == '?'))
2575 || ((syntax & RE_INTERVALS)
2576 && ((syntax & RE_NO_BK_BRACES)
2577 ? *p == '{'
2578 : (p[0] == '\\' && p[1] == '{'))))
2580 /* Start building a new exactn. */
2582 laststart = b;
2584 BUF_PUSH_2 (exactn, 0);
2585 pending_exact = b - 1;
2588 BUF_PUSH (c);
2589 (*pending_exact)++;
2590 break;
2591 } /* switch (c) */
2592 } /* while p != pend */
2595 /* Through the pattern now. */
2597 if (fixup_alt_jump)
2598 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2600 if (!COMPILE_STACK_EMPTY)
2601 FREE_STACK_RETURN (REG_EPAREN);
2603 /* If we don't want backtracking, force success
2604 the first time we reach the end of the compiled pattern. */
2605 if (syntax & RE_NO_POSIX_BACKTRACKING)
2606 BUF_PUSH (succeed);
2608 free (compile_stack.stack);
2610 /* We have succeeded; set the length of the buffer. */
2611 bufp->used = b - bufp->buffer;
2613 #ifdef DEBUG
2614 if (debug)
2616 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2617 print_compiled_pattern (bufp);
2619 #endif /* DEBUG */
2621 #ifndef MATCH_MAY_ALLOCATE
2622 /* Initialize the failure stack to the largest possible stack. This
2623 isn't necessary unless we're trying to avoid calling alloca in
2624 the search and match routines. */
2626 int num_regs = bufp->re_nsub + 1;
2628 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2629 is strictly greater than re_max_failures, the largest possible stack
2630 is 2 * re_max_failures failure points. */
2631 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2633 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2635 #ifdef emacs
2636 if (! fail_stack.stack)
2637 fail_stack.stack
2638 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2639 * sizeof (fail_stack_elt_t));
2640 else
2641 fail_stack.stack
2642 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2643 (fail_stack.size
2644 * sizeof (fail_stack_elt_t)));
2645 #else /* not emacs */
2646 if (! fail_stack.stack)
2647 fail_stack.stack
2648 = (fail_stack_elt_t *) malloc (fail_stack.size
2649 * sizeof (fail_stack_elt_t));
2650 else
2651 fail_stack.stack
2652 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2653 (fail_stack.size
2654 * sizeof (fail_stack_elt_t)));
2655 #endif /* not emacs */
2658 regex_grow_registers (num_regs);
2660 #endif /* not MATCH_MAY_ALLOCATE */
2662 return REG_NOERROR;
2663 } /* regex_compile */
2665 /* Subroutines for `regex_compile'. */
2667 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2669 static void
2670 store_op1 (op, loc, arg)
2671 re_opcode_t op;
2672 unsigned char *loc;
2673 int arg;
2675 *loc = (unsigned char) op;
2676 STORE_NUMBER (loc + 1, arg);
2680 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2682 static void
2683 store_op2 (op, loc, arg1, arg2)
2684 re_opcode_t op;
2685 unsigned char *loc;
2686 int arg1, arg2;
2688 *loc = (unsigned char) op;
2689 STORE_NUMBER (loc + 1, arg1);
2690 STORE_NUMBER (loc + 3, arg2);
2694 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2695 for OP followed by two-byte integer parameter ARG. */
2697 static void
2698 insert_op1 (op, loc, arg, end)
2699 re_opcode_t op;
2700 unsigned char *loc;
2701 int arg;
2702 unsigned char *end;
2704 register unsigned char *pfrom = end;
2705 register unsigned char *pto = end + 3;
2707 while (pfrom != loc)
2708 *--pto = *--pfrom;
2710 store_op1 (op, loc, arg);
2714 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2716 static void
2717 insert_op2 (op, loc, arg1, arg2, end)
2718 re_opcode_t op;
2719 unsigned char *loc;
2720 int arg1, arg2;
2721 unsigned char *end;
2723 register unsigned char *pfrom = end;
2724 register unsigned char *pto = end + 5;
2726 while (pfrom != loc)
2727 *--pto = *--pfrom;
2729 store_op2 (op, loc, arg1, arg2);
2733 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2734 after an alternative or a begin-subexpression. We assume there is at
2735 least one character before the ^. */
2737 static boolean
2738 at_begline_loc_p (pattern, p, syntax)
2739 const char *pattern, *p;
2740 reg_syntax_t syntax;
2742 const char *prev = p - 2;
2743 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2745 return
2746 /* After a subexpression? */
2747 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2748 /* After an alternative? */
2749 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2753 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2754 at least one character after the $, i.e., `P < PEND'. */
2756 static boolean
2757 at_endline_loc_p (p, pend, syntax)
2758 const char *p, *pend;
2759 int syntax;
2761 const char *next = p;
2762 boolean next_backslash = *next == '\\';
2763 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2765 return
2766 /* Before a subexpression? */
2767 (syntax & RE_NO_BK_PARENS ? *next == ')'
2768 : next_backslash && next_next && *next_next == ')')
2769 /* Before an alternative? */
2770 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2771 : next_backslash && next_next && *next_next == '|');
2775 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2776 false if it's not. */
2778 static boolean
2779 group_in_compile_stack (compile_stack, regnum)
2780 compile_stack_type compile_stack;
2781 regnum_t regnum;
2783 int this_element;
2785 for (this_element = compile_stack.avail - 1;
2786 this_element >= 0;
2787 this_element--)
2788 if (compile_stack.stack[this_element].regnum == regnum)
2789 return true;
2791 return false;
2795 /* Read the ending character of a range (in a bracket expression) from the
2796 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2797 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2798 Then we set the translation of all bits between the starting and
2799 ending characters (inclusive) in the compiled pattern B.
2801 Return an error code.
2803 We use these short variable names so we can use the same macros as
2804 `regex_compile' itself. */
2806 static reg_errcode_t
2807 compile_range (p_ptr, pend, translate, syntax, b)
2808 const char **p_ptr, *pend;
2809 char *translate;
2810 reg_syntax_t syntax;
2811 unsigned char *b;
2813 unsigned this_char;
2815 const char *p = *p_ptr;
2816 int range_start, range_end;
2818 if (p == pend)
2819 return REG_ERANGE;
2821 /* Even though the pattern is a signed `char *', we need to fetch
2822 with unsigned char *'s; if the high bit of the pattern character
2823 is set, the range endpoints will be negative if we fetch using a
2824 signed char *.
2826 We also want to fetch the endpoints without translating them; the
2827 appropriate translation is done in the bit-setting loop below. */
2828 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2829 range_start = ((const unsigned char *) p)[-2];
2830 range_end = ((const unsigned char *) p)[0];
2832 /* Have to increment the pointer into the pattern string, so the
2833 caller isn't still at the ending character. */
2834 (*p_ptr)++;
2836 /* If the start is after the end, the range is empty. */
2837 if (range_start > range_end)
2838 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2840 /* Here we see why `this_char' has to be larger than an `unsigned
2841 char' -- the range is inclusive, so if `range_end' == 0xff
2842 (assuming 8-bit characters), we would otherwise go into an infinite
2843 loop, since all characters <= 0xff. */
2844 for (this_char = range_start; this_char <= range_end; this_char++)
2846 SET_LIST_BIT (TRANSLATE (this_char));
2849 return REG_NOERROR;
2852 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2853 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2854 characters can start a string that matches the pattern. This fastmap
2855 is used by re_search to skip quickly over impossible starting points.
2857 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2858 area as BUFP->fastmap.
2860 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2861 the pattern buffer.
2863 Returns 0 if we succeed, -2 if an internal error. */
2866 re_compile_fastmap (bufp)
2867 struct re_pattern_buffer *bufp;
2869 int j, k;
2870 #ifdef MATCH_MAY_ALLOCATE
2871 fail_stack_type fail_stack;
2872 #endif
2873 #ifndef REGEX_MALLOC
2874 char *destination;
2875 #endif
2876 /* We don't push any register information onto the failure stack. */
2877 unsigned num_regs = 0;
2879 register char *fastmap = bufp->fastmap;
2880 unsigned char *pattern = bufp->buffer;
2881 unsigned long size = bufp->used;
2882 unsigned char *p = pattern;
2883 register unsigned char *pend = pattern + size;
2885 /* This holds the pointer to the failure stack, when
2886 it is allocated relocatably. */
2887 fail_stack_elt_t *failure_stack_ptr;
2889 /* Assume that each path through the pattern can be null until
2890 proven otherwise. We set this false at the bottom of switch
2891 statement, to which we get only if a particular path doesn't
2892 match the empty string. */
2893 boolean path_can_be_null = true;
2895 /* We aren't doing a `succeed_n' to begin with. */
2896 boolean succeed_n_p = false;
2898 assert (fastmap != NULL && p != NULL);
2900 INIT_FAIL_STACK ();
2901 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2902 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2903 bufp->can_be_null = 0;
2905 while (1)
2907 if (p == pend || *p == succeed)
2909 /* We have reached the (effective) end of pattern. */
2910 if (!FAIL_STACK_EMPTY ())
2912 bufp->can_be_null |= path_can_be_null;
2914 /* Reset for next path. */
2915 path_can_be_null = true;
2917 p = fail_stack.stack[--fail_stack.avail].pointer;
2919 continue;
2921 else
2922 break;
2925 /* We should never be about to go beyond the end of the pattern. */
2926 assert (p < pend);
2928 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2931 /* I guess the idea here is to simply not bother with a fastmap
2932 if a backreference is used, since it's too hard to figure out
2933 the fastmap for the corresponding group. Setting
2934 `can_be_null' stops `re_search_2' from using the fastmap, so
2935 that is all we do. */
2936 case duplicate:
2937 bufp->can_be_null = 1;
2938 goto done;
2941 /* Following are the cases which match a character. These end
2942 with `break'. */
2944 case exactn:
2945 fastmap[p[1]] = 1;
2946 break;
2949 case charset:
2950 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2951 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2952 fastmap[j] = 1;
2953 break;
2956 case charset_not:
2957 /* Chars beyond end of map must be allowed. */
2958 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2959 fastmap[j] = 1;
2961 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2962 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2963 fastmap[j] = 1;
2964 break;
2967 case wordchar:
2968 for (j = 0; j < (1 << BYTEWIDTH); j++)
2969 if (SYNTAX (j) == Sword)
2970 fastmap[j] = 1;
2971 break;
2974 case notwordchar:
2975 for (j = 0; j < (1 << BYTEWIDTH); j++)
2976 if (SYNTAX (j) != Sword)
2977 fastmap[j] = 1;
2978 break;
2981 case anychar:
2983 int fastmap_newline = fastmap['\n'];
2985 /* `.' matches anything ... */
2986 for (j = 0; j < (1 << BYTEWIDTH); j++)
2987 fastmap[j] = 1;
2989 /* ... except perhaps newline. */
2990 if (!(bufp->syntax & RE_DOT_NEWLINE))
2991 fastmap['\n'] = fastmap_newline;
2993 /* Return if we have already set `can_be_null'; if we have,
2994 then the fastmap is irrelevant. Something's wrong here. */
2995 else if (bufp->can_be_null)
2996 goto done;
2998 /* Otherwise, have to check alternative paths. */
2999 break;
3002 #ifdef emacs
3003 case syntaxspec:
3004 k = *p++;
3005 for (j = 0; j < (1 << BYTEWIDTH); j++)
3006 if (SYNTAX (j) == (enum syntaxcode) k)
3007 fastmap[j] = 1;
3008 break;
3011 case notsyntaxspec:
3012 k = *p++;
3013 for (j = 0; j < (1 << BYTEWIDTH); j++)
3014 if (SYNTAX (j) != (enum syntaxcode) k)
3015 fastmap[j] = 1;
3016 break;
3019 /* All cases after this match the empty string. These end with
3020 `continue'. */
3023 case before_dot:
3024 case at_dot:
3025 case after_dot:
3026 continue;
3027 #endif /* not emacs */
3030 case no_op:
3031 case begline:
3032 case endline:
3033 case begbuf:
3034 case endbuf:
3035 case wordbound:
3036 case notwordbound:
3037 case wordbeg:
3038 case wordend:
3039 case push_dummy_failure:
3040 continue;
3043 case jump_n:
3044 case pop_failure_jump:
3045 case maybe_pop_jump:
3046 case jump:
3047 case jump_past_alt:
3048 case dummy_failure_jump:
3049 EXTRACT_NUMBER_AND_INCR (j, p);
3050 p += j;
3051 if (j > 0)
3052 continue;
3054 /* Jump backward implies we just went through the body of a
3055 loop and matched nothing. Opcode jumped to should be
3056 `on_failure_jump' or `succeed_n'. Just treat it like an
3057 ordinary jump. For a * loop, it has pushed its failure
3058 point already; if so, discard that as redundant. */
3059 if ((re_opcode_t) *p != on_failure_jump
3060 && (re_opcode_t) *p != succeed_n)
3061 continue;
3063 p++;
3064 EXTRACT_NUMBER_AND_INCR (j, p);
3065 p += j;
3067 /* If what's on the stack is where we are now, pop it. */
3068 if (!FAIL_STACK_EMPTY ()
3069 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3070 fail_stack.avail--;
3072 continue;
3075 case on_failure_jump:
3076 case on_failure_keep_string_jump:
3077 handle_on_failure_jump:
3078 EXTRACT_NUMBER_AND_INCR (j, p);
3080 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3081 end of the pattern. We don't want to push such a point,
3082 since when we restore it above, entering the switch will
3083 increment `p' past the end of the pattern. We don't need
3084 to push such a point since we obviously won't find any more
3085 fastmap entries beyond `pend'. Such a pattern can match
3086 the null string, though. */
3087 if (p + j < pend)
3089 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3091 RESET_FAIL_STACK ();
3092 return -2;
3095 else
3096 bufp->can_be_null = 1;
3098 if (succeed_n_p)
3100 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3101 succeed_n_p = false;
3104 continue;
3107 case succeed_n:
3108 /* Get to the number of times to succeed. */
3109 p += 2;
3111 /* Increment p past the n for when k != 0. */
3112 EXTRACT_NUMBER_AND_INCR (k, p);
3113 if (k == 0)
3115 p -= 4;
3116 succeed_n_p = true; /* Spaghetti code alert. */
3117 goto handle_on_failure_jump;
3119 continue;
3122 case set_number_at:
3123 p += 4;
3124 continue;
3127 case start_memory:
3128 case stop_memory:
3129 p += 2;
3130 continue;
3133 default:
3134 abort (); /* We have listed all the cases. */
3135 } /* switch *p++ */
3137 /* Getting here means we have found the possible starting
3138 characters for one path of the pattern -- and that the empty
3139 string does not match. We need not follow this path further.
3140 Instead, look at the next alternative (remembered on the
3141 stack), or quit if no more. The test at the top of the loop
3142 does these things. */
3143 path_can_be_null = false;
3144 p = pend;
3145 } /* while p */
3147 /* Set `can_be_null' for the last path (also the first path, if the
3148 pattern is empty). */
3149 bufp->can_be_null |= path_can_be_null;
3151 done:
3152 RESET_FAIL_STACK ();
3153 return 0;
3154 } /* re_compile_fastmap */
3156 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3157 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3158 this memory for recording register information. STARTS and ENDS
3159 must be allocated using the malloc library routine, and must each
3160 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3162 If NUM_REGS == 0, then subsequent matches should allocate their own
3163 register data.
3165 Unless this function is called, the first search or match using
3166 PATTERN_BUFFER will allocate its own register data, without
3167 freeing the old data. */
3169 void
3170 re_set_registers (bufp, regs, num_regs, starts, ends)
3171 struct re_pattern_buffer *bufp;
3172 struct re_registers *regs;
3173 unsigned num_regs;
3174 regoff_t *starts, *ends;
3176 if (num_regs)
3178 bufp->regs_allocated = REGS_REALLOCATE;
3179 regs->num_regs = num_regs;
3180 regs->start = starts;
3181 regs->end = ends;
3183 else
3185 bufp->regs_allocated = REGS_UNALLOCATED;
3186 regs->num_regs = 0;
3187 regs->start = regs->end = (regoff_t *) 0;
3191 /* Searching routines. */
3193 /* Like re_search_2, below, but only one string is specified, and
3194 doesn't let you say where to stop matching. */
3197 re_search (bufp, string, size, startpos, range, regs)
3198 struct re_pattern_buffer *bufp;
3199 const char *string;
3200 int size, startpos, range;
3201 struct re_registers *regs;
3203 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3204 regs, size);
3208 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3209 virtual concatenation of STRING1 and STRING2, starting first at index
3210 STARTPOS, then at STARTPOS + 1, and so on.
3212 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3214 RANGE is how far to scan while trying to match. RANGE = 0 means try
3215 only at STARTPOS; in general, the last start tried is STARTPOS +
3216 RANGE.
3218 In REGS, return the indices of the virtual concatenation of STRING1
3219 and STRING2 that matched the entire BUFP->buffer and its contained
3220 subexpressions.
3222 Do not consider matching one past the index STOP in the virtual
3223 concatenation of STRING1 and STRING2.
3225 We return either the position in the strings at which the match was
3226 found, -1 if no match, or -2 if error (such as failure
3227 stack overflow). */
3230 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3231 struct re_pattern_buffer *bufp;
3232 const char *string1, *string2;
3233 int size1, size2;
3234 int startpos;
3235 int range;
3236 struct re_registers *regs;
3237 int stop;
3239 int val;
3240 register char *fastmap = bufp->fastmap;
3241 register char *translate = bufp->translate;
3242 int total_size = size1 + size2;
3243 int endpos = startpos + range;
3245 /* Check for out-of-range STARTPOS. */
3246 if (startpos < 0 || startpos > total_size)
3247 return -1;
3249 /* Fix up RANGE if it might eventually take us outside
3250 the virtual concatenation of STRING1 and STRING2. */
3251 if (endpos < -1)
3252 range = -1 - startpos;
3253 else if (endpos > total_size)
3254 range = total_size - startpos;
3256 /* If the search isn't to be a backwards one, don't waste time in a
3257 search for a pattern that must be anchored. */
3258 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3260 if (startpos > 0)
3261 return -1;
3262 else
3263 range = 1;
3266 /* Update the fastmap now if not correct already. */
3267 if (fastmap && !bufp->fastmap_accurate)
3268 if (re_compile_fastmap (bufp) == -2)
3269 return -2;
3271 /* Loop through the string, looking for a place to start matching. */
3272 for (;;)
3274 /* If a fastmap is supplied, skip quickly over characters that
3275 cannot be the start of a match. If the pattern can match the
3276 null string, however, we don't need to skip characters; we want
3277 the first null string. */
3278 if (fastmap && startpos < total_size && !bufp->can_be_null)
3280 if (range > 0) /* Searching forwards. */
3282 register const char *d;
3283 register int lim = 0;
3284 int irange = range;
3286 if (startpos < size1 && startpos + range >= size1)
3287 lim = range - (size1 - startpos);
3289 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3291 /* Written out as an if-else to avoid testing `translate'
3292 inside the loop. */
3293 if (translate)
3294 while (range > lim
3295 && !fastmap[(unsigned char)
3296 translate[(unsigned char) *d++]])
3297 range--;
3298 else
3299 while (range > lim && !fastmap[(unsigned char) *d++])
3300 range--;
3302 startpos += irange - range;
3304 else /* Searching backwards. */
3306 register char c = (size1 == 0 || startpos >= size1
3307 ? string2[startpos - size1]
3308 : string1[startpos]);
3310 if (!fastmap[(unsigned char) TRANSLATE (c)])
3311 goto advance;
3315 /* If can't match the null string, and that's all we have left, fail. */
3316 if (range >= 0 && startpos == total_size && fastmap
3317 && !bufp->can_be_null)
3318 return -1;
3320 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3321 startpos, regs, stop);
3322 #ifndef REGEX_MALLOC
3323 #ifdef C_ALLOCA
3324 alloca (0);
3325 #endif
3326 #endif
3328 if (val >= 0)
3329 return startpos;
3331 if (val == -2)
3332 return -2;
3334 advance:
3335 if (!range)
3336 break;
3337 else if (range > 0)
3339 range--;
3340 startpos++;
3342 else
3344 range++;
3345 startpos--;
3348 return -1;
3349 } /* re_search_2 */
3351 /* Declarations and macros for re_match_2. */
3353 static int bcmp_translate ();
3354 static boolean alt_match_null_string_p (),
3355 common_op_match_null_string_p (),
3356 group_match_null_string_p ();
3358 /* This converts PTR, a pointer into one of the search strings `string1'
3359 and `string2' into an offset from the beginning of that string. */
3360 #define POINTER_TO_OFFSET(ptr) \
3361 (FIRST_STRING_P (ptr) \
3362 ? ((regoff_t) ((ptr) - string1)) \
3363 : ((regoff_t) ((ptr) - string2 + size1)))
3365 /* Macros for dealing with the split strings in re_match_2. */
3367 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3369 /* Call before fetching a character with *d. This switches over to
3370 string2 if necessary. */
3371 #define PREFETCH() \
3372 while (d == dend) \
3374 /* End of string2 => fail. */ \
3375 if (dend == end_match_2) \
3376 goto fail; \
3377 /* End of string1 => advance to string2. */ \
3378 d = string2; \
3379 dend = end_match_2; \
3383 /* Test if at very beginning or at very end of the virtual concatenation
3384 of `string1' and `string2'. If only one string, it's `string2'. */
3385 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3386 #define AT_STRINGS_END(d) ((d) == end2)
3389 /* Test if D points to a character which is word-constituent. We have
3390 two special cases to check for: if past the end of string1, look at
3391 the first character in string2; and if before the beginning of
3392 string2, look at the last character in string1. */
3393 #define WORDCHAR_P(d) \
3394 (SYNTAX ((d) == end1 ? *string2 \
3395 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3396 == Sword)
3398 /* Test if the character before D and the one at D differ with respect
3399 to being word-constituent. */
3400 #define AT_WORD_BOUNDARY(d) \
3401 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3402 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3405 /* Free everything we malloc. */
3406 #ifdef MATCH_MAY_ALLOCATE
3407 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3408 #define FREE_VARIABLES() \
3409 do { \
3410 REGEX_FREE_STACK (fail_stack.stack); \
3411 FREE_VAR (regstart); \
3412 FREE_VAR (regend); \
3413 FREE_VAR (old_regstart); \
3414 FREE_VAR (old_regend); \
3415 FREE_VAR (best_regstart); \
3416 FREE_VAR (best_regend); \
3417 FREE_VAR (reg_info); \
3418 FREE_VAR (reg_dummy); \
3419 FREE_VAR (reg_info_dummy); \
3420 } while (0)
3421 #else
3422 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3423 #endif /* not MATCH_MAY_ALLOCATE */
3425 /* These values must meet several constraints. They must not be valid
3426 register values; since we have a limit of 255 registers (because
3427 we use only one byte in the pattern for the register number), we can
3428 use numbers larger than 255. They must differ by 1, because of
3429 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3430 be larger than the value for the highest register, so we do not try
3431 to actually save any registers when none are active. */
3432 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3433 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3435 /* Matching routines. */
3437 #ifndef emacs /* Emacs never uses this. */
3438 /* re_match is like re_match_2 except it takes only a single string. */
3441 re_match (bufp, string, size, pos, regs)
3442 struct re_pattern_buffer *bufp;
3443 const char *string;
3444 int size, pos;
3445 struct re_registers *regs;
3447 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3448 pos, regs, size);
3449 alloca (0);
3450 return result;
3452 #endif /* not emacs */
3455 /* re_match_2 matches the compiled pattern in BUFP against the
3456 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3457 and SIZE2, respectively). We start matching at POS, and stop
3458 matching at STOP.
3460 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3461 store offsets for the substring each group matched in REGS. See the
3462 documentation for exactly how many groups we fill.
3464 We return -1 if no match, -2 if an internal error (such as the
3465 failure stack overflowing). Otherwise, we return the length of the
3466 matched substring. */
3469 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3470 struct re_pattern_buffer *bufp;
3471 const char *string1, *string2;
3472 int size1, size2;
3473 int pos;
3474 struct re_registers *regs;
3475 int stop;
3477 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3478 pos, regs, stop);
3479 alloca (0);
3480 return result;
3483 /* This is a separate function so that we can force an alloca cleanup
3484 afterwards. */
3485 static int
3486 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3487 struct re_pattern_buffer *bufp;
3488 const char *string1, *string2;
3489 int size1, size2;
3490 int pos;
3491 struct re_registers *regs;
3492 int stop;
3494 /* General temporaries. */
3495 int mcnt;
3496 unsigned char *p1;
3498 /* Just past the end of the corresponding string. */
3499 const char *end1, *end2;
3501 /* Pointers into string1 and string2, just past the last characters in
3502 each to consider matching. */
3503 const char *end_match_1, *end_match_2;
3505 /* Where we are in the data, and the end of the current string. */
3506 const char *d, *dend;
3508 /* Where we are in the pattern, and the end of the pattern. */
3509 unsigned char *p = bufp->buffer;
3510 register unsigned char *pend = p + bufp->used;
3512 /* Mark the opcode just after a start_memory, so we can test for an
3513 empty subpattern when we get to the stop_memory. */
3514 unsigned char *just_past_start_mem = 0;
3516 /* We use this to map every character in the string. */
3517 char *translate = bufp->translate;
3519 /* Failure point stack. Each place that can handle a failure further
3520 down the line pushes a failure point on this stack. It consists of
3521 restart, regend, and reg_info for all registers corresponding to
3522 the subexpressions we're currently inside, plus the number of such
3523 registers, and, finally, two char *'s. The first char * is where
3524 to resume scanning the pattern; the second one is where to resume
3525 scanning the strings. If the latter is zero, the failure point is
3526 a ``dummy''; if a failure happens and the failure point is a dummy,
3527 it gets discarded and the next next one is tried. */
3528 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3529 fail_stack_type fail_stack;
3530 #endif
3531 #ifdef DEBUG
3532 static unsigned failure_id = 0;
3533 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3534 #endif
3536 /* This holds the pointer to the failure stack, when
3537 it is allocated relocatably. */
3538 fail_stack_elt_t *failure_stack_ptr;
3540 /* We fill all the registers internally, independent of what we
3541 return, for use in backreferences. The number here includes
3542 an element for register zero. */
3543 unsigned num_regs = bufp->re_nsub + 1;
3545 /* The currently active registers. */
3546 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3547 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3549 /* Information on the contents of registers. These are pointers into
3550 the input strings; they record just what was matched (on this
3551 attempt) by a subexpression part of the pattern, that is, the
3552 regnum-th regstart pointer points to where in the pattern we began
3553 matching and the regnum-th regend points to right after where we
3554 stopped matching the regnum-th subexpression. (The zeroth register
3555 keeps track of what the whole pattern matches.) */
3556 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3557 const char **regstart, **regend;
3558 #endif
3560 /* If a group that's operated upon by a repetition operator fails to
3561 match anything, then the register for its start will need to be
3562 restored because it will have been set to wherever in the string we
3563 are when we last see its open-group operator. Similarly for a
3564 register's end. */
3565 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3566 const char **old_regstart, **old_regend;
3567 #endif
3569 /* The is_active field of reg_info helps us keep track of which (possibly
3570 nested) subexpressions we are currently in. The matched_something
3571 field of reg_info[reg_num] helps us tell whether or not we have
3572 matched any of the pattern so far this time through the reg_num-th
3573 subexpression. These two fields get reset each time through any
3574 loop their register is in. */
3575 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3576 register_info_type *reg_info;
3577 #endif
3579 /* The following record the register info as found in the above
3580 variables when we find a match better than any we've seen before.
3581 This happens as we backtrack through the failure points, which in
3582 turn happens only if we have not yet matched the entire string. */
3583 unsigned best_regs_set = false;
3584 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3585 const char **best_regstart, **best_regend;
3586 #endif
3588 /* Logically, this is `best_regend[0]'. But we don't want to have to
3589 allocate space for that if we're not allocating space for anything
3590 else (see below). Also, we never need info about register 0 for
3591 any of the other register vectors, and it seems rather a kludge to
3592 treat `best_regend' differently than the rest. So we keep track of
3593 the end of the best match so far in a separate variable. We
3594 initialize this to NULL so that when we backtrack the first time
3595 and need to test it, it's not garbage. */
3596 const char *match_end = NULL;
3598 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3599 int set_regs_matched_done = 0;
3601 /* Used when we pop values we don't care about. */
3602 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3603 const char **reg_dummy;
3604 register_info_type *reg_info_dummy;
3605 #endif
3607 #ifdef DEBUG
3608 /* Counts the total number of registers pushed. */
3609 unsigned num_regs_pushed = 0;
3610 #endif
3612 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3614 INIT_FAIL_STACK ();
3616 #ifdef MATCH_MAY_ALLOCATE
3617 /* Do not bother to initialize all the register variables if there are
3618 no groups in the pattern, as it takes a fair amount of time. If
3619 there are groups, we include space for register 0 (the whole
3620 pattern), even though we never use it, since it simplifies the
3621 array indexing. We should fix this. */
3622 if (bufp->re_nsub)
3624 regstart = REGEX_TALLOC (num_regs, const char *);
3625 regend = REGEX_TALLOC (num_regs, const char *);
3626 old_regstart = REGEX_TALLOC (num_regs, const char *);
3627 old_regend = REGEX_TALLOC (num_regs, const char *);
3628 best_regstart = REGEX_TALLOC (num_regs, const char *);
3629 best_regend = REGEX_TALLOC (num_regs, const char *);
3630 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3631 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3632 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3634 if (!(regstart && regend && old_regstart && old_regend && reg_info
3635 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3637 FREE_VARIABLES ();
3638 return -2;
3641 else
3643 /* We must initialize all our variables to NULL, so that
3644 `FREE_VARIABLES' doesn't try to free them. */
3645 regstart = regend = old_regstart = old_regend = best_regstart
3646 = best_regend = reg_dummy = NULL;
3647 reg_info = reg_info_dummy = (register_info_type *) NULL;
3649 #endif /* MATCH_MAY_ALLOCATE */
3651 /* The starting position is bogus. */
3652 if (pos < 0 || pos > size1 + size2)
3654 FREE_VARIABLES ();
3655 return -1;
3658 /* Initialize subexpression text positions to -1 to mark ones that no
3659 start_memory/stop_memory has been seen for. Also initialize the
3660 register information struct. */
3661 for (mcnt = 1; mcnt < num_regs; mcnt++)
3663 regstart[mcnt] = regend[mcnt]
3664 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3666 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3667 IS_ACTIVE (reg_info[mcnt]) = 0;
3668 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3669 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3672 /* We move `string1' into `string2' if the latter's empty -- but not if
3673 `string1' is null. */
3674 if (size2 == 0 && string1 != NULL)
3676 string2 = string1;
3677 size2 = size1;
3678 string1 = 0;
3679 size1 = 0;
3681 end1 = string1 + size1;
3682 end2 = string2 + size2;
3684 /* Compute where to stop matching, within the two strings. */
3685 if (stop <= size1)
3687 end_match_1 = string1 + stop;
3688 end_match_2 = string2;
3690 else
3692 end_match_1 = end1;
3693 end_match_2 = string2 + stop - size1;
3696 /* `p' scans through the pattern as `d' scans through the data.
3697 `dend' is the end of the input string that `d' points within. `d'
3698 is advanced into the following input string whenever necessary, but
3699 this happens before fetching; therefore, at the beginning of the
3700 loop, `d' can be pointing at the end of a string, but it cannot
3701 equal `string2'. */
3702 if (size1 > 0 && pos <= size1)
3704 d = string1 + pos;
3705 dend = end_match_1;
3707 else
3709 d = string2 + pos - size1;
3710 dend = end_match_2;
3713 DEBUG_PRINT1 ("The compiled pattern is: ");
3714 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3715 DEBUG_PRINT1 ("The string to match is: `");
3716 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3717 DEBUG_PRINT1 ("'\n");
3719 /* This loops over pattern commands. It exits by returning from the
3720 function if the match is complete, or it drops through if the match
3721 fails at this starting point in the input data. */
3722 for (;;)
3724 DEBUG_PRINT2 ("\n0x%x: ", p);
3726 if (p == pend)
3727 { /* End of pattern means we might have succeeded. */
3728 DEBUG_PRINT1 ("end of pattern ... ");
3730 /* If we haven't matched the entire string, and we want the
3731 longest match, try backtracking. */
3732 if (d != end_match_2)
3734 /* 1 if this match ends in the same string (string1 or string2)
3735 as the best previous match. */
3736 boolean same_str_p = (FIRST_STRING_P (match_end)
3737 == MATCHING_IN_FIRST_STRING);
3738 /* 1 if this match is the best seen so far. */
3739 boolean best_match_p;
3741 /* AIX compiler got confused when this was combined
3742 with the previous declaration. */
3743 if (same_str_p)
3744 best_match_p = d > match_end;
3745 else
3746 best_match_p = !MATCHING_IN_FIRST_STRING;
3748 DEBUG_PRINT1 ("backtracking.\n");
3750 if (!FAIL_STACK_EMPTY ())
3751 { /* More failure points to try. */
3753 /* If exceeds best match so far, save it. */
3754 if (!best_regs_set || best_match_p)
3756 best_regs_set = true;
3757 match_end = d;
3759 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3761 for (mcnt = 1; mcnt < num_regs; mcnt++)
3763 best_regstart[mcnt] = regstart[mcnt];
3764 best_regend[mcnt] = regend[mcnt];
3767 goto fail;
3770 /* If no failure points, don't restore garbage. And if
3771 last match is real best match, don't restore second
3772 best one. */
3773 else if (best_regs_set && !best_match_p)
3775 restore_best_regs:
3776 /* Restore best match. It may happen that `dend ==
3777 end_match_1' while the restored d is in string2.
3778 For example, the pattern `x.*y.*z' against the
3779 strings `x-' and `y-z-', if the two strings are
3780 not consecutive in memory. */
3781 DEBUG_PRINT1 ("Restoring best registers.\n");
3783 d = match_end;
3784 dend = ((d >= string1 && d <= end1)
3785 ? end_match_1 : end_match_2);
3787 for (mcnt = 1; mcnt < num_regs; mcnt++)
3789 regstart[mcnt] = best_regstart[mcnt];
3790 regend[mcnt] = best_regend[mcnt];
3793 } /* d != end_match_2 */
3795 succeed_label:
3796 DEBUG_PRINT1 ("Accepting match.\n");
3798 /* If caller wants register contents data back, do it. */
3799 if (regs && !bufp->no_sub)
3801 /* Have the register data arrays been allocated? */
3802 if (bufp->regs_allocated == REGS_UNALLOCATED)
3803 { /* No. So allocate them with malloc. We need one
3804 extra element beyond `num_regs' for the `-1' marker
3805 GNU code uses. */
3806 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3807 regs->start = TALLOC (regs->num_regs, regoff_t);
3808 regs->end = TALLOC (regs->num_regs, regoff_t);
3809 if (regs->start == NULL || regs->end == NULL)
3811 FREE_VARIABLES ();
3812 return -2;
3814 bufp->regs_allocated = REGS_REALLOCATE;
3816 else if (bufp->regs_allocated == REGS_REALLOCATE)
3817 { /* Yes. If we need more elements than were already
3818 allocated, reallocate them. If we need fewer, just
3819 leave it alone. */
3820 if (regs->num_regs < num_regs + 1)
3822 regs->num_regs = num_regs + 1;
3823 RETALLOC (regs->start, regs->num_regs, regoff_t);
3824 RETALLOC (regs->end, regs->num_regs, regoff_t);
3825 if (regs->start == NULL || regs->end == NULL)
3827 FREE_VARIABLES ();
3828 return -2;
3832 else
3834 /* These braces fend off a "empty body in an else-statement"
3835 warning under GCC when assert expands to nothing. */
3836 assert (bufp->regs_allocated == REGS_FIXED);
3839 /* Convert the pointer data in `regstart' and `regend' to
3840 indices. Register zero has to be set differently,
3841 since we haven't kept track of any info for it. */
3842 if (regs->num_regs > 0)
3844 regs->start[0] = pos;
3845 regs->end[0] = (MATCHING_IN_FIRST_STRING
3846 ? ((regoff_t) (d - string1))
3847 : ((regoff_t) (d - string2 + size1)));
3850 /* Go through the first `min (num_regs, regs->num_regs)'
3851 registers, since that is all we initialized. */
3852 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3854 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3855 regs->start[mcnt] = regs->end[mcnt] = -1;
3856 else
3858 regs->start[mcnt]
3859 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3860 regs->end[mcnt]
3861 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3865 /* If the regs structure we return has more elements than
3866 were in the pattern, set the extra elements to -1. If
3867 we (re)allocated the registers, this is the case,
3868 because we always allocate enough to have at least one
3869 -1 at the end. */
3870 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3871 regs->start[mcnt] = regs->end[mcnt] = -1;
3872 } /* regs && !bufp->no_sub */
3874 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3875 nfailure_points_pushed, nfailure_points_popped,
3876 nfailure_points_pushed - nfailure_points_popped);
3877 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3879 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3880 ? string1
3881 : string2 - size1);
3883 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3885 FREE_VARIABLES ();
3886 return mcnt;
3889 /* Otherwise match next pattern command. */
3890 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3892 /* Ignore these. Used to ignore the n of succeed_n's which
3893 currently have n == 0. */
3894 case no_op:
3895 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3896 break;
3898 case succeed:
3899 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3900 goto succeed_label;
3902 /* Match the next n pattern characters exactly. The following
3903 byte in the pattern defines n, and the n bytes after that
3904 are the characters to match. */
3905 case exactn:
3906 mcnt = *p++;
3907 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3909 /* This is written out as an if-else so we don't waste time
3910 testing `translate' inside the loop. */
3911 if (translate)
3915 PREFETCH ();
3916 if (translate[(unsigned char) *d++] != (char) *p++)
3917 goto fail;
3919 while (--mcnt);
3921 else
3925 PREFETCH ();
3926 if (*d++ != (char) *p++) goto fail;
3928 while (--mcnt);
3930 SET_REGS_MATCHED ();
3931 break;
3934 /* Match any character except possibly a newline or a null. */
3935 case anychar:
3936 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3938 PREFETCH ();
3940 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3941 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3942 goto fail;
3944 SET_REGS_MATCHED ();
3945 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3946 d++;
3947 break;
3950 case charset:
3951 case charset_not:
3953 register unsigned char c;
3954 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3956 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3958 PREFETCH ();
3959 c = TRANSLATE (*d); /* The character to match. */
3961 /* Cast to `unsigned' instead of `unsigned char' in case the
3962 bit list is a full 32 bytes long. */
3963 if (c < (unsigned) (*p * BYTEWIDTH)
3964 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3965 not = !not;
3967 p += 1 + *p;
3969 if (!not) goto fail;
3971 SET_REGS_MATCHED ();
3972 d++;
3973 break;
3977 /* The beginning of a group is represented by start_memory.
3978 The arguments are the register number in the next byte, and the
3979 number of groups inner to this one in the next. The text
3980 matched within the group is recorded (in the internal
3981 registers data structure) under the register number. */
3982 case start_memory:
3983 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3985 /* Find out if this group can match the empty string. */
3986 p1 = p; /* To send to group_match_null_string_p. */
3988 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3989 REG_MATCH_NULL_STRING_P (reg_info[*p])
3990 = group_match_null_string_p (&p1, pend, reg_info);
3992 /* Save the position in the string where we were the last time
3993 we were at this open-group operator in case the group is
3994 operated upon by a repetition operator, e.g., with `(a*)*b'
3995 against `ab'; then we want to ignore where we are now in
3996 the string in case this attempt to match fails. */
3997 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3998 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3999 : regstart[*p];
4000 DEBUG_PRINT2 (" old_regstart: %d\n",
4001 POINTER_TO_OFFSET (old_regstart[*p]));
4003 regstart[*p] = d;
4004 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4006 IS_ACTIVE (reg_info[*p]) = 1;
4007 MATCHED_SOMETHING (reg_info[*p]) = 0;
4009 /* Clear this whenever we change the register activity status. */
4010 set_regs_matched_done = 0;
4012 /* This is the new highest active register. */
4013 highest_active_reg = *p;
4015 /* If nothing was active before, this is the new lowest active
4016 register. */
4017 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4018 lowest_active_reg = *p;
4020 /* Move past the register number and inner group count. */
4021 p += 2;
4022 just_past_start_mem = p;
4024 break;
4027 /* The stop_memory opcode represents the end of a group. Its
4028 arguments are the same as start_memory's: the register
4029 number, and the number of inner groups. */
4030 case stop_memory:
4031 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4033 /* We need to save the string position the last time we were at
4034 this close-group operator in case the group is operated
4035 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4036 against `aba'; then we want to ignore where we are now in
4037 the string in case this attempt to match fails. */
4038 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4039 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4040 : regend[*p];
4041 DEBUG_PRINT2 (" old_regend: %d\n",
4042 POINTER_TO_OFFSET (old_regend[*p]));
4044 regend[*p] = d;
4045 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4047 /* This register isn't active anymore. */
4048 IS_ACTIVE (reg_info[*p]) = 0;
4050 /* Clear this whenever we change the register activity status. */
4051 set_regs_matched_done = 0;
4053 /* If this was the only register active, nothing is active
4054 anymore. */
4055 if (lowest_active_reg == highest_active_reg)
4057 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4058 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4060 else
4061 { /* We must scan for the new highest active register, since
4062 it isn't necessarily one less than now: consider
4063 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4064 new highest active register is 1. */
4065 unsigned char r = *p - 1;
4066 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4067 r--;
4069 /* If we end up at register zero, that means that we saved
4070 the registers as the result of an `on_failure_jump', not
4071 a `start_memory', and we jumped to past the innermost
4072 `stop_memory'. For example, in ((.)*) we save
4073 registers 1 and 2 as a result of the *, but when we pop
4074 back to the second ), we are at the stop_memory 1.
4075 Thus, nothing is active. */
4076 if (r == 0)
4078 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4079 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4081 else
4082 highest_active_reg = r;
4085 /* If just failed to match something this time around with a
4086 group that's operated on by a repetition operator, try to
4087 force exit from the ``loop'', and restore the register
4088 information for this group that we had before trying this
4089 last match. */
4090 if ((!MATCHED_SOMETHING (reg_info[*p])
4091 || just_past_start_mem == p - 1)
4092 && (p + 2) < pend)
4094 boolean is_a_jump_n = false;
4096 p1 = p + 2;
4097 mcnt = 0;
4098 switch ((re_opcode_t) *p1++)
4100 case jump_n:
4101 is_a_jump_n = true;
4102 case pop_failure_jump:
4103 case maybe_pop_jump:
4104 case jump:
4105 case dummy_failure_jump:
4106 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4107 if (is_a_jump_n)
4108 p1 += 2;
4109 break;
4111 default:
4112 /* do nothing */ ;
4114 p1 += mcnt;
4116 /* If the next operation is a jump backwards in the pattern
4117 to an on_failure_jump right before the start_memory
4118 corresponding to this stop_memory, exit from the loop
4119 by forcing a failure after pushing on the stack the
4120 on_failure_jump's jump in the pattern, and d. */
4121 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4122 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4124 /* If this group ever matched anything, then restore
4125 what its registers were before trying this last
4126 failed match, e.g., with `(a*)*b' against `ab' for
4127 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4128 against `aba' for regend[3].
4130 Also restore the registers for inner groups for,
4131 e.g., `((a*)(b*))*' against `aba' (register 3 would
4132 otherwise get trashed). */
4134 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4136 unsigned r;
4138 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4140 /* Restore this and inner groups' (if any) registers. */
4141 for (r = *p; r < *p + *(p + 1); r++)
4143 regstart[r] = old_regstart[r];
4145 /* xx why this test? */
4146 if (old_regend[r] >= regstart[r])
4147 regend[r] = old_regend[r];
4150 p1++;
4151 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4152 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4154 goto fail;
4158 /* Move past the register number and the inner group count. */
4159 p += 2;
4160 break;
4163 /* \<digit> has been turned into a `duplicate' command which is
4164 followed by the numeric value of <digit> as the register number. */
4165 case duplicate:
4167 register const char *d2, *dend2;
4168 int regno = *p++; /* Get which register to match against. */
4169 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4171 /* Can't back reference a group which we've never matched. */
4172 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4173 goto fail;
4175 /* Where in input to try to start matching. */
4176 d2 = regstart[regno];
4178 /* Where to stop matching; if both the place to start and
4179 the place to stop matching are in the same string, then
4180 set to the place to stop, otherwise, for now have to use
4181 the end of the first string. */
4183 dend2 = ((FIRST_STRING_P (regstart[regno])
4184 == FIRST_STRING_P (regend[regno]))
4185 ? regend[regno] : end_match_1);
4186 for (;;)
4188 /* If necessary, advance to next segment in register
4189 contents. */
4190 while (d2 == dend2)
4192 if (dend2 == end_match_2) break;
4193 if (dend2 == regend[regno]) break;
4195 /* End of string1 => advance to string2. */
4196 d2 = string2;
4197 dend2 = regend[regno];
4199 /* At end of register contents => success */
4200 if (d2 == dend2) break;
4202 /* If necessary, advance to next segment in data. */
4203 PREFETCH ();
4205 /* How many characters left in this segment to match. */
4206 mcnt = dend - d;
4208 /* Want how many consecutive characters we can match in
4209 one shot, so, if necessary, adjust the count. */
4210 if (mcnt > dend2 - d2)
4211 mcnt = dend2 - d2;
4213 /* Compare that many; failure if mismatch, else move
4214 past them. */
4215 if (translate
4216 ? bcmp_translate (d, d2, mcnt, translate)
4217 : bcmp (d, d2, mcnt))
4218 goto fail;
4219 d += mcnt, d2 += mcnt;
4221 /* Do this because we've match some characters. */
4222 SET_REGS_MATCHED ();
4225 break;
4228 /* begline matches the empty string at the beginning of the string
4229 (unless `not_bol' is set in `bufp'), and, if
4230 `newline_anchor' is set, after newlines. */
4231 case begline:
4232 DEBUG_PRINT1 ("EXECUTING begline.\n");
4234 if (AT_STRINGS_BEG (d))
4236 if (!bufp->not_bol) break;
4238 else if (d[-1] == '\n' && bufp->newline_anchor)
4240 break;
4242 /* In all other cases, we fail. */
4243 goto fail;
4246 /* endline is the dual of begline. */
4247 case endline:
4248 DEBUG_PRINT1 ("EXECUTING endline.\n");
4250 if (AT_STRINGS_END (d))
4252 if (!bufp->not_eol) break;
4255 /* We have to ``prefetch'' the next character. */
4256 else if ((d == end1 ? *string2 : *d) == '\n'
4257 && bufp->newline_anchor)
4259 break;
4261 goto fail;
4264 /* Match at the very beginning of the data. */
4265 case begbuf:
4266 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4267 if (AT_STRINGS_BEG (d))
4268 break;
4269 goto fail;
4272 /* Match at the very end of the data. */
4273 case endbuf:
4274 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4275 if (AT_STRINGS_END (d))
4276 break;
4277 goto fail;
4280 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4281 pushes NULL as the value for the string on the stack. Then
4282 `pop_failure_point' will keep the current value for the
4283 string, instead of restoring it. To see why, consider
4284 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4285 then the . fails against the \n. But the next thing we want
4286 to do is match the \n against the \n; if we restored the
4287 string value, we would be back at the foo.
4289 Because this is used only in specific cases, we don't need to
4290 check all the things that `on_failure_jump' does, to make
4291 sure the right things get saved on the stack. Hence we don't
4292 share its code. The only reason to push anything on the
4293 stack at all is that otherwise we would have to change
4294 `anychar's code to do something besides goto fail in this
4295 case; that seems worse than this. */
4296 case on_failure_keep_string_jump:
4297 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4299 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4300 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4302 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4303 break;
4306 /* Uses of on_failure_jump:
4308 Each alternative starts with an on_failure_jump that points
4309 to the beginning of the next alternative. Each alternative
4310 except the last ends with a jump that in effect jumps past
4311 the rest of the alternatives. (They really jump to the
4312 ending jump of the following alternative, because tensioning
4313 these jumps is a hassle.)
4315 Repeats start with an on_failure_jump that points past both
4316 the repetition text and either the following jump or
4317 pop_failure_jump back to this on_failure_jump. */
4318 case on_failure_jump:
4319 on_failure:
4320 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4322 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4323 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4325 /* If this on_failure_jump comes right before a group (i.e.,
4326 the original * applied to a group), save the information
4327 for that group and all inner ones, so that if we fail back
4328 to this point, the group's information will be correct.
4329 For example, in \(a*\)*\1, we need the preceding group,
4330 and in \(\(a*\)b*\)\2, we need the inner group. */
4332 /* We can't use `p' to check ahead because we push
4333 a failure point to `p + mcnt' after we do this. */
4334 p1 = p;
4336 /* We need to skip no_op's before we look for the
4337 start_memory in case this on_failure_jump is happening as
4338 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4339 against aba. */
4340 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4341 p1++;
4343 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4345 /* We have a new highest active register now. This will
4346 get reset at the start_memory we are about to get to,
4347 but we will have saved all the registers relevant to
4348 this repetition op, as described above. */
4349 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4350 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4351 lowest_active_reg = *(p1 + 1);
4354 DEBUG_PRINT1 (":\n");
4355 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4356 break;
4359 /* A smart repeat ends with `maybe_pop_jump'.
4360 We change it to either `pop_failure_jump' or `jump'. */
4361 case maybe_pop_jump:
4362 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4363 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4365 register unsigned char *p2 = p;
4367 /* Compare the beginning of the repeat with what in the
4368 pattern follows its end. If we can establish that there
4369 is nothing that they would both match, i.e., that we
4370 would have to backtrack because of (as in, e.g., `a*a')
4371 then we can change to pop_failure_jump, because we'll
4372 never have to backtrack.
4374 This is not true in the case of alternatives: in
4375 `(a|ab)*' we do need to backtrack to the `ab' alternative
4376 (e.g., if the string was `ab'). But instead of trying to
4377 detect that here, the alternative has put on a dummy
4378 failure point which is what we will end up popping. */
4380 /* Skip over open/close-group commands.
4381 If what follows this loop is a ...+ construct,
4382 look at what begins its body, since we will have to
4383 match at least one of that. */
4384 while (1)
4386 if (p2 + 2 < pend
4387 && ((re_opcode_t) *p2 == stop_memory
4388 || (re_opcode_t) *p2 == start_memory))
4389 p2 += 3;
4390 else if (p2 + 6 < pend
4391 && (re_opcode_t) *p2 == dummy_failure_jump)
4392 p2 += 6;
4393 else
4394 break;
4397 p1 = p + mcnt;
4398 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4399 to the `maybe_finalize_jump' of this case. Examine what
4400 follows. */
4402 /* If we're at the end of the pattern, we can change. */
4403 if (p2 == pend)
4405 /* Consider what happens when matching ":\(.*\)"
4406 against ":/". I don't really understand this code
4407 yet. */
4408 p[-3] = (unsigned char) pop_failure_jump;
4409 DEBUG_PRINT1
4410 (" End of pattern: change to `pop_failure_jump'.\n");
4413 else if ((re_opcode_t) *p2 == exactn
4414 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4416 register unsigned char c
4417 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4419 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4421 p[-3] = (unsigned char) pop_failure_jump;
4422 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4423 c, p1[5]);
4426 else if ((re_opcode_t) p1[3] == charset
4427 || (re_opcode_t) p1[3] == charset_not)
4429 int not = (re_opcode_t) p1[3] == charset_not;
4431 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4432 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4433 not = !not;
4435 /* `not' is equal to 1 if c would match, which means
4436 that we can't change to pop_failure_jump. */
4437 if (!not)
4439 p[-3] = (unsigned char) pop_failure_jump;
4440 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4444 else if ((re_opcode_t) *p2 == charset)
4446 #ifdef DEBUG
4447 register unsigned char c
4448 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4449 #endif
4451 if ((re_opcode_t) p1[3] == exactn
4452 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4453 && (p2[1 + p1[4] / BYTEWIDTH]
4454 & (1 << (p1[4] % BYTEWIDTH)))))
4456 p[-3] = (unsigned char) pop_failure_jump;
4457 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4458 c, p1[5]);
4461 else if ((re_opcode_t) p1[3] == charset_not)
4463 int idx;
4464 /* We win if the charset_not inside the loop
4465 lists every character listed in the charset after. */
4466 for (idx = 0; idx < (int) p2[1]; idx++)
4467 if (! (p2[2 + idx] == 0
4468 || (idx < (int) p1[4]
4469 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4470 break;
4472 if (idx == p2[1])
4474 p[-3] = (unsigned char) pop_failure_jump;
4475 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4478 else if ((re_opcode_t) p1[3] == charset)
4480 int idx;
4481 /* We win if the charset inside the loop
4482 has no overlap with the one after the loop. */
4483 for (idx = 0;
4484 idx < (int) p2[1] && idx < (int) p1[4];
4485 idx++)
4486 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4487 break;
4489 if (idx == p2[1] || idx == p1[4])
4491 p[-3] = (unsigned char) pop_failure_jump;
4492 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4497 p -= 2; /* Point at relative address again. */
4498 if ((re_opcode_t) p[-1] != pop_failure_jump)
4500 p[-1] = (unsigned char) jump;
4501 DEBUG_PRINT1 (" Match => jump.\n");
4502 goto unconditional_jump;
4504 /* Note fall through. */
4507 /* The end of a simple repeat has a pop_failure_jump back to
4508 its matching on_failure_jump, where the latter will push a
4509 failure point. The pop_failure_jump takes off failure
4510 points put on by this pop_failure_jump's matching
4511 on_failure_jump; we got through the pattern to here from the
4512 matching on_failure_jump, so didn't fail. */
4513 case pop_failure_jump:
4515 /* We need to pass separate storage for the lowest and
4516 highest registers, even though we don't care about the
4517 actual values. Otherwise, we will restore only one
4518 register from the stack, since lowest will == highest in
4519 `pop_failure_point'. */
4520 unsigned dummy_low_reg, dummy_high_reg;
4521 unsigned char *pdummy;
4522 const char *sdummy;
4524 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4525 POP_FAILURE_POINT (sdummy, pdummy,
4526 dummy_low_reg, dummy_high_reg,
4527 reg_dummy, reg_dummy, reg_info_dummy);
4529 /* Note fall through. */
4532 /* Unconditionally jump (without popping any failure points). */
4533 case jump:
4534 unconditional_jump:
4535 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4536 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4537 p += mcnt; /* Do the jump. */
4538 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4539 break;
4542 /* We need this opcode so we can detect where alternatives end
4543 in `group_match_null_string_p' et al. */
4544 case jump_past_alt:
4545 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4546 goto unconditional_jump;
4549 /* Normally, the on_failure_jump pushes a failure point, which
4550 then gets popped at pop_failure_jump. We will end up at
4551 pop_failure_jump, also, and with a pattern of, say, `a+', we
4552 are skipping over the on_failure_jump, so we have to push
4553 something meaningless for pop_failure_jump to pop. */
4554 case dummy_failure_jump:
4555 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4556 /* It doesn't matter what we push for the string here. What
4557 the code at `fail' tests is the value for the pattern. */
4558 PUSH_FAILURE_POINT (0, 0, -2);
4559 goto unconditional_jump;
4562 /* At the end of an alternative, we need to push a dummy failure
4563 point in case we are followed by a `pop_failure_jump', because
4564 we don't want the failure point for the alternative to be
4565 popped. For example, matching `(a|ab)*' against `aab'
4566 requires that we match the `ab' alternative. */
4567 case push_dummy_failure:
4568 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4569 /* See comments just above at `dummy_failure_jump' about the
4570 two zeroes. */
4571 PUSH_FAILURE_POINT (0, 0, -2);
4572 break;
4574 /* Have to succeed matching what follows at least n times.
4575 After that, handle like `on_failure_jump'. */
4576 case succeed_n:
4577 EXTRACT_NUMBER (mcnt, p + 2);
4578 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4580 assert (mcnt >= 0);
4581 /* Originally, this is how many times we HAVE to succeed. */
4582 if (mcnt > 0)
4584 mcnt--;
4585 p += 2;
4586 STORE_NUMBER_AND_INCR (p, mcnt);
4587 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4589 else if (mcnt == 0)
4591 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4592 p[2] = (unsigned char) no_op;
4593 p[3] = (unsigned char) no_op;
4594 goto on_failure;
4596 break;
4598 case jump_n:
4599 EXTRACT_NUMBER (mcnt, p + 2);
4600 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4602 /* Originally, this is how many times we CAN jump. */
4603 if (mcnt)
4605 mcnt--;
4606 STORE_NUMBER (p + 2, mcnt);
4607 goto unconditional_jump;
4609 /* If don't have to jump any more, skip over the rest of command. */
4610 else
4611 p += 4;
4612 break;
4614 case set_number_at:
4616 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4618 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4619 p1 = p + mcnt;
4620 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4621 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4622 STORE_NUMBER (p1, mcnt);
4623 break;
4626 case wordbound:
4627 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4628 if (AT_WORD_BOUNDARY (d))
4629 break;
4630 goto fail;
4632 case notwordbound:
4633 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4634 if (AT_WORD_BOUNDARY (d))
4635 goto fail;
4636 break;
4638 case wordbeg:
4639 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4640 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4641 break;
4642 goto fail;
4644 case wordend:
4645 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4646 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4647 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4648 break;
4649 goto fail;
4651 #ifdef emacs
4652 case before_dot:
4653 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4654 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4655 goto fail;
4656 break;
4658 case at_dot:
4659 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4660 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4661 goto fail;
4662 break;
4664 case after_dot:
4665 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4666 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4667 goto fail;
4668 break;
4669 #if 0 /* not emacs19 */
4670 case at_dot:
4671 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4672 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4673 goto fail;
4674 break;
4675 #endif /* not emacs19 */
4677 case syntaxspec:
4678 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4679 mcnt = *p++;
4680 goto matchsyntax;
4682 case wordchar:
4683 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4684 mcnt = (int) Sword;
4685 matchsyntax:
4686 PREFETCH ();
4687 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4688 d++;
4689 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4690 goto fail;
4691 SET_REGS_MATCHED ();
4692 break;
4694 case notsyntaxspec:
4695 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4696 mcnt = *p++;
4697 goto matchnotsyntax;
4699 case notwordchar:
4700 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4701 mcnt = (int) Sword;
4702 matchnotsyntax:
4703 PREFETCH ();
4704 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4705 d++;
4706 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4707 goto fail;
4708 SET_REGS_MATCHED ();
4709 break;
4711 #else /* not emacs */
4712 case wordchar:
4713 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4714 PREFETCH ();
4715 if (!WORDCHAR_P (d))
4716 goto fail;
4717 SET_REGS_MATCHED ();
4718 d++;
4719 break;
4721 case notwordchar:
4722 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4723 PREFETCH ();
4724 if (WORDCHAR_P (d))
4725 goto fail;
4726 SET_REGS_MATCHED ();
4727 d++;
4728 break;
4729 #endif /* not emacs */
4731 default:
4732 abort ();
4734 continue; /* Successfully executed one pattern command; keep going. */
4737 /* We goto here if a matching operation fails. */
4738 fail:
4739 if (!FAIL_STACK_EMPTY ())
4740 { /* A restart point is known. Restore to that state. */
4741 DEBUG_PRINT1 ("\nFAIL:\n");
4742 POP_FAILURE_POINT (d, p,
4743 lowest_active_reg, highest_active_reg,
4744 regstart, regend, reg_info);
4746 /* If this failure point is a dummy, try the next one. */
4747 if (!p)
4748 goto fail;
4750 /* If we failed to the end of the pattern, don't examine *p. */
4751 assert (p <= pend);
4752 if (p < pend)
4754 boolean is_a_jump_n = false;
4756 /* If failed to a backwards jump that's part of a repetition
4757 loop, need to pop this failure point and use the next one. */
4758 switch ((re_opcode_t) *p)
4760 case jump_n:
4761 is_a_jump_n = true;
4762 case maybe_pop_jump:
4763 case pop_failure_jump:
4764 case jump:
4765 p1 = p + 1;
4766 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4767 p1 += mcnt;
4769 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4770 || (!is_a_jump_n
4771 && (re_opcode_t) *p1 == on_failure_jump))
4772 goto fail;
4773 break;
4774 default:
4775 /* do nothing */ ;
4779 if (d >= string1 && d <= end1)
4780 dend = end_match_1;
4782 else
4783 break; /* Matching at this starting point really fails. */
4784 } /* for (;;) */
4786 if (best_regs_set)
4787 goto restore_best_regs;
4789 FREE_VARIABLES ();
4791 return -1; /* Failure to match. */
4792 } /* re_match_2 */
4794 /* Subroutine definitions for re_match_2. */
4797 /* We are passed P pointing to a register number after a start_memory.
4799 Return true if the pattern up to the corresponding stop_memory can
4800 match the empty string, and false otherwise.
4802 If we find the matching stop_memory, sets P to point to one past its number.
4803 Otherwise, sets P to an undefined byte less than or equal to END.
4805 We don't handle duplicates properly (yet). */
4807 static boolean
4808 group_match_null_string_p (p, end, reg_info)
4809 unsigned char **p, *end;
4810 register_info_type *reg_info;
4812 int mcnt;
4813 /* Point to after the args to the start_memory. */
4814 unsigned char *p1 = *p + 2;
4816 while (p1 < end)
4818 /* Skip over opcodes that can match nothing, and return true or
4819 false, as appropriate, when we get to one that can't, or to the
4820 matching stop_memory. */
4822 switch ((re_opcode_t) *p1)
4824 /* Could be either a loop or a series of alternatives. */
4825 case on_failure_jump:
4826 p1++;
4827 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4829 /* If the next operation is not a jump backwards in the
4830 pattern. */
4832 if (mcnt >= 0)
4834 /* Go through the on_failure_jumps of the alternatives,
4835 seeing if any of the alternatives cannot match nothing.
4836 The last alternative starts with only a jump,
4837 whereas the rest start with on_failure_jump and end
4838 with a jump, e.g., here is the pattern for `a|b|c':
4840 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4841 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4842 /exactn/1/c
4844 So, we have to first go through the first (n-1)
4845 alternatives and then deal with the last one separately. */
4848 /* Deal with the first (n-1) alternatives, which start
4849 with an on_failure_jump (see above) that jumps to right
4850 past a jump_past_alt. */
4852 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4854 /* `mcnt' holds how many bytes long the alternative
4855 is, including the ending `jump_past_alt' and
4856 its number. */
4858 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4859 reg_info))
4860 return false;
4862 /* Move to right after this alternative, including the
4863 jump_past_alt. */
4864 p1 += mcnt;
4866 /* Break if it's the beginning of an n-th alternative
4867 that doesn't begin with an on_failure_jump. */
4868 if ((re_opcode_t) *p1 != on_failure_jump)
4869 break;
4871 /* Still have to check that it's not an n-th
4872 alternative that starts with an on_failure_jump. */
4873 p1++;
4874 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4875 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4877 /* Get to the beginning of the n-th alternative. */
4878 p1 -= 3;
4879 break;
4883 /* Deal with the last alternative: go back and get number
4884 of the `jump_past_alt' just before it. `mcnt' contains
4885 the length of the alternative. */
4886 EXTRACT_NUMBER (mcnt, p1 - 2);
4888 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4889 return false;
4891 p1 += mcnt; /* Get past the n-th alternative. */
4892 } /* if mcnt > 0 */
4893 break;
4896 case stop_memory:
4897 assert (p1[1] == **p);
4898 *p = p1 + 2;
4899 return true;
4902 default:
4903 if (!common_op_match_null_string_p (&p1, end, reg_info))
4904 return false;
4906 } /* while p1 < end */
4908 return false;
4909 } /* group_match_null_string_p */
4912 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4913 It expects P to be the first byte of a single alternative and END one
4914 byte past the last. The alternative can contain groups. */
4916 static boolean
4917 alt_match_null_string_p (p, end, reg_info)
4918 unsigned char *p, *end;
4919 register_info_type *reg_info;
4921 int mcnt;
4922 unsigned char *p1 = p;
4924 while (p1 < end)
4926 /* Skip over opcodes that can match nothing, and break when we get
4927 to one that can't. */
4929 switch ((re_opcode_t) *p1)
4931 /* It's a loop. */
4932 case on_failure_jump:
4933 p1++;
4934 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4935 p1 += mcnt;
4936 break;
4938 default:
4939 if (!common_op_match_null_string_p (&p1, end, reg_info))
4940 return false;
4942 } /* while p1 < end */
4944 return true;
4945 } /* alt_match_null_string_p */
4948 /* Deals with the ops common to group_match_null_string_p and
4949 alt_match_null_string_p.
4951 Sets P to one after the op and its arguments, if any. */
4953 static boolean
4954 common_op_match_null_string_p (p, end, reg_info)
4955 unsigned char **p, *end;
4956 register_info_type *reg_info;
4958 int mcnt;
4959 boolean ret;
4960 int reg_no;
4961 unsigned char *p1 = *p;
4963 switch ((re_opcode_t) *p1++)
4965 case no_op:
4966 case begline:
4967 case endline:
4968 case begbuf:
4969 case endbuf:
4970 case wordbeg:
4971 case wordend:
4972 case wordbound:
4973 case notwordbound:
4974 #ifdef emacs
4975 case before_dot:
4976 case at_dot:
4977 case after_dot:
4978 #endif
4979 break;
4981 case start_memory:
4982 reg_no = *p1;
4983 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4984 ret = group_match_null_string_p (&p1, end, reg_info);
4986 /* Have to set this here in case we're checking a group which
4987 contains a group and a back reference to it. */
4989 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4990 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4992 if (!ret)
4993 return false;
4994 break;
4996 /* If this is an optimized succeed_n for zero times, make the jump. */
4997 case jump:
4998 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4999 if (mcnt >= 0)
5000 p1 += mcnt;
5001 else
5002 return false;
5003 break;
5005 case succeed_n:
5006 /* Get to the number of times to succeed. */
5007 p1 += 2;
5008 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5010 if (mcnt == 0)
5012 p1 -= 4;
5013 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5014 p1 += mcnt;
5016 else
5017 return false;
5018 break;
5020 case duplicate:
5021 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5022 return false;
5023 break;
5025 case set_number_at:
5026 p1 += 4;
5028 default:
5029 /* All other opcodes mean we cannot match the empty string. */
5030 return false;
5033 *p = p1;
5034 return true;
5035 } /* common_op_match_null_string_p */
5038 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5039 bytes; nonzero otherwise. */
5041 static int
5042 bcmp_translate (s1, s2, len, translate)
5043 unsigned char *s1, *s2;
5044 register int len;
5045 char *translate;
5047 register unsigned char *p1 = s1, *p2 = s2;
5048 while (len)
5050 if (translate[*p1++] != translate[*p2++]) return 1;
5051 len--;
5053 return 0;
5056 /* Entry points for GNU code. */
5058 /* re_compile_pattern is the GNU regular expression compiler: it
5059 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5060 Returns 0 if the pattern was valid, otherwise an error string.
5062 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5063 are set in BUFP on entry.
5065 We call regex_compile to do the actual compilation. */
5067 const char *
5068 re_compile_pattern (pattern, length, bufp)
5069 const char *pattern;
5070 int length;
5071 struct re_pattern_buffer *bufp;
5073 reg_errcode_t ret;
5075 /* GNU code is written to assume at least RE_NREGS registers will be set
5076 (and at least one extra will be -1). */
5077 bufp->regs_allocated = REGS_UNALLOCATED;
5079 /* And GNU code determines whether or not to get register information
5080 by passing null for the REGS argument to re_match, etc., not by
5081 setting no_sub. */
5082 bufp->no_sub = 0;
5084 /* Match anchors at newline. */
5085 bufp->newline_anchor = 1;
5087 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5089 if (!ret)
5090 return NULL;
5091 return gettext (re_error_msgid[(int) ret]);
5094 /* Entry points compatible with 4.2 BSD regex library. We don't define
5095 them unless specifically requested. */
5097 #ifdef _REGEX_RE_COMP
5099 /* BSD has one and only one pattern buffer. */
5100 static struct re_pattern_buffer re_comp_buf;
5102 char *
5103 re_comp (s)
5104 const char *s;
5106 reg_errcode_t ret;
5108 if (!s)
5110 if (!re_comp_buf.buffer)
5111 return gettext ("No previous regular expression");
5112 return 0;
5115 if (!re_comp_buf.buffer)
5117 re_comp_buf.buffer = (unsigned char *) malloc (200);
5118 if (re_comp_buf.buffer == NULL)
5119 return gettext (re_error_msgid[(int) REG_ESPACE]);
5120 re_comp_buf.allocated = 200;
5122 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5123 if (re_comp_buf.fastmap == NULL)
5124 return gettext (re_error_msgid[(int) REG_ESPACE]);
5127 /* Since `re_exec' always passes NULL for the `regs' argument, we
5128 don't need to initialize the pattern buffer fields which affect it. */
5130 /* Match anchors at newlines. */
5131 re_comp_buf.newline_anchor = 1;
5133 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5135 if (!ret)
5136 return NULL;
5138 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5139 return (char *) gettext (re_error_msgid[(int) ret]);
5144 re_exec (s)
5145 const char *s;
5147 const int len = strlen (s);
5148 return
5149 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5151 #endif /* _REGEX_RE_COMP */
5153 /* POSIX.2 functions. Don't define these for Emacs. */
5155 #ifndef emacs
5157 /* regcomp takes a regular expression as a string and compiles it.
5159 PREG is a regex_t *. We do not expect any fields to be initialized,
5160 since POSIX says we shouldn't. Thus, we set
5162 `buffer' to the compiled pattern;
5163 `used' to the length of the compiled pattern;
5164 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5165 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5166 RE_SYNTAX_POSIX_BASIC;
5167 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5168 `fastmap' and `fastmap_accurate' to zero;
5169 `re_nsub' to the number of subexpressions in PATTERN.
5171 PATTERN is the address of the pattern string.
5173 CFLAGS is a series of bits which affect compilation.
5175 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5176 use POSIX basic syntax.
5178 If REG_NEWLINE is set, then . and [^...] don't match newline.
5179 Also, regexec will try a match beginning after every newline.
5181 If REG_ICASE is set, then we considers upper- and lowercase
5182 versions of letters to be equivalent when matching.
5184 If REG_NOSUB is set, then when PREG is passed to regexec, that
5185 routine will report only success or failure, and nothing about the
5186 registers.
5188 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5189 the return codes and their meanings.) */
5192 regcomp (preg, pattern, cflags)
5193 regex_t *preg;
5194 const char *pattern;
5195 int cflags;
5197 reg_errcode_t ret;
5198 unsigned syntax
5199 = (cflags & REG_EXTENDED) ?
5200 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5202 /* regex_compile will allocate the space for the compiled pattern. */
5203 preg->buffer = 0;
5204 preg->allocated = 0;
5205 preg->used = 0;
5207 /* Don't bother to use a fastmap when searching. This simplifies the
5208 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5209 characters after newlines into the fastmap. This way, we just try
5210 every character. */
5211 preg->fastmap = 0;
5213 if (cflags & REG_ICASE)
5215 unsigned i;
5217 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5218 if (preg->translate == NULL)
5219 return (int) REG_ESPACE;
5221 /* Map uppercase characters to corresponding lowercase ones. */
5222 for (i = 0; i < CHAR_SET_SIZE; i++)
5223 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5225 else
5226 preg->translate = NULL;
5228 /* If REG_NEWLINE is set, newlines are treated differently. */
5229 if (cflags & REG_NEWLINE)
5230 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5231 syntax &= ~RE_DOT_NEWLINE;
5232 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5233 /* It also changes the matching behavior. */
5234 preg->newline_anchor = 1;
5236 else
5237 preg->newline_anchor = 0;
5239 preg->no_sub = !!(cflags & REG_NOSUB);
5241 /* POSIX says a null character in the pattern terminates it, so we
5242 can use strlen here in compiling the pattern. */
5243 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5245 /* POSIX doesn't distinguish between an unmatched open-group and an
5246 unmatched close-group: both are REG_EPAREN. */
5247 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5249 return (int) ret;
5253 /* regexec searches for a given pattern, specified by PREG, in the
5254 string STRING.
5256 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5257 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5258 least NMATCH elements, and we set them to the offsets of the
5259 corresponding matched substrings.
5261 EFLAGS specifies `execution flags' which affect matching: if
5262 REG_NOTBOL is set, then ^ does not match at the beginning of the
5263 string; if REG_NOTEOL is set, then $ does not match at the end.
5265 We return 0 if we find a match and REG_NOMATCH if not. */
5268 regexec (preg, string, nmatch, pmatch, eflags)
5269 const regex_t *preg;
5270 const char *string;
5271 size_t nmatch;
5272 regmatch_t pmatch[];
5273 int eflags;
5275 int ret;
5276 struct re_registers regs;
5277 regex_t private_preg;
5278 int len = strlen (string);
5279 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5281 private_preg = *preg;
5283 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5284 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5286 /* The user has told us exactly how many registers to return
5287 information about, via `nmatch'. We have to pass that on to the
5288 matching routines. */
5289 private_preg.regs_allocated = REGS_FIXED;
5291 if (want_reg_info)
5293 regs.num_regs = nmatch;
5294 regs.start = TALLOC (nmatch, regoff_t);
5295 regs.end = TALLOC (nmatch, regoff_t);
5296 if (regs.start == NULL || regs.end == NULL)
5297 return (int) REG_NOMATCH;
5300 /* Perform the searching operation. */
5301 ret = re_search (&private_preg, string, len,
5302 /* start: */ 0, /* range: */ len,
5303 want_reg_info ? &regs : (struct re_registers *) 0);
5305 /* Copy the register information to the POSIX structure. */
5306 if (want_reg_info)
5308 if (ret >= 0)
5310 unsigned r;
5312 for (r = 0; r < nmatch; r++)
5314 pmatch[r].rm_so = regs.start[r];
5315 pmatch[r].rm_eo = regs.end[r];
5319 /* If we needed the temporary register info, free the space now. */
5320 free (regs.start);
5321 free (regs.end);
5324 /* We want zero return to mean success, unlike `re_search'. */
5325 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5329 /* Returns a message corresponding to an error code, ERRCODE, returned
5330 from either regcomp or regexec. We don't use PREG here. */
5332 size_t
5333 regerror (errcode, preg, errbuf, errbuf_size)
5334 int errcode;
5335 const regex_t *preg;
5336 char *errbuf;
5337 size_t errbuf_size;
5339 const char *msg;
5340 size_t msg_size;
5342 if (errcode < 0
5343 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5344 /* Only error codes returned by the rest of the code should be passed
5345 to this routine. If we are given anything else, or if other regex
5346 code generates an invalid error code, then the program has a bug.
5347 Dump core so we can fix it. */
5348 abort ();
5350 msg = gettext (re_error_msgid[errcode]);
5352 msg_size = strlen (msg) + 1; /* Includes the null. */
5354 if (errbuf_size != 0)
5356 if (msg_size > errbuf_size)
5358 strncpy (errbuf, msg, errbuf_size - 1);
5359 errbuf[errbuf_size - 1] = 0;
5361 else
5362 strcpy (errbuf, msg);
5365 return msg_size;
5369 /* Free dynamically allocated space used by PREG. */
5371 void
5372 regfree (preg)
5373 regex_t *preg;
5375 if (preg->buffer != NULL)
5376 free (preg->buffer);
5377 preg->buffer = NULL;
5379 preg->allocated = 0;
5380 preg->used = 0;
5382 if (preg->fastmap != NULL)
5383 free (preg->fastmap);
5384 preg->fastmap = NULL;
5385 preg->fastmap_accurate = 0;
5387 if (preg->translate != NULL)
5388 free (preg->translate);
5389 preg->translate = NULL;
5392 #endif /* not emacs */
5395 Local variables:
5396 make-backup-files: t
5397 version-control: t
5398 trim-versions-without-asking: nil
5399 End: